code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import (
BitConfig,
ViTHybridConfig,
ViTHybridForImageClassification,
ViTHybridImageProcessor,
ViTHybridModel,
)
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
def lowerCAmelCase__( lowercase : Dict , lowercase : Optional[Any]=False ) -> Tuple:
__snake_case : Any = []
# fmt: off
# stem:
rename_keys.append(("cls_token", "vit.embeddings.cls_token") )
rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") )
rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") )
rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") )
# backbone
rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") )
rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") )
rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") )
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") )
rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") )
rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") )
rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") )
rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") )
rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") )
rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") )
rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") )
rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") )
rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") )
rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") )
rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") )
# transformer encoder
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
("pre_logits.fc.weight", "pooler.dense.weight"),
("pre_logits.fc.bias", "pooler.dense.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
__snake_case : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
# fmt: on
return rename_keys
def lowerCAmelCase__( lowercase : Any , lowercase : Optional[int] , lowercase : Optional[int]=False ) -> Optional[Any]:
for i in range(config.num_hidden_layers ):
if base_model:
__snake_case : Dict = ""
else:
__snake_case : Any = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__snake_case : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" )
__snake_case : List[str] = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
__snake_case : Any = in_proj_weight[
: config.hidden_size, :
]
__snake_case : Optional[Any] = in_proj_bias[: config.hidden_size]
__snake_case : Dict = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__snake_case : List[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__snake_case : Optional[int] = in_proj_weight[
-config.hidden_size :, :
]
__snake_case : Union[str, Any] = in_proj_bias[-config.hidden_size :]
def lowerCAmelCase__( lowercase : Any ) -> Tuple:
__snake_case : Any = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(lowercase , lowercase )
def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] , lowercase : List[Any] ) -> Union[str, Any]:
__snake_case : Optional[int] = dct.pop(lowercase )
__snake_case : List[Any] = val
def lowerCAmelCase__( ) -> Tuple:
__snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
__snake_case : List[str] = Image.open(requests.get(lowercase , stream=lowercase ).raw )
return im
@torch.no_grad()
def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : Union[str, Any] , lowercase : Optional[Any]=False ) -> Union[str, Any]:
__snake_case : List[Any] = BitConfig(
global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=lowercase , )
__snake_case : Dict = ViTHybridConfig(backbone_config=lowercase , image_size=384 , num_labels=1000 )
__snake_case : List[Any] = False
# load original model from timm
__snake_case : List[Any] = timm.create_model(lowercase , pretrained=lowercase )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
__snake_case : List[Any] = timm_model.state_dict()
if base_model:
remove_classification_head_(lowercase )
__snake_case : Tuple = create_rename_keys(lowercase , lowercase )
for src, dest in rename_keys:
rename_key(lowercase , lowercase , lowercase )
read_in_q_k_v(lowercase , lowercase , lowercase )
__snake_case : Optional[int] = "huggingface/label-files"
__snake_case : int = "imagenet-1k-id2label.json"
__snake_case : Union[str, Any] = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) )
__snake_case : int = {int(lowercase ): v for k, v in idalabel.items()}
__snake_case : int = idalabel
__snake_case : Dict = {v: k for k, v in idalabel.items()}
# load HuggingFace model
if vit_name[-5:] == "in21k":
__snake_case : str = ViTHybridModel(lowercase ).eval()
else:
__snake_case : Optional[Any] = ViTHybridForImageClassification(lowercase ).eval()
model.load_state_dict(lowercase )
# create image processor
__snake_case : Dict = create_transform(**resolve_data_config({} , model=lowercase ) )
__snake_case : List[Any] = transform.transforms
__snake_case : Optional[int] = {
"bilinear": PILImageResampling.BILINEAR,
"bicubic": PILImageResampling.BICUBIC,
"nearest": PILImageResampling.NEAREST,
}
__snake_case : int = ViTHybridImageProcessor(
do_resize=lowercase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=lowercase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
__snake_case : int = prepare_img()
__snake_case : Tuple = transform(lowercase ).unsqueeze(0 )
__snake_case : Optional[int] = processor(lowercase , return_tensors="pt" ).pixel_values
# verify pixel values
assert torch.allclose(lowercase , lowercase )
# verify logits
with torch.no_grad():
__snake_case : Optional[int] = model(lowercase )
__snake_case : Optional[int] = outputs.logits
print("Predicted class:" , logits.argmax(-1 ).item() )
if base_model:
__snake_case : Tuple = timm_model.forward_features(lowercase )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(lowercase , outputs.pooler_output , atol=1E-3 )
else:
__snake_case : int = timm_model(lowercase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(lowercase , outputs.logits , atol=1E-3 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
Path(lowercase ).mkdir(exist_ok=lowercase )
print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(lowercase )
print(f"""Saving processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(lowercase )
if push_to_hub:
print(f"""Pushing model and processor to the hub {vit_name}""" )
model.push_to_hub(f"""ybelkada/{vit_name}""" )
processor.push_to_hub(f"""ybelkada/{vit_name}""" )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--vit_name''',
default='''vit_base_r50_s16_384''',
type=str,
help='''Name of the hybrid ViT timm model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.'''
)
_UpperCamelCase = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 326 |
import argparse
import datetime
def lowerCAmelCase__( lowercase : str ) -> str:
__snake_case : int = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
__snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowercase ) < 11:
raise ValueError("Must be 10 characters long" )
# Get month
__snake_case : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12" )
__snake_case : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get day
__snake_case : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31" )
# Get second separator
__snake_case : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get year
__snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?" )
# Get datetime obj for validation
__snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) )
# Start math
if m <= 2:
__snake_case : Optional[Any] = y - 1
__snake_case : Tuple = m + 12
# maths var
__snake_case : int = int(str(lowercase )[:2] )
__snake_case : int = int(str(lowercase )[2:] )
__snake_case : int = int(2.6 * m - 5.3_9 )
__snake_case : int = int(c / 4 )
__snake_case : int = int(k / 4 )
__snake_case : int = int(d + k )
__snake_case : int = int(t + u + v + x )
__snake_case : int = int(z - (2 * c) )
__snake_case : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer." )
# Response
__snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
_UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 326 | 1 |
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''',
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : str ="data2vec-audio"
def __init__( self , UpperCAmelCase=32 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1E-5 , UpperCAmelCase="gelu" , UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=16 , UpperCAmelCase=19 , UpperCAmelCase=5 , UpperCAmelCase=0.05 , UpperCAmelCase=10 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=10 , UpperCAmelCase=0 , UpperCAmelCase="sum" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=256 , UpperCAmelCase=(512, 512, 512, 512, 1500) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=512 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=None , **UpperCAmelCase , ) -> str:
'''simple docstring'''
super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase )
__snake_case : Optional[Any] = hidden_size
__snake_case : Union[str, Any] = feat_extract_activation
__snake_case : Dict = list(UpperCAmelCase )
__snake_case : List[Any] = list(UpperCAmelCase )
__snake_case : Union[str, Any] = list(UpperCAmelCase )
__snake_case : List[Any] = conv_bias
__snake_case : Optional[Any] = num_conv_pos_embeddings
__snake_case : Tuple = num_conv_pos_embedding_groups
__snake_case : Optional[Any] = conv_pos_kernel_size
__snake_case : Tuple = len(self.conv_dim )
__snake_case : str = num_hidden_layers
__snake_case : str = intermediate_size
__snake_case : Optional[Any] = hidden_act
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : Any = hidden_dropout
__snake_case : int = attention_dropout
__snake_case : List[str] = activation_dropout
__snake_case : Optional[Any] = feat_proj_dropout
__snake_case : int = final_dropout
__snake_case : Any = layerdrop
__snake_case : int = layer_norm_eps
__snake_case : List[str] = initializer_range
__snake_case : Any = vocab_size
__snake_case : List[str] = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__snake_case : Dict = mask_time_prob
__snake_case : Tuple = mask_time_length
__snake_case : Optional[Any] = mask_time_min_masks
__snake_case : Optional[int] = mask_feature_prob
__snake_case : List[Any] = mask_feature_length
__snake_case : List[Any] = mask_feature_min_masks
# ctc loss
__snake_case : int = ctc_loss_reduction
__snake_case : Optional[Any] = ctc_zero_infinity
# adapter
__snake_case : str = add_adapter
__snake_case : List[str] = adapter_kernel_size
__snake_case : Optional[Any] = adapter_stride
__snake_case : int = num_adapter_layers
__snake_case : int = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__snake_case : List[str] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__snake_case : Tuple = list(UpperCAmelCase )
__snake_case : Dict = list(UpperCAmelCase )
__snake_case : Dict = list(UpperCAmelCase )
__snake_case : Union[str, Any] = xvector_output_dim
@property
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
return math.prod(self.conv_stride )
| 326 |
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int:
if index == r:
for j in range(lowercase ):
print(data[j] , end=" " )
print(" " )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
__snake_case : Union[str, Any] = arr[i]
combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]:
# A temporary array to store all combination one by one
__snake_case : Tuple = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 )
if __name__ == "__main__":
# Driver code to check the function above
_UpperCamelCase = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 326 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_UpperCamelCase = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''YolosFeatureExtractor''']
_UpperCamelCase = ['''YolosImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''YolosForObjectDetection''',
'''YolosModel''',
'''YolosPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 326 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
_UpperCamelCase = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def lowerCAmelCase__( lowercase : str ) -> Optional[Any]:
__snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" )
return sd
def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict:
__snake_case : Tuple = OrderedDict()
__snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__snake_case : Optional[Any] = key
for name_pair in rename_keys_prefix:
__snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] )
__snake_case : List[str] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__snake_case : List[Any] = new_d["cls.predictions.bias"]
return new_d
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]:
assert (
checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS
), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."""
# Get Config
if "pre" in checkpoint_path:
__snake_case : Any = "pretraining"
if "vcr" in checkpoint_path:
__snake_case : Optional[Any] = {"visual_embedding_dim": 512}
elif "vqa_advanced" in checkpoint_path:
__snake_case : Tuple = {"visual_embedding_dim": 2048}
elif "vqa" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 2048}
elif "nlvr" in checkpoint_path:
__snake_case : Any = {"visual_embedding_dim": 1024}
else:
raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" )
else:
if "vcr" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 512}
__snake_case : Any = "multichoice"
elif "vqa_advanced" in checkpoint_path:
__snake_case : List[Any] = {"visual_embedding_dim": 2048}
__snake_case : Optional[Any] = "vqa_advanced"
elif "vqa" in checkpoint_path:
__snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129}
__snake_case : Union[str, Any] = "vqa"
elif "nlvr" in checkpoint_path:
__snake_case : Tuple = {
"visual_embedding_dim": 1024,
"num_labels": 2,
}
__snake_case : List[Any] = "nlvr"
__snake_case : Union[str, Any] = VisualBertConfig(**lowercase )
# Load State Dict
__snake_case : Any = load_state_dict(lowercase )
__snake_case : Dict = get_new_dict(lowercase , lowercase )
if model_type == "pretraining":
__snake_case : Optional[Any] = VisualBertForPreTraining(lowercase )
elif model_type == "vqa":
__snake_case : Tuple = VisualBertForQuestionAnswering(lowercase )
elif model_type == "nlvr":
__snake_case : Tuple = VisualBertForVisualReasoning(lowercase )
elif model_type == "multichoice":
__snake_case : List[Any] = VisualBertForMultipleChoice(lowercase )
model.load_state_dict(lowercase )
# Save Checkpoints
Path(lowercase ).mkdir(exist_ok=lowercase )
model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 326 | 1 |
import inspect
import unittest
import warnings
from transformers import DeiTConfig
from transformers.models.auto import get_values
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
)
from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=30 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=32 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=None , UpperCAmelCase=2 , ) -> Dict:
'''simple docstring'''
__snake_case : int = parent
__snake_case : Dict = batch_size
__snake_case : str = image_size
__snake_case : Union[str, Any] = patch_size
__snake_case : Tuple = num_channels
__snake_case : Dict = is_training
__snake_case : Dict = use_labels
__snake_case : Tuple = hidden_size
__snake_case : List[Any] = num_hidden_layers
__snake_case : Any = num_attention_heads
__snake_case : List[str] = intermediate_size
__snake_case : Optional[int] = hidden_act
__snake_case : int = hidden_dropout_prob
__snake_case : List[Any] = attention_probs_dropout_prob
__snake_case : Union[str, Any] = type_sequence_label_size
__snake_case : Dict = initializer_range
__snake_case : List[Any] = scope
__snake_case : int = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
__snake_case : Optional[int] = (image_size // patch_size) ** 2
__snake_case : List[str] = num_patches + 2
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Tuple = None
if self.use_labels:
__snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__snake_case : Dict = DeiTModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : Dict = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any:
'''simple docstring'''
__snake_case : str = DeiTForMaskedImageModeling(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : str = model(UpperCAmelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__snake_case : List[str] = 1
__snake_case : Dict = DeiTForMaskedImageModeling(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__snake_case : str = model(UpperCAmelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any:
'''simple docstring'''
__snake_case : Optional[Any] = self.type_sequence_label_size
__snake_case : Any = DeiTForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : Optional[Any] = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__snake_case : List[Any] = 1
__snake_case : Dict = DeiTForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__snake_case : List[str] = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : List[Any] = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : str = config_and_inputs
__snake_case : Optional[Any] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _lowerCamelCase ( a , a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] =(
(
DeiTModel,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
UpperCAmelCase_ : List[str] =(
{
"feature-extraction": DeiTModel,
"image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
UpperCAmelCase_ : Optional[int] =False
UpperCAmelCase_ : List[Any] =False
UpperCAmelCase_ : List[str] =False
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : List[Any] = DeiTModelTester(self )
__snake_case : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
pass
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = model_class(UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__snake_case : int = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) )
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Optional[Any] = model_class(UpperCAmelCase )
__snake_case : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : List[str] = [*signature.parameters.keys()]
__snake_case : Tuple = ["pixel_values"]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Optional[Any] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase )
if return_labels:
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
if not self.model_tester.is_training:
return
__snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : str = True
for model_class in self.all_model_classes:
# DeiTForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(UpperCAmelCase )
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
__snake_case : str = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
__snake_case : Any = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase )
__snake_case : Dict = model(**UpperCAmelCase ).loss
loss.backward()
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
__snake_case : str = False
__snake_case : Any = True
for model_class in self.all_model_classes:
if model_class in get_values(UpperCAmelCase ) or not model_class.supports_gradient_checkpointing:
continue
# DeiTForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
continue
__snake_case : Dict = model_class(UpperCAmelCase )
model.gradient_checkpointing_enable()
model.to(UpperCAmelCase )
model.train()
__snake_case : List[str] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase )
__snake_case : Optional[int] = model(**UpperCAmelCase ).loss
loss.backward()
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : List[Any] = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(UpperCAmelCase ),
*get_values(UpperCAmelCase ),
]
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=F"""Testing {model_class} with {problem_type["title"]}""" ):
__snake_case : Optional[Any] = problem_type["title"]
__snake_case : List[str] = problem_type["num_labels"]
__snake_case : str = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
__snake_case : Dict = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase )
if problem_type["num_labels"] > 1:
__snake_case : Any = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] )
__snake_case : Tuple = inputs["labels"].to(problem_type["dtype"] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=UpperCAmelCase ) as warning_list:
__snake_case : Tuple = model(**UpperCAmelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
F"""Something is going wrong in the regression problem: intercepted {w.message}""" )
loss.backward()
@slow
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : str = DeiTModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def lowerCAmelCase__( ) -> List[Any]:
__snake_case : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : List[str] = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to(
UpperCAmelCase )
__snake_case : Any = self.default_image_processor
__snake_case : List[Any] = prepare_img()
__snake_case : Any = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
__snake_case : str = model(**UpperCAmelCase )
# verify the logits
__snake_case : List[Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
__snake_case : Any = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Optional[Any] = DeiTModel.from_pretrained(
"facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" )
__snake_case : Optional[int] = self.default_image_processor
__snake_case : Optional[int] = prepare_img()
__snake_case : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="pt" )
__snake_case : Tuple = inputs.pixel_values.to(UpperCAmelCase )
# forward pass to make sure inference works in fp16
with torch.no_grad():
__snake_case : int = model(UpperCAmelCase )
| 326 |
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple:
# Load configuration defined in the metadata file
with open(lowercase ) as metadata_file:
__snake_case : int = json.load(lowercase )
__snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] )
# Load in the weights from the checkpoint_path
__snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"]
# Load the entity vocab file
__snake_case : Tuple = load_original_entity_vocab(lowercase )
# add an entry for [MASK2]
__snake_case : Optional[int] = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
__snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] )
# Add special tokens to the token vocabulary for downstream tasks
__snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase )
__snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase )
tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" )
tokenizer.save_pretrained(lowercase )
with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f:
__snake_case : Tuple = json.load(lowercase )
__snake_case : List[Any] = "MLukeTokenizer"
with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f:
json.dump(lowercase , lowercase )
with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f:
json.dump(lowercase , lowercase )
__snake_case : Any = MLukeTokenizer.from_pretrained(lowercase )
# Initialize the embeddings of the special tokens
__snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0]
__snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0]
__snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"]
__snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 )
__snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 )
__snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
__snake_case : List[Any] = state_dict[bias_name]
__snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 )
__snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 )
__snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
__snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self."""
__snake_case : Union[str, Any] = state_dict[prefix + matrix_name]
__snake_case : str = state_dict[prefix + matrix_name]
__snake_case : Union[str, Any] = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
__snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"]
__snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 )
__snake_case : Any = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
__snake_case : List[Any] = state_dict["entity_predictions.bias"]
__snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 )
__snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] )
__snake_case : Any = LukeForMaskedLM(config=lowercase ).eval()
state_dict.pop("entity_predictions.decoder.weight" )
state_dict.pop("lm_head.decoder.weight" )
state_dict.pop("lm_head.decoder.bias" )
__snake_case : int = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )):
__snake_case : str = state_dict[key]
else:
__snake_case : str = state_dict[key]
__snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase )
if set(lowercase ) != {"luke.embeddings.position_ids"}:
raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" )
if set(lowercase ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
__snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" )
__snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
__snake_case : Union[str, Any] = (0, 9)
__snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" )
__snake_case : Any = model(**lowercase )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
__snake_case : Optional[Any] = torch.Size((1, 33, 768) )
__snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
__snake_case : str = torch.Size((1, 1, 768) )
__snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"""
f""" {expected_shape}""" )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
__snake_case : str = MLukeTokenizer.from_pretrained(lowercase )
__snake_case : Dict = "Tokyo is the capital of <mask>."
__snake_case : Union[str, Any] = (24, 30)
__snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" )
__snake_case : int = model(**lowercase )
__snake_case : Dict = encoding["input_ids"][0].tolist()
__snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) )
__snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(lowercase )
__snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item()
__snake_case : Optional[int] = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print("Saving PyTorch model to {}".format(lowercase ) )
model.save_pretrained(lowercase )
def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]:
__snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"]
__snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )]
__snake_case : Any = {}
for entry in data:
__snake_case : Any = entry["id"]
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
__snake_case : Optional[int] = entity_id
break
__snake_case : Union[str, Any] = f"""{language}:{entity_name}"""
__snake_case : Any = entity_id
return new_mapping
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''')
parser.add_argument(
'''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.'''
)
parser.add_argument(
'''--entity_vocab_path''',
default=None,
type=str,
help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.'''
)
parser.add_argument(
'''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.'''
)
_UpperCamelCase = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 326 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.txt'''}
_UpperCamelCase = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': 512,
'''YituTech/conv-bert-medium-small''': 512,
'''YituTech/conv-bert-small''': 512,
}
_UpperCamelCase = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : int =VOCAB_FILES_NAMES
UpperCAmelCase_ : Tuple =PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : Tuple =PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : List[Any] =ConvBertTokenizer
def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase="[UNK]" , UpperCAmelCase="[SEP]" , UpperCAmelCase="[PAD]" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ) -> List[str]:
'''simple docstring'''
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
__snake_case : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars
):
__snake_case : List[Any] = getattr(UpperCAmelCase , normalizer_state.pop("type" ) )
__snake_case : Optional[int] = do_lower_case
__snake_case : Dict = strip_accents
__snake_case : Tuple = tokenize_chinese_chars
__snake_case : Dict = normalizer_class(**UpperCAmelCase )
__snake_case : List[str] = do_lower_case
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=None ) -> int:
'''simple docstring'''
__snake_case : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__snake_case : int = [self.sep_token_id]
__snake_case : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
__snake_case : int = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 326 |
from maths.prime_factors import prime_factors
def lowerCAmelCase__( lowercase : int ) -> int:
if not isinstance(lowercase , lowercase ):
__snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer"""
raise TypeError(lowercase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(lowercase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 | 1 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _lowerCamelCase :
"""simple docstring"""
@staticmethod
def UpperCAmelCase ( *UpperCAmelCase , **UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@require_torch
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : str = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
__snake_case : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
__snake_case : Dict = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(UpperCAmelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
__snake_case : str = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@require_tf
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case : List[str] = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
__snake_case : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
__snake_case : Dict = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
__snake_case : Optional[Any] = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@slow
@require_torch
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : Optional[int] = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
__snake_case : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
__snake_case : str = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
__snake_case : Union[str, Any] = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : int = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
__snake_case : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
__snake_case : Tuple = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
__snake_case : Optional[int] = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
| 326 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" )
__snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" )
__snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids
__snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids
__snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
__snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits
__snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean()
__snake_case : Any = -(labels.shape[-1] * loss.item())
__snake_case : List[str] = -84.9_127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 326 | 1 |
import inspect
import unittest
from transformers import SegformerConfig, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_MAPPING,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerModel,
)
from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import SegformerImageProcessor
class _lowerCamelCase ( a ):
"""simple docstring"""
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : Any = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(UpperCAmelCase , "hidden_sizes" ) )
self.parent.assertTrue(hasattr(UpperCAmelCase , "num_attention_heads" ) )
self.parent.assertTrue(hasattr(UpperCAmelCase , "num_encoder_blocks" ) )
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=64 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[2, 2, 2, 2] , UpperCAmelCase=[8, 4, 2, 1] , UpperCAmelCase=[16, 32, 64, 128] , UpperCAmelCase=[1, 4, 8, 16] , UpperCAmelCase=[1, 2, 4, 8] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=None , ) -> Optional[int]:
'''simple docstring'''
__snake_case : List[Any] = parent
__snake_case : List[str] = batch_size
__snake_case : int = image_size
__snake_case : Optional[int] = num_channels
__snake_case : Optional[Any] = num_encoder_blocks
__snake_case : Tuple = sr_ratios
__snake_case : Union[str, Any] = depths
__snake_case : Optional[int] = hidden_sizes
__snake_case : Optional[int] = downsampling_rates
__snake_case : int = num_attention_heads
__snake_case : Tuple = is_training
__snake_case : List[str] = use_labels
__snake_case : Optional[int] = hidden_act
__snake_case : int = hidden_dropout_prob
__snake_case : str = attention_probs_dropout_prob
__snake_case : Union[str, Any] = initializer_range
__snake_case : Union[str, Any] = num_labels
__snake_case : Dict = scope
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Optional[Any] = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__snake_case : int = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return SegformerConfig(
image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int:
'''simple docstring'''
__snake_case : Dict = SegformerModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : List[Any] = model(UpperCAmelCase )
__snake_case : List[str] = self.image_size // (self.downsampling_rates[-1] * 2)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any:
'''simple docstring'''
__snake_case : int = self.num_labels
__snake_case : List[str] = SegformerForSemanticSegmentation(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : str = model(UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
__snake_case : str = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
self.parent.assertGreater(result.loss , 0.0 )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Any = 1
__snake_case : Tuple = SegformerForSemanticSegmentation(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : Optional[Any] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(UpperCAmelCase )
__snake_case : Tuple = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertGreater(result.loss , 0.0 )
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Union[str, Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : Dict = config_and_inputs
__snake_case : str = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _lowerCamelCase ( a , a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] =(
(
SegformerModel,
SegformerForSemanticSegmentation,
SegformerForImageClassification,
)
if is_torch_available()
else ()
)
UpperCAmelCase_ : Any =(
{
"feature-extraction": SegformerModel,
"image-classification": SegformerForImageClassification,
"image-segmentation": SegformerForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCAmelCase_ : Optional[Any] =True
UpperCAmelCase_ : Optional[int] =False
UpperCAmelCase_ : Tuple =False
UpperCAmelCase_ : Any =False
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : List[Any] = SegformerModelTester(self )
__snake_case : List[str] = SegformerConfigTester(self , config_class=UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_binary_image_segmentation(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_segmentation(*UpperCAmelCase )
@unittest.skip("SegFormer does not use inputs_embeds" )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
pass
@unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods" )
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
pass
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = model_class(UpperCAmelCase )
__snake_case : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Tuple = [*signature.parameters.keys()]
__snake_case : Tuple = ["pixel_values"]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Dict = True
for model_class in self.all_model_classes:
__snake_case : Tuple = True
__snake_case : Any = False
__snake_case : List[str] = True
__snake_case : Optional[Any] = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
__snake_case : Optional[Any] = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
__snake_case : Any = outputs.attentions
__snake_case : Union[str, Any] = sum(self.model_tester.depths )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__snake_case : Tuple = True
__snake_case : Any = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
__snake_case : Union[str, Any] = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
__snake_case : Union[str, Any] = outputs.attentions
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
# verify the first attentions (first block, first layer)
__snake_case : Dict = (self.model_tester.image_size // 4) ** 2
__snake_case : Tuple = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , )
# verify the last attentions (last block, last layer)
__snake_case : str = (self.model_tester.image_size // 32) ** 2
__snake_case : Optional[Any] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2
self.assertListEqual(
list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , )
__snake_case : Optional[Any] = len(UpperCAmelCase )
# Check attention is always last and order is fine
__snake_case : Dict = True
__snake_case : Dict = True
__snake_case : List[str] = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
__snake_case : Tuple = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(out_len + 1 , len(UpperCAmelCase ) )
__snake_case : int = outputs.attentions
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
# verify the first attentions (first block, first layer)
__snake_case : Optional[int] = (self.model_tester.image_size // 4) ** 2
__snake_case : int = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , )
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
__snake_case : Dict = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
__snake_case : Optional[int] = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
__snake_case : Any = outputs.hidden_states
__snake_case : str = self.model_tester.num_encoder_blocks
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.hidden_sizes[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
__snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Optional[Any] = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : Tuple = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
if not self.model_tester.is_training:
return
__snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Optional[int] = True
for model_class in self.all_model_classes:
if model_class in get_values(UpperCAmelCase ):
continue
__snake_case : List[str] = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
__snake_case : List[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase )
__snake_case : Optional[Any] = model(**UpperCAmelCase ).loss
loss.backward()
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
pass
@slow
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Dict = SegformerModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def lowerCAmelCase__( ) -> Dict:
__snake_case : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : str = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=UpperCAmelCase , align=UpperCAmelCase , do_random_crop=UpperCAmelCase )
__snake_case : List[str] = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to(
UpperCAmelCase )
__snake_case : Dict = prepare_img()
__snake_case : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors="pt" )
__snake_case : List[Any] = encoded_inputs.pixel_values.to(UpperCAmelCase )
with torch.no_grad():
__snake_case : List[Any] = model(UpperCAmelCase )
__snake_case : Optional[int] = torch.Size((1, model.config.num_labels, 128, 128) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
__snake_case : Optional[int] = torch.tensor(
[
[[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]],
[[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]],
[[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]],
] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
@slow
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : Union[str, Any] = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=UpperCAmelCase , align=UpperCAmelCase , do_random_crop=UpperCAmelCase )
__snake_case : List[Any] = SegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(UpperCAmelCase )
__snake_case : int = prepare_img()
__snake_case : Union[str, Any] = image_processor(images=UpperCAmelCase , return_tensors="pt" )
__snake_case : Dict = encoded_inputs.pixel_values.to(UpperCAmelCase )
with torch.no_grad():
__snake_case : int = model(UpperCAmelCase )
__snake_case : List[str] = torch.Size((1, model.config.num_labels, 128, 128) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
__snake_case : Optional[int] = torch.tensor(
[
[[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]],
[[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]],
[[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]],
] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCAmelCase , atol=1E-1 ) )
@slow
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : Union[str, Any] = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=UpperCAmelCase , align=UpperCAmelCase , do_random_crop=UpperCAmelCase )
__snake_case : Optional[Any] = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to(
UpperCAmelCase )
__snake_case : str = prepare_img()
__snake_case : Any = image_processor(images=UpperCAmelCase , return_tensors="pt" )
__snake_case : List[str] = encoded_inputs.pixel_values.to(UpperCAmelCase )
with torch.no_grad():
__snake_case : str = model(UpperCAmelCase )
__snake_case : int = outputs.logits.detach().cpu()
__snake_case : Any = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase , target_sizes=[(500, 300)] )
__snake_case : int = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , UpperCAmelCase )
__snake_case : List[str] = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase )
__snake_case : List[Any] = torch.Size((128, 128) )
self.assertEqual(segmentation[0].shape , UpperCAmelCase )
| 326 |
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]:
'''simple docstring'''
super().__init__(UpperCAmelCase )
__snake_case : Optional[int] = proj_size
__snake_case : str = CLIPVisionModel(UpperCAmelCase )
__snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase )
__snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size )
__snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
__snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]:
'''simple docstring'''
__snake_case : int = self.model(pixel_values=UpperCAmelCase )
__snake_case : Optional[int] = clip_output.pooler_output
__snake_case : Any = self.mapper(latent_states[:, None] )
__snake_case : Any = self.final_layer_norm(UpperCAmelCase )
__snake_case : str = self.proj_out(UpperCAmelCase )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
super().__init__()
__snake_case : List[Any] = (config.num_hidden_layers + 1) // 5
__snake_case : Dict = config.hidden_size
__snake_case : str = 1
__snake_case : List[Any] = nn.ModuleList(
[
BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase )
for _ in range(UpperCAmelCase )
] )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
for block in self.blocks:
__snake_case : int = block(UpperCAmelCase )
return hidden_states
| 326 | 1 |
import argparse
import glob
import logging
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import pytorch_lightning as pl
import torch
from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from torch import nn
from torch.utils.data import DataLoader
from transformers import MBartTokenizer, TaForConditionalGeneration
from transformers.models.bart.modeling_bart import shift_tokens_right
from utils import (
ROUGE_KEYS,
LegacySeqaSeqDataset,
SeqaSeqDataset,
assert_all_frozen,
calculate_bleu,
calculate_rouge,
check_output_dir,
flatten_list,
freeze_embeds,
freeze_params,
get_git_info,
label_smoothed_nll_loss,
lmap,
pickle_save,
save_git_info,
save_json,
use_task_specific_params,
)
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa
_UpperCamelCase = logging.getLogger(__name__)
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : str ="summarization"
UpperCAmelCase_ : Any =["loss"]
UpperCAmelCase_ : int =ROUGE_KEYS
UpperCAmelCase_ : Any ="rouge2"
def __init__( self , UpperCAmelCase , **UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if hparams.sortish_sampler and hparams.gpus > 1:
__snake_case : str = False
elif hparams.max_tokens_per_batch is not None:
if hparams.gpus > 1:
raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training" )
if hparams.sortish_sampler:
raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously" )
super().__init__(UpperCAmelCase , num_labels=UpperCAmelCase , mode=self.mode , **UpperCAmelCase )
use_task_specific_params(self.model , "summarization" )
save_git_info(self.hparams.output_dir )
__snake_case : int = Path(self.output_dir ) / "metrics.json"
__snake_case : int = Path(self.output_dir ) / "hparams.pkl"
pickle_save(self.hparams , self.hparams_save_path )
__snake_case : Any = 0
__snake_case : Any = defaultdict(UpperCAmelCase )
__snake_case : int = self.config.model_type
__snake_case : Dict = self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size
__snake_case : dict = {
"data_dir": self.hparams.data_dir,
"max_source_length": self.hparams.max_source_length,
"prefix": self.model.config.prefix or "",
}
__snake_case : Optional[int] = {
"train": self.hparams.n_train,
"val": self.hparams.n_val,
"test": self.hparams.n_test,
}
__snake_case : Dict = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}
__snake_case : int = {
"train": self.hparams.max_target_length,
"val": self.hparams.val_max_target_length,
"test": self.hparams.test_max_target_length,
}
assert self.target_lens["train"] <= self.target_lens["val"], F"""target_lens: {self.target_lens}"""
assert self.target_lens["train"] <= self.target_lens["test"], F"""target_lens: {self.target_lens}"""
if self.hparams.freeze_embeds:
freeze_embeds(self.model )
if self.hparams.freeze_encoder:
freeze_params(self.model.get_encoder() )
assert_all_frozen(self.model.get_encoder() )
__snake_case : Union[str, Any] = get_git_info()["repo_sha"]
__snake_case : List[Any] = hparams.num_workers
__snake_case : int = None # default to config
if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , UpperCAmelCase ):
__snake_case : int = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
__snake_case : Optional[int] = self.decoder_start_token_id
__snake_case : Any = (
SeqaSeqDataset if hasattr(self.tokenizer , "prepare_seq2seq_batch" ) else LegacySeqaSeqDataset
)
__snake_case : int = False
__snake_case : Optional[int] = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
if self.hparams.eval_max_gen_length is not None:
__snake_case : int = self.hparams.eval_max_gen_length
else:
__snake_case : Tuple = self.model.config.max_length
__snake_case : int = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric
def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict[str, List[str]]:
'''simple docstring'''
__snake_case : Optional[int] = {
k: self.tokenizer.batch_decode(v.tolist() ) if "mask" not in k else v.shape for k, v in batch.items()
}
save_json(UpperCAmelCase , Path(self.output_dir ) / "text_batch.json" )
save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / "tok_batch.json" )
__snake_case : Union[str, Any] = True
return readable_batch
def UpperCAmelCase ( self , UpperCAmelCase , **UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return self.model(UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__snake_case : str = self.tokenizer.batch_decode(
UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase )
return lmap(str.strip , UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__snake_case : Dict = self.tokenizer.pad_token_id
__snake_case , __snake_case : int = batch["input_ids"], batch["attention_mask"]
__snake_case : int = batch["labels"]
if isinstance(self.model , UpperCAmelCase ):
__snake_case : List[str] = self.model._shift_right(UpperCAmelCase )
else:
__snake_case : Optional[int] = shift_tokens_right(UpperCAmelCase , UpperCAmelCase )
if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero
__snake_case : List[Any] = decoder_input_ids
self.save_readable_batch(UpperCAmelCase )
__snake_case : Union[str, Any] = self(UpperCAmelCase , attention_mask=UpperCAmelCase , decoder_input_ids=UpperCAmelCase , use_cache=UpperCAmelCase )
__snake_case : Any = outputs["logits"]
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
__snake_case : Tuple = nn.CrossEntropyLoss(ignore_index=UpperCAmelCase )
assert lm_logits.shape[-1] == self.vocab_size
__snake_case : str = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) )
else:
__snake_case : Optional[int] = nn.functional.log_softmax(UpperCAmelCase , dim=-1 )
__snake_case , __snake_case : Tuple = label_smoothed_nll_loss(
UpperCAmelCase , UpperCAmelCase , self.hparams.label_smoothing , ignore_index=UpperCAmelCase )
return (loss,)
@property
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return self.tokenizer.pad_token_id
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> Dict:
'''simple docstring'''
__snake_case : Any = self._step(UpperCAmelCase )
__snake_case : int = dict(zip(self.loss_names , UpperCAmelCase ) )
# tokens per batch
__snake_case : str = batch["input_ids"].ne(self.pad ).sum() + batch["labels"].ne(self.pad ).sum()
__snake_case : Union[str, Any] = batch["input_ids"].shape[0]
__snake_case : Any = batch["input_ids"].eq(self.pad ).sum()
__snake_case : str = batch["input_ids"].eq(self.pad ).float().mean()
# TODO(SS): make a wandb summary metric for this
return {"loss": loss_tensors[0], "log": logs}
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> Dict:
'''simple docstring'''
return self._generative_step(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase="val" ) -> Dict:
'''simple docstring'''
self.step_count += 1
__snake_case : Optional[int] = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names}
__snake_case : str = losses["loss"]
__snake_case : Optional[int] = {
k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["gen_time", "gen_len"]
}
__snake_case : Any = (
generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
)
__snake_case : torch.FloatTensor = torch.tensor(UpperCAmelCase ).type_as(UpperCAmelCase )
generative_metrics.update({k: v.item() for k, v in losses.items()} )
losses.update(UpperCAmelCase )
__snake_case : Optional[int] = {F"""{prefix}_avg_{k}""": x for k, x in losses.items()}
__snake_case : int = self.step_count
self.metrics[prefix].append(UpperCAmelCase ) # callback writes this to self.metrics_save_path
__snake_case : Dict = flatten_list([x["preds"] for x in outputs] )
return {
"log": all_metrics,
"preds": preds,
F"""{prefix}_loss""": loss,
F"""{prefix}_{self.val_metric}""": metric_tensor,
}
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> Dict:
'''simple docstring'''
return calculate_rouge(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> dict:
'''simple docstring'''
__snake_case : Optional[int] = time.time()
# parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
__snake_case : Optional[Any] = self.model.generate(
batch["input_ids"] , attention_mask=batch["attention_mask"] , use_cache=UpperCAmelCase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , )
__snake_case : Optional[int] = (time.time() - ta) / batch["input_ids"].shape[0]
__snake_case : List[str] = self.ids_to_clean_text(UpperCAmelCase )
__snake_case : List[str] = self.ids_to_clean_text(batch["labels"] )
__snake_case : List[Any] = self._step(UpperCAmelCase )
__snake_case : List[Any] = dict(zip(self.loss_names , UpperCAmelCase ) )
__snake_case : Dict = self.calc_generative_metrics(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = np.mean(lmap(UpperCAmelCase , UpperCAmelCase ) )
base_metrics.update(gen_time=UpperCAmelCase , gen_len=UpperCAmelCase , preds=UpperCAmelCase , target=UpperCAmelCase , **UpperCAmelCase )
return base_metrics
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return self._generative_step(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
return self.validation_epoch_end(UpperCAmelCase , prefix="test" )
def UpperCAmelCase ( self , UpperCAmelCase ) -> SeqaSeqDataset:
'''simple docstring'''
__snake_case : Optional[Any] = self.n_obs[type_path]
__snake_case : Optional[int] = self.target_lens[type_path]
__snake_case : Any = self.dataset_class(
self.tokenizer , type_path=UpperCAmelCase , n_obs=UpperCAmelCase , max_target_length=UpperCAmelCase , **self.dataset_kwargs , )
return dataset
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ) -> DataLoader:
'''simple docstring'''
__snake_case : List[str] = self.get_dataset(UpperCAmelCase )
if self.hparams.sortish_sampler and type_path != "test" and type_path != "val":
__snake_case : Union[str, Any] = dataset.make_sortish_sampler(UpperCAmelCase , distributed=self.hparams.gpus > 1 )
return DataLoader(
UpperCAmelCase , batch_size=UpperCAmelCase , collate_fn=dataset.collate_fn , shuffle=UpperCAmelCase , num_workers=self.num_workers , sampler=UpperCAmelCase , )
elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val":
__snake_case : Union[str, Any] = dataset.make_dynamic_sampler(
self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 )
return DataLoader(
UpperCAmelCase , batch_sampler=UpperCAmelCase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , )
else:
return DataLoader(
UpperCAmelCase , batch_size=UpperCAmelCase , collate_fn=dataset.collate_fn , shuffle=UpperCAmelCase , num_workers=self.num_workers , sampler=UpperCAmelCase , )
def UpperCAmelCase ( self ) -> DataLoader:
'''simple docstring'''
__snake_case : str = self.get_dataloader("train" , batch_size=self.hparams.train_batch_size , shuffle=UpperCAmelCase )
return dataloader
def UpperCAmelCase ( self ) -> DataLoader:
'''simple docstring'''
return self.get_dataloader("val" , batch_size=self.hparams.eval_batch_size )
def UpperCAmelCase ( self ) -> DataLoader:
'''simple docstring'''
return self.get_dataloader("test" , batch_size=self.hparams.eval_batch_size )
@staticmethod
def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Any:
'''simple docstring'''
BaseTransformer.add_model_specific_args(UpperCAmelCase , UpperCAmelCase )
add_generic_args(UpperCAmelCase , UpperCAmelCase )
parser.add_argument(
"--max_source_length" , default=1024 , type=UpperCAmelCase , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--max_target_length" , default=56 , type=UpperCAmelCase , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--val_max_target_length" , default=142 , type=UpperCAmelCase , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--test_max_target_length" , default=142 , type=UpperCAmelCase , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument("--freeze_encoder" , action="store_true" )
parser.add_argument("--freeze_embeds" , action="store_true" )
parser.add_argument("--sortish_sampler" , action="store_true" , default=UpperCAmelCase )
parser.add_argument("--overwrite_output_dir" , action="store_true" , default=UpperCAmelCase )
parser.add_argument("--max_tokens_per_batch" , type=UpperCAmelCase , default=UpperCAmelCase )
parser.add_argument("--logger_name" , type=UpperCAmelCase , choices=["default", "wandb", "wandb_shared"] , default="default" )
parser.add_argument("--n_train" , type=UpperCAmelCase , default=-1 , required=UpperCAmelCase , help="# examples. -1 means use all." )
parser.add_argument("--n_val" , type=UpperCAmelCase , default=500 , required=UpperCAmelCase , help="# examples. -1 means use all." )
parser.add_argument("--n_test" , type=UpperCAmelCase , default=-1 , required=UpperCAmelCase , help="# examples. -1 means use all." )
parser.add_argument(
"--task" , type=UpperCAmelCase , default="summarization" , required=UpperCAmelCase , help="# examples. -1 means use all." )
parser.add_argument("--label_smoothing" , type=UpperCAmelCase , default=0.0 , required=UpperCAmelCase )
parser.add_argument("--src_lang" , type=UpperCAmelCase , default="" , required=UpperCAmelCase )
parser.add_argument("--tgt_lang" , type=UpperCAmelCase , default="" , required=UpperCAmelCase )
parser.add_argument("--eval_beams" , type=UpperCAmelCase , default=UpperCAmelCase , required=UpperCAmelCase )
parser.add_argument(
"--val_metric" , type=UpperCAmelCase , default=UpperCAmelCase , required=UpperCAmelCase , choices=["bleu", "rouge2", "loss", None] )
parser.add_argument("--eval_max_gen_length" , type=UpperCAmelCase , default=UpperCAmelCase , help="never generate more than n tokens" )
parser.add_argument("--save_top_k" , type=UpperCAmelCase , default=1 , required=UpperCAmelCase , help="How many checkpoints to save" )
parser.add_argument(
"--early_stopping_patience" , type=UpperCAmelCase , default=-1 , required=UpperCAmelCase , help=(
"-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So"
" val_check_interval will effect it."
) , )
return parser
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : int ="translation"
UpperCAmelCase_ : str =["loss"]
UpperCAmelCase_ : Union[str, Any] =["bleu"]
UpperCAmelCase_ : Union[str, Any] ="bleu"
def __init__( self , UpperCAmelCase , **UpperCAmelCase ) -> List[str]:
'''simple docstring'''
super().__init__(UpperCAmelCase , **UpperCAmelCase )
__snake_case : Optional[int] = hparams.src_lang
__snake_case : Optional[int] = hparams.tgt_lang
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> dict:
'''simple docstring'''
return calculate_bleu(UpperCAmelCase , UpperCAmelCase )
def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any]=None ) -> SummarizationModule:
Path(args.output_dir ).mkdir(exist_ok=lowercase )
check_output_dir(lowercase , expected_items=3 )
if model is None:
if "summarization" in args.task:
__snake_case : SummarizationModule = SummarizationModule(lowercase )
else:
__snake_case : SummarizationModule = TranslationModule(lowercase )
__snake_case : Any = Path(args.data_dir ).name
if (
args.logger_name == "default"
or args.fast_dev_run
or str(args.output_dir ).startswith("/tmp" )
or str(args.output_dir ).startswith("/var" )
):
__snake_case : Union[str, Any] = True # don't pollute wandb logs unnecessarily
elif args.logger_name == "wandb":
from pytorch_lightning.loggers import WandbLogger
__snake_case : List[str] = os.environ.get("WANDB_PROJECT" , lowercase )
__snake_case : str = WandbLogger(name=model.output_dir.name , project=lowercase )
elif args.logger_name == "wandb_shared":
from pytorch_lightning.loggers import WandbLogger
__snake_case : Union[str, Any] = WandbLogger(name=model.output_dir.name , project=f"""hf_{dataset}""" )
if args.early_stopping_patience >= 0:
__snake_case : Dict = get_early_stopping_callback(model.val_metric , args.early_stopping_patience )
else:
__snake_case : Optional[int] = False
__snake_case : Dict = args.val_metric == "loss"
__snake_case : pl.Trainer = generic_train(
lowercase , lowercase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback(
args.output_dir , model.val_metric , args.save_top_k , lowercase ) , early_stopping_callback=lowercase , logger=lowercase , )
pickle_save(model.hparams , model.output_dir / "hparams.pkl" )
if not args.do_predict:
return model
__snake_case : Tuple = ""
__snake_case : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir , "*.ckpt" ) , recursive=lowercase ) )
if checkpoints:
__snake_case : Tuple = checkpoints[-1]
__snake_case : Optional[Any] = checkpoints[-1]
trainer.logger.log_hyperparams(model.hparams )
# test() without a model tests using the best checkpoint automatically
trainer.test()
return model
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
_UpperCamelCase = pl.Trainer.add_argparse_args(parser)
_UpperCamelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd())
_UpperCamelCase = parser.parse_args()
main(args)
| 326 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 326 | 1 |
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]:
'''simple docstring'''
super().__init__(UpperCAmelCase )
__snake_case : Optional[int] = proj_size
__snake_case : str = CLIPVisionModel(UpperCAmelCase )
__snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase )
__snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size )
__snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
__snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]:
'''simple docstring'''
__snake_case : int = self.model(pixel_values=UpperCAmelCase )
__snake_case : Optional[int] = clip_output.pooler_output
__snake_case : Any = self.mapper(latent_states[:, None] )
__snake_case : Any = self.final_layer_norm(UpperCAmelCase )
__snake_case : str = self.proj_out(UpperCAmelCase )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
super().__init__()
__snake_case : List[Any] = (config.num_hidden_layers + 1) // 5
__snake_case : Dict = config.hidden_size
__snake_case : str = 1
__snake_case : List[Any] = nn.ModuleList(
[
BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase )
for _ in range(UpperCAmelCase )
] )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
for block in self.blocks:
__snake_case : int = block(UpperCAmelCase )
return hidden_states
| 326 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = torch.device('''cpu''')
def lowerCAmelCase__( ) -> Any:
__snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
__snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw )
return im
def lowerCAmelCase__( lowercase : Dict ) -> List[Any]:
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] )
def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]:
__snake_case : List[Any] = dct.pop(lowercase )
__snake_case : List[Any] = val
def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple:
__snake_case : Optional[Any] = []
for k in state_dict.keys():
__snake_case : Union[str, Any] = k
if ".pwconv" in k:
__snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" )
if ".dwconv" in k:
__snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" )
if ".Proj." in k:
__snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." )
if "patch_embed" in k_new:
__snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" )
if "network" in k_new:
__snake_case : int = k_new.split("." )
if ls[2].isdigit():
__snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] )
else:
__snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]:
__snake_case : List[str] = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
__snake_case : Tuple = 1000
__snake_case : Any = "huggingface/label-files"
__snake_case : int = "imagenet-1k-id2label.json"
__snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) )
__snake_case : str = {int(lowercase ): v for k, v in idalabel.items()}
__snake_case : int = idalabel
__snake_case : Optional[int] = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
__snake_case : Optional[Any] = [3, 3, 6, 4]
__snake_case : Optional[int] = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
__snake_case : List[str] = [3, 3, 9, 6]
__snake_case : Optional[Any] = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
__snake_case : Optional[int] = [4, 3, 10, 5]
__snake_case : Dict = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
__snake_case : str = [4, 4, 12, 6]
__snake_case : Optional[Any] = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("https" ):
__snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase )
else:
__snake_case : Tuple = torch.load(lowercase , map_location="cpu" )
__snake_case : Optional[int] = checkpoint
__snake_case : Any = create_rename_keys(lowercase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(lowercase , lowercase , lowercase )
# load HuggingFace model
__snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval()
hf_model.load_state_dict(lowercase )
# prepare test inputs
__snake_case : Optional[Any] = prepare_img()
__snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" )
__snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" )
# compare outputs from both models
__snake_case : str = get_expected_output(lowercase )
__snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 )
Path(lowercase ).mkdir(exist_ok=lowercase )
print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" )
hf_model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--swiftformer_name''',
default='''swiftformer_xs''',
choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''],
type=str,
help='''Name of the SwiftFormer model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''./converted_outputs/''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''')
_UpperCamelCase = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 326 | 1 |
import warnings
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
_UpperCamelCase = logging.get_logger(__name__)
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] =["input_values", "attention_mask"]
def __init__( self , UpperCAmelCase = 1 , UpperCAmelCase = 16000 , UpperCAmelCase = 0.0 , UpperCAmelCase = False , UpperCAmelCase = 80 , UpperCAmelCase = 16 , UpperCAmelCase = 64 , UpperCAmelCase = "hann_window" , UpperCAmelCase = 1.0 , UpperCAmelCase = 80 , UpperCAmelCase = 7600 , UpperCAmelCase = 1E-10 , UpperCAmelCase = 2 , UpperCAmelCase = True , **UpperCAmelCase , ) -> Tuple:
'''simple docstring'''
super().__init__(feature_size=UpperCAmelCase , sampling_rate=UpperCAmelCase , padding_value=UpperCAmelCase , **UpperCAmelCase )
__snake_case : Union[str, Any] = do_normalize
__snake_case : Any = return_attention_mask
__snake_case : Union[str, Any] = num_mel_bins
__snake_case : Optional[int] = hop_length
__snake_case : Optional[Any] = win_length
__snake_case : int = win_function
__snake_case : Optional[Any] = frame_signal_scale
__snake_case : List[Any] = fmin
__snake_case : Any = fmax
__snake_case : List[Any] = mel_floor
__snake_case : Optional[Any] = reduction_factor
__snake_case : Dict = win_length * sampling_rate // 1000
__snake_case : int = hop_length * sampling_rate // 1000
__snake_case : Union[str, Any] = optimal_fft_length(self.sample_size )
__snake_case : Any = (self.n_fft // 2) + 1
__snake_case : List[str] = window_function(window_length=self.sample_size , name=self.win_function , periodic=UpperCAmelCase )
__snake_case : Dict = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="slaney" , mel_scale="slaney" , )
if frame_signal_scale != 1.0:
warnings.warn(
"The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers" , UpperCAmelCase , )
if reduction_factor != 2.0:
warnings.warn(
"The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers" , UpperCAmelCase , )
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0.0 ) -> List[np.ndarray]:
'''simple docstring'''
if attention_mask is not None:
__snake_case : Any = np.array(UpperCAmelCase , np.intaa )
__snake_case : List[Any] = []
for vector, length in zip(UpperCAmelCase , attention_mask.sum(-1 ) ):
__snake_case : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 )
if length < normed_slice.shape[0]:
__snake_case : Dict = padding_value
normed_input_values.append(UpperCAmelCase )
else:
__snake_case : Any = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values]
return normed_input_values
def UpperCAmelCase ( self , UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__snake_case : Union[str, Any] = spectrogram(
UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="log10" , )
return log_mel_spec.T
def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> BatchFeature:
'''simple docstring'''
if audio is None and audio_target is None:
raise ValueError("You must provide either `audio` or `audio_target` values." )
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of"""
F""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with"""
F""" {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
"It is strongly recommended to pass the ``sampling_rate`` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
if audio is not None:
__snake_case : Union[str, Any] = self._process_audio(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase , )
else:
__snake_case : Any = None
if audio_target is not None:
__snake_case : Dict = self._process_audio(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase , )
if inputs is None:
return inputs_target
else:
__snake_case : Any = inputs_target["input_values"]
__snake_case : Union[str, Any] = inputs_target.get("attention_mask" )
if decoder_attention_mask is not None:
__snake_case : Optional[int] = decoder_attention_mask
return inputs
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> BatchFeature:
'''simple docstring'''
__snake_case : Union[str, Any] = isinstance(UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1
if is_batched_numpy and len(speech.shape ) > 2:
raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" )
__snake_case : Any = is_batched_numpy or (
isinstance(UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
__snake_case : Dict = [np.asarray(UpperCAmelCase , dtype=np.floataa ) for speech in speech]
elif not is_batched and not isinstance(UpperCAmelCase , np.ndarray ):
__snake_case : Union[str, Any] = np.asarray(UpperCAmelCase , dtype=np.floataa )
elif isinstance(UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ):
__snake_case : List[Any] = speech.astype(np.floataa )
# always return batch
if not is_batched:
__snake_case : str = [speech]
# needed to make pad() work on spectrogram inputs
__snake_case : List[Any] = self.feature_size
# convert into correct format for padding
if is_target:
__snake_case : Dict = [self._extract_mel_features(UpperCAmelCase ) for waveform in speech]
__snake_case : Optional[Any] = BatchFeature({"input_values": features} )
__snake_case : Optional[Any] = self.num_mel_bins
else:
__snake_case : str = BatchFeature({"input_values": speech} )
__snake_case : List[Any] = self.pad(
UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , truncation=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , **UpperCAmelCase , )
__snake_case : Dict = feature_size_hack
# convert input values to correct format
__snake_case : Dict = padded_inputs["input_values"]
if not isinstance(input_values[0] , np.ndarray ):
__snake_case : Tuple = [np.asarray(UpperCAmelCase , dtype=np.floataa ) for array in input_values]
elif (
not isinstance(UpperCAmelCase , np.ndarray )
and isinstance(input_values[0] , np.ndarray )
and input_values[0].dtype is np.dtype(np.floataa )
):
__snake_case : str = [array.astype(np.floataa ) for array in input_values]
elif isinstance(UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ):
__snake_case : Optional[Any] = input_values.astype(np.floataa )
# convert attention_mask to correct format
__snake_case : Any = padded_inputs.get("attention_mask" )
if attention_mask is not None:
__snake_case : Union[str, Any] = [np.asarray(UpperCAmelCase , dtype=np.intaa ) for array in attention_mask]
# zero-mean and unit-variance normalization
if not is_target and self.do_normalize:
__snake_case : Tuple = (
attention_mask
if self._get_padding_strategies(UpperCAmelCase , max_length=UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
__snake_case : Optional[Any] = self.zero_mean_unit_var_norm(
padded_inputs["input_values"] , attention_mask=UpperCAmelCase , padding_value=self.padding_value )
if return_tensors is not None:
__snake_case : Optional[int] = padded_inputs.convert_to_tensors(UpperCAmelCase )
return padded_inputs
def UpperCAmelCase ( self ) -> Dict[str, Any]:
'''simple docstring'''
__snake_case : Dict = super().to_dict()
# Don't serialize these as they are derived from the other properties.
__snake_case : List[str] = ["window", "mel_filters", "sample_size", "sample_stride", "n_fft", "n_freqs"]
for name in names:
if name in output:
del output[name]
return output
| 326 |
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
_UpperCamelCase = logging.getLogger(__name__)
def lowerCAmelCase__( lowercase : str ) -> List[str]:
__snake_case : int = git.Repo(search_parent_directories=lowercase )
__snake_case : Union[str, Any] = {
"repo_id": str(lowercase ),
"repo_sha": str(repo.head.object.hexsha ),
"repo_branch": str(repo.active_branch ),
}
with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f:
json.dump(lowercase , lowercase , indent=4 )
def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]:
if params.n_gpu <= 0:
__snake_case : Union[str, Any] = 0
__snake_case : Optional[int] = -1
__snake_case : Union[str, Any] = True
__snake_case : Tuple = False
return
assert torch.cuda.is_available()
logger.info("Initializing GPUs" )
if params.n_gpu > 1:
assert params.local_rank != -1
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : int = int(os.environ["N_GPU_NODE"] )
__snake_case : Union[str, Any] = int(os.environ["RANK"] )
# number of nodes / node ID
__snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node
__snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node
__snake_case : Union[str, Any] = True
assert params.n_nodes == int(os.environ["N_NODES"] )
assert params.node_id == int(os.environ["NODE_RANK"] )
# local job (single GPU)
else:
assert params.local_rank == -1
__snake_case : Any = 1
__snake_case : str = 0
__snake_case : Optional[Any] = 0
__snake_case : Dict = 0
__snake_case : int = 1
__snake_case : Optional[Any] = 1
__snake_case : Tuple = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
__snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0
__snake_case : List[Any] = params.n_nodes > 1
# summary
__snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """
logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes )
logger.info(PREFIX + "Node ID : %i" % params.node_id )
logger.info(PREFIX + "Local rank : %i" % params.local_rank )
logger.info(PREFIX + "World size : %i" % params.world_size )
logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node )
logger.info(PREFIX + "Master : %s" % str(params.is_master ) )
logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) )
logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) )
logger.info(PREFIX + "Hostname : %s" % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info("Initializing PyTorch distributed" )
torch.distributed.init_process_group(
init_method="env://" , backend="nccl" , )
def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]:
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 326 | 1 |
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
_UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
_UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007
def lowerCAmelCase__( lowercase : Vector , lowercase : Vector ) -> VectorOut:
return np.sqrt(np.sum((np.asarray(lowercase ) - np.asarray(lowercase )) ** 2 ) )
def lowerCAmelCase__( lowercase : Vector , lowercase : Vector ) -> VectorOut:
return sum((va - va) ** 2 for va, va in zip(lowercase , lowercase ) ) ** (1 / 2)
if __name__ == "__main__":
def lowerCAmelCase__( ) -> None:
from timeit import timeit
print("Without Numpy" )
print(
timeit(
"euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=1_0000 , globals=globals() , ) )
print("With Numpy" )
print(
timeit(
"euclidean_distance([1, 2, 3], [4, 5, 6])" , number=1_0000 , globals=globals() , ) )
benchmark()
| 326 |
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : str =JukeboxTokenizer
UpperCAmelCase_ : Tuple ={
"artist": "Zac Brown Band",
"genres": "Country",
"lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ",
}
@require_torch
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
import torch
__snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" )
__snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"]
# fmt: off
__snake_case : Optional[Any] = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
import torch
__snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" )
__snake_case : Tuple = tokenizer(**self.metas )["input_ids"]
# fmt: off
__snake_case : int = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 326 | 1 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class _lowerCamelCase ( datasets.BeamBasedBuilder ):
"""simple docstring"""
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return datasets.DatasetInfo(
features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=UpperCAmelCase , )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> Any:
'''simple docstring'''
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )]
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(UpperCAmelCase )
class _lowerCamelCase ( datasets.BeamBasedBuilder ):
"""simple docstring"""
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
return datasets.DatasetInfo(
features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=UpperCAmelCase , )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> Any:
'''simple docstring'''
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} )
]
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> Any:
'''simple docstring'''
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(UpperCAmelCase )
def lowerCAmelCase__( ) -> Optional[int]:
return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )]
def lowerCAmelCase__( ) -> Tuple:
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )]
class _lowerCamelCase ( a ):
"""simple docstring"""
@require_beam
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : List[Any] = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
__snake_case : Tuple = DummyBeamDataset(cache_dir=UpperCAmelCase , beam_runner="DirectRunner" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(UpperCAmelCase , builder.name , "default" , "0.0.0" , F"""{builder.name}-train.arrow""" ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) )
__snake_case : Any = builder.as_dataset()
self.assertEqual(dset["train"].num_rows , UpperCAmelCase )
self.assertEqual(dset["train"].info.splits["train"].num_examples , UpperCAmelCase )
self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(UpperCAmelCase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) )
del dset
@require_beam
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
import apache_beam as beam
__snake_case : Optional[int] = beam.io.parquetio.WriteToParquet
__snake_case : str = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
__snake_case : str = DummyBeamDataset(cache_dir=UpperCAmelCase , beam_runner="DirectRunner" )
with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock:
__snake_case : Dict = partial(UpperCAmelCase , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
UpperCAmelCase , builder.name , "default" , "0.0.0" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
UpperCAmelCase , builder.name , "default" , "0.0.0" , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) )
__snake_case : List[str] = builder.as_dataset()
self.assertEqual(dset["train"].num_rows , UpperCAmelCase )
self.assertEqual(dset["train"].info.splits["train"].num_examples , UpperCAmelCase )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) )
self.assertTrue(
os.path.exists(os.path.join(UpperCAmelCase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) )
del dset
@require_beam
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_cache_dir:
__snake_case : Tuple = DummyBeamDataset(cache_dir=UpperCAmelCase )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Optional[int] = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
__snake_case : Dict = NestedBeamDataset(cache_dir=UpperCAmelCase , beam_runner="DirectRunner" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(UpperCAmelCase , builder.name , "default" , "0.0.0" , F"""{builder.name}-train.arrow""" ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) )
__snake_case : Any = builder.as_dataset()
self.assertEqual(dset["train"].num_rows , UpperCAmelCase )
self.assertEqual(dset["train"].info.splits["train"].num_examples , UpperCAmelCase )
self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(UpperCAmelCase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) )
del dset
| 326 |
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
_UpperCamelCase = logging.get_logger(__name__)
class _lowerCamelCase :
"""simple docstring"""
UpperCAmelCase_ : str
UpperCAmelCase_ : str =None
@staticmethod
def UpperCAmelCase ( ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
if not self.is_available():
raise RuntimeError(
F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" )
@classmethod
def UpperCAmelCase ( cls ) -> Tuple:
'''simple docstring'''
return F"""`pip install {cls.pip_package or cls.name}`"""
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] ="optuna"
@staticmethod
def UpperCAmelCase ( ) -> Union[str, Any]:
'''simple docstring'''
return is_optuna_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict:
'''simple docstring'''
return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> int:
'''simple docstring'''
return default_hp_space_optuna(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : List[str] ="ray"
UpperCAmelCase_ : Dict ="'ray[tune]'"
@staticmethod
def UpperCAmelCase ( ) -> str:
'''simple docstring'''
return is_ray_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
return default_hp_space_ray(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Tuple ="sigopt"
@staticmethod
def UpperCAmelCase ( ) -> int:
'''simple docstring'''
return is_sigopt_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict:
'''simple docstring'''
return default_hp_space_sigopt(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : str ="wandb"
@staticmethod
def UpperCAmelCase ( ) -> Optional[Any]:
'''simple docstring'''
return is_wandb_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return default_hp_space_wandb(UpperCAmelCase )
_UpperCamelCase = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def lowerCAmelCase__( ) -> str:
__snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(lowercase ) > 0:
__snake_case : Dict = available_backends[0].name
if len(lowercase ) > 1:
logger.info(
f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" )
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
f""" - To install {backend.name} run {backend.pip_install()}"""
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 326 | 1 |
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''nielsr/canine-s''': 2048,
}
# Unicode defines 1,114,112 total “codepoints”
_UpperCamelCase = 111_4112
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
_UpperCamelCase = 0
_UpperCamelCase = 0xE0_00
_UpperCamelCase = 0xE0_01
_UpperCamelCase = 0xE0_02
_UpperCamelCase = 0xE0_03
_UpperCamelCase = 0xE0_04
# Maps special codepoints to human-readable names.
_UpperCamelCase = {
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
_UpperCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , UpperCAmelCase=chr(UpperCAmelCase ) , UpperCAmelCase=chr(UpperCAmelCase ) , UpperCAmelCase=chr(UpperCAmelCase ) , UpperCAmelCase=chr(UpperCAmelCase ) , UpperCAmelCase=chr(UpperCAmelCase ) , UpperCAmelCase=chr(UpperCAmelCase ) , UpperCAmelCase=False , UpperCAmelCase=2048 , **UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__snake_case : List[str] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token
__snake_case : str = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token
__snake_case : int = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token
__snake_case : List[str] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token
__snake_case : str = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__snake_case : int = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
super().__init__(
bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , model_max_length=UpperCAmelCase , **UpperCAmelCase , )
# Creates a mapping for looking up the IDs of special symbols.
__snake_case : Dict[str, int] = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
__snake_case : Any = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
__snake_case : Dict[int, str] = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
__snake_case : Optional[int] = UNICODE_VOCAB_SIZE
__snake_case : int = len(self._special_codepoints )
@property
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return self._unicode_vocab_size
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return list(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> int:
'''simple docstring'''
try:
return ord(UpperCAmelCase )
except TypeError:
raise ValueError(F"""invalid token: '{token}'""" )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(UpperCAmelCase )
except TypeError:
raise ValueError(F"""invalid id: {index}""" )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return "".join(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__snake_case : int = [self.sep_token_id]
__snake_case : Any = [self.cls_token_id]
__snake_case : List[str] = cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
__snake_case : List[Any] = [1] + ([0] * len(UpperCAmelCase )) + [1]
if token_ids_a is not None:
result += ([0] * len(UpperCAmelCase )) + [1]
return result
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__snake_case : str = [self.sep_token_id]
__snake_case : str = [self.cls_token_id]
__snake_case : Optional[int] = len(cls + token_ids_a + sep ) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep ) * [1]
return result
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[Any]:
'''simple docstring'''
return ()
| 326 |
import math
def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list:
__snake_case : Any = end or len(lowercase )
for i in range(lowercase , lowercase ):
__snake_case : List[str] = i
__snake_case : Union[str, Any] = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
__snake_case : Optional[Any] = array[temp_index - 1]
temp_index -= 1
__snake_case : Any = temp_index_value
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap
__snake_case : Any = index
__snake_case : Optional[Any] = 2 * index + 1 # Left Node
__snake_case : str = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
__snake_case : Optional[int] = left_index
if right_index < heap_size and array[largest] < array[right_index]:
__snake_case : Tuple = right_index
if largest != index:
__snake_case , __snake_case : int = array[largest], array[index]
heapify(lowercase , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list ) -> list:
__snake_case : List[str] = len(lowercase )
for i in range(n // 2 , -1 , -1 ):
heapify(lowercase , lowercase , lowercase )
for i in range(n - 1 , 0 , -1 ):
__snake_case , __snake_case : Optional[Any] = array[0], array[i]
heapify(lowercase , 0 , lowercase )
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
__snake_case : Union[str, Any] = low
__snake_case : Union[str, Any] = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
__snake_case , __snake_case : str = array[j], array[i]
i += 1
def lowerCAmelCase__( lowercase : list ) -> list:
if len(lowercase ) == 0:
return array
__snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) )
__snake_case : Dict = 16
return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list:
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
__snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 )
__snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase )
intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase )
__snake_case : List[str] = p
return insertion_sort(lowercase , lowercase , lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip()
_UpperCamelCase = [float(item) for item in user_input.split(''',''')]
print(sort(unsorted))
| 326 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from .config import config_command_parser
from .config_args import default_config_file, load_config_from_file # noqa: F401
from .default import default_command_parser
from .update import update_command_parser
def lowerCAmelCase__( lowercase : List[str]=None ) -> Any:
__snake_case : Optional[int] = argparse.ArgumentParser(add_help=lowercase , allow_abbrev=lowercase )
# The main config parser
__snake_case : Union[str, Any] = config_command_parser(lowercase )
# The subparser to add commands to
__snake_case : Any = config_parser.add_subparsers(title="subcommands" , dest="subcommand" )
# Then add other parsers with the parent parser
default_command_parser(lowercase , parents=[parent_parser] )
update_command_parser(lowercase , parents=[parent_parser] )
return config_parser
def lowerCAmelCase__( ) -> Any:
__snake_case : Dict = get_config_parser()
__snake_case : Any = config_parser.parse_args()
if not hasattr(lowercase , "func" ):
config_parser.print_help()
exit(1 )
# Run
args.func(lowercase )
if __name__ == "__main__":
main()
| 326 |
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def lowerCAmelCase__( ) -> List[Any]:
with parallel_backend("spark" ):
assert ParallelBackendConfig.backend_name == "spark"
__snake_case : Any = [1, 2, 3]
with pytest.raises(lowercase ):
with parallel_backend("unsupported backend" ):
map_nested(lowercase , lowercase , num_proc=2 )
with pytest.raises(lowercase ):
with parallel_backend("unsupported backend" ):
map_nested(lowercase , lowercase , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("num_proc" , [2, -1] )
def lowerCAmelCase__( lowercase : Dict ) -> Dict:
__snake_case : Any = [1, 2]
__snake_case : Dict = {"a": 1, "b": 2}
__snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]}
__snake_case : int = {"a": {"1": 1}, "b": 2}
__snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4}
__snake_case : Dict = [2, 3]
__snake_case : Tuple = {"a": 2, "b": 3}
__snake_case : int = {"a": [2, 3], "b": [4, 5]}
__snake_case : Dict = {"a": {"1": 2}, "b": 3}
__snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5}
with parallel_backend("spark" ):
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
| 326 | 1 |
from math import sqrt
def lowerCAmelCase__( lowercase : int ) -> bool:
assert isinstance(lowercase , lowercase ) and (
number >= 0
), "'number' must been an int and positive"
__snake_case : List[Any] = True
# 0 and 1 are none primes.
if number <= 1:
__snake_case : Optional[int] = False
for divisor in range(2 , int(round(sqrt(lowercase ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
__snake_case : List[Any] = False
break
# precondition
assert isinstance(lowercase , lowercase ), "'status' must been from type bool"
return status
def lowerCAmelCase__( lowercase : Dict ) -> List[Any]:
assert isinstance(lowercase , lowercase ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
__snake_case : int = list(range(2 , n + 1 ) )
__snake_case : List[Any] = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(lowercase ) ):
for j in range(i + 1 , len(lowercase ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
__snake_case : Optional[int] = 0
# filters actual prime numbers.
__snake_case : Optional[int] = [x for x in begin_list if x != 0]
# precondition
assert isinstance(lowercase , lowercase ), "'ans' must been from type list"
return ans
def lowerCAmelCase__( lowercase : Optional[int] ) -> Dict:
assert isinstance(lowercase , lowercase ) and (n > 2), "'N' must been an int and > 2"
__snake_case : Union[str, Any] = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(lowercase ):
ans.append(lowercase )
# precondition
assert isinstance(lowercase , lowercase ), "'ans' must been from type list"
return ans
def lowerCAmelCase__( lowercase : Dict ) -> List[Any]:
assert isinstance(lowercase , lowercase ) and number >= 0, "'number' must been an int and >= 0"
__snake_case : str = [] # this list will be returns of the function.
# potential prime number factors.
__snake_case : Any = 2
__snake_case : List[str] = number
if number == 0 or number == 1:
ans.append(lowercase )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(lowercase ):
while quotient != 1:
if is_prime(lowercase ) and (quotient % factor == 0):
ans.append(lowercase )
quotient /= factor
else:
factor += 1
else:
ans.append(lowercase )
# precondition
assert isinstance(lowercase , lowercase ), "'ans' must been from type list"
return ans
def lowerCAmelCase__( lowercase : Dict ) -> str:
assert isinstance(lowercase , lowercase ) and (
number >= 0
), "'number' bust been an int and >= 0"
__snake_case : Optional[int] = 0
# prime factorization of 'number'
__snake_case : List[Any] = prime_factorization(lowercase )
__snake_case : List[Any] = max(lowercase )
# precondition
assert isinstance(lowercase , lowercase ), "'ans' must been from type int"
return ans
def lowerCAmelCase__( lowercase : int ) -> int:
assert isinstance(lowercase , lowercase ) and (
number >= 0
), "'number' bust been an int and >= 0"
__snake_case : Union[str, Any] = 0
# prime factorization of 'number'
__snake_case : List[Any] = prime_factorization(lowercase )
__snake_case : Union[str, Any] = min(lowercase )
# precondition
assert isinstance(lowercase , lowercase ), "'ans' must been from type int"
return ans
def lowerCAmelCase__( lowercase : int ) -> int:
assert isinstance(lowercase , lowercase ), "'number' must been an int"
assert isinstance(number % 2 == 0 , lowercase ), "compare bust been from type bool"
return number % 2 == 0
def lowerCAmelCase__( lowercase : Optional[Any] ) -> List[str]:
assert isinstance(lowercase , lowercase ), "'number' must been an int"
assert isinstance(number % 2 != 0 , lowercase ), "compare bust been from type bool"
return number % 2 != 0
def lowerCAmelCase__( lowercase : Dict ) -> Any:
assert (
isinstance(lowercase , lowercase ) and (number > 2) and is_even(lowercase )
), "'number' must been an int, even and > 2"
__snake_case : List[Any] = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
__snake_case : Dict = get_prime_numbers(lowercase )
__snake_case : Dict = len(lowercase )
# run variable for while-loops.
__snake_case : Any = 0
__snake_case : str = None
# exit variable. for break up the loops
__snake_case : Optional[Any] = True
while i < len_pn and loop:
__snake_case : List[Any] = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
__snake_case : List[str] = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(lowercase , lowercase )
and (len(lowercase ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def lowerCAmelCase__( lowercase : List[str] , lowercase : int ) -> Optional[Any]:
assert (
isinstance(lowercase , lowercase )
and isinstance(lowercase , lowercase )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
__snake_case : List[str] = 0
while numbera != 0:
__snake_case : str = numbera % numbera
__snake_case : Tuple = numbera
__snake_case : Union[str, Any] = rest
# precondition
assert isinstance(lowercase , lowercase ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def lowerCAmelCase__( lowercase : str , lowercase : Dict ) -> int:
assert (
isinstance(lowercase , lowercase )
and isinstance(lowercase , lowercase )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
__snake_case : str = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
__snake_case : List[Any] = prime_factorization(lowercase )
__snake_case : int = prime_factorization(lowercase )
elif numbera == 1 or numbera == 1:
__snake_case : int = []
__snake_case : str = []
__snake_case : Dict = max(lowercase , lowercase )
__snake_case : Optional[Any] = 0
__snake_case : List[Any] = 0
__snake_case : int = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
__snake_case : Optional[int] = prime_fac_a.count(lowercase )
__snake_case : Tuple = prime_fac_a.count(lowercase )
for _ in range(max(lowercase , lowercase ) ):
ans *= n
else:
__snake_case : List[str] = prime_fac_a.count(lowercase )
for _ in range(lowercase ):
ans *= n
done.append(lowercase )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
__snake_case : Tuple = prime_fac_a.count(lowercase )
for _ in range(lowercase ):
ans *= n
done.append(lowercase )
# precondition
assert isinstance(lowercase , lowercase ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def lowerCAmelCase__( lowercase : List[Any] ) -> Tuple:
assert isinstance(lowercase , lowercase ) and (n >= 0), "'number' must been a positive int"
__snake_case : Union[str, Any] = 0
__snake_case : Tuple = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(lowercase ):
ans += 1
# precondition
assert isinstance(lowercase , lowercase ) and is_prime(
lowercase ), "'ans' must been a prime number and from type int"
return ans
def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : Optional[int] ) -> Dict:
assert (
is_prime(lowercase ) and is_prime(lowercase ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
__snake_case : Any = p_number_a + 1 # jump to the next number
__snake_case : Optional[Any] = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(lowercase ):
number += 1
while number < p_number_a:
ans.append(lowercase )
number += 1
# fetch the next prime number.
while not is_prime(lowercase ):
number += 1
# precondition
assert (
isinstance(lowercase , lowercase )
and ans[0] != p_number_a
and ans[len(lowercase ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def lowerCAmelCase__( lowercase : int ) -> Tuple:
assert isinstance(lowercase , lowercase ) and (n >= 1), "'n' must been int and >= 1"
__snake_case : Dict = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(lowercase )
# precondition
assert ans[0] == 1 and ans[len(lowercase ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def lowerCAmelCase__( lowercase : Optional[Any] ) -> Tuple:
assert isinstance(lowercase , lowercase ) and (
number > 1
), "'number' must been an int and >= 1"
__snake_case : List[Any] = get_divisors(lowercase )
# precondition
assert (
isinstance(lowercase , lowercase )
and (divisors[0] == 1)
and (divisors[len(lowercase ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def lowerCAmelCase__( lowercase : Dict , lowercase : Dict ) -> Optional[Any]:
assert (
isinstance(lowercase , lowercase )
and isinstance(lowercase , lowercase )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
__snake_case : int = gcd(abs(lowercase ) , abs(lowercase ) )
# precondition
assert (
isinstance(lowercase , lowercase )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def lowerCAmelCase__( lowercase : int ) -> Optional[Any]:
assert isinstance(lowercase , lowercase ) and (n >= 0), "'n' must been a int and >= 0"
__snake_case : Optional[int] = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def lowerCAmelCase__( lowercase : str ) -> Any:
assert isinstance(lowercase , lowercase ) and (n >= 0), "'n' must been an int and >= 0"
__snake_case : Union[str, Any] = 0
__snake_case : int = 1
__snake_case : Union[str, Any] = 1 # this will be return
for _ in range(n - 1 ):
__snake_case : Union[str, Any] = ans
ans += fiba
__snake_case : Optional[int] = tmp
return ans
| 326 |
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any:
__snake_case : Optional[Any] = False
__snake_case : Optional[Any] = search_prob
__snake_case : str = start_temperate
__snake_case : List[Any] = []
__snake_case : str = 0
__snake_case : Dict = None
while not search_end:
__snake_case : List[Any] = current_state.score()
if best_state is None or current_score > best_state.score():
__snake_case : List[Any] = current_state
scores.append(lowercase )
iterations += 1
__snake_case : Dict = None
__snake_case : str = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
__snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor
__snake_case : int = neighbors.pop(lowercase )
__snake_case : Optional[Any] = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
__snake_case : Any = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
__snake_case : List[str] = picked_neighbor
else:
__snake_case : Optional[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
__snake_case : str = picked_neighbor
__snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
__snake_case : Optional[Any] = True
else:
__snake_case : str = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(lowercase ) , lowercase )
plt.xlabel("Iterations" )
plt.ylabel("Function values" )
plt.show()
return best_state
if __name__ == "__main__":
def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any:
return (3 * x**2) - (6 * y)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True)
print(
'''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True)
print(
'''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
| 326 | 1 |
from __future__ import annotations
_UpperCamelCase = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0]
_UpperCamelCase = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1]
def lowerCAmelCase__( lowercase : list[float] ) -> list[float]:
__snake_case : Union[str, Any] = []
__snake_case : List[Any] = len(lowercase )
for i in range(lowercase ):
__snake_case : float = -1
for j in range(i + 1 , lowercase ):
if arr[i] < arr[j]:
__snake_case : Dict = arr[j]
break
result.append(lowercase )
return result
def lowerCAmelCase__( lowercase : list[float] ) -> list[float]:
__snake_case : Dict = []
for i, outer in enumerate(lowercase ):
__snake_case : float = -1
for inner in arr[i + 1 :]:
if outer < inner:
__snake_case : str = inner
break
result.append(lowercase )
return result
def lowerCAmelCase__( lowercase : list[float] ) -> list[float]:
__snake_case : str = len(lowercase )
__snake_case : list[float] = []
__snake_case : list[float] = [-1] * arr_size
for index in reversed(range(lowercase ) ):
if stack:
while stack[-1] <= arr[index]:
stack.pop()
if not stack:
break
if stack:
__snake_case : List[str] = stack[-1]
stack.append(arr[index] )
return result
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(next_greatest_element_slow(arr))
print(next_greatest_element_fast(arr))
print(next_greatest_element(arr))
_UpperCamelCase = (
'''from __main__ import arr, next_greatest_element_slow, '''
'''next_greatest_element_fast, next_greatest_element'''
)
print(
'''next_greatest_element_slow():''',
timeit('''next_greatest_element_slow(arr)''', setup=setup),
)
print(
'''next_greatest_element_fast():''',
timeit('''next_greatest_element_fast(arr)''', setup=setup),
)
print(
''' next_greatest_element():''',
timeit('''next_greatest_element(arr)''', setup=setup),
)
| 326 |
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"]
UpperCAmelCase_ : Tuple ="FlavaImageProcessor"
UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast")
def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int:
'''simple docstring'''
__snake_case : List[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase , )
__snake_case : List[Any] = kwargs.pop("feature_extractor" )
__snake_case : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = self.image_processor
def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]:
'''simple docstring'''
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
__snake_case : Union[str, Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if images is not None:
__snake_case : Union[str, Any] = self.image_processor(
UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if text is not None and images is not None:
encoding.update(UpperCAmelCase )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : List[Any] = self.tokenizer.model_input_names
__snake_case : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , )
return self.image_processor
| 326 | 1 |
class _lowerCamelCase :
"""simple docstring"""
def __init__( self ) -> Optional[int]:
'''simple docstring'''
__snake_case : List[str] = {}
def UpperCAmelCase ( self ) -> None:
'''simple docstring'''
print(self.vertex )
for i in self.vertex:
print(UpperCAmelCase , " -> " , " -> ".join([str(UpperCAmelCase ) for j in self.vertex[i]] ) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> None:
'''simple docstring'''
if from_vertex in self.vertex:
self.vertex[from_vertex].append(UpperCAmelCase )
else:
# else make a new vertex
__snake_case : Union[str, Any] = [to_vertex]
def UpperCAmelCase ( self ) -> None:
'''simple docstring'''
__snake_case : Dict = [False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> None:
'''simple docstring'''
__snake_case : int = True
print(UpperCAmelCase , end=" " )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(UpperCAmelCase , UpperCAmelCase )
if __name__ == "__main__":
_UpperCamelCase = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print('''DFS:''')
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3
| 326 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''}
_UpperCamelCase = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
}
}
_UpperCamelCase = {
'''camembert-base''': 512,
}
_UpperCamelCase = '''▁'''
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES
UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : str =["input_ids", "attention_mask"]
def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
'''simple docstring'''
__snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
__snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , )
__snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCAmelCase ) )
__snake_case : Dict = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
__snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
__snake_case : Optional[int] = len(self.fairseq_tokens_to_ids )
__snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
__snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Dict = [self.cls_token_id]
__snake_case : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1]
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__snake_case : int = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(UpperCAmelCase ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__snake_case : Tuple = []
__snake_case : Union[str, Any] = ""
__snake_case : Optional[int] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase ) + token
__snake_case : List[Any] = True
__snake_case : Union[str, Any] = []
else:
current_sub_tokens.append(UpperCAmelCase )
__snake_case : int = False
out_string += self.sp_model.decode(UpperCAmelCase )
return out_string.strip()
def __getstate__( self ) -> List[Any]:
'''simple docstring'''
__snake_case : str = self.__dict__.copy()
__snake_case : Optional[Any] = None
return state
def __setstate__( self , UpperCAmelCase ) -> str:
'''simple docstring'''
__snake_case : Optional[Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__snake_case : List[str] = {}
__snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__snake_case : Optional[Any] = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase , "wb" ) as fi:
__snake_case : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase )
return (out_vocab_file,)
| 326 | 1 |
def lowerCAmelCase__( lowercase : str , lowercase : list[str] ) -> str:
__snake_case : Dict = ""
for word_or_phrase in separated:
if not isinstance(lowercase , lowercase ):
raise Exception("join() accepts only strings to be joined" )
joined += word_or_phrase + separator
return joined.strip(lowercase )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 326 |
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool:
__snake_case : List[str] = len(lowercase )
__snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__snake_case : Optional[Any] = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
__snake_case : Union[str, Any] = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
__snake_case : List[str] = subset[i - 1][j]
if arr[i - 1] <= j:
__snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 | 1 |
def lowerCAmelCase__( lowercase : float , lowercase : float , lowercase : int ) -> float:
if principal <= 0:
raise Exception("Principal borrowed must be > 0" )
if rate_per_annum < 0:
raise Exception("Rate of interest must be >= 0" )
if years_to_repay <= 0 or not isinstance(lowercase , lowercase ):
raise Exception("Years to repay must be an integer > 0" )
# Yearly rate is divided by 12 to get monthly rate
__snake_case : Optional[Any] = rate_per_annum / 12
# Years to repay is multiplied by 12 to get number of payments as payment is monthly
__snake_case : Tuple = years_to_repay * 12
return (
principal
* rate_per_month
* (1 + rate_per_month) ** number_of_payments
/ ((1 + rate_per_month) ** number_of_payments - 1)
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
_UpperCamelCase = 4
_UpperCamelCase = 3
class _lowerCamelCase ( a ):
"""simple docstring"""
pass
def lowerCAmelCase__( lowercase : List[str] ) -> Any:
for shard in shards:
for i in range(lowercase ):
yield {"i": i, "shard": shard}
def lowerCAmelCase__( ) -> Optional[int]:
__snake_case : List[Any] = int(os.environ["RANK"] )
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : List[str] = ArgumentParser()
parser.add_argument("--streaming" , type=lowercase )
parser.add_argument("--local_rank" , type=lowercase )
parser.add_argument("--num_workers" , type=lowercase , default=0 )
__snake_case : Any = parser.parse_args()
__snake_case : Dict = args.streaming
__snake_case : Union[str, Any] = args.num_workers
__snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]}
__snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase )
if not streaming:
__snake_case : Any = Dataset.from_list(list(lowercase ) )
__snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase )
__snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase )
__snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD
__snake_case : List[str] = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
__snake_case : Dict = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" )
if __name__ == "__main__":
main()
| 326 | 1 |
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=99 , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=9 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=32 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase=8 , UpperCAmelCase=0.1 , UpperCAmelCase=0.002 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=0 , UpperCAmelCase=None , UpperCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
__snake_case : List[str] = parent
__snake_case : str = batch_size
__snake_case : Tuple = encoder_seq_length
__snake_case : Dict = decoder_seq_length
# For common tests
__snake_case : Dict = self.decoder_seq_length
__snake_case : Optional[int] = is_training
__snake_case : int = use_attention_mask
__snake_case : Union[str, Any] = use_labels
__snake_case : str = vocab_size
__snake_case : int = hidden_size
__snake_case : str = num_hidden_layers
__snake_case : List[str] = num_attention_heads
__snake_case : List[Any] = d_ff
__snake_case : Optional[int] = relative_attention_num_buckets
__snake_case : List[Any] = dropout_rate
__snake_case : Tuple = initializer_factor
__snake_case : int = eos_token_id
__snake_case : Optional[int] = pad_token_id
__snake_case : str = decoder_start_token_id
__snake_case : Dict = None
__snake_case : Union[str, Any] = decoder_layers
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
return TaConfig.from_pretrained("google/umt5-base" )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , ) -> Union[str, Any]:
'''simple docstring'''
if attention_mask is None:
__snake_case : int = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
__snake_case : List[Any] = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
__snake_case : int = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase )
if decoder_head_mask is None:
__snake_case : int = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase )
if cross_attn_head_mask is None:
__snake_case : List[Any] = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : Optional[int] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
__snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
__snake_case : Any = input_ids.clamp(self.pad_token_id + 1 )
__snake_case : List[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 )
__snake_case : Optional[Any] = self.get_config()
__snake_case : Tuple = config.num_attention_heads
__snake_case : Any = self.prepare_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
return config, input_dict
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case , __snake_case : List[Any] = self.prepare_config_and_inputs()
return config, inputs_dict
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> List[str]:
'''simple docstring'''
__snake_case : Optional[int] = UMTaModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : Tuple = model(
input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , )
__snake_case : Union[str, Any] = model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase )
__snake_case : Any = result.last_hidden_state
__snake_case : str = result.past_key_values
__snake_case : List[Any] = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(UpperCAmelCase ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Union[str, Any] = UMTaModel(config=UpperCAmelCase ).get_decoder().to(UpperCAmelCase ).eval()
# first forward pass
__snake_case : Any = model(UpperCAmelCase , use_cache=UpperCAmelCase )
__snake_case : str = model(UpperCAmelCase )
__snake_case : List[Any] = model(UpperCAmelCase , use_cache=UpperCAmelCase )
self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) )
self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) + 1 )
__snake_case , __snake_case : Optional[Any] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__snake_case : List[str] = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
__snake_case : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
__snake_case : Tuple = model(UpperCAmelCase )["last_hidden_state"]
__snake_case : Optional[int] = model(UpperCAmelCase , past_key_values=UpperCAmelCase )["last_hidden_state"]
# select random slice
__snake_case : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__snake_case : Any = output_from_no_past[:, -1, random_slice_idx].detach()
__snake_case : str = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , ) -> List[str]:
'''simple docstring'''
__snake_case : str = UMTaModel(config=UpperCAmelCase ).to(UpperCAmelCase ).half().eval()
__snake_case : int = model(**UpperCAmelCase )["last_hidden_state"]
self.parent.assertFalse(torch.isnan(UpperCAmelCase ).any().item() )
@require_torch
class _lowerCamelCase ( a , a , a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Any =(
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
UpperCAmelCase_ : List[Any] =(UMTaForConditionalGeneration,) if is_torch_available() else ()
UpperCAmelCase_ : int =(
{
"conversational": UMTaForConditionalGeneration,
"feature-extraction": UMTaModel,
"summarization": UMTaForConditionalGeneration,
"text2text-generation": UMTaForConditionalGeneration,
"translation": UMTaForConditionalGeneration,
"question-answering": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
UpperCAmelCase_ : int =True
UpperCAmelCase_ : Optional[int] =False
UpperCAmelCase_ : int =False
UpperCAmelCase_ : Optional[int] =True
UpperCAmelCase_ : int =True
# The small UMT5 model needs higher percentages for CPU/MP tests
UpperCAmelCase_ : List[str] =[0.8, 0.9]
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : str = UMTaModelTester(self )
@unittest.skip("Test has a segmentation fault on torch 1.8.0" )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case : Any = self.model_tester.prepare_config_and_inputs()
__snake_case : str = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCAmelCase , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , )
@unittest.skipIf(torch_device == "cpu" , "Cant do half precision" )
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Union[str, Any] = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
__snake_case : Any = config_and_inputs[0]
__snake_case : Union[str, Any] = UMTaForConditionalGeneration(UpperCAmelCase ).eval()
model.to(UpperCAmelCase )
__snake_case : Union[str, Any] = {
"head_mask": torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase ),
"decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ),
"cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ),
}
for attn_name, (name, mask) in zip(UpperCAmelCase , head_masking.items() ):
__snake_case : Tuple = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
__snake_case : Dict = torch.ones(
config.num_decoder_layers , config.num_heads , device=UpperCAmelCase )
__snake_case : List[Any] = model.generate(
config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , **UpperCAmelCase , )
# We check the state of decoder_attentions and cross_attentions just from the last step
__snake_case : Tuple = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip("Does not work on the tiny model as we keep hitting edge cases." )
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
@unittest.skip(
"Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" )
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case : Union[str, Any] = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=UpperCAmelCase ).to(UpperCAmelCase )
__snake_case : int = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=UpperCAmelCase , legacy=UpperCAmelCase )
__snake_case : Union[str, Any] = [
"Bonjour monsieur <extra_id_0> bien <extra_id_1>.",
"No se como puedo <extra_id_0>.",
"This is the reason why we <extra_id_0> them.",
"The <extra_id_0> walks in <extra_id_1>, seats",
"A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.",
]
__snake_case : List[Any] = tokenizer(UpperCAmelCase , return_tensors="pt" , padding=UpperCAmelCase ).input_ids
# fmt: off
__snake_case : List[str] = torch.tensor(
[
[ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(UpperCAmelCase , UpperCAmelCase )
__snake_case : str = model.generate(input_ids.to(UpperCAmelCase ) )
__snake_case : List[str] = [
"<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>",
"<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
"<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
"<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
"<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
]
__snake_case : Optional[Any] = tokenizer.batch_decode(UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
| 326 |
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int:
__snake_case : List[Any] = limit + 1
__snake_case : List[str] = [0] * limit
for first_term in range(1 , lowercase ):
for n in range(lowercase , lowercase , lowercase ):
__snake_case : Union[str, Any] = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
__snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 326 | 1 |
import os
from typing import Dict, List, Union
import tensorflow as tf
from keras_nlp.tokenizers import BytePairTokenizer
from tensorflow_text import pad_model_inputs
from .tokenization_gpta import GPTaTokenizer
class _lowerCamelCase ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) -> Tuple:
'''simple docstring'''
super().__init__()
__snake_case : int = pad_token_id
__snake_case : List[Any] = max_length
__snake_case : Optional[Any] = vocab
__snake_case : Optional[int] = merges
__snake_case : Optional[Any] = BytePairTokenizer(UpperCAmelCase , UpperCAmelCase , sequence_length=UpperCAmelCase )
@classmethod
def UpperCAmelCase ( cls , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__snake_case : Optional[int] = [" ".join(UpperCAmelCase ) for m in tokenizer.bpe_ranks.keys()]
__snake_case : Tuple = tokenizer.get_vocab()
return cls(UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase )
@classmethod
def UpperCAmelCase ( cls , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Optional[int] = GPTaTokenizer.from_pretrained(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase )
return cls.from_tokenizer(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase )
@classmethod
def UpperCAmelCase ( cls , UpperCAmelCase ) -> str:
'''simple docstring'''
return cls(**UpperCAmelCase )
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
return {
"vocab": self.vocab,
"merges": self.merges,
"max_length": self.max_length,
"pad_token_id": self.pad_token_id,
}
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[str]:
'''simple docstring'''
__snake_case : List[str] = self.tf_tokenizer(UpperCAmelCase )
__snake_case : Any = tf.ones_like(UpperCAmelCase )
if self.pad_token_id is not None:
# pad the tokens up to max length
__snake_case : str = max_length if max_length is not None else self.max_length
if max_length is not None:
__snake_case , __snake_case : str = pad_model_inputs(
UpperCAmelCase , max_seq_length=UpperCAmelCase , pad_value=self.pad_token_id )
return {"attention_mask": attention_mask, "input_ids": input_ids}
| 326 |
from __future__ import annotations
def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]:
__snake_case : List[str] = word_bank or []
# create a table
__snake_case : int = len(lowercase ) + 1
__snake_case : list[list[list[str]]] = []
for _ in range(lowercase ):
table.append([] )
# seed value
__snake_case : Optional[int] = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(lowercase ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(lowercase )] == word:
__snake_case : list[list[str]] = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(lowercase )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(lowercase )]:
combination.reverse()
return table[len(lowercase )]
if __name__ == "__main__":
print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa''']))
print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t''']))
print(
all_construct(
'''hexagonosaurus''',
['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''],
)
)
| 326 | 1 |
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : str , lowercase : str , lowercase : Path , lowercase : str = None , lowercase : str = None , lowercase : str = None , ) -> Optional[int]:
if config_name_or_path is None:
__snake_case : List[str] = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base"
if generator_tokenizer_name_or_path is None:
__snake_case : List[Any] = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
__snake_case : Union[str, Any] = question_encoder_name_or_path
__snake_case : int = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration
# Save model.
__snake_case : Tuple = RagConfig.from_pretrained(lowercase )
__snake_case : int = AutoConfig.from_pretrained(lowercase )
__snake_case : str = AutoConfig.from_pretrained(lowercase )
__snake_case : Dict = gen_config
__snake_case : Optional[Any] = question_encoder_config
__snake_case : List[str] = model_class.from_pretrained_question_encoder_generator(
lowercase , lowercase , config=lowercase )
rag_model.save_pretrained(lowercase )
# Sanity check.
model_class.from_pretrained(lowercase )
# Save tokenizers.
__snake_case : Tuple = AutoTokenizer.from_pretrained(lowercase )
gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" )
__snake_case : int = AutoTokenizer.from_pretrained(lowercase )
question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument(
'''--model_type''',
choices=['''rag_sequence''', '''rag_token'''],
required=True,
type=str,
help='''RAG model type: rag_sequence, rag_token''',
)
parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''')
parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''')
parser.add_argument(
'''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier'''
)
parser.add_argument(
'''--generator_tokenizer_name_or_path''',
type=str,
help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''',
)
parser.add_argument(
'''--question_encoder_tokenizer_name_or_path''',
type=str,
help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''',
)
parser.add_argument(
'''--config_name_or_path''',
type=str,
help=(
'''Identifier of the model config to use, if not provided, resolves to a base config for a given'''
''' ``model_type``'''
),
)
_UpperCamelCase = parser.parse_args()
_UpperCamelCase = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| 326 |
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple:
'''simple docstring'''
__snake_case : Optional[int] = parent
__snake_case : Tuple = batch_size
__snake_case : List[str] = seq_length
__snake_case : Optional[int] = is_training
__snake_case : int = use_attention_mask
__snake_case : Union[str, Any] = use_token_type_ids
__snake_case : Any = use_labels
__snake_case : List[str] = vocab_size
__snake_case : int = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : List[Any] = num_attention_heads
__snake_case : Optional[int] = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : Optional[int] = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : str = max_position_embeddings
__snake_case : List[Any] = type_vocab_size
__snake_case : int = type_sequence_label_size
__snake_case : Dict = initializer_range
__snake_case : List[Any] = num_choices
__snake_case : Union[str, Any] = rescale_embeddings
__snake_case : List[Any] = attention_type
__snake_case : str = use_bias
__snake_case : Dict = block_size
__snake_case : Optional[Any] = num_random_blocks
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Any = None
if self.use_attention_mask:
__snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Union[str, Any] = None
if self.use_token_type_ids:
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Optional[int] = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Optional[int] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs
__snake_case : int = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_flax
class _lowerCamelCase ( a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =(
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
UpperCAmelCase_ : Dict =False
UpperCAmelCase_ : str =False
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : Dict = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_hidden_states_output()
@slow
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" )
self.assertIsNotNone(UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = model_class(UpperCAmelCase )
@jax.jit
def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase )
with self.subTest("JIT Enabled" ):
__snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int:
'''simple docstring'''
if name.startswith("outputs.attentions" ):
return
else:
super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
| 326 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_UpperCamelCase = {
'''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''],
'''convert_funnel_original_tf_checkpoint_to_pytorch''': [],
'''tokenization_funnel''': ['''FunnelTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''FunnelTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FunnelBaseModel''',
'''FunnelForMaskedLM''',
'''FunnelForMultipleChoice''',
'''FunnelForPreTraining''',
'''FunnelForQuestionAnswering''',
'''FunnelForSequenceClassification''',
'''FunnelForTokenClassification''',
'''FunnelModel''',
'''FunnelPreTrainedModel''',
'''load_tf_weights_in_funnel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFFunnelBaseModel''',
'''TFFunnelForMaskedLM''',
'''TFFunnelForMultipleChoice''',
'''TFFunnelForPreTraining''',
'''TFFunnelForQuestionAnswering''',
'''TFFunnelForSequenceClassification''',
'''TFFunnelForTokenClassification''',
'''TFFunnelModel''',
'''TFFunnelPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from .tokenization_funnel import FunnelTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_funnel_fast import FunnelTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
FunnelPreTrainedModel,
load_tf_weights_in_funnel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_funnel import (
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
TFFunnelPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 326 |
import argparse
import datetime
def lowerCAmelCase__( lowercase : str ) -> str:
__snake_case : int = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
__snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowercase ) < 11:
raise ValueError("Must be 10 characters long" )
# Get month
__snake_case : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12" )
__snake_case : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get day
__snake_case : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31" )
# Get second separator
__snake_case : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get year
__snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?" )
# Get datetime obj for validation
__snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) )
# Start math
if m <= 2:
__snake_case : Optional[Any] = y - 1
__snake_case : Tuple = m + 12
# maths var
__snake_case : int = int(str(lowercase )[:2] )
__snake_case : int = int(str(lowercase )[2:] )
__snake_case : int = int(2.6 * m - 5.3_9 )
__snake_case : int = int(c / 4 )
__snake_case : int = int(k / 4 )
__snake_case : int = int(d + k )
__snake_case : int = int(t + u + v + x )
__snake_case : int = int(z - (2 * c) )
__snake_case : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer." )
# Response
__snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
_UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 326 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
_UpperCamelCase = logging.getLogger(__name__)
@dataclass
class _lowerCamelCase :
"""simple docstring"""
UpperCAmelCase_ : str =field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
UpperCAmelCase_ : Optional[str] =field(
default=a , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
UpperCAmelCase_ : Optional[str] =field(
default=a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
UpperCAmelCase_ : Optional[str] =field(
default=a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
UpperCAmelCase_ : bool =field(default=a , metadata={"help": "Whether tp freeze the encoder."} )
UpperCAmelCase_ : bool =field(default=a , metadata={"help": "Whether to freeze the embeddings."} )
@dataclass
class _lowerCamelCase :
"""simple docstring"""
UpperCAmelCase_ : str =field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} )
UpperCAmelCase_ : Optional[str] =field(
default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , )
UpperCAmelCase_ : Optional[int] =field(
default=1_024 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
UpperCAmelCase_ : Optional[int] =field(
default=128 , metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
UpperCAmelCase_ : Optional[int] =field(
default=142 , metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. "
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
} , )
UpperCAmelCase_ : Optional[int] =field(
default=142 , metadata={
"help": (
"The maximum total sequence length for test target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
UpperCAmelCase_ : Optional[int] =field(default=-1 , metadata={"help": "# training examples. -1 means use all."} )
UpperCAmelCase_ : Optional[int] =field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} )
UpperCAmelCase_ : Optional[int] =field(default=-1 , metadata={"help": "# test examples. -1 means use all."} )
UpperCAmelCase_ : Optional[str] =field(default=a , metadata={"help": "Source language id for translation."} )
UpperCAmelCase_ : Optional[str] =field(default=a , metadata={"help": "Target language id for translation."} )
UpperCAmelCase_ : Optional[int] =field(default=a , metadata={"help": "# num_beams to use for evaluation."} )
UpperCAmelCase_ : bool =field(
default=a , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , )
def lowerCAmelCase__( lowercase : Optional[int] , lowercase : List[Any] , lowercase : int ) -> Optional[Any]:
logger.info(f"""***** {split} metrics *****""" )
for key in sorted(metrics.keys() ):
logger.info(f""" {key} = {metrics[key]}""" )
save_json(lowercase , os.path.join(lowercase , f"""{split}_results.json""" ) )
def lowerCAmelCase__( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__snake_case : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__snake_case , __snake_case , __snake_case : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__snake_case , __snake_case , __snake_case : Any = parser.parse_args_into_dataclasses()
check_output_dir(lowercase )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s" , lowercase )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__snake_case : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__snake_case : Union[str, Any] = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
for p in extra_model_params:
if getattr(lowercase , lowercase , lowercase ):
assert hasattr(lowercase , lowercase ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute"""
setattr(lowercase , lowercase , getattr(lowercase , lowercase ) )
__snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=lowercase , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(lowercase , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
__snake_case : Optional[Any] = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(lowercase , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(lowercase , lowercase ):
__snake_case : Optional[int] = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
__snake_case : Dict = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(lowercase )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
__snake_case : Dict = SeqaSeqDataset
# Get datasets
__snake_case : Optional[int] = (
dataset_class(
lowercase , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , )
if training_args.do_train
else None
)
__snake_case : Tuple = (
dataset_class(
lowercase , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
__snake_case : Tuple = (
dataset_class(
lowercase , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , )
if training_args.do_predict
else None
)
# Initialize our Trainer
__snake_case : List[Any] = (
build_compute_metrics_fn(data_args.task , lowercase ) if training_args.predict_with_generate else None
)
__snake_case : Union[str, Any] = SeqaSeqTrainer(
model=lowercase , args=lowercase , data_args=lowercase , train_dataset=lowercase , eval_dataset=lowercase , data_collator=SeqaSeqDataCollator(
lowercase , lowercase , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=lowercase , tokenizer=lowercase , )
__snake_case : Any = {}
# Training
if training_args.do_train:
logger.info("*** Train ***" )
__snake_case : Optional[int] = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
__snake_case : Dict = train_result.metrics
__snake_case : str = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics("train" , lowercase , training_args.output_dir )
all_metrics.update(lowercase )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
__snake_case : Optional[int] = trainer.evaluate(metric_key_prefix="val" )
__snake_case : Dict = data_args.n_val
__snake_case : Tuple = round(metrics["val_loss"] , 4 )
if trainer.is_world_process_zero():
handle_metrics("val" , lowercase , training_args.output_dir )
all_metrics.update(lowercase )
if training_args.do_predict:
logger.info("*** Predict ***" )
__snake_case : int = trainer.predict(test_dataset=lowercase , metric_key_prefix="test" )
__snake_case : Dict = test_output.metrics
__snake_case : Optional[Any] = data_args.n_test
if trainer.is_world_process_zero():
__snake_case : Any = round(metrics["test_loss"] , 4 )
handle_metrics("test" , lowercase , training_args.output_dir )
all_metrics.update(lowercase )
if training_args.predict_with_generate:
__snake_case : List[str] = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase )
__snake_case : str = lmap(str.strip , lowercase )
write_txt_file(lowercase , os.path.join(training_args.output_dir , "test_generations.txt" ) )
if trainer.is_world_process_zero():
save_json(lowercase , os.path.join(training_args.output_dir , "all_results.json" ) )
return all_metrics
def lowerCAmelCase__( lowercase : int ) -> List[Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 326 |
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int:
if index == r:
for j in range(lowercase ):
print(data[j] , end=" " )
print(" " )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
__snake_case : Union[str, Any] = arr[i]
combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]:
# A temporary array to store all combination one by one
__snake_case : Tuple = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 )
if __name__ == "__main__":
# Driver code to check the function above
_UpperCamelCase = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 326 | 1 |
import os
_UpperCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000}
def lowerCAmelCase__( lowercase : str ) -> int:
__snake_case : Optional[Any] = 0
__snake_case : Any = 0
while index < len(lowercase ) - 1:
__snake_case : Union[str, Any] = SYMBOLS[numerals[index]]
__snake_case : Any = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def lowerCAmelCase__( lowercase : int ) -> str:
__snake_case : int = ""
__snake_case : str = num // 1000
numerals += m_count * "M"
num %= 1000
__snake_case : str = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
__snake_case : int = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def lowerCAmelCase__( lowercase : str = "/p089_roman.txt" ) -> int:
__snake_case : Optional[int] = 0
with open(os.path.dirname(lowercase ) + roman_numerals_filename ) as filea:
__snake_case : Tuple = filea.readlines()
for line in lines:
__snake_case : List[str] = line.strip()
__snake_case : List[Any] = parse_roman_numerals(lowercase )
__snake_case : Union[str, Any] = generate_roman_numerals(lowercase )
savings += len(lowercase ) - len(lowercase )
return savings
if __name__ == "__main__":
print(F'''{solution() = }''')
| 326 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
_UpperCamelCase = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def lowerCAmelCase__( lowercase : str ) -> Optional[Any]:
__snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" )
return sd
def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict:
__snake_case : Tuple = OrderedDict()
__snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__snake_case : Optional[Any] = key
for name_pair in rename_keys_prefix:
__snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] )
__snake_case : List[str] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__snake_case : List[Any] = new_d["cls.predictions.bias"]
return new_d
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]:
assert (
checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS
), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."""
# Get Config
if "pre" in checkpoint_path:
__snake_case : Any = "pretraining"
if "vcr" in checkpoint_path:
__snake_case : Optional[Any] = {"visual_embedding_dim": 512}
elif "vqa_advanced" in checkpoint_path:
__snake_case : Tuple = {"visual_embedding_dim": 2048}
elif "vqa" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 2048}
elif "nlvr" in checkpoint_path:
__snake_case : Any = {"visual_embedding_dim": 1024}
else:
raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" )
else:
if "vcr" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 512}
__snake_case : Any = "multichoice"
elif "vqa_advanced" in checkpoint_path:
__snake_case : List[Any] = {"visual_embedding_dim": 2048}
__snake_case : Optional[Any] = "vqa_advanced"
elif "vqa" in checkpoint_path:
__snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129}
__snake_case : Union[str, Any] = "vqa"
elif "nlvr" in checkpoint_path:
__snake_case : Tuple = {
"visual_embedding_dim": 1024,
"num_labels": 2,
}
__snake_case : List[Any] = "nlvr"
__snake_case : Union[str, Any] = VisualBertConfig(**lowercase )
# Load State Dict
__snake_case : Any = load_state_dict(lowercase )
__snake_case : Dict = get_new_dict(lowercase , lowercase )
if model_type == "pretraining":
__snake_case : Optional[Any] = VisualBertForPreTraining(lowercase )
elif model_type == "vqa":
__snake_case : Tuple = VisualBertForQuestionAnswering(lowercase )
elif model_type == "nlvr":
__snake_case : Tuple = VisualBertForVisualReasoning(lowercase )
elif model_type == "multichoice":
__snake_case : List[Any] = VisualBertForMultipleChoice(lowercase )
model.load_state_dict(lowercase )
# Save Checkpoints
Path(lowercase ).mkdir(exist_ok=lowercase )
model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 326 | 1 |
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
_UpperCamelCase = 8
def lowerCAmelCase__( lowercase : Any , lowercase : Tuple=BITS ) -> Tuple:
__snake_case : int = x.device
__snake_case : List[Any] = (x * 255).int().clamp(0 , 255 )
__snake_case : str = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowercase )
__snake_case : Tuple = rearrange(lowercase , "d -> d 1 1" )
__snake_case : Any = rearrange(lowercase , "b c h w -> b c 1 h w" )
__snake_case : str = ((x & mask) != 0).float()
__snake_case : Optional[int] = rearrange(lowercase , "b c d h w -> b (c d) h w" )
__snake_case : Optional[Any] = bits * 2 - 1
return bits
def lowerCAmelCase__( lowercase : List[str] , lowercase : Optional[Any]=BITS ) -> str:
__snake_case : str = x.device
__snake_case : Any = (x > 0).int()
__snake_case : Tuple = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowercase , dtype=torch.intaa )
__snake_case : Optional[int] = rearrange(lowercase , "d -> d 1 1" )
__snake_case : Optional[Any] = rearrange(lowercase , "b (c d) h w -> b c d h w" , d=8 )
__snake_case : Tuple = reduce(x * mask , "b c d h w -> b c h w" , "sum" )
return (dec / 255).clamp(0.0 , 1.0 )
def lowerCAmelCase__( self : Union[str, Any] , lowercase : torch.FloatTensor , lowercase : int , lowercase : torch.FloatTensor , lowercase : float = 0.0 , lowercase : bool = True , lowercase : Tuple=None , lowercase : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]:
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
__snake_case : Union[str, Any] = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
__snake_case : Any = self.alphas_cumprod[timestep]
__snake_case : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
__snake_case : Optional[int] = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__snake_case : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
__snake_case : Optional[int] = self.bit_scale
if self.config.clip_sample:
__snake_case : Union[str, Any] = torch.clamp(lowercase , -scale , lowercase )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
__snake_case : List[str] = self._get_variance(lowercase , lowercase )
__snake_case : Tuple = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
__snake_case : Any = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__snake_case : Dict = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__snake_case : Optional[int] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
__snake_case : List[Any] = model_output.device if torch.is_tensor(lowercase ) else "cpu"
__snake_case : List[str] = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowercase ).to(lowercase )
__snake_case : Tuple = self._get_variance(lowercase , lowercase ) ** 0.5 * eta * noise
__snake_case : str = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=lowercase , pred_original_sample=lowercase )
def lowerCAmelCase__( self : List[str] , lowercase : torch.FloatTensor , lowercase : int , lowercase : torch.FloatTensor , lowercase : Optional[Any]="epsilon" , lowercase : Optional[int]=None , lowercase : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]:
__snake_case : List[Any] = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
__snake_case , __snake_case : Any = torch.split(lowercase , sample.shape[1] , dim=1 )
else:
__snake_case : Any = None
# 1. compute alphas, betas
__snake_case : str = self.alphas_cumprod[t]
__snake_case : int = self.alphas_cumprod[t - 1] if t > 0 else self.one
__snake_case : str = 1 - alpha_prod_t
__snake_case : Tuple = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
__snake_case : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
__snake_case : List[Any] = model_output
else:
raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" )
# 3. Clip "predicted x_0"
__snake_case : int = self.bit_scale
if self.config.clip_sample:
__snake_case : Optional[int] = torch.clamp(lowercase , -scale , lowercase )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__snake_case : Dict = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
__snake_case : Union[str, Any] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__snake_case : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
__snake_case : int = 0
if t > 0:
__snake_case : Dict = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowercase ).to(model_output.device )
__snake_case : Optional[int] = (self._get_variance(lowercase , predicted_variance=lowercase ) ** 0.5) * noise
__snake_case : Tuple = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=lowercase , pred_original_sample=lowercase )
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1.0 , ) -> List[str]:
'''simple docstring'''
super().__init__()
__snake_case : Optional[int] = bit_scale
__snake_case : Tuple = (
ddim_bit_scheduler_step if isinstance(UpperCAmelCase , UpperCAmelCase ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase )
@torch.no_grad()
def __call__( self , UpperCAmelCase = 256 , UpperCAmelCase = 256 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]:
'''simple docstring'''
__snake_case : Optional[int] = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=UpperCAmelCase , )
__snake_case : List[Any] = decimal_to_bits(UpperCAmelCase ) * self.bit_scale
__snake_case : Dict = latents.to(self.device )
self.scheduler.set_timesteps(UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
__snake_case : Optional[Any] = self.unet(UpperCAmelCase , UpperCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
__snake_case : Any = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample
__snake_case : List[str] = bits_to_decimal(UpperCAmelCase )
if output_type == "pil":
__snake_case : Optional[Any] = self.numpy_to_pil(UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCAmelCase )
| 326 |
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple:
# Load configuration defined in the metadata file
with open(lowercase ) as metadata_file:
__snake_case : int = json.load(lowercase )
__snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] )
# Load in the weights from the checkpoint_path
__snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"]
# Load the entity vocab file
__snake_case : Tuple = load_original_entity_vocab(lowercase )
# add an entry for [MASK2]
__snake_case : Optional[int] = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
__snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] )
# Add special tokens to the token vocabulary for downstream tasks
__snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase )
__snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase )
tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" )
tokenizer.save_pretrained(lowercase )
with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f:
__snake_case : Tuple = json.load(lowercase )
__snake_case : List[Any] = "MLukeTokenizer"
with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f:
json.dump(lowercase , lowercase )
with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f:
json.dump(lowercase , lowercase )
__snake_case : Any = MLukeTokenizer.from_pretrained(lowercase )
# Initialize the embeddings of the special tokens
__snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0]
__snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0]
__snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"]
__snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 )
__snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 )
__snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
__snake_case : List[Any] = state_dict[bias_name]
__snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 )
__snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 )
__snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
__snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self."""
__snake_case : Union[str, Any] = state_dict[prefix + matrix_name]
__snake_case : str = state_dict[prefix + matrix_name]
__snake_case : Union[str, Any] = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
__snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"]
__snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 )
__snake_case : Any = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
__snake_case : List[Any] = state_dict["entity_predictions.bias"]
__snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 )
__snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] )
__snake_case : Any = LukeForMaskedLM(config=lowercase ).eval()
state_dict.pop("entity_predictions.decoder.weight" )
state_dict.pop("lm_head.decoder.weight" )
state_dict.pop("lm_head.decoder.bias" )
__snake_case : int = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )):
__snake_case : str = state_dict[key]
else:
__snake_case : str = state_dict[key]
__snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase )
if set(lowercase ) != {"luke.embeddings.position_ids"}:
raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" )
if set(lowercase ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
__snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" )
__snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
__snake_case : Union[str, Any] = (0, 9)
__snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" )
__snake_case : Any = model(**lowercase )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
__snake_case : Optional[Any] = torch.Size((1, 33, 768) )
__snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
__snake_case : str = torch.Size((1, 1, 768) )
__snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"""
f""" {expected_shape}""" )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
__snake_case : str = MLukeTokenizer.from_pretrained(lowercase )
__snake_case : Dict = "Tokyo is the capital of <mask>."
__snake_case : Union[str, Any] = (24, 30)
__snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" )
__snake_case : int = model(**lowercase )
__snake_case : Dict = encoding["input_ids"][0].tolist()
__snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) )
__snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(lowercase )
__snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item()
__snake_case : Optional[int] = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print("Saving PyTorch model to {}".format(lowercase ) )
model.save_pretrained(lowercase )
def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]:
__snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"]
__snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )]
__snake_case : Any = {}
for entry in data:
__snake_case : Any = entry["id"]
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
__snake_case : Optional[int] = entity_id
break
__snake_case : Union[str, Any] = f"""{language}:{entity_name}"""
__snake_case : Any = entity_id
return new_mapping
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''')
parser.add_argument(
'''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.'''
)
parser.add_argument(
'''--entity_vocab_path''',
default=None,
type=str,
help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.'''
)
parser.add_argument(
'''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.'''
)
_UpperCamelCase = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 326 | 1 |
def lowerCAmelCase__( lowercase : int , lowercase : int ) -> int:
return number | (1 << position)
def lowerCAmelCase__( lowercase : int , lowercase : int ) -> int:
return number & ~(1 << position)
def lowerCAmelCase__( lowercase : int , lowercase : int ) -> int:
return number ^ (1 << position)
def lowerCAmelCase__( lowercase : int , lowercase : int ) -> bool:
return ((number >> position) & 1) == 1
def lowerCAmelCase__( lowercase : int , lowercase : int ) -> int:
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
from maths.prime_factors import prime_factors
def lowerCAmelCase__( lowercase : int ) -> int:
if not isinstance(lowercase , lowercase ):
__snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer"""
raise TypeError(lowercase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(lowercase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 | 1 |
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def lowerCAmelCase__( lowercase : int ) -> bool:
__snake_case : int = int(number**0.5 )
return number == sq * sq
def lowerCAmelCase__( lowercase : int , lowercase : int , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> tuple[int, int]:
__snake_case : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
__snake_case : int = x_den * y_den * z_den
__snake_case : int = gcd(lowercase , lowercase )
top //= hcf
bottom //= hcf
return top, bottom
def lowerCAmelCase__( lowercase : int = 35 ) -> int:
__snake_case : set = set()
__snake_case : int
__snake_case : Fraction = Fraction(0 )
__snake_case : tuple[int, int]
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
__snake_case : Any = x_num * y_den + x_den * y_num
__snake_case : Optional[int] = x_den * y_den
__snake_case : Any = gcd(lowercase , lowercase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__snake_case : Union[str, Any] = add_three(
lowercase , lowercase , lowercase , lowercase , lowercase , lowercase )
unique_s.add(lowercase )
# n=2
__snake_case : Union[str, Any] = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
__snake_case : List[str] = x_den * x_den * y_den * y_den
if is_sq(lowercase ) and is_sq(lowercase ):
__snake_case : List[Any] = int(sqrt(lowercase ) )
__snake_case : List[str] = int(sqrt(lowercase ) )
__snake_case : Any = gcd(lowercase , lowercase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__snake_case : Optional[Any] = add_three(
lowercase , lowercase , lowercase , lowercase , lowercase , lowercase )
unique_s.add(lowercase )
# n=-1
__snake_case : Union[str, Any] = x_num * y_num
__snake_case : str = x_den * y_num + x_num * y_den
__snake_case : List[str] = gcd(lowercase , lowercase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__snake_case : str = add_three(
lowercase , lowercase , lowercase , lowercase , lowercase , lowercase )
unique_s.add(lowercase )
# n=2
__snake_case : Any = x_num * x_num * y_num * y_num
__snake_case : List[str] = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(lowercase ) and is_sq(lowercase ):
__snake_case : Union[str, Any] = int(sqrt(lowercase ) )
__snake_case : str = int(sqrt(lowercase ) )
__snake_case : str = gcd(lowercase , lowercase )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
__snake_case : List[str] = add_three(
lowercase , lowercase , lowercase , lowercase , lowercase , lowercase )
unique_s.add(lowercase )
for num, den in unique_s:
total += Fraction(lowercase , lowercase )
return total.denominator + total.numerator
if __name__ == "__main__":
print(F'''{solution() = }''')
| 326 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" )
__snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" )
__snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids
__snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids
__snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
__snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits
__snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean()
__snake_case : Any = -(labels.shape[-1] * loss.item())
__snake_case : List[str] = -84.9_127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 326 | 1 |
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
_UpperCamelCase = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json'''
with io.open(filename, '''r''', encoding='''utf-8''') as f:
_UpperCamelCase = json.load(f)
@require_torch
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict:
'''simple docstring'''
return FSMTTokenizer.from_pretrained(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__snake_case : List[str] = FSMTForConditionalGeneration.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase )
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
["en-ru", 26.0],
["ru-en", 22.0],
["en-de", 22.0],
["de-en", 29.0],
] )
@slow
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> str:
'''simple docstring'''
__snake_case : Union[str, Any] = F"""facebook/wmt19-{pair}"""
__snake_case : Dict = self.get_tokenizer(UpperCAmelCase )
__snake_case : Union[str, Any] = self.get_model(UpperCAmelCase )
__snake_case : Optional[int] = bleu_data[pair]["src"]
__snake_case : int = bleu_data[pair]["tgt"]
__snake_case : str = tokenizer(UpperCAmelCase , return_tensors="pt" , truncation=UpperCAmelCase , padding="longest" ).to(UpperCAmelCase )
__snake_case : List[str] = model.generate(
input_ids=batch.input_ids , num_beams=8 , )
__snake_case : str = tokenizer.batch_decode(
UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase )
__snake_case : Union[str, Any] = calculate_bleu(UpperCAmelCase , UpperCAmelCase )
print(UpperCAmelCase )
self.assertGreaterEqual(scores["bleu"] , UpperCAmelCase )
| 326 |
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]:
'''simple docstring'''
super().__init__(UpperCAmelCase )
__snake_case : Optional[int] = proj_size
__snake_case : str = CLIPVisionModel(UpperCAmelCase )
__snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase )
__snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size )
__snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
__snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]:
'''simple docstring'''
__snake_case : int = self.model(pixel_values=UpperCAmelCase )
__snake_case : Optional[int] = clip_output.pooler_output
__snake_case : Any = self.mapper(latent_states[:, None] )
__snake_case : Any = self.final_layer_norm(UpperCAmelCase )
__snake_case : str = self.proj_out(UpperCAmelCase )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
super().__init__()
__snake_case : List[Any] = (config.num_hidden_layers + 1) // 5
__snake_case : Dict = config.hidden_size
__snake_case : str = 1
__snake_case : List[Any] = nn.ModuleList(
[
BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase )
for _ in range(UpperCAmelCase )
] )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
for block in self.blocks:
__snake_case : int = block(UpperCAmelCase )
return hidden_states
| 326 | 1 |
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ) -> str:
'''simple docstring'''
__snake_case : int = parent
__snake_case : Optional[int] = batch_size
__snake_case : Union[str, Any] = seq_length
__snake_case : Dict = is_training
__snake_case : int = use_input_mask
__snake_case : Tuple = use_token_type_ids
__snake_case : Any = use_labels
__snake_case : Union[str, Any] = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : Tuple = num_hidden_layers
__snake_case : Tuple = num_attention_heads
__snake_case : int = intermediate_size
__snake_case : int = hidden_act
__snake_case : List[Any] = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : Dict = max_position_embeddings
__snake_case : List[str] = type_vocab_size
__snake_case : Dict = type_sequence_label_size
__snake_case : str = initializer_range
__snake_case : Optional[Any] = num_labels
__snake_case : List[Any] = num_choices
__snake_case : Dict = scope
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : int = None
if self.use_input_mask:
__snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : List[str] = None
__snake_case : List[Any] = None
__snake_case : Any = None
if self.use_labels:
__snake_case : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : List[str] = ids_tensor([self.batch_size] , self.num_choices )
__snake_case : Union[str, Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__snake_case : int = BioGptModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : List[Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase )
__snake_case : str = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> List[str]:
'''simple docstring'''
__snake_case : List[Any] = BioGptForCausalLM(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : int = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__snake_case : str = BioGptModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
# create attention mask
__snake_case : int = torch.ones(input_ids.shape , dtype=torch.long , device=UpperCAmelCase )
__snake_case : int = self.seq_length // 2
__snake_case : Optional[Any] = 0
# first forward pass
__snake_case , __snake_case : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase ).to_tuple()
# create hypothetical next token and extent to next_input_ids
__snake_case : str = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
__snake_case : List[Any] = ids_tensor((1,) , UpperCAmelCase ).item() + 1
__snake_case : Dict = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
__snake_case : List[str] = random_other_next_tokens
# append to next input_ids and attn_mask
__snake_case : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
__snake_case : Dict = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=UpperCAmelCase )] , dim=1 , )
# get two different outputs
__snake_case : str = model(UpperCAmelCase , attention_mask=UpperCAmelCase )["last_hidden_state"]
__snake_case : str = model(UpperCAmelCase , past_key_values=UpperCAmelCase , attention_mask=UpperCAmelCase )["last_hidden_state"]
# select random slice
__snake_case : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__snake_case : Dict = output_from_no_past[:, -1, random_slice_idx].detach()
__snake_case : Optional[int] = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Optional[Any] = BioGptModel(config=UpperCAmelCase ).to(UpperCAmelCase ).eval()
__snake_case : Dict = torch.ones(input_ids.shape , dtype=torch.long , device=UpperCAmelCase )
# first forward pass
__snake_case : Dict = model(UpperCAmelCase , attention_mask=UpperCAmelCase , use_cache=UpperCAmelCase )
__snake_case , __snake_case : Union[str, Any] = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
__snake_case : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
__snake_case : str = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
__snake_case : Dict = torch.cat([input_ids, next_tokens] , dim=-1 )
__snake_case : Tuple = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
__snake_case : int = model(UpperCAmelCase , attention_mask=UpperCAmelCase )["last_hidden_state"]
__snake_case : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase )[
"last_hidden_state"
]
# select random slice
__snake_case : str = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__snake_case : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach()
__snake_case : Dict = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : str = BioGptForCausalLM(UpperCAmelCase )
model.to(UpperCAmelCase )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
__snake_case : List[Any] = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def UpperCAmelCase ( self , UpperCAmelCase , *UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Union[str, Any] = BioGptModel(UpperCAmelCase )
__snake_case : Tuple = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__snake_case : Tuple = self.num_labels
__snake_case : Tuple = BioGptForTokenClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : Optional[int] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case : Tuple = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Dict = config_and_inputs
__snake_case : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _lowerCamelCase ( a , a , a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] =(
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
UpperCAmelCase_ : Union[str, Any] =(BioGptForCausalLM,) if is_torch_available() else ()
UpperCAmelCase_ : Tuple =(
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCAmelCase_ : Optional[int] =False
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Optional[Any] = BioGptModelTester(self )
__snake_case : List[str] = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Optional[int] = type
self.model_tester.create_and_check_model(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*UpperCAmelCase , gradient_checkpointing=UpperCAmelCase )
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*UpperCAmelCase )
@slow
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : str = BioGptForCausalLM.from_pretrained("microsoft/biogpt" )
model.to(UpperCAmelCase )
__snake_case : Any = BioGptTokenizer.from_pretrained("microsoft/biogpt" )
__snake_case : Dict = "left"
# Define PAD Token = EOS Token = 50256
__snake_case : List[Any] = tokenizer.eos_token
__snake_case : List[Any] = model.config.eos_token_id
# use different length sentences to test batching
__snake_case : Optional[int] = [
"Hello, my dog is a little",
"Today, I",
]
__snake_case : List[Any] = tokenizer(UpperCAmelCase , return_tensors="pt" , padding=UpperCAmelCase )
__snake_case : str = inputs["input_ids"].to(UpperCAmelCase )
__snake_case : Optional[int] = model.generate(
input_ids=UpperCAmelCase , attention_mask=inputs["attention_mask"].to(UpperCAmelCase ) , )
__snake_case : List[str] = tokenizer(sentences[0] , return_tensors="pt" ).input_ids.to(UpperCAmelCase )
__snake_case : Union[str, Any] = model.generate(input_ids=UpperCAmelCase )
__snake_case : Optional[Any] = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
__snake_case : str = tokenizer(sentences[1] , return_tensors="pt" ).input_ids.to(UpperCAmelCase )
__snake_case : int = model.generate(input_ids=UpperCAmelCase , max_length=model.config.max_length - num_paddings )
__snake_case : Dict = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
__snake_case : str = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase )
__snake_case : Dict = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase )
__snake_case : List[str] = [
"Hello, my dog is a little bit bigger than a little bit.",
"Today, I have a good idea of how to use the information",
]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , [non_padded_sentence, padded_sentence] )
@slow
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : int = BioGptModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Tuple = 3
__snake_case : List[Any] = input_dict["input_ids"]
__snake_case : List[Any] = input_ids.ne(1 ).to(UpperCAmelCase )
__snake_case : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__snake_case : str = BioGptForSequenceClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : Dict = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Tuple = 3
__snake_case : Optional[int] = "multi_label_classification"
__snake_case : List[str] = input_dict["input_ids"]
__snake_case : Tuple = input_ids.ne(1 ).to(UpperCAmelCase )
__snake_case : Optional[Any] = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__snake_case : List[str] = BioGptForSequenceClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : str = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Dict = BioGptForCausalLM.from_pretrained("microsoft/biogpt" )
__snake_case : Tuple = torch.tensor([[2, 4805, 9, 656, 21]] )
__snake_case : List[str] = model(UpperCAmelCase )[0]
__snake_case : Optional[int] = 42384
__snake_case : Optional[int] = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , UpperCAmelCase )
__snake_case : int = torch.tensor(
[[[-9.5_236, -9.8_918, 10.4_557], [-11.0_469, -9.6_423, 8.1_022], [-8.8_664, -7.8_826, 5.5_325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
@slow
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case : Dict = BioGptTokenizer.from_pretrained("microsoft/biogpt" )
__snake_case : List[str] = BioGptForCausalLM.from_pretrained("microsoft/biogpt" )
model.to(UpperCAmelCase )
torch.manual_seed(0 )
__snake_case : int = tokenizer("COVID-19 is" , return_tensors="pt" ).to(UpperCAmelCase )
__snake_case : List[str] = model.generate(
**UpperCAmelCase , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=UpperCAmelCase , )
__snake_case : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCAmelCase )
__snake_case : List[Any] = (
"COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the"
" causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and"
" territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),"
" and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and"
" more than 800,000 deaths."
)
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
| 326 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 326 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_UpperCamelCase = {
'''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''],
'''tokenization_ctrl''': ['''CTRLTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CTRLForSequenceClassification''',
'''CTRLLMHeadModel''',
'''CTRLModel''',
'''CTRLPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFCTRLForSequenceClassification''',
'''TFCTRLLMHeadModel''',
'''TFCTRLModel''',
'''TFCTRLPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig
from .tokenization_ctrl import CTRLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ctrl import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
CTRLPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_ctrl import (
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCTRLForSequenceClassification,
TFCTRLLMHeadModel,
TFCTRLModel,
TFCTRLPreTrainedModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 326 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = torch.device('''cpu''')
def lowerCAmelCase__( ) -> Any:
__snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
__snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw )
return im
def lowerCAmelCase__( lowercase : Dict ) -> List[Any]:
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] )
def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]:
__snake_case : List[Any] = dct.pop(lowercase )
__snake_case : List[Any] = val
def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple:
__snake_case : Optional[Any] = []
for k in state_dict.keys():
__snake_case : Union[str, Any] = k
if ".pwconv" in k:
__snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" )
if ".dwconv" in k:
__snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" )
if ".Proj." in k:
__snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." )
if "patch_embed" in k_new:
__snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" )
if "network" in k_new:
__snake_case : int = k_new.split("." )
if ls[2].isdigit():
__snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] )
else:
__snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]:
__snake_case : List[str] = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
__snake_case : Tuple = 1000
__snake_case : Any = "huggingface/label-files"
__snake_case : int = "imagenet-1k-id2label.json"
__snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) )
__snake_case : str = {int(lowercase ): v for k, v in idalabel.items()}
__snake_case : int = idalabel
__snake_case : Optional[int] = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
__snake_case : Optional[Any] = [3, 3, 6, 4]
__snake_case : Optional[int] = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
__snake_case : List[str] = [3, 3, 9, 6]
__snake_case : Optional[Any] = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
__snake_case : Optional[int] = [4, 3, 10, 5]
__snake_case : Dict = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
__snake_case : str = [4, 4, 12, 6]
__snake_case : Optional[Any] = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("https" ):
__snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase )
else:
__snake_case : Tuple = torch.load(lowercase , map_location="cpu" )
__snake_case : Optional[int] = checkpoint
__snake_case : Any = create_rename_keys(lowercase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(lowercase , lowercase , lowercase )
# load HuggingFace model
__snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval()
hf_model.load_state_dict(lowercase )
# prepare test inputs
__snake_case : Optional[Any] = prepare_img()
__snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" )
__snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" )
# compare outputs from both models
__snake_case : str = get_expected_output(lowercase )
__snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 )
Path(lowercase ).mkdir(exist_ok=lowercase )
print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" )
hf_model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--swiftformer_name''',
default='''swiftformer_xs''',
choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''],
type=str,
help='''Name of the SwiftFormer model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''./converted_outputs/''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''')
_UpperCamelCase = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 326 | 1 |
import gc
import unittest
from parameterized import parameterized
from diffusers import FlaxUNetaDConditionModel
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
@slow
@require_flax
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
return F"""gaussian_noise_s={seed}_shape={"_".join([str(UpperCAmelCase ) for s in shape] )}.npy"""
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
super().tearDown()
gc.collect()
def UpperCAmelCase ( self , UpperCAmelCase=0 , UpperCAmelCase=(4, 4, 64, 64) , UpperCAmelCase=False ) -> Optional[Any]:
'''simple docstring'''
__snake_case : List[Any] = jnp.bfloataa if fpaa else jnp.floataa
__snake_case : Union[str, Any] = jnp.array(load_hf_numpy(self.get_file_format(UpperCAmelCase , UpperCAmelCase ) ) , dtype=UpperCAmelCase )
return image
def UpperCAmelCase ( self , UpperCAmelCase=False , UpperCAmelCase="CompVis/stable-diffusion-v1-4" ) -> List[Any]:
'''simple docstring'''
__snake_case : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa
__snake_case : int = "bf16" if fpaa else None
__snake_case , __snake_case : Optional[Any] = FlaxUNetaDConditionModel.from_pretrained(
UpperCAmelCase , subfolder="unet" , dtype=UpperCAmelCase , revision=UpperCAmelCase )
return model, params
def UpperCAmelCase ( self , UpperCAmelCase=0 , UpperCAmelCase=(4, 77, 768) , UpperCAmelCase=False ) -> str:
'''simple docstring'''
__snake_case : str = jnp.bfloataa if fpaa else jnp.floataa
__snake_case : int = jnp.array(load_hf_numpy(self.get_file_format(UpperCAmelCase , UpperCAmelCase ) ) , dtype=UpperCAmelCase )
return hidden_states
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]],
[17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]],
[8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]],
[3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]],
# fmt: on
] )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any:
'''simple docstring'''
__snake_case , __snake_case : Dict = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=UpperCAmelCase )
__snake_case : Any = self.get_latents(UpperCAmelCase , fpaa=UpperCAmelCase )
__snake_case : Union[str, Any] = self.get_encoder_hidden_states(UpperCAmelCase , fpaa=UpperCAmelCase )
__snake_case : str = model.apply(
{"params": params} , UpperCAmelCase , jnp.array(UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=UpperCAmelCase , ).sample
assert sample.shape == latents.shape
__snake_case : Union[str, Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
__snake_case : List[str] = jnp.array(UpperCAmelCase , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware
assert jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]],
[17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]],
[8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]],
[3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]],
# fmt: on
] )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict:
'''simple docstring'''
__snake_case , __snake_case : Any = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=UpperCAmelCase )
__snake_case : Any = self.get_latents(UpperCAmelCase , shape=(4, 4, 96, 96) , fpaa=UpperCAmelCase )
__snake_case : Union[str, Any] = self.get_encoder_hidden_states(UpperCAmelCase , shape=(4, 77, 1024) , fpaa=UpperCAmelCase )
__snake_case : Dict = model.apply(
{"params": params} , UpperCAmelCase , jnp.array(UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=UpperCAmelCase , ).sample
assert sample.shape == latents.shape
__snake_case : Tuple = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
__snake_case : Dict = jnp.array(UpperCAmelCase , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware
assert jnp.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-2 )
| 326 |
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
_UpperCamelCase = logging.getLogger(__name__)
def lowerCAmelCase__( lowercase : str ) -> List[str]:
__snake_case : int = git.Repo(search_parent_directories=lowercase )
__snake_case : Union[str, Any] = {
"repo_id": str(lowercase ),
"repo_sha": str(repo.head.object.hexsha ),
"repo_branch": str(repo.active_branch ),
}
with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f:
json.dump(lowercase , lowercase , indent=4 )
def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]:
if params.n_gpu <= 0:
__snake_case : Union[str, Any] = 0
__snake_case : Optional[int] = -1
__snake_case : Union[str, Any] = True
__snake_case : Tuple = False
return
assert torch.cuda.is_available()
logger.info("Initializing GPUs" )
if params.n_gpu > 1:
assert params.local_rank != -1
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : int = int(os.environ["N_GPU_NODE"] )
__snake_case : Union[str, Any] = int(os.environ["RANK"] )
# number of nodes / node ID
__snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node
__snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node
__snake_case : Union[str, Any] = True
assert params.n_nodes == int(os.environ["N_NODES"] )
assert params.node_id == int(os.environ["NODE_RANK"] )
# local job (single GPU)
else:
assert params.local_rank == -1
__snake_case : Any = 1
__snake_case : str = 0
__snake_case : Optional[Any] = 0
__snake_case : Dict = 0
__snake_case : int = 1
__snake_case : Optional[Any] = 1
__snake_case : Tuple = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
__snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0
__snake_case : List[Any] = params.n_nodes > 1
# summary
__snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """
logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes )
logger.info(PREFIX + "Node ID : %i" % params.node_id )
logger.info(PREFIX + "Local rank : %i" % params.local_rank )
logger.info(PREFIX + "World size : %i" % params.world_size )
logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node )
logger.info(PREFIX + "Master : %s" % str(params.is_master ) )
logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) )
logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) )
logger.info(PREFIX + "Hostname : %s" % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info("Initializing PyTorch distributed" )
torch.distributed.init_process_group(
init_method="env://" , backend="nccl" , )
def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]:
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 326 | 1 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': (
'''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json'''
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] ="trajectory_transformer"
UpperCAmelCase_ : str =["past_key_values"]
UpperCAmelCase_ : Optional[Any] ={
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , UpperCAmelCase=100 , UpperCAmelCase=5 , UpperCAmelCase=1 , UpperCAmelCase=1 , UpperCAmelCase=249 , UpperCAmelCase=6 , UpperCAmelCase=17 , UpperCAmelCase=25 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase=128 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0_006 , UpperCAmelCase=512 , UpperCAmelCase=0.02 , UpperCAmelCase=1E-12 , UpperCAmelCase=1 , UpperCAmelCase=True , UpperCAmelCase=1 , UpperCAmelCase=50256 , UpperCAmelCase=50256 , **UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Tuple = vocab_size
__snake_case : Optional[int] = action_weight
__snake_case : int = reward_weight
__snake_case : List[Any] = value_weight
__snake_case : Optional[int] = max_position_embeddings
__snake_case : List[Any] = block_size
__snake_case : str = action_dim
__snake_case : Union[str, Any] = observation_dim
__snake_case : Tuple = transition_dim
__snake_case : Any = learning_rate
__snake_case : Dict = n_layer
__snake_case : int = n_head
__snake_case : Tuple = n_embd
__snake_case : str = embd_pdrop
__snake_case : Any = attn_pdrop
__snake_case : Tuple = resid_pdrop
__snake_case : Any = initializer_range
__snake_case : Any = layer_norm_eps
__snake_case : List[str] = kaiming_initializer_range
__snake_case : Tuple = use_cache
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
| 326 |
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : str =JukeboxTokenizer
UpperCAmelCase_ : Tuple ={
"artist": "Zac Brown Band",
"genres": "Country",
"lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ",
}
@require_torch
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
import torch
__snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" )
__snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"]
# fmt: off
__snake_case : Optional[Any] = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
import torch
__snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" )
__snake_case : Tuple = tokenizer(**self.metas )["input_ids"]
# fmt: off
__snake_case : int = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 326 | 1 |
from collections.abc import Callable
def lowerCAmelCase__( lowercase : Callable[[float], float] , lowercase : float , lowercase : float ) -> float:
__snake_case : float = a
__snake_case : float = b
if function(lowercase ) == 0: # one of the a or b is a root for the function
return a
elif function(lowercase ) == 0:
return b
elif (
function(lowercase ) * function(lowercase ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError("could not find root in given interval." )
else:
__snake_case : float = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(lowercase ) == 0:
return mid
elif function(lowercase ) * function(lowercase ) < 0:
__snake_case : Any = mid
else:
__snake_case : Optional[int] = mid
__snake_case : Optional[int] = start + (end - start) / 2.0
return mid
def lowerCAmelCase__( lowercase : float ) -> float:
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 326 |
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
_UpperCamelCase = logging.get_logger(__name__)
class _lowerCamelCase :
"""simple docstring"""
UpperCAmelCase_ : str
UpperCAmelCase_ : str =None
@staticmethod
def UpperCAmelCase ( ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
if not self.is_available():
raise RuntimeError(
F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" )
@classmethod
def UpperCAmelCase ( cls ) -> Tuple:
'''simple docstring'''
return F"""`pip install {cls.pip_package or cls.name}`"""
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] ="optuna"
@staticmethod
def UpperCAmelCase ( ) -> Union[str, Any]:
'''simple docstring'''
return is_optuna_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict:
'''simple docstring'''
return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> int:
'''simple docstring'''
return default_hp_space_optuna(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : List[str] ="ray"
UpperCAmelCase_ : Dict ="'ray[tune]'"
@staticmethod
def UpperCAmelCase ( ) -> str:
'''simple docstring'''
return is_ray_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
return default_hp_space_ray(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Tuple ="sigopt"
@staticmethod
def UpperCAmelCase ( ) -> int:
'''simple docstring'''
return is_sigopt_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict:
'''simple docstring'''
return default_hp_space_sigopt(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : str ="wandb"
@staticmethod
def UpperCAmelCase ( ) -> Optional[Any]:
'''simple docstring'''
return is_wandb_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return default_hp_space_wandb(UpperCAmelCase )
_UpperCamelCase = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def lowerCAmelCase__( ) -> str:
__snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(lowercase ) > 0:
__snake_case : Dict = available_backends[0].name
if len(lowercase ) > 1:
logger.info(
f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" )
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
f""" - To install {backend.name} run {backend.pip_install()}"""
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 326 | 1 |
import warnings
from ...utils import is_sklearn_available, requires_backends
if is_sklearn_available():
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
_UpperCamelCase = (
'''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate '''
'''library. You can have a look at this example script for pointers: '''
'''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py'''
)
def lowerCAmelCase__( lowercase : Optional[int] , lowercase : List[str] ) -> Optional[int]:
warnings.warn(lowercase , lowercase )
requires_backends(lowercase , "sklearn" )
return (preds == labels).mean()
def lowerCAmelCase__( lowercase : Any , lowercase : Optional[Any] ) -> Optional[int]:
warnings.warn(lowercase , lowercase )
requires_backends(lowercase , "sklearn" )
__snake_case : Union[str, Any] = simple_accuracy(lowercase , lowercase )
__snake_case : List[str] = fa_score(y_true=lowercase , y_pred=lowercase )
return {
"acc": acc,
"f1": fa,
"acc_and_f1": (acc + fa) / 2,
}
def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> Dict:
warnings.warn(lowercase , lowercase )
requires_backends(lowercase , "sklearn" )
__snake_case : str = pearsonr(lowercase , lowercase )[0]
__snake_case : Any = spearmanr(lowercase , lowercase )[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def lowerCAmelCase__( lowercase : Tuple , lowercase : Any , lowercase : List[str] ) -> Tuple:
warnings.warn(lowercase , lowercase )
requires_backends(lowercase , "sklearn" )
assert len(lowercase ) == len(lowercase ), f"""Predictions and labels have mismatched lengths {len(lowercase )} and {len(lowercase )}"""
if task_name == "cola":
return {"mcc": matthews_corrcoef(lowercase , lowercase )}
elif task_name == "sst-2":
return {"acc": simple_accuracy(lowercase , lowercase )}
elif task_name == "mrpc":
return acc_and_fa(lowercase , lowercase )
elif task_name == "sts-b":
return pearson_and_spearman(lowercase , lowercase )
elif task_name == "qqp":
return acc_and_fa(lowercase , lowercase )
elif task_name == "mnli":
return {"mnli/acc": simple_accuracy(lowercase , lowercase )}
elif task_name == "mnli-mm":
return {"mnli-mm/acc": simple_accuracy(lowercase , lowercase )}
elif task_name == "qnli":
return {"acc": simple_accuracy(lowercase , lowercase )}
elif task_name == "rte":
return {"acc": simple_accuracy(lowercase , lowercase )}
elif task_name == "wnli":
return {"acc": simple_accuracy(lowercase , lowercase )}
elif task_name == "hans":
return {"acc": simple_accuracy(lowercase , lowercase )}
else:
raise KeyError(lowercase )
def lowerCAmelCase__( lowercase : int , lowercase : Optional[int] , lowercase : str ) -> List[Any]:
warnings.warn(lowercase , lowercase )
requires_backends(lowercase , "sklearn" )
if len(lowercase ) != len(lowercase ):
raise ValueError(f"""Predictions and labels have mismatched lengths {len(lowercase )} and {len(lowercase )}""" )
if task_name == "xnli":
return {"acc": simple_accuracy(lowercase , lowercase )}
else:
raise KeyError(lowercase )
| 326 |
import math
def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list:
__snake_case : Any = end or len(lowercase )
for i in range(lowercase , lowercase ):
__snake_case : List[str] = i
__snake_case : Union[str, Any] = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
__snake_case : Optional[Any] = array[temp_index - 1]
temp_index -= 1
__snake_case : Any = temp_index_value
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap
__snake_case : Any = index
__snake_case : Optional[Any] = 2 * index + 1 # Left Node
__snake_case : str = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
__snake_case : Optional[int] = left_index
if right_index < heap_size and array[largest] < array[right_index]:
__snake_case : Tuple = right_index
if largest != index:
__snake_case , __snake_case : int = array[largest], array[index]
heapify(lowercase , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list ) -> list:
__snake_case : List[str] = len(lowercase )
for i in range(n // 2 , -1 , -1 ):
heapify(lowercase , lowercase , lowercase )
for i in range(n - 1 , 0 , -1 ):
__snake_case , __snake_case : Optional[Any] = array[0], array[i]
heapify(lowercase , 0 , lowercase )
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
__snake_case : Union[str, Any] = low
__snake_case : Union[str, Any] = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
__snake_case , __snake_case : str = array[j], array[i]
i += 1
def lowerCAmelCase__( lowercase : list ) -> list:
if len(lowercase ) == 0:
return array
__snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) )
__snake_case : Dict = 16
return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list:
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
__snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 )
__snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase )
intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase )
__snake_case : List[str] = p
return insertion_sort(lowercase , lowercase , lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip()
_UpperCamelCase = [float(item) for item in user_input.split(''',''')]
print(sort(unsorted))
| 326 | 1 |
import warnings
from contextlib import contextmanager
from ....processing_utils import ProcessorMixin
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : List[str] ="MCTCTFeatureExtractor"
UpperCAmelCase_ : List[Any] ="AutoTokenizer"
def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> str:
'''simple docstring'''
super().__init__(UpperCAmelCase , UpperCAmelCase )
__snake_case : int = self.feature_extractor
__snake_case : int = False
def __call__( self , *UpperCAmelCase , **UpperCAmelCase ) -> int:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*UpperCAmelCase , **UpperCAmelCase )
if "raw_speech" in kwargs:
warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." )
__snake_case : Union[str, Any] = kwargs.pop("raw_speech" )
else:
__snake_case : Optional[Any] = kwargs.pop("audio" , UpperCAmelCase )
__snake_case : Dict = kwargs.pop("sampling_rate" , UpperCAmelCase )
__snake_case : Optional[Any] = kwargs.pop("text" , UpperCAmelCase )
if len(UpperCAmelCase ) > 0:
__snake_case : List[Any] = args[0]
__snake_case : Optional[int] = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process." )
if audio is not None:
__snake_case : str = self.feature_extractor(UpperCAmelCase , *UpperCAmelCase , sampling_rate=UpperCAmelCase , **UpperCAmelCase )
if text is not None:
__snake_case : Tuple = self.tokenizer(UpperCAmelCase , **UpperCAmelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
__snake_case : str = encodings["input_ids"]
return inputs
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Any:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Dict:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor.pad(*UpperCAmelCase , **UpperCAmelCase )
__snake_case : str = kwargs.pop("input_features" , UpperCAmelCase )
__snake_case : int = kwargs.pop("labels" , UpperCAmelCase )
if len(UpperCAmelCase ) > 0:
__snake_case : Optional[Any] = args[0]
__snake_case : Optional[Any] = args[1:]
if input_features is not None:
__snake_case : Optional[Any] = self.feature_extractor.pad(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase )
if labels is not None:
__snake_case : List[str] = self.tokenizer.pad(UpperCAmelCase , **UpperCAmelCase )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
__snake_case : Dict = labels["input_ids"]
return input_features
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@contextmanager
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
warnings.warn(
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
"your audio inputs, or in a separate call." )
__snake_case : List[str] = True
__snake_case : Dict = self.tokenizer
yield
__snake_case : Dict = self.feature_extractor
__snake_case : Dict = False
| 326 |
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def lowerCAmelCase__( ) -> List[Any]:
with parallel_backend("spark" ):
assert ParallelBackendConfig.backend_name == "spark"
__snake_case : Any = [1, 2, 3]
with pytest.raises(lowercase ):
with parallel_backend("unsupported backend" ):
map_nested(lowercase , lowercase , num_proc=2 )
with pytest.raises(lowercase ):
with parallel_backend("unsupported backend" ):
map_nested(lowercase , lowercase , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("num_proc" , [2, -1] )
def lowerCAmelCase__( lowercase : Dict ) -> Dict:
__snake_case : Any = [1, 2]
__snake_case : Dict = {"a": 1, "b": 2}
__snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]}
__snake_case : int = {"a": {"1": 1}, "b": 2}
__snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4}
__snake_case : Dict = [2, 3]
__snake_case : Tuple = {"a": 2, "b": 3}
__snake_case : int = {"a": [2, 3], "b": [4, 5]}
__snake_case : Dict = {"a": {"1": 2}, "b": 3}
__snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5}
with parallel_backend("spark" ):
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
| 326 | 1 |
def lowerCAmelCase__( lowercase : int = 100 ) -> int:
__snake_case : Tuple = n * (n + 1) * (2 * n + 1) / 6
__snake_case : List[Any] = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 326 |
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any:
__snake_case : Optional[Any] = False
__snake_case : Optional[Any] = search_prob
__snake_case : str = start_temperate
__snake_case : List[Any] = []
__snake_case : str = 0
__snake_case : Dict = None
while not search_end:
__snake_case : List[Any] = current_state.score()
if best_state is None or current_score > best_state.score():
__snake_case : List[Any] = current_state
scores.append(lowercase )
iterations += 1
__snake_case : Dict = None
__snake_case : str = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
__snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor
__snake_case : int = neighbors.pop(lowercase )
__snake_case : Optional[Any] = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
__snake_case : Any = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
__snake_case : List[str] = picked_neighbor
else:
__snake_case : Optional[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
__snake_case : str = picked_neighbor
__snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
__snake_case : Optional[Any] = True
else:
__snake_case : str = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(lowercase ) , lowercase )
plt.xlabel("Iterations" )
plt.ylabel("Function values" )
plt.show()
return best_state
if __name__ == "__main__":
def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any:
return (3 * x**2) - (6 * y)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True)
print(
'''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True)
print(
'''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
| 326 | 1 |
from math import pi, sqrt
def lowerCAmelCase__( lowercase : float ) -> float:
if num <= 0:
raise ValueError("math domain error" )
if num > 1_7_1.5:
raise OverflowError("math range error" )
elif num - int(lowercase ) not in (0, 0.5):
raise NotImplementedError("num must be an integer or a half-integer" )
elif num == 0.5:
return sqrt(lowercase )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def lowerCAmelCase__( ) -> None:
assert gamma(0.5 ) == sqrt(lowercase )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
_UpperCamelCase = 1.0
while num:
_UpperCamelCase = float(input('''Gamma of: '''))
print(F'''gamma({num}) = {gamma(num)}''')
print('''\nEnter 0 to exit...''')
| 326 |
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"]
UpperCAmelCase_ : Tuple ="FlavaImageProcessor"
UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast")
def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int:
'''simple docstring'''
__snake_case : List[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase , )
__snake_case : List[Any] = kwargs.pop("feature_extractor" )
__snake_case : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = self.image_processor
def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]:
'''simple docstring'''
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
__snake_case : Union[str, Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if images is not None:
__snake_case : Union[str, Any] = self.image_processor(
UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if text is not None and images is not None:
encoding.update(UpperCAmelCase )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : List[Any] = self.tokenizer.model_input_names
__snake_case : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , )
return self.image_processor
| 326 | 1 |
import math
def lowerCAmelCase__( ) -> None:
__snake_case : str = input("Enter message: " )
__snake_case : List[Any] = int(input(f"""Enter key [2-{len(lowercase ) - 1}]: """ ) )
__snake_case : Tuple = input("Encryption/Decryption [e/d]: " )
if mode.lower().startswith("e" ):
__snake_case : int = encrypt_message(lowercase , lowercase )
elif mode.lower().startswith("d" ):
__snake_case : Optional[int] = decrypt_message(lowercase , lowercase )
# Append pipe symbol (vertical bar) to identify spaces at the end.
print(f"""Output:\n{text + "|"}""" )
def lowerCAmelCase__( lowercase : int , lowercase : str ) -> str:
__snake_case : Any = [""] * key
for col in range(lowercase ):
__snake_case : Any = col
while pointer < len(lowercase ):
cipher_text[col] += message[pointer]
pointer += key
return "".join(lowercase )
def lowerCAmelCase__( lowercase : int , lowercase : str ) -> str:
__snake_case : str = math.ceil(len(lowercase ) / key )
__snake_case : Tuple = key
__snake_case : Optional[int] = (num_cols * num_rows) - len(lowercase )
__snake_case : Optional[Any] = [""] * num_cols
__snake_case : Dict = 0
__snake_case : Any = 0
for symbol in message:
plain_text[col] += symbol
col += 1
if (
(col == num_cols)
or (col == num_cols - 1)
and (row >= num_rows - num_shaded_boxes)
):
__snake_case : int = 0
row += 1
return "".join(lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 326 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''}
_UpperCamelCase = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
}
}
_UpperCamelCase = {
'''camembert-base''': 512,
}
_UpperCamelCase = '''▁'''
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES
UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : str =["input_ids", "attention_mask"]
def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
'''simple docstring'''
__snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
__snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , )
__snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCAmelCase ) )
__snake_case : Dict = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
__snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
__snake_case : Optional[int] = len(self.fairseq_tokens_to_ids )
__snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
__snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Dict = [self.cls_token_id]
__snake_case : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1]
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__snake_case : int = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(UpperCAmelCase ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__snake_case : Tuple = []
__snake_case : Union[str, Any] = ""
__snake_case : Optional[int] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase ) + token
__snake_case : List[Any] = True
__snake_case : Union[str, Any] = []
else:
current_sub_tokens.append(UpperCAmelCase )
__snake_case : int = False
out_string += self.sp_model.decode(UpperCAmelCase )
return out_string.strip()
def __getstate__( self ) -> List[Any]:
'''simple docstring'''
__snake_case : str = self.__dict__.copy()
__snake_case : Optional[Any] = None
return state
def __setstate__( self , UpperCAmelCase ) -> str:
'''simple docstring'''
__snake_case : Optional[Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__snake_case : List[str] = {}
__snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__snake_case : Optional[Any] = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase , "wb" ) as fi:
__snake_case : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase )
return (out_vocab_file,)
| 326 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = torch.device('''cpu''')
def lowerCAmelCase__( ) -> Any:
__snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
__snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw )
return im
def lowerCAmelCase__( lowercase : Dict ) -> List[Any]:
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] )
def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]:
__snake_case : List[Any] = dct.pop(lowercase )
__snake_case : List[Any] = val
def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple:
__snake_case : Optional[Any] = []
for k in state_dict.keys():
__snake_case : Union[str, Any] = k
if ".pwconv" in k:
__snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" )
if ".dwconv" in k:
__snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" )
if ".Proj." in k:
__snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." )
if "patch_embed" in k_new:
__snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" )
if "network" in k_new:
__snake_case : int = k_new.split("." )
if ls[2].isdigit():
__snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] )
else:
__snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]:
__snake_case : List[str] = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
__snake_case : Tuple = 1000
__snake_case : Any = "huggingface/label-files"
__snake_case : int = "imagenet-1k-id2label.json"
__snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) )
__snake_case : str = {int(lowercase ): v for k, v in idalabel.items()}
__snake_case : int = idalabel
__snake_case : Optional[int] = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
__snake_case : Optional[Any] = [3, 3, 6, 4]
__snake_case : Optional[int] = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
__snake_case : List[str] = [3, 3, 9, 6]
__snake_case : Optional[Any] = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
__snake_case : Optional[int] = [4, 3, 10, 5]
__snake_case : Dict = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
__snake_case : str = [4, 4, 12, 6]
__snake_case : Optional[Any] = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("https" ):
__snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase )
else:
__snake_case : Tuple = torch.load(lowercase , map_location="cpu" )
__snake_case : Optional[int] = checkpoint
__snake_case : Any = create_rename_keys(lowercase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(lowercase , lowercase , lowercase )
# load HuggingFace model
__snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval()
hf_model.load_state_dict(lowercase )
# prepare test inputs
__snake_case : Optional[Any] = prepare_img()
__snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" )
__snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" )
# compare outputs from both models
__snake_case : str = get_expected_output(lowercase )
__snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 )
Path(lowercase ).mkdir(exist_ok=lowercase )
print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" )
hf_model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--swiftformer_name''',
default='''swiftformer_xs''',
choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''],
type=str,
help='''Name of the SwiftFormer model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''./converted_outputs/''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''')
_UpperCamelCase = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 326 |
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool:
__snake_case : List[str] = len(lowercase )
__snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__snake_case : Optional[Any] = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
__snake_case : Union[str, Any] = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
__snake_case : List[str] = subset[i - 1][j]
if arr[i - 1] <= j:
__snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''}
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Any ="openai-gpt"
UpperCAmelCase_ : Union[str, Any] ={
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , UpperCAmelCase=40478 , UpperCAmelCase=512 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1E-5 , UpperCAmelCase=0.02 , UpperCAmelCase="cls_index" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=0.1 , **UpperCAmelCase , ) -> str:
'''simple docstring'''
__snake_case : Optional[int] = vocab_size
__snake_case : Dict = n_positions
__snake_case : Union[str, Any] = n_embd
__snake_case : int = n_layer
__snake_case : Optional[int] = n_head
__snake_case : Dict = afn
__snake_case : Dict = resid_pdrop
__snake_case : Optional[Any] = embd_pdrop
__snake_case : List[Any] = attn_pdrop
__snake_case : Union[str, Any] = layer_norm_epsilon
__snake_case : Union[str, Any] = initializer_range
__snake_case : Optional[int] = summary_type
__snake_case : List[str] = summary_use_proj
__snake_case : Any = summary_activation
__snake_case : List[Any] = summary_first_dropout
__snake_case : Union[str, Any] = summary_proj_to_labels
super().__init__(**UpperCAmelCase )
| 326 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
_UpperCamelCase = 4
_UpperCamelCase = 3
class _lowerCamelCase ( a ):
"""simple docstring"""
pass
def lowerCAmelCase__( lowercase : List[str] ) -> Any:
for shard in shards:
for i in range(lowercase ):
yield {"i": i, "shard": shard}
def lowerCAmelCase__( ) -> Optional[int]:
__snake_case : List[Any] = int(os.environ["RANK"] )
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : List[str] = ArgumentParser()
parser.add_argument("--streaming" , type=lowercase )
parser.add_argument("--local_rank" , type=lowercase )
parser.add_argument("--num_workers" , type=lowercase , default=0 )
__snake_case : Any = parser.parse_args()
__snake_case : Dict = args.streaming
__snake_case : Union[str, Any] = args.num_workers
__snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]}
__snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase )
if not streaming:
__snake_case : Any = Dataset.from_list(list(lowercase ) )
__snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase )
__snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase )
__snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD
__snake_case : List[str] = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
__snake_case : Dict = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" )
if __name__ == "__main__":
main()
| 326 | 1 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" )
__snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" )
__snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids
__snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids
__snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
__snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits
__snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean()
__snake_case : Any = -(labels.shape[-1] * loss.item())
__snake_case : List[str] = -84.9_127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 326 |
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int:
__snake_case : List[Any] = limit + 1
__snake_case : List[str] = [0] * limit
for first_term in range(1 , lowercase ):
for n in range(lowercase , lowercase , lowercase ):
__snake_case : Union[str, Any] = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
__snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 326 | 1 |
_UpperCamelCase = 0 # The first color of the flag.
_UpperCamelCase = 1 # The second color of the flag.
_UpperCamelCase = 2 # The third color of the flag.
_UpperCamelCase = (red, white, blue)
def lowerCAmelCase__( lowercase : list ) -> list:
if not sequence:
return []
if len(lowercase ) == 1:
return list(lowercase )
__snake_case : Optional[Any] = 0
__snake_case : Union[str, Any] = len(lowercase ) - 1
__snake_case : Tuple = 0
while mid <= high:
if sequence[mid] == colors[0]:
__snake_case , __snake_case : List[str] = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
__snake_case , __snake_case : Dict = sequence[high], sequence[mid]
high -= 1
else:
__snake_case : List[str] = f"""The elements inside the sequence must contains only {colors} values"""
raise ValueError(lowercase )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = input('''Enter numbers separated by commas:\n''').strip()
_UpperCamelCase = [int(item.strip()) for item in user_input.split(''',''')]
print(F'''{dutch_national_flag_sort(unsorted)}''')
| 326 |
from __future__ import annotations
def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]:
__snake_case : List[str] = word_bank or []
# create a table
__snake_case : int = len(lowercase ) + 1
__snake_case : list[list[list[str]]] = []
for _ in range(lowercase ):
table.append([] )
# seed value
__snake_case : Optional[int] = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(lowercase ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(lowercase )] == word:
__snake_case : list[list[str]] = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(lowercase )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(lowercase )]:
combination.reverse()
return table[len(lowercase )]
if __name__ == "__main__":
print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa''']))
print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t''']))
print(
all_construct(
'''hexagonosaurus''',
['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''],
)
)
| 326 | 1 |
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
_UpperCamelCase = logging.get_logger(__name__)
class _lowerCamelCase :
"""simple docstring"""
UpperCAmelCase_ : str
UpperCAmelCase_ : str =None
@staticmethod
def UpperCAmelCase ( ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
if not self.is_available():
raise RuntimeError(
F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" )
@classmethod
def UpperCAmelCase ( cls ) -> Tuple:
'''simple docstring'''
return F"""`pip install {cls.pip_package or cls.name}`"""
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] ="optuna"
@staticmethod
def UpperCAmelCase ( ) -> Union[str, Any]:
'''simple docstring'''
return is_optuna_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict:
'''simple docstring'''
return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> int:
'''simple docstring'''
return default_hp_space_optuna(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : List[str] ="ray"
UpperCAmelCase_ : Dict ="'ray[tune]'"
@staticmethod
def UpperCAmelCase ( ) -> str:
'''simple docstring'''
return is_ray_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
return default_hp_space_ray(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Tuple ="sigopt"
@staticmethod
def UpperCAmelCase ( ) -> int:
'''simple docstring'''
return is_sigopt_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict:
'''simple docstring'''
return default_hp_space_sigopt(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : str ="wandb"
@staticmethod
def UpperCAmelCase ( ) -> Optional[Any]:
'''simple docstring'''
return is_wandb_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return default_hp_space_wandb(UpperCAmelCase )
_UpperCamelCase = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def lowerCAmelCase__( ) -> str:
__snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(lowercase ) > 0:
__snake_case : Dict = available_backends[0].name
if len(lowercase ) > 1:
logger.info(
f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" )
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
f""" - To install {backend.name} run {backend.pip_install()}"""
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 326 |
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple:
'''simple docstring'''
__snake_case : Optional[int] = parent
__snake_case : Tuple = batch_size
__snake_case : List[str] = seq_length
__snake_case : Optional[int] = is_training
__snake_case : int = use_attention_mask
__snake_case : Union[str, Any] = use_token_type_ids
__snake_case : Any = use_labels
__snake_case : List[str] = vocab_size
__snake_case : int = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : List[Any] = num_attention_heads
__snake_case : Optional[int] = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : Optional[int] = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : str = max_position_embeddings
__snake_case : List[Any] = type_vocab_size
__snake_case : int = type_sequence_label_size
__snake_case : Dict = initializer_range
__snake_case : List[Any] = num_choices
__snake_case : Union[str, Any] = rescale_embeddings
__snake_case : List[Any] = attention_type
__snake_case : str = use_bias
__snake_case : Dict = block_size
__snake_case : Optional[Any] = num_random_blocks
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Any = None
if self.use_attention_mask:
__snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Union[str, Any] = None
if self.use_token_type_ids:
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Optional[int] = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Optional[int] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs
__snake_case : int = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_flax
class _lowerCamelCase ( a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =(
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
UpperCAmelCase_ : Dict =False
UpperCAmelCase_ : str =False
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : Dict = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_hidden_states_output()
@slow
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" )
self.assertIsNotNone(UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = model_class(UpperCAmelCase )
@jax.jit
def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase )
with self.subTest("JIT Enabled" ):
__snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int:
'''simple docstring'''
if name.startswith("outputs.attentions" ):
return
else:
super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
| 326 | 1 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
_UpperCamelCase = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def lowerCAmelCase__( lowercase : str ) -> Optional[Any]:
__snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" )
return sd
def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict:
__snake_case : Tuple = OrderedDict()
__snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__snake_case : Optional[Any] = key
for name_pair in rename_keys_prefix:
__snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] )
__snake_case : List[str] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__snake_case : List[Any] = new_d["cls.predictions.bias"]
return new_d
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]:
assert (
checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS
), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."""
# Get Config
if "pre" in checkpoint_path:
__snake_case : Any = "pretraining"
if "vcr" in checkpoint_path:
__snake_case : Optional[Any] = {"visual_embedding_dim": 512}
elif "vqa_advanced" in checkpoint_path:
__snake_case : Tuple = {"visual_embedding_dim": 2048}
elif "vqa" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 2048}
elif "nlvr" in checkpoint_path:
__snake_case : Any = {"visual_embedding_dim": 1024}
else:
raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" )
else:
if "vcr" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 512}
__snake_case : Any = "multichoice"
elif "vqa_advanced" in checkpoint_path:
__snake_case : List[Any] = {"visual_embedding_dim": 2048}
__snake_case : Optional[Any] = "vqa_advanced"
elif "vqa" in checkpoint_path:
__snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129}
__snake_case : Union[str, Any] = "vqa"
elif "nlvr" in checkpoint_path:
__snake_case : Tuple = {
"visual_embedding_dim": 1024,
"num_labels": 2,
}
__snake_case : List[Any] = "nlvr"
__snake_case : Union[str, Any] = VisualBertConfig(**lowercase )
# Load State Dict
__snake_case : Any = load_state_dict(lowercase )
__snake_case : Dict = get_new_dict(lowercase , lowercase )
if model_type == "pretraining":
__snake_case : Optional[Any] = VisualBertForPreTraining(lowercase )
elif model_type == "vqa":
__snake_case : Tuple = VisualBertForQuestionAnswering(lowercase )
elif model_type == "nlvr":
__snake_case : Tuple = VisualBertForVisualReasoning(lowercase )
elif model_type == "multichoice":
__snake_case : List[Any] = VisualBertForMultipleChoice(lowercase )
model.load_state_dict(lowercase )
# Save Checkpoints
Path(lowercase ).mkdir(exist_ok=lowercase )
model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 326 |
import argparse
import datetime
def lowerCAmelCase__( lowercase : str ) -> str:
__snake_case : int = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
__snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowercase ) < 11:
raise ValueError("Must be 10 characters long" )
# Get month
__snake_case : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12" )
__snake_case : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get day
__snake_case : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31" )
# Get second separator
__snake_case : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get year
__snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?" )
# Get datetime obj for validation
__snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) )
# Start math
if m <= 2:
__snake_case : Optional[Any] = y - 1
__snake_case : Tuple = m + 12
# maths var
__snake_case : int = int(str(lowercase )[:2] )
__snake_case : int = int(str(lowercase )[2:] )
__snake_case : int = int(2.6 * m - 5.3_9 )
__snake_case : int = int(c / 4 )
__snake_case : int = int(k / 4 )
__snake_case : int = int(d + k )
__snake_case : int = int(t + u + v + x )
__snake_case : int = int(z - (2 * c) )
__snake_case : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer." )
# Response
__snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
_UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 326 | 1 |
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
from .record_evaluation import evaluate as evaluate_record
_UpperCamelCase = '''\
@article{wang2019superglue,
title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},
author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},
journal={arXiv preprint arXiv:1905.00537},
year={2019}
}
'''
_UpperCamelCase = '''\
SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after
GLUE with a new set of more difficult language understanding tasks, improved
resources, and a new public leaderboard.
'''
_UpperCamelCase = '''
Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset.
Args:
predictions: list of predictions to score. Depending on the SuperGlUE subset:
- for \'record\': list of question-answer dictionaries with the following keys:
- \'idx\': index of the question as specified by the dataset
- \'prediction_text\': the predicted answer text
- for \'multirc\': list of question-answer dictionaries with the following keys:
- \'idx\': index of the question-answer pair as specified by the dataset
- \'prediction\': the predicted answer label
- otherwise: list of predicted labels
references: list of reference labels. Depending on the SuperGLUE subset:
- for \'record\': list of question-answers dictionaries with the following keys:
- \'idx\': index of the question as specified by the dataset
- \'answers\': list of possible answers
- otherwise: list of reference labels
Returns: depending on the SuperGLUE subset:
- for \'record\':
- \'exact_match\': Exact match between answer and gold answer
- \'f1\': F1 score
- for \'multirc\':
- \'exact_match\': Exact match between answer and gold answer
- \'f1_m\': Per-question macro-F1 score
- \'f1_a\': Average F1 score over all answers
- for \'axb\':
\'matthews_correlation\': Matthew Correlation
- for \'cb\':
- \'accuracy\': Accuracy
- \'f1\': F1 score
- for all others:
- \'accuracy\': Accuracy
Examples:
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0, \'f1\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')
>>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]
>>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 1.0, \'f1\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')
>>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]
>>> references = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}
>>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = super_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'matthews_correlation\': 1.0}
'''
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : int ) -> int:
return float((preds == labels).mean() )
def lowerCAmelCase__( lowercase : List[str] , lowercase : Union[str, Any] , lowercase : Optional[Any]="binary" ) -> Optional[int]:
__snake_case : Optional[int] = simple_accuracy(lowercase , lowercase )
__snake_case : Any = float(fa_score(y_true=lowercase , y_pred=lowercase , average=lowercase ) )
return {
"accuracy": acc,
"f1": fa,
}
def lowerCAmelCase__( lowercase : Any , lowercase : Optional[int] ) -> List[str]:
__snake_case : Any = {}
for id_pred, label in zip(lowercase , lowercase ):
__snake_case : Dict = f"""{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}"""
__snake_case : List[str] = id_pred["prediction"]
if question_id in question_map:
question_map[question_id].append((pred, label) )
else:
__snake_case : Tuple = [(pred, label)]
__snake_case , __snake_case : List[Any] = [], []
for question, preds_labels in question_map.items():
__snake_case , __snake_case : Dict = zip(*lowercase )
__snake_case : Tuple = fa_score(y_true=lowercase , y_pred=lowercase , average="macro" )
fas.append(lowercase )
__snake_case : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(lowercase ) )
ems.append(lowercase )
__snake_case : Any = float(sum(lowercase ) / len(lowercase ) )
__snake_case : Optional[Any] = sum(lowercase ) / len(lowercase )
__snake_case : Tuple = float(fa_score(y_true=lowercase , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) )
return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCamelCase ( datasets.Metric ):
"""simple docstring"""
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
if self.config_name not in [
"boolq",
"cb",
"copa",
"multirc",
"record",
"rte",
"wic",
"wsc",
"wsc.fixed",
"axb",
"axg",
]:
raise KeyError(
"You should supply a configuration name selected in "
"[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , )
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
if self.config_name == "record":
return {
"predictions": {
"idx": {
"passage": datasets.Value("int64" ),
"query": datasets.Value("int64" ),
},
"prediction_text": datasets.Value("string" ),
},
"references": {
"idx": {
"passage": datasets.Value("int64" ),
"query": datasets.Value("int64" ),
},
"answers": datasets.Sequence(datasets.Value("string" ) ),
},
}
elif self.config_name == "multirc":
return {
"predictions": {
"idx": {
"answer": datasets.Value("int64" ),
"paragraph": datasets.Value("int64" ),
"question": datasets.Value("int64" ),
},
"prediction": datasets.Value("int64" ),
},
"references": datasets.Value("int64" ),
}
else:
return {
"predictions": datasets.Value("int64" ),
"references": datasets.Value("int64" ),
}
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if self.config_name == "axb":
return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase , UpperCAmelCase )}
elif self.config_name == "cb":
return acc_and_fa(UpperCAmelCase , UpperCAmelCase , fa_avg="macro" )
elif self.config_name == "record":
__snake_case : Union[str, Any] = [
{
"qas": [
{"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]}
for ref in references
]
}
]
__snake_case : List[str] = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions}
return evaluate_record(UpperCAmelCase , UpperCAmelCase )[0]
elif self.config_name == "multirc":
return evaluate_multirc(UpperCAmelCase , UpperCAmelCase )
elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]:
return {"accuracy": simple_accuracy(UpperCAmelCase , UpperCAmelCase )}
else:
raise KeyError(
"You should supply a configuration name selected in "
"[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
| 326 |
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int:
if index == r:
for j in range(lowercase ):
print(data[j] , end=" " )
print(" " )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
__snake_case : Union[str, Any] = arr[i]
combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]:
# A temporary array to store all combination one by one
__snake_case : Tuple = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 )
if __name__ == "__main__":
# Driver code to check the function above
_UpperCamelCase = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 326 | 1 |
from __future__ import annotations
import requests
_UpperCamelCase = set(
'''approved_at_utc approved_by author_flair_background_color
author_flair_css_class author_flair_richtext author_flair_template_id author_fullname
author_premium can_mod_post category clicked content_categories created_utc downs
edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta
is_original_content is_reddit_media_domain is_video link_flair_css_class
link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title
name permalink pwls quarantine saved score secure_media secure_media_embed selftext
subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type
total_awards_received ups upvote_ratio url user_reports'''.split()
)
def lowerCAmelCase__( lowercase : str , lowercase : int = 1 , lowercase : str = "new" , lowercase : list | None = None ) -> dict:
__snake_case : List[str] = wanted_data or []
if invalid_search_terms := ", ".join(sorted(set(lowercase ) - valid_terms ) ):
__snake_case : Dict = f"""Invalid search term: {invalid_search_terms}"""
raise ValueError(lowercase )
__snake_case : Optional[Any] = requests.get(
f"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={"User-agent": "A random string"} , )
if response.status_code == 429:
raise requests.HTTPError
__snake_case : List[Any] = response.json()
if not wanted_data:
return {id_: data["data"]["children"][id_] for id_ in range(lowercase )}
__snake_case : Optional[int] = {}
for id_ in range(lowercase ):
__snake_case : str = {
item: data["data"]["children"][id_]["data"][item] for item in wanted_data
}
return data_dict
if __name__ == "__main__":
# If you get Error 429, that means you are rate limited.Try after some time
print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
| 326 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
_UpperCamelCase = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def lowerCAmelCase__( lowercase : str ) -> Optional[Any]:
__snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" )
return sd
def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict:
__snake_case : Tuple = OrderedDict()
__snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__snake_case : Optional[Any] = key
for name_pair in rename_keys_prefix:
__snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] )
__snake_case : List[str] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__snake_case : List[Any] = new_d["cls.predictions.bias"]
return new_d
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]:
assert (
checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS
), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."""
# Get Config
if "pre" in checkpoint_path:
__snake_case : Any = "pretraining"
if "vcr" in checkpoint_path:
__snake_case : Optional[Any] = {"visual_embedding_dim": 512}
elif "vqa_advanced" in checkpoint_path:
__snake_case : Tuple = {"visual_embedding_dim": 2048}
elif "vqa" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 2048}
elif "nlvr" in checkpoint_path:
__snake_case : Any = {"visual_embedding_dim": 1024}
else:
raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" )
else:
if "vcr" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 512}
__snake_case : Any = "multichoice"
elif "vqa_advanced" in checkpoint_path:
__snake_case : List[Any] = {"visual_embedding_dim": 2048}
__snake_case : Optional[Any] = "vqa_advanced"
elif "vqa" in checkpoint_path:
__snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129}
__snake_case : Union[str, Any] = "vqa"
elif "nlvr" in checkpoint_path:
__snake_case : Tuple = {
"visual_embedding_dim": 1024,
"num_labels": 2,
}
__snake_case : List[Any] = "nlvr"
__snake_case : Union[str, Any] = VisualBertConfig(**lowercase )
# Load State Dict
__snake_case : Any = load_state_dict(lowercase )
__snake_case : Dict = get_new_dict(lowercase , lowercase )
if model_type == "pretraining":
__snake_case : Optional[Any] = VisualBertForPreTraining(lowercase )
elif model_type == "vqa":
__snake_case : Tuple = VisualBertForQuestionAnswering(lowercase )
elif model_type == "nlvr":
__snake_case : Tuple = VisualBertForVisualReasoning(lowercase )
elif model_type == "multichoice":
__snake_case : List[Any] = VisualBertForMultipleChoice(lowercase )
model.load_state_dict(lowercase )
# Save Checkpoints
Path(lowercase ).mkdir(exist_ok=lowercase )
model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 326 | 1 |
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import BatchEncoding, MarianTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available
if is_sentencepiece_available():
from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
_UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''')
_UpperCamelCase = {'''target_lang''': '''fi''', '''source_lang''': '''en'''}
_UpperCamelCase = '''>>zh<<'''
_UpperCamelCase = '''Helsinki-NLP/'''
if is_torch_available():
_UpperCamelCase = '''pt'''
elif is_tf_available():
_UpperCamelCase = '''tf'''
else:
_UpperCamelCase = '''jax'''
@require_sentencepiece
class _lowerCamelCase ( a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] =MarianTokenizer
UpperCAmelCase_ : str =False
UpperCAmelCase_ : Dict =True
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().setUp()
__snake_case : Optional[int] = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"]
__snake_case : Any = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
__snake_case : Optional[int] = Path(self.tmpdirname )
save_json(UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["vocab"] )
save_json(UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] )
if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
copyfile(UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["source_spm"] )
copyfile(UpperCAmelCase , save_dir / VOCAB_FILES_NAMES["target_spm"] )
__snake_case : Union[str, Any] = MarianTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase ( self , **UpperCAmelCase ) -> MarianTokenizer:
'''simple docstring'''
return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return (
"This is a test",
"This is a test",
)
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Union[str, Any] = "</s>"
__snake_case : str = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase )
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "</s>" )
self.assertEqual(vocab_keys[1] , "<unk>" )
self.assertEqual(vocab_keys[-1] , "<pad>" )
self.assertEqual(len(UpperCAmelCase ) , 9 )
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 9 )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case : str = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" )
__snake_case : int = en_de_tokenizer(["I am a small frog"] , return_tensors=UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
__snake_case : Dict = [38, 121, 14, 697, 38848, 0]
self.assertListEqual(UpperCAmelCase , batch.input_ids[0] )
__snake_case : Dict = tempfile.mkdtemp()
en_de_tokenizer.save_pretrained(UpperCAmelCase )
__snake_case : Tuple = [x.name for x in Path(UpperCAmelCase ).glob("*" )]
self.assertIn("source.spm" , UpperCAmelCase )
MarianTokenizer.from_pretrained(UpperCAmelCase )
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case : List[str] = self.get_tokenizer()
__snake_case : Optional[Any] = tok(
["I am a small frog" * 1000, "I am a small frog"] , padding=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors=UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(batch.input_ids.shape , (2, 512) )
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : List[str] = self.get_tokenizer()
__snake_case : str = tok(["I am a tiny frog", "I am a small frog"] , padding=UpperCAmelCase , return_tensors=UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(batch_smaller.input_ids.shape , (2, 10) )
@slow
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Dict = {"input_ids": [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , )
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : List[Any] = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" )
__snake_case : Any = "Tämä on testi"
__snake_case : Tuple = "This is a test"
__snake_case : Tuple = [76, 7, 2047, 2]
__snake_case : Dict = [69, 12, 11, 940, 2]
__snake_case : int = tokenizer(UpperCAmelCase ).input_ids
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
__snake_case : Union[str, Any] = tokenizer(text_target=UpperCAmelCase ).input_ids
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
__snake_case : List[Any] = tokenizer.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
| 326 |
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple:
# Load configuration defined in the metadata file
with open(lowercase ) as metadata_file:
__snake_case : int = json.load(lowercase )
__snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] )
# Load in the weights from the checkpoint_path
__snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"]
# Load the entity vocab file
__snake_case : Tuple = load_original_entity_vocab(lowercase )
# add an entry for [MASK2]
__snake_case : Optional[int] = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
__snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] )
# Add special tokens to the token vocabulary for downstream tasks
__snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase )
__snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase )
tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" )
tokenizer.save_pretrained(lowercase )
with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f:
__snake_case : Tuple = json.load(lowercase )
__snake_case : List[Any] = "MLukeTokenizer"
with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f:
json.dump(lowercase , lowercase )
with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f:
json.dump(lowercase , lowercase )
__snake_case : Any = MLukeTokenizer.from_pretrained(lowercase )
# Initialize the embeddings of the special tokens
__snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0]
__snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0]
__snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"]
__snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 )
__snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 )
__snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
__snake_case : List[Any] = state_dict[bias_name]
__snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 )
__snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 )
__snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
__snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self."""
__snake_case : Union[str, Any] = state_dict[prefix + matrix_name]
__snake_case : str = state_dict[prefix + matrix_name]
__snake_case : Union[str, Any] = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
__snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"]
__snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 )
__snake_case : Any = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
__snake_case : List[Any] = state_dict["entity_predictions.bias"]
__snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 )
__snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] )
__snake_case : Any = LukeForMaskedLM(config=lowercase ).eval()
state_dict.pop("entity_predictions.decoder.weight" )
state_dict.pop("lm_head.decoder.weight" )
state_dict.pop("lm_head.decoder.bias" )
__snake_case : int = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )):
__snake_case : str = state_dict[key]
else:
__snake_case : str = state_dict[key]
__snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase )
if set(lowercase ) != {"luke.embeddings.position_ids"}:
raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" )
if set(lowercase ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
__snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" )
__snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
__snake_case : Union[str, Any] = (0, 9)
__snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" )
__snake_case : Any = model(**lowercase )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
__snake_case : Optional[Any] = torch.Size((1, 33, 768) )
__snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
__snake_case : str = torch.Size((1, 1, 768) )
__snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"""
f""" {expected_shape}""" )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
__snake_case : str = MLukeTokenizer.from_pretrained(lowercase )
__snake_case : Dict = "Tokyo is the capital of <mask>."
__snake_case : Union[str, Any] = (24, 30)
__snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" )
__snake_case : int = model(**lowercase )
__snake_case : Dict = encoding["input_ids"][0].tolist()
__snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) )
__snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(lowercase )
__snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item()
__snake_case : Optional[int] = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print("Saving PyTorch model to {}".format(lowercase ) )
model.save_pretrained(lowercase )
def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]:
__snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"]
__snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )]
__snake_case : Any = {}
for entry in data:
__snake_case : Any = entry["id"]
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
__snake_case : Optional[int] = entity_id
break
__snake_case : Union[str, Any] = f"""{language}:{entity_name}"""
__snake_case : Any = entity_id
return new_mapping
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''')
parser.add_argument(
'''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.'''
)
parser.add_argument(
'''--entity_vocab_path''',
default=None,
type=str,
help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.'''
)
parser.add_argument(
'''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.'''
)
_UpperCamelCase = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 326 | 1 |
import torch
from transformers import CamembertForMaskedLM, CamembertTokenizer
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any]=5 ) -> str:
# Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py
assert masked_input.count("<mask>" ) == 1
__snake_case : List[Any] = torch.tensor(tokenizer.encode(lowercase , add_special_tokens=lowercase ) ).unsqueeze(0 ) # Batch size 1
__snake_case : Tuple = model(lowercase )[0] # The last hidden-state is the first element of the output tuple
__snake_case : str = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
__snake_case : Optional[Any] = logits[0, masked_index, :]
__snake_case : Dict = logits.softmax(dim=0 )
__snake_case , __snake_case : Optional[int] = prob.topk(k=lowercase , dim=0 )
__snake_case : Dict = " ".join(
[tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowercase ) )] )
__snake_case : List[str] = tokenizer.mask_token
__snake_case : List[Any] = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ):
__snake_case : Tuple = predicted_token_bpe.replace("\u2581" , " " )
if " {0}".format(lowercase ) in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(" {0}".format(lowercase ) , lowercase ),
values[index].item(),
predicted_token,
) )
else:
topk_filled_outputs.append(
(
masked_input.replace(lowercase , lowercase ),
values[index].item(),
predicted_token,
) )
return topk_filled_outputs
_UpperCamelCase = CamembertTokenizer.from_pretrained('''camembert-base''')
_UpperCamelCase = CamembertForMaskedLM.from_pretrained('''camembert-base''')
model.eval()
_UpperCamelCase = '''Le camembert est <mask> :)'''
print(fill_mask(masked_input, model, tokenizer, topk=3))
| 326 |
from maths.prime_factors import prime_factors
def lowerCAmelCase__( lowercase : int ) -> int:
if not isinstance(lowercase , lowercase ):
__snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer"""
raise TypeError(lowercase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(lowercase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 | 1 |
import argparse
import hashlib # hashlib is only used inside the Test class
import struct
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase ) -> Any:
'''simple docstring'''
__snake_case : Optional[Any] = data
__snake_case : Any = [0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0]
@staticmethod
def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> str:
'''simple docstring'''
return ((n << b) | (n >> (32 - b))) & 0xFFFFFFFF
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case : int = B"\x80" + B"\x00" * (63 - (len(self.data ) + 8) % 64)
__snake_case : Any = self.data + padding + struct.pack(">Q" , 8 * len(self.data ) )
return padded_data
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return [
self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 )
]
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__snake_case : Any = list(struct.unpack(">16L" , UpperCAmelCase ) ) + [0] * 64
for i in range(16 , 80 ):
__snake_case : Optional[int] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 )
return w
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case : Tuple = self.padding()
__snake_case : Tuple = self.split_blocks()
for block in self.blocks:
__snake_case : Union[str, Any] = self.expand_block(UpperCAmelCase )
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = self.h
for i in range(0 , 80 ):
if 0 <= i < 20:
__snake_case : Union[str, Any] = (b & c) | ((~b) & d)
__snake_case : int = 0x5A827999
elif 20 <= i < 40:
__snake_case : Any = b ^ c ^ d
__snake_case : Tuple = 0x6ED9EBA1
elif 40 <= i < 60:
__snake_case : Dict = (b & c) | (b & d) | (c & d)
__snake_case : Optional[Any] = 0x8F1BBCDC
elif 60 <= i < 80:
__snake_case : int = b ^ c ^ d
__snake_case : Optional[Any] = 0xCA62C1D6
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = (
self.rotate(UpperCAmelCase , 5 ) + f + e + k + expanded_block[i] & 0xFFFFFFFF,
a,
self.rotate(UpperCAmelCase , 30 ),
c,
d,
)
__snake_case : str = (
self.h[0] + a & 0xFFFFFFFF,
self.h[1] + b & 0xFFFFFFFF,
self.h[2] + c & 0xFFFFFFFF,
self.h[3] + d & 0xFFFFFFFF,
self.h[4] + e & 0xFFFFFFFF,
)
return ("{:08x}" * 5).format(*self.h )
def lowerCAmelCase__( ) -> str:
__snake_case : List[str] = B"Test String"
assert SHAaHash(lowercase ).final_hash() == hashlib.shaa(lowercase ).hexdigest() # noqa: S324
def lowerCAmelCase__( ) -> str:
__snake_case : int = argparse.ArgumentParser(description="Process some strings or files" )
parser.add_argument(
"--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , )
parser.add_argument("--file" , dest="input_file" , help="Hash contents of a file" )
__snake_case : Optional[int] = parser.parse_args()
__snake_case : List[Any] = args.input_string
# In any case hash input should be a bytestring
if args.input_file:
with open(args.input_file , "rb" ) as f:
__snake_case : Optional[Any] = f.read()
else:
__snake_case : Optional[int] = bytes(lowercase , "utf-8" )
print(SHAaHash(lowercase ).final_hash() )
if __name__ == "__main__":
main()
import doctest
doctest.testmod()
| 326 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" )
__snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" )
__snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids
__snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids
__snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
__snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits
__snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean()
__snake_case : Any = -(labels.shape[-1] * loss.item())
__snake_case : List[str] = -84.9_127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 326 | 1 |
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
_UpperCamelCase = logging.get_logger(__name__)
@add_end_docstrings(a )
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , **UpperCAmelCase ) -> Any:
'''simple docstring'''
super().__init__(**UpperCAmelCase )
requires_backends(self , "vision" )
requires_backends(self , "torch" )
if self.framework != "pt":
raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" )
self.check_model_type(UpperCAmelCase )
def UpperCAmelCase ( self , **UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__snake_case : Dict = {}
__snake_case : int = {}
__snake_case : Any = {}
# preprocess args
if "points_per_batch" in kwargs:
__snake_case : List[str] = kwargs["points_per_batch"]
if "points_per_crop" in kwargs:
__snake_case : Optional[Any] = kwargs["points_per_crop"]
if "crops_n_layers" in kwargs:
__snake_case : str = kwargs["crops_n_layers"]
if "crop_overlap_ratio" in kwargs:
__snake_case : Dict = kwargs["crop_overlap_ratio"]
if "crop_n_points_downscale_factor" in kwargs:
__snake_case : Optional[int] = kwargs["crop_n_points_downscale_factor"]
# postprocess args
if "pred_iou_thresh" in kwargs:
__snake_case : List[str] = kwargs["pred_iou_thresh"]
if "stability_score_offset" in kwargs:
__snake_case : Optional[int] = kwargs["stability_score_offset"]
if "mask_threshold" in kwargs:
__snake_case : Tuple = kwargs["mask_threshold"]
if "stability_score_thresh" in kwargs:
__snake_case : Optional[Any] = kwargs["stability_score_thresh"]
if "crops_nms_thresh" in kwargs:
__snake_case : str = kwargs["crops_nms_thresh"]
if "output_rle_mask" in kwargs:
__snake_case : int = kwargs["output_rle_mask"]
if "output_bboxes_mask" in kwargs:
__snake_case : int = kwargs["output_bboxes_mask"]
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__( self , UpperCAmelCase , *UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
return super().__call__(UpperCAmelCase , *UpperCAmelCase , num_workers=UpperCAmelCase , batch_size=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=64 , UpperCAmelCase = 0 , UpperCAmelCase = 512 / 1500 , UpperCAmelCase = 32 , UpperCAmelCase = 1 , ) -> Optional[int]:
'''simple docstring'''
__snake_case : List[Any] = load_image(UpperCAmelCase )
__snake_case : Optional[int] = self.image_processor.size["longest_edge"]
__snake_case , __snake_case , __snake_case , __snake_case : Any = self.image_processor.generate_crop_boxes(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
__snake_case : Optional[int] = self.image_processor(images=UpperCAmelCase , return_tensors="pt" )
with self.device_placement():
if self.framework == "pt":
__snake_case : Any = self.get_inference_context()
with inference_context():
__snake_case : List[str] = self._ensure_tensor_on_device(UpperCAmelCase , device=self.device )
__snake_case : Optional[Any] = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) )
__snake_case : Union[str, Any] = image_embeddings
__snake_case : Union[str, Any] = grid_points.shape[1]
__snake_case : Tuple = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
"Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. "
"To return all points at once, set points_per_batch to None" )
for i in range(0 , UpperCAmelCase , UpperCAmelCase ):
__snake_case : Tuple = grid_points[:, i : i + points_per_batch, :, :]
__snake_case : Union[str, Any] = input_labels[:, i : i + points_per_batch]
__snake_case : List[str] = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=0.88 , UpperCAmelCase=0.95 , UpperCAmelCase=0 , UpperCAmelCase=1 , ) -> List[Any]:
'''simple docstring'''
__snake_case : Dict = model_inputs.pop("input_boxes" )
__snake_case : str = model_inputs.pop("is_last" )
__snake_case : List[Any] = model_inputs.pop("original_sizes" ).tolist()
__snake_case : Union[str, Any] = model_inputs.pop("reshaped_input_sizes" ).tolist()
__snake_case : List[Any] = self.model(**UpperCAmelCase )
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
__snake_case : Optional[int] = model_outputs["pred_masks"]
__snake_case : Optional[int] = self.image_processor.post_process_masks(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , binarize=UpperCAmelCase )
__snake_case : Any = model_outputs["iou_scores"]
__snake_case , __snake_case , __snake_case : Tuple = self.image_processor.filter_masks(
masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=0.7 , ) -> int:
'''simple docstring'''
__snake_case : Optional[int] = []
__snake_case : str = []
__snake_case : Dict = []
for model_output in model_outputs:
all_scores.append(model_output.pop("iou_scores" ) )
all_masks.extend(model_output.pop("masks" ) )
all_boxes.append(model_output.pop("boxes" ) )
__snake_case : List[Any] = torch.cat(UpperCAmelCase )
__snake_case : int = torch.cat(UpperCAmelCase )
__snake_case , __snake_case , __snake_case , __snake_case : Tuple = self.image_processor.post_process_for_mask_generation(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
__snake_case : int = defaultdict(UpperCAmelCase )
for output in model_outputs:
for k, v in output.items():
extra[k].append(UpperCAmelCase )
__snake_case : Optional[Any] = {}
if output_rle_mask:
__snake_case : List[Any] = rle_mask
if output_bboxes_mask:
__snake_case : int = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 326 |
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]:
'''simple docstring'''
super().__init__(UpperCAmelCase )
__snake_case : Optional[int] = proj_size
__snake_case : str = CLIPVisionModel(UpperCAmelCase )
__snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase )
__snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size )
__snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
__snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]:
'''simple docstring'''
__snake_case : int = self.model(pixel_values=UpperCAmelCase )
__snake_case : Optional[int] = clip_output.pooler_output
__snake_case : Any = self.mapper(latent_states[:, None] )
__snake_case : Any = self.final_layer_norm(UpperCAmelCase )
__snake_case : str = self.proj_out(UpperCAmelCase )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
super().__init__()
__snake_case : List[Any] = (config.num_hidden_layers + 1) // 5
__snake_case : Dict = config.hidden_size
__snake_case : str = 1
__snake_case : List[Any] = nn.ModuleList(
[
BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase )
for _ in range(UpperCAmelCase )
] )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
for block in self.blocks:
__snake_case : int = block(UpperCAmelCase )
return hidden_states
| 326 | 1 |
from __future__ import annotations
def lowerCAmelCase__( lowercase : int ) -> bool:
__snake_case : Tuple = str(lowercase )
return len(lowercase ) == 9 and set(lowercase ) == set("123456789" )
def lowerCAmelCase__( ) -> int | None:
for base_num in range(9999 , 4999 , -1 ):
__snake_case : Tuple = 10_0002 * base_num
if is_9_pandigital(lowercase ):
return candidate
for base_num in range(333 , 99 , -1 ):
__snake_case : Tuple = 100_2003 * base_num
if is_9_pandigital(lowercase ):
return candidate
return None
if __name__ == "__main__":
print(F'''{solution() = }''')
| 326 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 326 | 1 |
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class _lowerCamelCase ( a , a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Dict =(
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
UpperCAmelCase_ : Tuple =(
{
"feature-extraction": TFMobileBertModel,
"fill-mask": TFMobileBertForMaskedLM,
"question-answering": TFMobileBertForQuestionAnswering,
"text-classification": TFMobileBertForSequenceClassification,
"token-classification": TFMobileBertForTokenClassification,
"zero-shot": TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCAmelCase_ : Optional[int] =False
UpperCAmelCase_ : str =False
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Any:
'''simple docstring'''
__snake_case : Dict = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase )
if return_labels:
if model_class in get_values(UpperCAmelCase ):
__snake_case : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
return inputs_dict
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Union[str, Any] = parent
__snake_case : Union[str, Any] = batch_size
__snake_case : Any = seq_length
__snake_case : Union[str, Any] = is_training
__snake_case : Tuple = use_input_mask
__snake_case : Union[str, Any] = use_token_type_ids
__snake_case : Tuple = use_labels
__snake_case : List[str] = vocab_size
__snake_case : int = hidden_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : int = num_attention_heads
__snake_case : Optional[Any] = intermediate_size
__snake_case : Optional[int] = hidden_act
__snake_case : Dict = hidden_dropout_prob
__snake_case : Union[str, Any] = attention_probs_dropout_prob
__snake_case : List[str] = max_position_embeddings
__snake_case : Optional[Any] = type_vocab_size
__snake_case : Any = type_sequence_label_size
__snake_case : List[Any] = initializer_range
__snake_case : int = num_labels
__snake_case : str = num_choices
__snake_case : Any = scope
__snake_case : str = embedding_size
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : List[str] = None
if self.use_input_mask:
__snake_case : Dict = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Union[str, Any] = None
__snake_case : str = None
__snake_case : List[Any] = None
if self.use_labels:
__snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
__snake_case : Tuple = MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__snake_case : Tuple = TFMobileBertModel(config=UpperCAmelCase )
__snake_case : str = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__snake_case : Tuple = model(UpperCAmelCase )
__snake_case : int = [input_ids, input_mask]
__snake_case : str = model(UpperCAmelCase )
__snake_case : Optional[int] = model(UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Optional[Any] = TFMobileBertForMaskedLM(config=UpperCAmelCase )
__snake_case : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__snake_case : Dict = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : List[str] = TFMobileBertForNextSentencePrediction(config=UpperCAmelCase )
__snake_case : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__snake_case : Tuple = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any:
'''simple docstring'''
__snake_case : str = TFMobileBertForPreTraining(config=UpperCAmelCase )
__snake_case : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__snake_case : Any = model(UpperCAmelCase )
self.parent.assertEqual(
result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Optional[int] = self.num_labels
__snake_case : List[Any] = TFMobileBertForSequenceClassification(config=UpperCAmelCase )
__snake_case : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__snake_case : Tuple = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__snake_case : Dict = self.num_choices
__snake_case : Union[str, Any] = TFMobileBertForMultipleChoice(config=UpperCAmelCase )
__snake_case : str = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__snake_case : str = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__snake_case : Any = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__snake_case : Any = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
__snake_case : Any = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict:
'''simple docstring'''
__snake_case : Dict = self.num_labels
__snake_case : List[str] = TFMobileBertForTokenClassification(config=UpperCAmelCase )
__snake_case : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__snake_case : Dict = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__snake_case : str = TFMobileBertForQuestionAnswering(config=UpperCAmelCase )
__snake_case : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__snake_case : Tuple = model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Optional[int] = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : str = config_and_inputs
__snake_case : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Dict = TFMobileBertModelTest.TFMobileBertModelTester(self )
__snake_case : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*UpperCAmelCase )
@slow
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
for model_name in ["google/mobilebert-uncased"]:
__snake_case : Optional[Any] = TFMobileBertModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@require_tf
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : List[str] = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" )
__snake_case : str = tf.constant([[0, 1, 2, 3, 4, 5]] )
__snake_case : Tuple = model(UpperCAmelCase )[0]
__snake_case : List[Any] = [1, 6, 30522]
self.assertEqual(output.shape , UpperCAmelCase )
__snake_case : List[str] = tf.constant(
[
[
[-4.5_919_547, -9.248_295, -9.645_256],
[-6.7_306_175, -6.440_284, -6.6_052_837],
[-7.2_743_506, -6.7_847_915, -6.024_673],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
| 326 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = torch.device('''cpu''')
def lowerCAmelCase__( ) -> Any:
__snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
__snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw )
return im
def lowerCAmelCase__( lowercase : Dict ) -> List[Any]:
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] )
def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]:
__snake_case : List[Any] = dct.pop(lowercase )
__snake_case : List[Any] = val
def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple:
__snake_case : Optional[Any] = []
for k in state_dict.keys():
__snake_case : Union[str, Any] = k
if ".pwconv" in k:
__snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" )
if ".dwconv" in k:
__snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" )
if ".Proj." in k:
__snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." )
if "patch_embed" in k_new:
__snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" )
if "network" in k_new:
__snake_case : int = k_new.split("." )
if ls[2].isdigit():
__snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] )
else:
__snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]:
__snake_case : List[str] = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
__snake_case : Tuple = 1000
__snake_case : Any = "huggingface/label-files"
__snake_case : int = "imagenet-1k-id2label.json"
__snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) )
__snake_case : str = {int(lowercase ): v for k, v in idalabel.items()}
__snake_case : int = idalabel
__snake_case : Optional[int] = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
__snake_case : Optional[Any] = [3, 3, 6, 4]
__snake_case : Optional[int] = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
__snake_case : List[str] = [3, 3, 9, 6]
__snake_case : Optional[Any] = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
__snake_case : Optional[int] = [4, 3, 10, 5]
__snake_case : Dict = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
__snake_case : str = [4, 4, 12, 6]
__snake_case : Optional[Any] = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("https" ):
__snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase )
else:
__snake_case : Tuple = torch.load(lowercase , map_location="cpu" )
__snake_case : Optional[int] = checkpoint
__snake_case : Any = create_rename_keys(lowercase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(lowercase , lowercase , lowercase )
# load HuggingFace model
__snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval()
hf_model.load_state_dict(lowercase )
# prepare test inputs
__snake_case : Optional[Any] = prepare_img()
__snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" )
__snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" )
# compare outputs from both models
__snake_case : str = get_expected_output(lowercase )
__snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 )
Path(lowercase ).mkdir(exist_ok=lowercase )
print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" )
hf_model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--swiftformer_name''',
default='''swiftformer_xs''',
choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''],
type=str,
help='''Name of the SwiftFormer model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''./converted_outputs/''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''')
_UpperCamelCase = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 326 | 1 |
def lowerCAmelCase__( lowercase : Optional[int] , lowercase : int , lowercase : str=False ) -> int:
if isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ):
__snake_case : Any = len(set_a.intersection(lowercase ) )
if alternative_union:
__snake_case : str = len(lowercase ) + len(lowercase )
else:
__snake_case : int = len(set_a.union(lowercase ) )
return intersection / union
if isinstance(lowercase , (list, tuple) ) and isinstance(lowercase , (list, tuple) ):
__snake_case : List[Any] = [element for element in set_a if element in set_b]
if alternative_union:
__snake_case : List[Any] = len(lowercase ) + len(lowercase )
return len(lowercase ) / union
else:
__snake_case : Dict = set_a + [element for element in set_b if element not in set_a]
return len(lowercase ) / len(lowercase )
return len(lowercase ) / len(lowercase )
return None
if __name__ == "__main__":
_UpperCamelCase = {'''a''', '''b''', '''c''', '''d''', '''e'''}
_UpperCamelCase = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''}
print(jaccard_similarity(set_a, set_b))
| 326 |
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
_UpperCamelCase = logging.getLogger(__name__)
def lowerCAmelCase__( lowercase : str ) -> List[str]:
__snake_case : int = git.Repo(search_parent_directories=lowercase )
__snake_case : Union[str, Any] = {
"repo_id": str(lowercase ),
"repo_sha": str(repo.head.object.hexsha ),
"repo_branch": str(repo.active_branch ),
}
with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f:
json.dump(lowercase , lowercase , indent=4 )
def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]:
if params.n_gpu <= 0:
__snake_case : Union[str, Any] = 0
__snake_case : Optional[int] = -1
__snake_case : Union[str, Any] = True
__snake_case : Tuple = False
return
assert torch.cuda.is_available()
logger.info("Initializing GPUs" )
if params.n_gpu > 1:
assert params.local_rank != -1
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : int = int(os.environ["N_GPU_NODE"] )
__snake_case : Union[str, Any] = int(os.environ["RANK"] )
# number of nodes / node ID
__snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node
__snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node
__snake_case : Union[str, Any] = True
assert params.n_nodes == int(os.environ["N_NODES"] )
assert params.node_id == int(os.environ["NODE_RANK"] )
# local job (single GPU)
else:
assert params.local_rank == -1
__snake_case : Any = 1
__snake_case : str = 0
__snake_case : Optional[Any] = 0
__snake_case : Dict = 0
__snake_case : int = 1
__snake_case : Optional[Any] = 1
__snake_case : Tuple = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
__snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0
__snake_case : List[Any] = params.n_nodes > 1
# summary
__snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """
logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes )
logger.info(PREFIX + "Node ID : %i" % params.node_id )
logger.info(PREFIX + "Local rank : %i" % params.local_rank )
logger.info(PREFIX + "World size : %i" % params.world_size )
logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node )
logger.info(PREFIX + "Master : %s" % str(params.is_master ) )
logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) )
logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) )
logger.info(PREFIX + "Hostname : %s" % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info("Initializing PyTorch distributed" )
torch.distributed.init_process_group(
init_method="env://" , backend="nccl" , )
def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]:
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 326 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_UpperCamelCase = logging.get_logger(__name__)
def lowerCAmelCase__( lowercase : int ) -> List[List[ImageInput]]:
if isinstance(lowercase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(lowercase , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(lowercase ):
return [[videos]]
raise ValueError(f"""Could not make batched video from {videos}""" )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Dict =["pixel_values"]
def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**UpperCAmelCase )
__snake_case : int = size if size is not None else {"shortest_edge": 224}
__snake_case : List[Any] = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase )
__snake_case : Optional[Any] = crop_size if crop_size is not None else {"height": 224, "width": 224}
__snake_case : str = get_size_dict(UpperCAmelCase , param_name="crop_size" )
__snake_case : str = do_resize
__snake_case : str = size
__snake_case : Union[str, Any] = do_center_crop
__snake_case : Any = crop_size
__snake_case : Any = resample
__snake_case : Dict = do_rescale
__snake_case : Optional[Any] = rescale_factor
__snake_case : Optional[Any] = do_normalize
__snake_case : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__snake_case : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__snake_case : Union[str, Any] = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase )
if "shortest_edge" in size:
__snake_case : int = get_resize_output_image_size(UpperCAmelCase , size["shortest_edge"] , default_to_square=UpperCAmelCase )
elif "height" in size and "width" in size:
__snake_case : Any = (size["height"], size["width"])
else:
raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__snake_case : int = get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(UpperCAmelCase , size=(size["height"], size["width"]) , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> Tuple:
'''simple docstring'''
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
__snake_case : Union[str, Any] = to_numpy_array(UpperCAmelCase )
if do_resize:
__snake_case : List[Any] = self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase )
if do_center_crop:
__snake_case : str = self.center_crop(UpperCAmelCase , size=UpperCAmelCase )
if do_rescale:
__snake_case : str = self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase )
if do_normalize:
__snake_case : Dict = self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase )
__snake_case : Any = to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase )
return image
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__snake_case : Union[str, Any] = do_resize if do_resize is not None else self.do_resize
__snake_case : str = resample if resample is not None else self.resample
__snake_case : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
__snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale
__snake_case : Any = rescale_factor if rescale_factor is not None else self.rescale_factor
__snake_case : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize
__snake_case : List[Any] = image_mean if image_mean is not None else self.image_mean
__snake_case : Union[str, Any] = image_std if image_std is not None else self.image_std
__snake_case : Tuple = size if size is not None else self.size
__snake_case : Optional[Any] = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase )
__snake_case : Optional[int] = crop_size if crop_size is not None else self.crop_size
__snake_case : Dict = get_size_dict(UpperCAmelCase , param_name="crop_size" )
if not valid_images(UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
__snake_case : List[str] = make_batched(UpperCAmelCase )
__snake_case : Optional[int] = [
[
self._preprocess_image(
image=UpperCAmelCase , do_resize=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , do_center_crop=UpperCAmelCase , crop_size=UpperCAmelCase , do_rescale=UpperCAmelCase , rescale_factor=UpperCAmelCase , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , data_format=UpperCAmelCase , )
for img in video
]
for video in videos
]
__snake_case : List[str] = {"pixel_values": videos}
return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
| 326 |
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : str =JukeboxTokenizer
UpperCAmelCase_ : Tuple ={
"artist": "Zac Brown Band",
"genres": "Country",
"lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ",
}
@require_torch
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
import torch
__snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" )
__snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"]
# fmt: off
__snake_case : Optional[Any] = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
import torch
__snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" )
__snake_case : Tuple = tokenizer(**self.metas )["input_ids"]
# fmt: off
__snake_case : int = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 326 | 1 |
_UpperCamelCase = frozenset(
[
'''prompt''',
'''height''',
'''width''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
'''cross_attention_kwargs''',
]
)
_UpperCamelCase = frozenset(['''prompt''', '''negative_prompt'''])
_UpperCamelCase = frozenset([])
_UpperCamelCase = frozenset(['''image'''])
_UpperCamelCase = frozenset(
[
'''image''',
'''height''',
'''width''',
'''guidance_scale''',
]
)
_UpperCamelCase = frozenset(['''image'''])
_UpperCamelCase = frozenset(
[
'''prompt''',
'''image''',
'''height''',
'''width''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
]
)
_UpperCamelCase = frozenset(['''prompt''', '''image''', '''negative_prompt'''])
_UpperCamelCase = frozenset(
[
# Text guided image variation with an image mask
'''prompt''',
'''image''',
'''mask_image''',
'''height''',
'''width''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
]
)
_UpperCamelCase = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt'''])
_UpperCamelCase = frozenset(
[
# image variation with an image mask
'''image''',
'''mask_image''',
'''height''',
'''width''',
'''guidance_scale''',
]
)
_UpperCamelCase = frozenset(['''image''', '''mask_image'''])
_UpperCamelCase = frozenset(
[
'''example_image''',
'''image''',
'''mask_image''',
'''height''',
'''width''',
'''guidance_scale''',
]
)
_UpperCamelCase = frozenset(['''example_image''', '''image''', '''mask_image'''])
_UpperCamelCase = frozenset(['''class_labels'''])
_UpperCamelCase = frozenset(['''class_labels'''])
_UpperCamelCase = frozenset(['''batch_size'''])
_UpperCamelCase = frozenset([])
_UpperCamelCase = frozenset(['''batch_size'''])
_UpperCamelCase = frozenset([])
_UpperCamelCase = frozenset(
[
'''prompt''',
'''audio_length_in_s''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
'''cross_attention_kwargs''',
]
)
_UpperCamelCase = frozenset(['''prompt''', '''negative_prompt'''])
_UpperCamelCase = frozenset(['''input_tokens'''])
_UpperCamelCase = frozenset(['''input_tokens'''])
| 326 |
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
_UpperCamelCase = logging.get_logger(__name__)
class _lowerCamelCase :
"""simple docstring"""
UpperCAmelCase_ : str
UpperCAmelCase_ : str =None
@staticmethod
def UpperCAmelCase ( ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
if not self.is_available():
raise RuntimeError(
F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" )
@classmethod
def UpperCAmelCase ( cls ) -> Tuple:
'''simple docstring'''
return F"""`pip install {cls.pip_package or cls.name}`"""
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] ="optuna"
@staticmethod
def UpperCAmelCase ( ) -> Union[str, Any]:
'''simple docstring'''
return is_optuna_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict:
'''simple docstring'''
return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> int:
'''simple docstring'''
return default_hp_space_optuna(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : List[str] ="ray"
UpperCAmelCase_ : Dict ="'ray[tune]'"
@staticmethod
def UpperCAmelCase ( ) -> str:
'''simple docstring'''
return is_ray_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
return default_hp_space_ray(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Tuple ="sigopt"
@staticmethod
def UpperCAmelCase ( ) -> int:
'''simple docstring'''
return is_sigopt_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict:
'''simple docstring'''
return default_hp_space_sigopt(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : str ="wandb"
@staticmethod
def UpperCAmelCase ( ) -> Optional[Any]:
'''simple docstring'''
return is_wandb_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return default_hp_space_wandb(UpperCAmelCase )
_UpperCamelCase = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def lowerCAmelCase__( ) -> str:
__snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(lowercase ) > 0:
__snake_case : Dict = available_backends[0].name
if len(lowercase ) > 1:
logger.info(
f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" )
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
f""" - To install {backend.name} run {backend.pip_install()}"""
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 326 | 1 |
from math import factorial
def lowerCAmelCase__( lowercase : int , lowercase : int ) -> int:
# If either of the conditions are true, the function is being asked
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError("Please enter positive integers for n and k where n >= k" )
return factorial(lowercase ) // (factorial(lowercase ) * factorial(n - k ))
if __name__ == "__main__":
print(
'''The number of five-card hands possible from a standard''',
F'''fifty-two card deck is: {combinations(52, 5)}\n''',
)
print(
'''If a class of 40 students must be arranged into groups of''',
F'''4 for group projects, there are {combinations(40, 4)} ways''',
'''to arrange them.\n''',
)
print(
'''If 10 teams are competing in a Formula One race, there''',
F'''are {combinations(10, 3)} ways that first, second and''',
'''third place can be awarded.''',
)
| 326 |
import math
def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list:
__snake_case : Any = end or len(lowercase )
for i in range(lowercase , lowercase ):
__snake_case : List[str] = i
__snake_case : Union[str, Any] = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
__snake_case : Optional[Any] = array[temp_index - 1]
temp_index -= 1
__snake_case : Any = temp_index_value
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap
__snake_case : Any = index
__snake_case : Optional[Any] = 2 * index + 1 # Left Node
__snake_case : str = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
__snake_case : Optional[int] = left_index
if right_index < heap_size and array[largest] < array[right_index]:
__snake_case : Tuple = right_index
if largest != index:
__snake_case , __snake_case : int = array[largest], array[index]
heapify(lowercase , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list ) -> list:
__snake_case : List[str] = len(lowercase )
for i in range(n // 2 , -1 , -1 ):
heapify(lowercase , lowercase , lowercase )
for i in range(n - 1 , 0 , -1 ):
__snake_case , __snake_case : Optional[Any] = array[0], array[i]
heapify(lowercase , 0 , lowercase )
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
__snake_case : Union[str, Any] = low
__snake_case : Union[str, Any] = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
__snake_case , __snake_case : str = array[j], array[i]
i += 1
def lowerCAmelCase__( lowercase : list ) -> list:
if len(lowercase ) == 0:
return array
__snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) )
__snake_case : Dict = 16
return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list:
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
__snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 )
__snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase )
intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase )
__snake_case : List[str] = p
return insertion_sort(lowercase , lowercase , lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip()
_UpperCamelCase = [float(item) for item in user_input.split(''',''')]
print(sort(unsorted))
| 326 | 1 |
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class _lowerCamelCase ( a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Any =CTRLTokenizer
UpperCAmelCase_ : str =False
UpperCAmelCase_ : int =False
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__snake_case : Dict = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"]
__snake_case : List[Any] = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
__snake_case : int = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""]
__snake_case : List[str] = {"unk_token": "<unk>"}
__snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
__snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(UpperCAmelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(UpperCAmelCase ) )
def UpperCAmelCase ( self , **UpperCAmelCase ) -> int:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Optional[int] = "adapt react readapt apt"
__snake_case : Optional[Any] = "adapt react readapt apt"
return input_text, output_text
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Dict = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
__snake_case : Optional[Any] = "adapt react readapt apt"
__snake_case : List[Any] = "adapt re@@ a@@ c@@ t re@@ adapt apt".split()
__snake_case : List[str] = tokenizer.tokenize(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
__snake_case : Union[str, Any] = tokens + [tokenizer.unk_token]
__snake_case : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase )
| 326 |
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def lowerCAmelCase__( ) -> List[Any]:
with parallel_backend("spark" ):
assert ParallelBackendConfig.backend_name == "spark"
__snake_case : Any = [1, 2, 3]
with pytest.raises(lowercase ):
with parallel_backend("unsupported backend" ):
map_nested(lowercase , lowercase , num_proc=2 )
with pytest.raises(lowercase ):
with parallel_backend("unsupported backend" ):
map_nested(lowercase , lowercase , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("num_proc" , [2, -1] )
def lowerCAmelCase__( lowercase : Dict ) -> Dict:
__snake_case : Any = [1, 2]
__snake_case : Dict = {"a": 1, "b": 2}
__snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]}
__snake_case : int = {"a": {"1": 1}, "b": 2}
__snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4}
__snake_case : Dict = [2, 3]
__snake_case : Tuple = {"a": 2, "b": 3}
__snake_case : int = {"a": [2, 3], "b": [4, 5]}
__snake_case : Dict = {"a": {"1": 2}, "b": 3}
__snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5}
with parallel_backend("spark" ):
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
| 326 | 1 |
from __future__ import annotations
def lowerCAmelCase__( lowercase : list ) -> float:
if not nums:
raise ValueError("List is empty" )
return sum(lowercase ) / len(lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any:
__snake_case : Optional[Any] = False
__snake_case : Optional[Any] = search_prob
__snake_case : str = start_temperate
__snake_case : List[Any] = []
__snake_case : str = 0
__snake_case : Dict = None
while not search_end:
__snake_case : List[Any] = current_state.score()
if best_state is None or current_score > best_state.score():
__snake_case : List[Any] = current_state
scores.append(lowercase )
iterations += 1
__snake_case : Dict = None
__snake_case : str = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
__snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor
__snake_case : int = neighbors.pop(lowercase )
__snake_case : Optional[Any] = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
__snake_case : Any = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
__snake_case : List[str] = picked_neighbor
else:
__snake_case : Optional[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
__snake_case : str = picked_neighbor
__snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
__snake_case : Optional[Any] = True
else:
__snake_case : str = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(lowercase ) , lowercase )
plt.xlabel("Iterations" )
plt.ylabel("Function values" )
plt.show()
return best_state
if __name__ == "__main__":
def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any:
return (3 * x**2) - (6 * y)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True)
print(
'''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True)
print(
'''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
| 326 | 1 |
def lowerCAmelCase__( lowercase : int ) -> int:
if a < 0:
raise ValueError("Input value must be a positive integer" )
elif isinstance(lowercase , lowercase ):
raise TypeError("Input value must be a 'int' type" )
return bin(lowercase ).count("1" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"]
UpperCAmelCase_ : Tuple ="FlavaImageProcessor"
UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast")
def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int:
'''simple docstring'''
__snake_case : List[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase , )
__snake_case : List[Any] = kwargs.pop("feature_extractor" )
__snake_case : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = self.image_processor
def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]:
'''simple docstring'''
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
__snake_case : Union[str, Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if images is not None:
__snake_case : Union[str, Any] = self.image_processor(
UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if text is not None and images is not None:
encoding.update(UpperCAmelCase )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : List[Any] = self.tokenizer.model_input_names
__snake_case : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , )
return self.image_processor
| 326 | 1 |
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
_UpperCamelCase = {
'''return_dict''': False,
'''output_hidden_states''': True,
'''output_attentions''': True,
'''torchscript''': True,
'''torch_dtype''': '''float16''',
'''use_bfloat16''': True,
'''tf_legacy_loss''': True,
'''pruned_heads''': {'''a''': 1},
'''tie_word_embeddings''': False,
'''is_decoder''': True,
'''cross_attention_hidden_size''': 128,
'''add_cross_attention''': True,
'''tie_encoder_decoder''': True,
'''max_length''': 50,
'''min_length''': 3,
'''do_sample''': True,
'''early_stopping''': True,
'''num_beams''': 3,
'''num_beam_groups''': 3,
'''diversity_penalty''': 0.5,
'''temperature''': 2.0,
'''top_k''': 10,
'''top_p''': 0.7,
'''typical_p''': 0.2,
'''repetition_penalty''': 0.8,
'''length_penalty''': 0.8,
'''no_repeat_ngram_size''': 5,
'''encoder_no_repeat_ngram_size''': 5,
'''bad_words_ids''': [1, 2, 3],
'''num_return_sequences''': 3,
'''chunk_size_feed_forward''': 5,
'''output_scores''': True,
'''return_dict_in_generate''': True,
'''forced_bos_token_id''': 2,
'''forced_eos_token_id''': 3,
'''remove_invalid_values''': True,
'''architectures''': ['''BertModel'''],
'''finetuning_task''': '''translation''',
'''id2label''': {0: '''label'''},
'''label2id''': {'''label''': '''0'''},
'''tokenizer_class''': '''BertTokenizerFast''',
'''prefix''': '''prefix''',
'''bos_token_id''': 6,
'''pad_token_id''': 7,
'''eos_token_id''': 8,
'''sep_token_id''': 9,
'''decoder_start_token_id''': 10,
'''exponential_decay_length_penalty''': (5, 1.01),
'''suppress_tokens''': [0, 1],
'''begin_suppress_tokens''': 2,
'''task_specific_params''': {'''translation''': '''some_params'''},
'''problem_type''': '''regression''',
}
@is_staging_test
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def UpperCAmelCase ( cls ) -> Optional[int]:
'''simple docstring'''
__snake_case : str = TOKEN
HfFolder.save_token(UpperCAmelCase )
@classmethod
def UpperCAmelCase ( cls ) -> List[str]:
'''simple docstring'''
try:
delete_repo(token=cls._token , repo_id="test-config" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-config-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-config" )
except HTTPError:
pass
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case : Optional[Any] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
config.push_to_hub("test-config" , use_auth_token=self._token )
__snake_case : Union[str, Any] = BertConfig.from_pretrained(F"""{USER}/test-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id="test-config" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(UpperCAmelCase , repo_id="test-config" , push_to_hub=UpperCAmelCase , use_auth_token=self._token )
__snake_case : Tuple = BertConfig.from_pretrained(F"""{USER}/test-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Union[str, Any] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token )
__snake_case : Optional[int] = BertConfig.from_pretrained("valid_org/test-config-org" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-config-org" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
UpperCAmelCase , repo_id="valid_org/test-config-org" , push_to_hub=UpperCAmelCase , use_auth_token=self._token )
__snake_case : Any = BertConfig.from_pretrained("valid_org/test-config-org" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
CustomConfig.register_for_auto_class()
__snake_case : List[str] = CustomConfig(attribute=42 )
config.push_to_hub("test-dynamic-config" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} )
__snake_case : int = AutoConfig.from_pretrained(F"""{USER}/test-dynamic-config""" , trust_remote_code=UpperCAmelCase )
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , "CustomConfig" )
self.assertEqual(new_config.attribute , 42 )
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Any = GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
__snake_case : Any = c.n_embd + 1 # int
__snake_case : Dict = c.resid_pdrop + 1.0 # float
__snake_case : Optional[int] = not c.scale_attn_weights # bool
__snake_case : Union[str, Any] = c.summary_type + "foo" # str
c.update_from_string(
F"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" )
self.assertEqual(UpperCAmelCase , c.n_embd , "mismatch for key: n_embd" )
self.assertEqual(UpperCAmelCase , c.resid_pdrop , "mismatch for key: resid_pdrop" )
self.assertEqual(UpperCAmelCase , c.scale_attn_weights , "mismatch for key: scale_attn_weights" )
self.assertEqual(UpperCAmelCase , c.summary_type , "mismatch for key: summary_type" )
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : List[Any] = PretrainedConfig()
__snake_case : List[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
UpperCAmelCase , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] )
__snake_case : Tuple = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase , UpperCAmelCase )]
if len(UpperCAmelCase ) > 0:
raise ValueError(
"The following keys are set with the default values in"
" `test_configuration_common.config_common_kwargs` pick another value for them:"
F""" {", ".join(UpperCAmelCase )}.""" )
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase ):
# config is in subfolder, the following should not work without specifying the subfolder
__snake_case : Dict = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" )
__snake_case : str = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" )
self.assertIsNotNone(UpperCAmelCase )
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : List[str] = mock.Mock()
__snake_case : List[Any] = 500
__snake_case : int = {}
__snake_case : Dict = HTTPError
__snake_case : str = {}
# Download this model to make sure it's in the cache.
__snake_case : Dict = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request" , return_value=UpperCAmelCase ) as mock_head:
__snake_case : Tuple = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" )
# This check we did call the fake head request
mock_head.assert_called()
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Optional[Any] = BertConfig.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" )
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : int = AutoConfig.from_pretrained("bert-base-cased" )
__snake_case : str = ["config.4.0.0.json"]
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(UpperCAmelCase )
__snake_case : List[str] = 2
json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase , "config.4.0.0.json" ) , "w" ) )
# This should pick the new configuration file as the version of Transformers is > 4.0.0
__snake_case : List[str] = AutoConfig.from_pretrained(UpperCAmelCase )
self.assertEqual(new_configuration.hidden_size , 2 )
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
__snake_case : Dict = ["config.42.0.0.json"]
__snake_case : str = 768
configuration.save_pretrained(UpperCAmelCase )
shutil.move(os.path.join(UpperCAmelCase , "config.4.0.0.json" ) , os.path.join(UpperCAmelCase , "config.42.0.0.json" ) )
__snake_case : List[str] = AutoConfig.from_pretrained(UpperCAmelCase )
self.assertEqual(new_configuration.hidden_size , 768 )
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : Union[str, Any] = "hf-internal-testing/test-two-configs"
import transformers as new_transformers
__snake_case : Union[str, Any] = "v4.0.0"
__snake_case , __snake_case : List[str] = new_transformers.models.auto.AutoConfig.from_pretrained(
UpperCAmelCase , return_unused_kwargs=UpperCAmelCase )
self.assertEqual(new_configuration.hidden_size , 2 )
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(UpperCAmelCase , {} )
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
__snake_case : str = "v3.0.0"
__snake_case : Dict = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase )
self.assertEqual(old_configuration.hidden_size , 768 )
| 326 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''}
_UpperCamelCase = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
}
}
_UpperCamelCase = {
'''camembert-base''': 512,
}
_UpperCamelCase = '''▁'''
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES
UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : str =["input_ids", "attention_mask"]
def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
'''simple docstring'''
__snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
__snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , )
__snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCAmelCase ) )
__snake_case : Dict = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
__snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
__snake_case : Optional[int] = len(self.fairseq_tokens_to_ids )
__snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
__snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Dict = [self.cls_token_id]
__snake_case : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1]
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__snake_case : int = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(UpperCAmelCase ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__snake_case : Tuple = []
__snake_case : Union[str, Any] = ""
__snake_case : Optional[int] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase ) + token
__snake_case : List[Any] = True
__snake_case : Union[str, Any] = []
else:
current_sub_tokens.append(UpperCAmelCase )
__snake_case : int = False
out_string += self.sp_model.decode(UpperCAmelCase )
return out_string.strip()
def __getstate__( self ) -> List[Any]:
'''simple docstring'''
__snake_case : str = self.__dict__.copy()
__snake_case : Optional[Any] = None
return state
def __setstate__( self , UpperCAmelCase ) -> str:
'''simple docstring'''
__snake_case : Optional[Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__snake_case : List[str] = {}
__snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__snake_case : Optional[Any] = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase , "wb" ) as fi:
__snake_case : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase )
return (out_vocab_file,)
| 326 | 1 |
from maths.prime_factors import prime_factors
def lowerCAmelCase__( lowercase : int ) -> int:
if not isinstance(lowercase , lowercase ):
__snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer"""
raise TypeError(lowercase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(lowercase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool:
__snake_case : List[str] = len(lowercase )
__snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__snake_case : Optional[Any] = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
__snake_case : Union[str, Any] = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
__snake_case : List[str] = subset[i - 1][j]
if arr[i - 1] <= j:
__snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 | 1 |
_UpperCamelCase = '''Alexander Joslin'''
import operator as op
from .stack import Stack
def lowerCAmelCase__( lowercase : str ) -> int:
__snake_case : Optional[int] = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub}
__snake_case : Stack[int] = Stack()
__snake_case : Stack[str] = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(lowercase ) )
elif i in operators:
# RULE 2
operator_stack.push(lowercase )
elif i == ")":
# RULE 4
__snake_case : Union[str, Any] = operator_stack.peek()
operator_stack.pop()
__snake_case : str = operand_stack.peek()
operand_stack.pop()
__snake_case : List[Any] = operand_stack.peek()
operand_stack.pop()
__snake_case : int = operators[opr](lowercase , lowercase )
operand_stack.push(lowercase )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
_UpperCamelCase = '''(5 + ((4 * 2) * (2 + 3)))'''
# answer = 45
print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
| 326 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
_UpperCamelCase = 4
_UpperCamelCase = 3
class _lowerCamelCase ( a ):
"""simple docstring"""
pass
def lowerCAmelCase__( lowercase : List[str] ) -> Any:
for shard in shards:
for i in range(lowercase ):
yield {"i": i, "shard": shard}
def lowerCAmelCase__( ) -> Optional[int]:
__snake_case : List[Any] = int(os.environ["RANK"] )
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : List[str] = ArgumentParser()
parser.add_argument("--streaming" , type=lowercase )
parser.add_argument("--local_rank" , type=lowercase )
parser.add_argument("--num_workers" , type=lowercase , default=0 )
__snake_case : Any = parser.parse_args()
__snake_case : Dict = args.streaming
__snake_case : Union[str, Any] = args.num_workers
__snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]}
__snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase )
if not streaming:
__snake_case : Any = Dataset.from_list(list(lowercase ) )
__snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase )
__snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase )
__snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD
__snake_case : List[str] = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
__snake_case : Dict = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" )
if __name__ == "__main__":
main()
| 326 | 1 |
import argparse
import torch
from transformers import GPTaLMHeadModel, RobertaForMaskedLM
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser(
description=(
'''Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned'''
''' Distillation'''
)
)
parser.add_argument('''--model_type''', default='''roberta''', choices=['''roberta''', '''gpt2'''])
parser.add_argument('''--model_name''', default='''roberta-large''', type=str)
parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_roberta_048131723.pth''', type=str)
parser.add_argument('''--vocab_transform''', action='''store_true''')
_UpperCamelCase = parser.parse_args()
if args.model_type == "roberta":
_UpperCamelCase = RobertaForMaskedLM.from_pretrained(args.model_name)
_UpperCamelCase = '''roberta'''
elif args.model_type == "gpt2":
_UpperCamelCase = GPTaLMHeadModel.from_pretrained(args.model_name)
_UpperCamelCase = '''transformer'''
_UpperCamelCase = model.state_dict()
_UpperCamelCase = {}
# Embeddings #
if args.model_type == "gpt2":
for param_name in ["wte.weight", "wpe.weight"]:
_UpperCamelCase = state_dict[F'''{prefix}.{param_name}''']
else:
for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]:
_UpperCamelCase = F'''{prefix}.embeddings.{w}.weight'''
_UpperCamelCase = state_dict[param_name]
for w in ["weight", "bias"]:
_UpperCamelCase = F'''{prefix}.embeddings.LayerNorm.{w}'''
_UpperCamelCase = state_dict[param_name]
# Transformer Blocks #
_UpperCamelCase = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
if args.model_type == "gpt2":
for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]:
for w in ["weight", "bias"]:
_UpperCamelCase = state_dict[
F'''{prefix}.h.{teacher_idx}.{layer}.{w}'''
]
_UpperCamelCase = state_dict[F'''{prefix}.h.{teacher_idx}.attn.bias''']
else:
for layer in [
"attention.self.query",
"attention.self.key",
"attention.self.value",
"attention.output.dense",
"attention.output.LayerNorm",
"intermediate.dense",
"output.dense",
"output.LayerNorm",
]:
for w in ["weight", "bias"]:
_UpperCamelCase = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}'''
]
std_idx += 1
# Language Modeling Head ###s
if args.model_type == "roberta":
for layer in ["lm_head.decoder.weight", "lm_head.bias"]:
_UpperCamelCase = state_dict[F'''{layer}''']
if args.vocab_transform:
for w in ["weight", "bias"]:
_UpperCamelCase = state_dict[F'''lm_head.dense.{w}''']
_UpperCamelCase = state_dict[F'''lm_head.layer_norm.{w}''']
elif args.model_type == "gpt2":
for w in ["weight", "bias"]:
_UpperCamelCase = state_dict[F'''{prefix}.ln_f.{w}''']
_UpperCamelCase = state_dict['''lm_head.weight''']
print(F'''N layers selected for distillation: {std_idx}''')
print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''')
print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''')
torch.save(compressed_sd, args.dump_checkpoint)
| 326 |
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int:
__snake_case : List[Any] = limit + 1
__snake_case : List[str] = [0] * limit
for first_term in range(1 , lowercase ):
for n in range(lowercase , lowercase , lowercase ):
__snake_case : Union[str, Any] = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
__snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 326 | 1 |
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
_UpperCamelCase = logging.getLogger()
@unittest.skip("Temporarily disable the doc tests." )
@require_torch
@require_tf
@slow
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , ) -> List[Any]:
'''simple docstring'''
__snake_case : List[Any] = [file for file in os.listdir(UpperCAmelCase ) if os.path.isfile(os.path.join(UpperCAmelCase , UpperCAmelCase ) )]
if identifier is not None:
__snake_case : int = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(UpperCAmelCase , UpperCAmelCase ):
for n_ in n_identifier:
__snake_case : int = [file for file in files if n_ not in file]
else:
__snake_case : List[str] = [file for file in files if n_identifier not in file]
__snake_case : str = ignore_files or []
ignore_files.append("__init__.py" )
__snake_case : Tuple = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("Testing" , UpperCAmelCase )
if only_modules:
__snake_case : Optional[int] = file.split("." )[0]
try:
__snake_case : List[Any] = getattr(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = doctest.DocTestSuite(UpperCAmelCase )
__snake_case : Optional[int] = unittest.TextTestRunner().run(UpperCAmelCase )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F"""{module_identifier} is not a module.""" )
else:
__snake_case : str = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : List[str] = Path("src/transformers" )
__snake_case : List[Any] = "modeling"
__snake_case : Tuple = [
"modeling_ctrl.py",
"modeling_tf_ctrl.py",
]
self.analyze_directory(UpperCAmelCase , identifier=UpperCAmelCase , ignore_files=UpperCAmelCase )
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : List[Any] = Path("src/transformers" )
__snake_case : Tuple = "tokenization"
self.analyze_directory(UpperCAmelCase , identifier=UpperCAmelCase )
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : Union[str, Any] = Path("src/transformers" )
__snake_case : List[Any] = "configuration"
self.analyze_directory(UpperCAmelCase , identifier=UpperCAmelCase )
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Any = Path("src/transformers" )
__snake_case : Tuple = ["configuration", "modeling", "tokenization"]
self.analyze_directory(UpperCAmelCase , n_identifier=UpperCAmelCase )
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Tuple = Path("docs/source" )
__snake_case : Optional[int] = ["favicon.ico"]
self.analyze_directory(UpperCAmelCase , ignore_files=UpperCAmelCase , only_modules=UpperCAmelCase )
| 326 |
from __future__ import annotations
def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]:
__snake_case : List[str] = word_bank or []
# create a table
__snake_case : int = len(lowercase ) + 1
__snake_case : list[list[list[str]]] = []
for _ in range(lowercase ):
table.append([] )
# seed value
__snake_case : Optional[int] = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(lowercase ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(lowercase )] == word:
__snake_case : list[list[str]] = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(lowercase )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(lowercase )]:
combination.reverse()
return table[len(lowercase )]
if __name__ == "__main__":
print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa''']))
print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t''']))
print(
all_construct(
'''hexagonosaurus''',
['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''],
)
)
| 326 | 1 |
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
_UpperCamelCase = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='''relu'''))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='''relu'''))
classifier.add(layers.Dense(units=1, activation='''sigmoid'''))
# Compiling the CNN
classifier.compile(
optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy''']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
_UpperCamelCase = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
_UpperCamelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
_UpperCamelCase = train_datagen.flow_from_directory(
'''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
_UpperCamelCase = test_datagen.flow_from_directory(
'''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary'''
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('''cnn.h5''')
# Part 3 - Making new predictions
_UpperCamelCase = tf.keras.preprocessing.image.load_img(
'''dataset/single_prediction/image.png''', target_size=(64, 64)
)
_UpperCamelCase = tf.keras.preprocessing.image.img_to_array(test_image)
_UpperCamelCase = np.expand_dims(test_image, axis=0)
_UpperCamelCase = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
_UpperCamelCase = '''Normal'''
if result[0][0] == 1:
_UpperCamelCase = '''Abnormality detected'''
| 326 |
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple:
'''simple docstring'''
__snake_case : Optional[int] = parent
__snake_case : Tuple = batch_size
__snake_case : List[str] = seq_length
__snake_case : Optional[int] = is_training
__snake_case : int = use_attention_mask
__snake_case : Union[str, Any] = use_token_type_ids
__snake_case : Any = use_labels
__snake_case : List[str] = vocab_size
__snake_case : int = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : List[Any] = num_attention_heads
__snake_case : Optional[int] = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : Optional[int] = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : str = max_position_embeddings
__snake_case : List[Any] = type_vocab_size
__snake_case : int = type_sequence_label_size
__snake_case : Dict = initializer_range
__snake_case : List[Any] = num_choices
__snake_case : Union[str, Any] = rescale_embeddings
__snake_case : List[Any] = attention_type
__snake_case : str = use_bias
__snake_case : Dict = block_size
__snake_case : Optional[Any] = num_random_blocks
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Any = None
if self.use_attention_mask:
__snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Union[str, Any] = None
if self.use_token_type_ids:
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Optional[int] = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Optional[int] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs
__snake_case : int = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_flax
class _lowerCamelCase ( a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =(
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
UpperCAmelCase_ : Dict =False
UpperCAmelCase_ : str =False
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : Dict = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_hidden_states_output()
@slow
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" )
self.assertIsNotNone(UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = model_class(UpperCAmelCase )
@jax.jit
def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase )
with self.subTest("JIT Enabled" ):
__snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int:
'''simple docstring'''
if name.startswith("outputs.attentions" ):
return
else:
super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
| 326 | 1 |
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''vocab.txt'''}
_UpperCamelCase = {
'''vocab_file''': {
'''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''',
'''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''',
},
}
_UpperCamelCase = {
'''facebook/esm2_t6_8M_UR50D''': 1024,
'''facebook/esm2_t12_35M_UR50D''': 1024,
}
def lowerCAmelCase__( lowercase : int ) -> Dict:
with open(lowercase , "r" ) as f:
__snake_case : Union[str, Any] = f.read().splitlines()
return [l.strip() for l in lines]
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Tuple =VOCAB_FILES_NAMES
UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : Optional[Any] =["input_ids", "attention_mask"]
def __init__( self , UpperCAmelCase , UpperCAmelCase="<unk>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase="<eos>" , **UpperCAmelCase , ) -> int:
'''simple docstring'''
super().__init__(**UpperCAmelCase )
__snake_case : List[str] = load_vocab_file(UpperCAmelCase )
__snake_case : Tuple = dict(enumerate(self.all_tokens ) )
__snake_case : Dict = {tok: ind for ind, tok in enumerate(self.all_tokens )}
__snake_case : List[Any] = unk_token
__snake_case : Dict = cls_token
__snake_case : Tuple = pad_token
__snake_case : int = mask_token
__snake_case : List[Any] = eos_token
__snake_case : List[Any] = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
return self._id_to_token.get(UpperCAmelCase , self.unk_token )
def UpperCAmelCase ( self , UpperCAmelCase ) -> int:
'''simple docstring'''
return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) )
def UpperCAmelCase ( self , UpperCAmelCase , **UpperCAmelCase ) -> Dict:
'''simple docstring'''
return text.split()
def UpperCAmelCase ( self , UpperCAmelCase=False ) -> str:
'''simple docstring'''
return len(self._id_to_token )
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
return {token: i for i, token in enumerate(self.all_tokens )}
def UpperCAmelCase ( self , UpperCAmelCase ) -> int:
'''simple docstring'''
return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
return self._id_to_token.get(UpperCAmelCase , self.unk_token )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__snake_case : Union[str, Any] = [self.cls_token_id]
__snake_case : Any = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
__snake_case : Union[str, Any] = [1] + ([0] * len(UpperCAmelCase )) + [1]
if token_ids_a is not None:
mask += [0] * len(UpperCAmelCase ) + [1]
return mask
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__snake_case : List[str] = os.path.join(UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" )
with open(UpperCAmelCase , "w" ) as f:
f.write("\n".join(self.all_tokens ) )
return (vocab_file,)
@property
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return self.get_vocab_size(with_added_tokens=UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = False ) -> int:
'''simple docstring'''
return super()._add_tokens(UpperCAmelCase , special_tokens=UpperCAmelCase )
| 326 |
import argparse
import datetime
def lowerCAmelCase__( lowercase : str ) -> str:
__snake_case : int = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
__snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowercase ) < 11:
raise ValueError("Must be 10 characters long" )
# Get month
__snake_case : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12" )
__snake_case : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get day
__snake_case : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31" )
# Get second separator
__snake_case : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get year
__snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?" )
# Get datetime obj for validation
__snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) )
# Start math
if m <= 2:
__snake_case : Optional[Any] = y - 1
__snake_case : Tuple = m + 12
# maths var
__snake_case : int = int(str(lowercase )[:2] )
__snake_case : int = int(str(lowercase )[2:] )
__snake_case : int = int(2.6 * m - 5.3_9 )
__snake_case : int = int(c / 4 )
__snake_case : int = int(k / 4 )
__snake_case : int = int(d + k )
__snake_case : int = int(t + u + v + x )
__snake_case : int = int(z - (2 * c) )
__snake_case : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer." )
# Response
__snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
_UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 326 | 1 |
from math import log
from scipy.constants import Boltzmann, physical_constants
_UpperCamelCase = 300 # TEMPERATURE (unit = K)
def lowerCAmelCase__( lowercase : float , lowercase : float , lowercase : float , ) -> float:
if donor_conc <= 0:
raise ValueError("Donor concentration should be positive" )
elif acceptor_conc <= 0:
raise ValueError("Acceptor concentration should be positive" )
elif intrinsic_conc <= 0:
raise ValueError("Intrinsic concentration should be positive" )
elif donor_conc <= intrinsic_conc:
raise ValueError(
"Donor concentration should be greater than intrinsic concentration" )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"Acceptor concentration should be greater than intrinsic concentration" )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int:
if index == r:
for j in range(lowercase ):
print(data[j] , end=" " )
print(" " )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
__snake_case : Union[str, Any] = arr[i]
combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]:
# A temporary array to store all combination one by one
__snake_case : Tuple = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 )
if __name__ == "__main__":
# Driver code to check the function above
_UpperCamelCase = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 326 | 1 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 326 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
_UpperCamelCase = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def lowerCAmelCase__( lowercase : str ) -> Optional[Any]:
__snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" )
return sd
def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict:
__snake_case : Tuple = OrderedDict()
__snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__snake_case : Optional[Any] = key
for name_pair in rename_keys_prefix:
__snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] )
__snake_case : List[str] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__snake_case : List[Any] = new_d["cls.predictions.bias"]
return new_d
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]:
assert (
checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS
), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."""
# Get Config
if "pre" in checkpoint_path:
__snake_case : Any = "pretraining"
if "vcr" in checkpoint_path:
__snake_case : Optional[Any] = {"visual_embedding_dim": 512}
elif "vqa_advanced" in checkpoint_path:
__snake_case : Tuple = {"visual_embedding_dim": 2048}
elif "vqa" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 2048}
elif "nlvr" in checkpoint_path:
__snake_case : Any = {"visual_embedding_dim": 1024}
else:
raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" )
else:
if "vcr" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 512}
__snake_case : Any = "multichoice"
elif "vqa_advanced" in checkpoint_path:
__snake_case : List[Any] = {"visual_embedding_dim": 2048}
__snake_case : Optional[Any] = "vqa_advanced"
elif "vqa" in checkpoint_path:
__snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129}
__snake_case : Union[str, Any] = "vqa"
elif "nlvr" in checkpoint_path:
__snake_case : Tuple = {
"visual_embedding_dim": 1024,
"num_labels": 2,
}
__snake_case : List[Any] = "nlvr"
__snake_case : Union[str, Any] = VisualBertConfig(**lowercase )
# Load State Dict
__snake_case : Any = load_state_dict(lowercase )
__snake_case : Dict = get_new_dict(lowercase , lowercase )
if model_type == "pretraining":
__snake_case : Optional[Any] = VisualBertForPreTraining(lowercase )
elif model_type == "vqa":
__snake_case : Tuple = VisualBertForQuestionAnswering(lowercase )
elif model_type == "nlvr":
__snake_case : Tuple = VisualBertForVisualReasoning(lowercase )
elif model_type == "multichoice":
__snake_case : List[Any] = VisualBertForMultipleChoice(lowercase )
model.load_state_dict(lowercase )
# Save Checkpoints
Path(lowercase ).mkdir(exist_ok=lowercase )
model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 326 | 1 |
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple:
'''simple docstring'''
__snake_case : Optional[int] = parent
__snake_case : Tuple = batch_size
__snake_case : List[str] = seq_length
__snake_case : Optional[int] = is_training
__snake_case : int = use_attention_mask
__snake_case : Union[str, Any] = use_token_type_ids
__snake_case : Any = use_labels
__snake_case : List[str] = vocab_size
__snake_case : int = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : List[Any] = num_attention_heads
__snake_case : Optional[int] = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : Optional[int] = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : str = max_position_embeddings
__snake_case : List[Any] = type_vocab_size
__snake_case : int = type_sequence_label_size
__snake_case : Dict = initializer_range
__snake_case : List[Any] = num_choices
__snake_case : Union[str, Any] = rescale_embeddings
__snake_case : List[Any] = attention_type
__snake_case : str = use_bias
__snake_case : Dict = block_size
__snake_case : Optional[Any] = num_random_blocks
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Any = None
if self.use_attention_mask:
__snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Union[str, Any] = None
if self.use_token_type_ids:
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Optional[int] = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Optional[int] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs
__snake_case : int = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_flax
class _lowerCamelCase ( a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =(
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
UpperCAmelCase_ : Dict =False
UpperCAmelCase_ : str =False
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : Dict = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_hidden_states_output()
@slow
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" )
self.assertIsNotNone(UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = model_class(UpperCAmelCase )
@jax.jit
def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase )
with self.subTest("JIT Enabled" ):
__snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int:
'''simple docstring'''
if name.startswith("outputs.attentions" ):
return
else:
super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
| 326 |
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple:
# Load configuration defined in the metadata file
with open(lowercase ) as metadata_file:
__snake_case : int = json.load(lowercase )
__snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] )
# Load in the weights from the checkpoint_path
__snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"]
# Load the entity vocab file
__snake_case : Tuple = load_original_entity_vocab(lowercase )
# add an entry for [MASK2]
__snake_case : Optional[int] = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
__snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] )
# Add special tokens to the token vocabulary for downstream tasks
__snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase )
__snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase )
tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" )
tokenizer.save_pretrained(lowercase )
with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f:
__snake_case : Tuple = json.load(lowercase )
__snake_case : List[Any] = "MLukeTokenizer"
with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f:
json.dump(lowercase , lowercase )
with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f:
json.dump(lowercase , lowercase )
__snake_case : Any = MLukeTokenizer.from_pretrained(lowercase )
# Initialize the embeddings of the special tokens
__snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0]
__snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0]
__snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"]
__snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 )
__snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 )
__snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
__snake_case : List[Any] = state_dict[bias_name]
__snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 )
__snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 )
__snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
__snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self."""
__snake_case : Union[str, Any] = state_dict[prefix + matrix_name]
__snake_case : str = state_dict[prefix + matrix_name]
__snake_case : Union[str, Any] = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
__snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"]
__snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 )
__snake_case : Any = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
__snake_case : List[Any] = state_dict["entity_predictions.bias"]
__snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 )
__snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] )
__snake_case : Any = LukeForMaskedLM(config=lowercase ).eval()
state_dict.pop("entity_predictions.decoder.weight" )
state_dict.pop("lm_head.decoder.weight" )
state_dict.pop("lm_head.decoder.bias" )
__snake_case : int = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )):
__snake_case : str = state_dict[key]
else:
__snake_case : str = state_dict[key]
__snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase )
if set(lowercase ) != {"luke.embeddings.position_ids"}:
raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" )
if set(lowercase ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
__snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" )
__snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
__snake_case : Union[str, Any] = (0, 9)
__snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" )
__snake_case : Any = model(**lowercase )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
__snake_case : Optional[Any] = torch.Size((1, 33, 768) )
__snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
__snake_case : str = torch.Size((1, 1, 768) )
__snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"""
f""" {expected_shape}""" )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
__snake_case : str = MLukeTokenizer.from_pretrained(lowercase )
__snake_case : Dict = "Tokyo is the capital of <mask>."
__snake_case : Union[str, Any] = (24, 30)
__snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" )
__snake_case : int = model(**lowercase )
__snake_case : Dict = encoding["input_ids"][0].tolist()
__snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) )
__snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(lowercase )
__snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item()
__snake_case : Optional[int] = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print("Saving PyTorch model to {}".format(lowercase ) )
model.save_pretrained(lowercase )
def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]:
__snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"]
__snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )]
__snake_case : Any = {}
for entry in data:
__snake_case : Any = entry["id"]
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
__snake_case : Optional[int] = entity_id
break
__snake_case : Union[str, Any] = f"""{language}:{entity_name}"""
__snake_case : Any = entity_id
return new_mapping
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''')
parser.add_argument(
'''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.'''
)
parser.add_argument(
'''--entity_vocab_path''',
default=None,
type=str,
help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.'''
)
parser.add_argument(
'''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.'''
)
_UpperCamelCase = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 326 | 1 |
import importlib
import inspect
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
_UpperCamelCase = '''src/transformers'''
# This is to make sure the transformers module imported is the one in the repo.
_UpperCamelCase = importlib.util.spec_from_file_location(
'''transformers''',
os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''),
submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
_UpperCamelCase = spec.loader.load_module()
_UpperCamelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
_UpperCamelCase = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''')
_UpperCamelCase = {
'''CLIPConfigMixin''',
'''DecisionTransformerConfigMixin''',
'''EncoderDecoderConfigMixin''',
'''RagConfigMixin''',
'''SpeechEncoderDecoderConfigMixin''',
'''VisionEncoderDecoderConfigMixin''',
'''VisionTextDualEncoderConfigMixin''',
}
def lowerCAmelCase__( ) -> Optional[Any]:
__snake_case : List[Any] = []
for config_class in list(CONFIG_MAPPING.values() ):
__snake_case : List[str] = False
# source code of `config_class`
__snake_case : Any = inspect.getsource(lowercase )
__snake_case : Any = _re_checkpoint.findall(lowercase )
for checkpoint in checkpoints:
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
__snake_case , __snake_case : Any = checkpoint
# verify the checkpoint name corresponds to the checkpoint link
__snake_case : List[str] = f"""https://huggingface.co/{ckpt_name}"""
if ckpt_link == ckpt_link_from_name:
__snake_case : Optional[int] = True
break
__snake_case : str = config_class.__name__
if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(lowercase )
if len(lowercase ) > 0:
__snake_case : int = "\n".join(sorted(lowercase ) )
raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 326 |
from maths.prime_factors import prime_factors
def lowerCAmelCase__( lowercase : int ) -> int:
if not isinstance(lowercase , lowercase ):
__snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer"""
raise TypeError(lowercase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(lowercase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Tuple ="cvt"
def __init__( self , UpperCAmelCase=3 , UpperCAmelCase=[7, 3, 3] , UpperCAmelCase=[4, 2, 2] , UpperCAmelCase=[2, 1, 1] , UpperCAmelCase=[64, 192, 384] , UpperCAmelCase=[1, 3, 6] , UpperCAmelCase=[1, 2, 10] , UpperCAmelCase=[4.0, 4.0, 4.0] , UpperCAmelCase=[0.0, 0.0, 0.0] , UpperCAmelCase=[0.0, 0.0, 0.0] , UpperCAmelCase=[0.0, 0.0, 0.1] , UpperCAmelCase=[True, True, True] , UpperCAmelCase=[False, False, True] , UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , UpperCAmelCase=[3, 3, 3] , UpperCAmelCase=[1, 1, 1] , UpperCAmelCase=[2, 2, 2] , UpperCAmelCase=[1, 1, 1] , UpperCAmelCase=[1, 1, 1] , UpperCAmelCase=0.02 , UpperCAmelCase=1E-12 , **UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**UpperCAmelCase )
__snake_case : Optional[int] = num_channels
__snake_case : Tuple = patch_sizes
__snake_case : int = patch_stride
__snake_case : int = patch_padding
__snake_case : Tuple = embed_dim
__snake_case : Optional[int] = num_heads
__snake_case : Tuple = depth
__snake_case : Optional[int] = mlp_ratio
__snake_case : List[Any] = attention_drop_rate
__snake_case : Optional[int] = drop_rate
__snake_case : Dict = drop_path_rate
__snake_case : Any = qkv_bias
__snake_case : List[str] = cls_token
__snake_case : Union[str, Any] = qkv_projection_method
__snake_case : Union[str, Any] = kernel_qkv
__snake_case : Optional[int] = padding_kv
__snake_case : Optional[int] = stride_kv
__snake_case : Optional[int] = padding_q
__snake_case : Tuple = stride_q
__snake_case : int = initializer_range
__snake_case : Union[str, Any] = layer_norm_eps
| 326 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" )
__snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" )
__snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids
__snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids
__snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
__snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits
__snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean()
__snake_case : Any = -(labels.shape[-1] * loss.item())
__snake_case : List[str] = -84.9_127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 326 | 1 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaubertConfig,
TFFlaubertForMultipleChoice,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForSequenceClassification,
TFFlaubertForTokenClassification,
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
)
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase , ) -> str:
'''simple docstring'''
__snake_case : int = parent
__snake_case : Any = 13
__snake_case : str = 7
__snake_case : Tuple = True
__snake_case : Any = True
__snake_case : Dict = True
__snake_case : List[str] = True
__snake_case : Dict = True
__snake_case : Optional[Any] = False
__snake_case : Tuple = False
__snake_case : Union[str, Any] = False
__snake_case : Optional[Any] = 2
__snake_case : str = 99
__snake_case : Optional[Any] = 0
__snake_case : str = 32
__snake_case : Tuple = 2
__snake_case : Optional[Any] = 4
__snake_case : Union[str, Any] = 0.1
__snake_case : List[Any] = 0.1
__snake_case : Optional[int] = 512
__snake_case : List[Any] = 16
__snake_case : List[str] = 2
__snake_case : Union[str, Any] = 0.02
__snake_case : str = 3
__snake_case : int = 4
__snake_case : Optional[int] = "last"
__snake_case : Any = True
__snake_case : Any = None
__snake_case : Tuple = 0
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : int = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa )
__snake_case : int = None
if self.use_input_lengths:
__snake_case : str = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
__snake_case : str = None
if self.use_token_type_ids:
__snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
__snake_case : int = None
__snake_case : Optional[Any] = None
__snake_case : Any = None
if self.use_labels:
__snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : Any = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa )
__snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_choices )
__snake_case : Any = FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , )
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Dict = TFFlaubertModel(config=UpperCAmelCase )
__snake_case : int = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
__snake_case : Any = model(UpperCAmelCase )
__snake_case : Tuple = [input_ids, input_mask]
__snake_case : str = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> int:
'''simple docstring'''
__snake_case : int = TFFlaubertWithLMHeadModel(UpperCAmelCase )
__snake_case : Optional[Any] = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
__snake_case : Optional[int] = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> List[Any]:
'''simple docstring'''
__snake_case : str = TFFlaubertForQuestionAnsweringSimple(UpperCAmelCase )
__snake_case : Any = {"input_ids": input_ids, "lengths": input_lengths}
__snake_case : Tuple = model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> List[str]:
'''simple docstring'''
__snake_case : int = TFFlaubertForSequenceClassification(UpperCAmelCase )
__snake_case : Union[str, Any] = {"input_ids": input_ids, "lengths": input_lengths}
__snake_case : str = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Tuple = self.num_labels
__snake_case : Any = TFFlaubertForTokenClassification(config=UpperCAmelCase )
__snake_case : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__snake_case : int = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> List[Any]:
'''simple docstring'''
__snake_case : Optional[int] = self.num_choices
__snake_case : Any = TFFlaubertForMultipleChoice(config=UpperCAmelCase )
__snake_case : Any = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__snake_case : Dict = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__snake_case : List[Any] = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__snake_case : Any = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
__snake_case : List[str] = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : int = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : List[Any] = config_and_inputs
__snake_case : List[Any] = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"langs": token_type_ids,
"lengths": input_lengths,
}
return config, inputs_dict
@require_tf
class _lowerCamelCase ( a , a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] =(
(
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
TFFlaubertForSequenceClassification,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForTokenClassification,
TFFlaubertForMultipleChoice,
)
if is_tf_available()
else ()
)
UpperCAmelCase_ : List[Any] =(
(TFFlaubertWithLMHeadModel,) if is_tf_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
UpperCAmelCase_ : Any =(
{
"feature-extraction": TFFlaubertModel,
"fill-mask": TFFlaubertWithLMHeadModel,
"question-answering": TFFlaubertForQuestionAnsweringSimple,
"text-classification": TFFlaubertForSequenceClassification,
"token-classification": TFFlaubertForTokenClassification,
"zero-shot": TFFlaubertForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCAmelCase_ : Optional[int] =False
UpperCAmelCase_ : Tuple =False
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : List[Any] = TFFlaubertModelTester(self )
__snake_case : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=37 )
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_token_classification(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_multiple_choice(*UpperCAmelCase )
@slow
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Union[str, Any] = TFFlaubertModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@require_tf
@require_sentencepiece
@require_tokenizers
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : Dict = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased" )
__snake_case : Optional[Any] = tf.convert_to_tensor(
[[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !"
__snake_case : Union[str, Any] = model(UpperCAmelCase )[0]
__snake_case : Tuple = tf.TensorShape((1, 8, 512) )
self.assertEqual(output.shape , UpperCAmelCase )
# compare the actual values for a slice.
__snake_case : Dict = tf.convert_to_tensor(
[
[
[-1.8_768_773, -1.566_555, 0.27_072_418],
[-1.6_920_038, -0.5_873_505, 1.9_329_599],
[-2.9_563_985, -1.6_993_835, 1.7_972_052],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 326 |
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]:
'''simple docstring'''
super().__init__(UpperCAmelCase )
__snake_case : Optional[int] = proj_size
__snake_case : str = CLIPVisionModel(UpperCAmelCase )
__snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase )
__snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size )
__snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
__snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]:
'''simple docstring'''
__snake_case : int = self.model(pixel_values=UpperCAmelCase )
__snake_case : Optional[int] = clip_output.pooler_output
__snake_case : Any = self.mapper(latent_states[:, None] )
__snake_case : Any = self.final_layer_norm(UpperCAmelCase )
__snake_case : str = self.proj_out(UpperCAmelCase )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
super().__init__()
__snake_case : List[Any] = (config.num_hidden_layers + 1) // 5
__snake_case : Dict = config.hidden_size
__snake_case : str = 1
__snake_case : List[Any] = nn.ModuleList(
[
BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase )
for _ in range(UpperCAmelCase )
] )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
for block in self.blocks:
__snake_case : int = block(UpperCAmelCase )
return hidden_states
| 326 | 1 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
_UpperCamelCase = 4
_UpperCamelCase = 3
class _lowerCamelCase ( a ):
"""simple docstring"""
pass
def lowerCAmelCase__( lowercase : List[str] ) -> Any:
for shard in shards:
for i in range(lowercase ):
yield {"i": i, "shard": shard}
def lowerCAmelCase__( ) -> Optional[int]:
__snake_case : List[Any] = int(os.environ["RANK"] )
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : List[str] = ArgumentParser()
parser.add_argument("--streaming" , type=lowercase )
parser.add_argument("--local_rank" , type=lowercase )
parser.add_argument("--num_workers" , type=lowercase , default=0 )
__snake_case : Any = parser.parse_args()
__snake_case : Dict = args.streaming
__snake_case : Union[str, Any] = args.num_workers
__snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]}
__snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase )
if not streaming:
__snake_case : Any = Dataset.from_list(list(lowercase ) )
__snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase )
__snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase )
__snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD
__snake_case : List[str] = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
__snake_case : Dict = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" )
if __name__ == "__main__":
main()
| 326 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 326 | 1 |
from typing import Dict
from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
get_torch_dist_unique_port,
require_torch_multi_gpu,
require_torch_neuroncore,
)
from transformers.training_args import ParallelMode
from transformers.utils import logging
_UpperCamelCase = logging.get_logger(__name__)
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
from transformers import Trainer
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , UpperCAmelCase = 101 ) -> Tuple:
'''simple docstring'''
__snake_case : Optional[int] = length
def __len__( self ) -> Optional[Any]:
'''simple docstring'''
return self.length
def __getitem__( self , UpperCAmelCase ) -> int:
'''simple docstring'''
return i
class _lowerCamelCase :
"""simple docstring"""
def __call__( self , UpperCAmelCase ) -> Any:
'''simple docstring'''
return {"input_ids": torch.tensor(UpperCAmelCase ), "labels": torch.tensor(UpperCAmelCase )}
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self ) -> str:
'''simple docstring'''
super().__init__()
# Add some (unused) params otherwise DDP will complain.
__snake_case : int = nn.Linear(120 , 80 )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
if labels is not None:
return torch.tensor(0.0 , device=input_ids.device ), input_ids
else:
return input_ids
class _lowerCamelCase ( a ):
"""simple docstring"""
@require_torch_neuroncore
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : Dict = F"""--nproc_per_node=2
--master_port={get_torch_dist_unique_port()}
{self.test_file_dir}/test_trainer_distributed.py
""".split()
__snake_case : Tuple = self.get_auto_remove_tmp_dir()
__snake_case : Tuple = F"""--output_dir {output_dir}""".split()
__snake_case : Optional[Any] = ["torchrun"] + distributed_args + args
execute_subprocess_async(UpperCAmelCase , env=self.get_env() )
# successful return here == success - any errors would have caused an error in the sub-call
class _lowerCamelCase ( a ):
"""simple docstring"""
@require_torch_multi_gpu
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case : str = F"""--nproc_per_node={torch.cuda.device_count()}
--master_port={get_torch_dist_unique_port()}
{self.test_file_dir}/test_trainer_distributed.py
""".split()
__snake_case : List[Any] = self.get_auto_remove_tmp_dir()
__snake_case : str = F"""--output_dir {output_dir}""".split()
__snake_case : Optional[Any] = ["torchrun"] + distributed_args + args
execute_subprocess_async(UpperCAmelCase , env=self.get_env() )
# successful return here == success - any errors would have caused an error in the sub-call
if __name__ == "__main__":
# The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
#
# PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py
_UpperCamelCase = HfArgumentParser((TrainingArguments,))
_UpperCamelCase = parser.parse_args_into_dataclasses()[0]
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, '''
F'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}'''
)
# Essentially, what we want to verify in the distributed case is that we get all samples back,
# in the right order. (this is crucial for prediction for instance)
for dataset_length in [101, 40, 7]:
_UpperCamelCase = DummyDataset(dataset_length)
def lowerCAmelCase__( lowercase : EvalPrediction ) -> Dict:
__snake_case : str = list(range(len(lowercase ) ) )
__snake_case : Dict = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential
if not success and training_args.local_rank == 0:
logger.warning(
"Predictions and/or labels do not match expected results:\n - predictions: "
f"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" )
return {"success": success}
_UpperCamelCase = Trainer(
model=DummyModel(),
args=training_args,
data_collator=DummyDataCollator(),
eval_dataset=dataset,
compute_metrics=compute_metrics,
)
_UpperCamelCase = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
_UpperCamelCase = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
_UpperCamelCase = 2
_UpperCamelCase = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
_UpperCamelCase = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
_UpperCamelCase = None
| 326 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = torch.device('''cpu''')
def lowerCAmelCase__( ) -> Any:
__snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
__snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw )
return im
def lowerCAmelCase__( lowercase : Dict ) -> List[Any]:
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] )
def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]:
__snake_case : List[Any] = dct.pop(lowercase )
__snake_case : List[Any] = val
def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple:
__snake_case : Optional[Any] = []
for k in state_dict.keys():
__snake_case : Union[str, Any] = k
if ".pwconv" in k:
__snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" )
if ".dwconv" in k:
__snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" )
if ".Proj." in k:
__snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." )
if "patch_embed" in k_new:
__snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" )
if "network" in k_new:
__snake_case : int = k_new.split("." )
if ls[2].isdigit():
__snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] )
else:
__snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]:
__snake_case : List[str] = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
__snake_case : Tuple = 1000
__snake_case : Any = "huggingface/label-files"
__snake_case : int = "imagenet-1k-id2label.json"
__snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) )
__snake_case : str = {int(lowercase ): v for k, v in idalabel.items()}
__snake_case : int = idalabel
__snake_case : Optional[int] = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
__snake_case : Optional[Any] = [3, 3, 6, 4]
__snake_case : Optional[int] = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
__snake_case : List[str] = [3, 3, 9, 6]
__snake_case : Optional[Any] = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
__snake_case : Optional[int] = [4, 3, 10, 5]
__snake_case : Dict = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
__snake_case : str = [4, 4, 12, 6]
__snake_case : Optional[Any] = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("https" ):
__snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase )
else:
__snake_case : Tuple = torch.load(lowercase , map_location="cpu" )
__snake_case : Optional[int] = checkpoint
__snake_case : Any = create_rename_keys(lowercase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(lowercase , lowercase , lowercase )
# load HuggingFace model
__snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval()
hf_model.load_state_dict(lowercase )
# prepare test inputs
__snake_case : Optional[Any] = prepare_img()
__snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" )
__snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" )
# compare outputs from both models
__snake_case : str = get_expected_output(lowercase )
__snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 )
Path(lowercase ).mkdir(exist_ok=lowercase )
print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" )
hf_model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--swiftformer_name''',
default='''swiftformer_xs''',
choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''],
type=str,
help='''Name of the SwiftFormer model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''./converted_outputs/''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''')
_UpperCamelCase = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 326 | 1 |
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
_UpperCamelCase = 10
def lowerCAmelCase__( lowercase : int , lowercase : int , lowercase : list[int] , lowercase : int ) -> int:
for i in range(lowercase , lowercase ):
if array[i] == target:
return i
return -1
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> int:
__snake_case : str = 0
__snake_case : Tuple = len(lowercase )
while left <= right:
if right - left < precision:
return lin_search(lowercase , lowercase , lowercase , lowercase )
__snake_case : Dict = (left + right) // 3 + 1
__snake_case : Dict = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
__snake_case : Optional[int] = one_third - 1
elif array[two_third] < target:
__snake_case : str = two_third + 1
else:
__snake_case : Union[str, Any] = one_third + 1
__snake_case : str = two_third - 1
else:
return -1
def lowerCAmelCase__( lowercase : int , lowercase : int , lowercase : list[int] , lowercase : int ) -> int:
if left < right:
if right - left < precision:
return lin_search(lowercase , lowercase , lowercase , lowercase )
__snake_case : Tuple = (left + right) // 3 + 1
__snake_case : List[str] = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(lowercase , one_third - 1 , lowercase , lowercase )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , lowercase , lowercase , lowercase )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , lowercase , lowercase )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = input('''Enter numbers separated by comma:\n''').strip()
_UpperCamelCase = [int(item.strip()) for item in user_input.split(''',''')]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
_UpperCamelCase = int(input('''Enter the number to be found in the list:\n''').strip())
_UpperCamelCase = ite_ternary_search(collection, target)
_UpperCamelCase = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print('''Not found''')
| 326 |
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
_UpperCamelCase = logging.getLogger(__name__)
def lowerCAmelCase__( lowercase : str ) -> List[str]:
__snake_case : int = git.Repo(search_parent_directories=lowercase )
__snake_case : Union[str, Any] = {
"repo_id": str(lowercase ),
"repo_sha": str(repo.head.object.hexsha ),
"repo_branch": str(repo.active_branch ),
}
with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f:
json.dump(lowercase , lowercase , indent=4 )
def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]:
if params.n_gpu <= 0:
__snake_case : Union[str, Any] = 0
__snake_case : Optional[int] = -1
__snake_case : Union[str, Any] = True
__snake_case : Tuple = False
return
assert torch.cuda.is_available()
logger.info("Initializing GPUs" )
if params.n_gpu > 1:
assert params.local_rank != -1
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : int = int(os.environ["N_GPU_NODE"] )
__snake_case : Union[str, Any] = int(os.environ["RANK"] )
# number of nodes / node ID
__snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node
__snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node
__snake_case : Union[str, Any] = True
assert params.n_nodes == int(os.environ["N_NODES"] )
assert params.node_id == int(os.environ["NODE_RANK"] )
# local job (single GPU)
else:
assert params.local_rank == -1
__snake_case : Any = 1
__snake_case : str = 0
__snake_case : Optional[Any] = 0
__snake_case : Dict = 0
__snake_case : int = 1
__snake_case : Optional[Any] = 1
__snake_case : Tuple = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
__snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0
__snake_case : List[Any] = params.n_nodes > 1
# summary
__snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """
logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes )
logger.info(PREFIX + "Node ID : %i" % params.node_id )
logger.info(PREFIX + "Local rank : %i" % params.local_rank )
logger.info(PREFIX + "World size : %i" % params.world_size )
logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node )
logger.info(PREFIX + "Master : %s" % str(params.is_master ) )
logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) )
logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) )
logger.info(PREFIX + "Hostname : %s" % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info("Initializing PyTorch distributed" )
torch.distributed.init_process_group(
init_method="env://" , backend="nccl" , )
def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]:
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 326 | 1 |
# Function to print upper half of diamond (pyramid)
def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]:
for i in range(0 , lowercase ):
for _ in range(0 , n - i - 1 ): # printing spaces
print(" " , end="" )
for _ in range(0 , i + 1 ): # printing stars
print("* " , end="" )
print()
def lowerCAmelCase__( lowercase : Union[str, Any] ) -> List[str]:
for i in range(lowercase , 0 , -1 ):
for _ in range(lowercase , 0 , -1 ): # printing stars
print("* " , end="" )
print()
for _ in range(n - i + 1 , 0 , -1 ): # printing spaces
print(" " , end="" )
def lowerCAmelCase__( lowercase : Optional[Any] ) -> Tuple:
if n <= 0:
print(" ... .... nothing printing :(" )
return
floyd(lowercase ) # upper half
reverse_floyd(lowercase ) # lower half
if __name__ == "__main__":
print(R'''| /\ | |- | |- |--| |\ /| |-''')
print(R'''|/ \| |- |_ |_ |__| | \/ | |_''')
_UpperCamelCase = 1
while K:
_UpperCamelCase = int(input('''enter the number and , and see the magic : '''))
print()
pretty_print(user_number)
_UpperCamelCase = int(input('''press 0 to exit... and 1 to continue...'''))
print('''Good Bye...''')
| 326 |
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : str =JukeboxTokenizer
UpperCAmelCase_ : Tuple ={
"artist": "Zac Brown Band",
"genres": "Country",
"lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ",
}
@require_torch
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
import torch
__snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" )
__snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"]
# fmt: off
__snake_case : Optional[Any] = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
import torch
__snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" )
__snake_case : Tuple = tokenizer(**self.metas )["input_ids"]
# fmt: off
__snake_case : int = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 326 | 1 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
_UpperCamelCase = '''src/diffusers'''
# Matches is_xxx_available()
_UpperCamelCase = re.compile(R'''is\_([a-z_]*)_available\(\)''')
# Matches from xxx import bla
_UpperCamelCase = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
_UpperCamelCase = '''
{0} = None
'''
_UpperCamelCase = '''
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
'''
_UpperCamelCase = '''
def {0}(*args, **kwargs):
requires_backends({0}, {1})
'''
def lowerCAmelCase__( lowercase : Tuple ) -> Union[str, Any]:
__snake_case : Tuple = _re_backend.findall(lowercase )
if len(lowercase ) == 0:
return None
return "_and_".join(lowercase )
def lowerCAmelCase__( ) -> Optional[Any]:
with open(os.path.join(lowercase , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f:
__snake_case : str = f.readlines()
# Get to the point we do the actual imports for type checking
__snake_case : Union[str, Any] = 0
__snake_case : str = {}
# Go through the end of the file
while line_index < len(lowercase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
__snake_case : int = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith("else:" ):
line_index += 1
line_index += 1
__snake_case : List[str] = []
# Until we unindent, add backend objects to the list
while line_index < len(lowercase ) and len(lines[line_index] ) > 1:
__snake_case : List[str] = lines[line_index]
__snake_case : Union[str, Any] = _re_single_line_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(", " ) )
elif line.startswith(" " * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(lowercase ) > 0:
__snake_case : Optional[int] = objects
else:
line_index += 1
return backend_specific_objects
def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : Optional[int] ) -> Tuple:
if name.isupper():
return DUMMY_CONSTANT.format(lowercase )
elif name.islower():
return DUMMY_FUNCTION.format(lowercase , lowercase )
else:
return DUMMY_CLASS.format(lowercase , lowercase )
def lowerCAmelCase__( lowercase : Dict=None ) -> List[str]:
if backend_specific_objects is None:
__snake_case : str = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
__snake_case : Any = {}
for backend, objects in backend_specific_objects.items():
__snake_case : List[str] = "[" + ", ".join(f"""\"{b}\"""" for b in backend.split("_and_" ) ) + "]"
__snake_case : List[Any] = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(lowercase , lowercase ) for o in objects] )
__snake_case : Any = dummy_file
return dummy_files
def lowerCAmelCase__( lowercase : Any=False ) -> List[str]:
__snake_case : Union[str, Any] = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
__snake_case : Union[str, Any] = {"torch": "pt"}
# Locate actual dummy modules and read their content.
__snake_case : List[str] = os.path.join(lowercase , "utils" )
__snake_case : List[Any] = {
backend: os.path.join(lowercase , f"""dummy_{short_names.get(lowercase , lowercase )}_objects.py""" )
for backend in dummy_files.keys()
}
__snake_case : List[str] = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(lowercase ):
with open(lowercase , "r" , encoding="utf-8" , newline="\n" ) as f:
__snake_case : int = f.read()
else:
__snake_case : Dict = ""
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f"""Updating diffusers.utils.dummy_{short_names.get(lowercase , lowercase )}_objects.py as the main """
"__init__ has new objects." )
with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
"The main __init__ has objects that are not present in "
f"""diffusers.utils.dummy_{short_names.get(lowercase , lowercase )}_objects.py. Run `make fix-copies` """
"to fix this." )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
_UpperCamelCase = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 326 |
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
_UpperCamelCase = logging.get_logger(__name__)
class _lowerCamelCase :
"""simple docstring"""
UpperCAmelCase_ : str
UpperCAmelCase_ : str =None
@staticmethod
def UpperCAmelCase ( ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
if not self.is_available():
raise RuntimeError(
F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" )
@classmethod
def UpperCAmelCase ( cls ) -> Tuple:
'''simple docstring'''
return F"""`pip install {cls.pip_package or cls.name}`"""
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] ="optuna"
@staticmethod
def UpperCAmelCase ( ) -> Union[str, Any]:
'''simple docstring'''
return is_optuna_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict:
'''simple docstring'''
return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> int:
'''simple docstring'''
return default_hp_space_optuna(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : List[str] ="ray"
UpperCAmelCase_ : Dict ="'ray[tune]'"
@staticmethod
def UpperCAmelCase ( ) -> str:
'''simple docstring'''
return is_ray_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
return default_hp_space_ray(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Tuple ="sigopt"
@staticmethod
def UpperCAmelCase ( ) -> int:
'''simple docstring'''
return is_sigopt_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict:
'''simple docstring'''
return default_hp_space_sigopt(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : str ="wandb"
@staticmethod
def UpperCAmelCase ( ) -> Optional[Any]:
'''simple docstring'''
return is_wandb_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return default_hp_space_wandb(UpperCAmelCase )
_UpperCamelCase = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def lowerCAmelCase__( ) -> str:
__snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(lowercase ) > 0:
__snake_case : Dict = available_backends[0].name
if len(lowercase ) > 1:
logger.info(
f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" )
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
f""" - To install {backend.name} run {backend.pip_install()}"""
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 326 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_UpperCamelCase = logging.get_logger(__name__)
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Any =["pixel_values"]
def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**UpperCAmelCase )
__snake_case : List[Any] = size if size is not None else {"shortest_edge": 384}
__snake_case : Dict = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase )
__snake_case : Tuple = do_resize
__snake_case : Union[str, Any] = size
# Default value set here for backwards compatibility where the value in config is None
__snake_case : List[Any] = crop_pct if crop_pct is not None else 224 / 256
__snake_case : Optional[Any] = resample
__snake_case : str = do_rescale
__snake_case : List[str] = rescale_factor
__snake_case : Any = do_normalize
__snake_case : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__snake_case : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__snake_case : List[str] = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" )
__snake_case : str = size["shortest_edge"]
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
__snake_case : int = int(shortest_edge / crop_pct )
__snake_case : int = get_resize_output_image_size(UpperCAmelCase , size=UpperCAmelCase , default_to_square=UpperCAmelCase )
__snake_case : Union[str, Any] = resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=UpperCAmelCase , size=(shortest_edge, shortest_edge) , data_format=UpperCAmelCase , **UpperCAmelCase )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
UpperCAmelCase , size=(shortest_edge, shortest_edge) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> Dict:
'''simple docstring'''
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__snake_case : Dict = do_resize if do_resize is not None else self.do_resize
__snake_case : Tuple = crop_pct if crop_pct is not None else self.crop_pct
__snake_case : str = resample if resample is not None else self.resample
__snake_case : List[str] = do_rescale if do_rescale is not None else self.do_rescale
__snake_case : str = rescale_factor if rescale_factor is not None else self.rescale_factor
__snake_case : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize
__snake_case : Tuple = image_mean if image_mean is not None else self.image_mean
__snake_case : Union[str, Any] = image_std if image_std is not None else self.image_std
__snake_case : int = size if size is not None else self.size
__snake_case : List[Any] = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase )
__snake_case : int = make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError("crop_pct must be specified if size < 384." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
__snake_case : List[Any] = [to_numpy_array(UpperCAmelCase ) for image in images]
if do_resize:
__snake_case : int = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , crop_pct=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_rescale:
__snake_case : Optional[int] = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images]
if do_normalize:
__snake_case : Union[str, Any] = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images]
__snake_case : Optional[Any] = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
__snake_case : Tuple = {"pixel_values": images}
return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
| 326 |
import math
def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list:
__snake_case : Any = end or len(lowercase )
for i in range(lowercase , lowercase ):
__snake_case : List[str] = i
__snake_case : Union[str, Any] = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
__snake_case : Optional[Any] = array[temp_index - 1]
temp_index -= 1
__snake_case : Any = temp_index_value
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap
__snake_case : Any = index
__snake_case : Optional[Any] = 2 * index + 1 # Left Node
__snake_case : str = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
__snake_case : Optional[int] = left_index
if right_index < heap_size and array[largest] < array[right_index]:
__snake_case : Tuple = right_index
if largest != index:
__snake_case , __snake_case : int = array[largest], array[index]
heapify(lowercase , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list ) -> list:
__snake_case : List[str] = len(lowercase )
for i in range(n // 2 , -1 , -1 ):
heapify(lowercase , lowercase , lowercase )
for i in range(n - 1 , 0 , -1 ):
__snake_case , __snake_case : Optional[Any] = array[0], array[i]
heapify(lowercase , 0 , lowercase )
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
__snake_case : Union[str, Any] = low
__snake_case : Union[str, Any] = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
__snake_case , __snake_case : str = array[j], array[i]
i += 1
def lowerCAmelCase__( lowercase : list ) -> list:
if len(lowercase ) == 0:
return array
__snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) )
__snake_case : Dict = 16
return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list:
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
__snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 )
__snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase )
intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase )
__snake_case : List[str] = p
return insertion_sort(lowercase , lowercase , lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip()
_UpperCamelCase = [float(item) for item in user_input.split(''',''')]
print(sort(unsorted))
| 326 | 1 |
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class _lowerCamelCase :
"""simple docstring"""
UpperCAmelCase_ : int
UpperCAmelCase_ : TreeNode | None =None
UpperCAmelCase_ : TreeNode | None =None
_UpperCamelCase = namedtuple('''CoinsDistribResult''', '''moves excess''')
def lowerCAmelCase__( lowercase : TreeNode | None ) -> int:
if root is None:
return 0
# Validation
def count_nodes(lowercase : TreeNode | None ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(lowercase : TreeNode | None ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(lowercase ) != count_coins(lowercase ):
raise ValueError("The nodes number should be same as the number of coins" )
# Main calculation
def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
__snake_case , __snake_case : List[str] = get_distrib(node.left )
__snake_case , __snake_case : List[str] = get_distrib(node.right )
__snake_case : Dict = 1 - left_distrib_excess
__snake_case : Dict = 1 - right_distrib_excess
__snake_case : List[Any] = (
left_distrib_moves
+ right_distrib_moves
+ abs(lowercase )
+ abs(lowercase )
)
__snake_case : List[Any] = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(lowercase , lowercase )
return get_distrib(lowercase )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def lowerCAmelCase__( ) -> List[Any]:
with parallel_backend("spark" ):
assert ParallelBackendConfig.backend_name == "spark"
__snake_case : Any = [1, 2, 3]
with pytest.raises(lowercase ):
with parallel_backend("unsupported backend" ):
map_nested(lowercase , lowercase , num_proc=2 )
with pytest.raises(lowercase ):
with parallel_backend("unsupported backend" ):
map_nested(lowercase , lowercase , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("num_proc" , [2, -1] )
def lowerCAmelCase__( lowercase : Dict ) -> Dict:
__snake_case : Any = [1, 2]
__snake_case : Dict = {"a": 1, "b": 2}
__snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]}
__snake_case : int = {"a": {"1": 1}, "b": 2}
__snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4}
__snake_case : Dict = [2, 3]
__snake_case : Tuple = {"a": 2, "b": 3}
__snake_case : int = {"a": [2, 3], "b": [4, 5]}
__snake_case : Dict = {"a": {"1": 2}, "b": 3}
__snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5}
with parallel_backend("spark" ):
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
| 326 | 1 |
import argparse
from typing import List
import evaluate
import numpy as np
import torch
from datasets import DatasetDict, load_dataset
# New Code #
# We'll be using StratifiedKFold for this example
from sklearn.model_selection import StratifiedKFold
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to perform Cross Validation,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_UpperCamelCase = 16
_UpperCamelCase = 32
def lowerCAmelCase__( lowercase : Accelerator , lowercase : DatasetDict , lowercase : List[int] , lowercase : List[int] , lowercase : int = 16 ) -> List[Any]:
__snake_case : Optional[Any] = AutoTokenizer.from_pretrained("bert-base-cased" )
__snake_case : List[Any] = DatasetDict(
{
"train": dataset["train"].select(lowercase ),
"validation": dataset["train"].select(lowercase ),
"test": dataset["validation"],
} )
def tokenize_function(lowercase : int ):
# max_length=None => use the model max length (it's actually the default)
__snake_case : Optional[int] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
__snake_case : Optional[Any] = datasets.map(
lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__snake_case : Any = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(lowercase : List[Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
__snake_case : Dict = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
__snake_case : str = 16
elif accelerator.mixed_precision != "no":
__snake_case : str = 8
else:
__snake_case : int = None
return tokenizer.pad(
lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , )
# Instantiate dataloaders.
__snake_case : int = DataLoader(
tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase )
__snake_case : List[str] = DataLoader(
tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase )
__snake_case : Tuple = DataLoader(
tokenized_datasets["test"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase )
return train_dataloader, eval_dataloader, test_dataloader
def lowerCAmelCase__( lowercase : Dict , lowercase : int ) -> int:
# New Code #
__snake_case : Optional[Any] = []
# Download the dataset
__snake_case : Optional[int] = load_dataset("glue" , "mrpc" )
# Create our splits
__snake_case : Dict = StratifiedKFold(n_splits=int(args.num_folds ) )
# Initialize accelerator
__snake_case : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__snake_case : Dict = config["lr"]
__snake_case : Optional[Any] = int(config["num_epochs"] )
__snake_case : Union[str, Any] = int(config["seed"] )
__snake_case : int = int(config["batch_size"] )
__snake_case : Optional[Any] = evaluate.load("glue" , "mrpc" )
# If the batch size is too big we use gradient accumulation
__snake_case : Optional[Any] = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
__snake_case : str = batch_size // MAX_GPU_BATCH_SIZE
__snake_case : List[str] = MAX_GPU_BATCH_SIZE
set_seed(lowercase )
# New Code #
# Create our folds:
__snake_case : List[str] = kfold.split(np.zeros(datasets["train"].num_rows ) , datasets["train"]["label"] )
__snake_case : Tuple = []
# Iterate over them
for i, (train_idxs, valid_idxs) in enumerate(lowercase ):
__snake_case , __snake_case , __snake_case : Union[str, Any] = get_fold_dataloaders(
lowercase , lowercase , lowercase , lowercase , )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__snake_case : List[str] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__snake_case : List[str] = model.to(accelerator.device )
# Instantiate optimizer
__snake_case : List[Any] = AdamW(params=model.parameters() , lr=lowercase )
# Instantiate scheduler
__snake_case : Optional[Any] = get_linear_schedule_with_warmup(
optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : List[Any] = accelerator.prepare(
lowercase , lowercase , lowercase , lowercase , lowercase )
# Now we train the model
for epoch in range(lowercase ):
model.train()
for step, batch in enumerate(lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
__snake_case : Dict = model(**lowercase )
__snake_case : Union[str, Any] = outputs.loss
__snake_case : Optional[Any] = loss / gradient_accumulation_steps
accelerator.backward(lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__snake_case : Optional[int] = model(**lowercase )
__snake_case : Optional[int] = outputs.logits.argmax(dim=-1 )
__snake_case , __snake_case : str = accelerator.gather_for_metrics((predictions, batch["labels"]) )
metric.add_batch(
predictions=lowercase , references=lowercase , )
__snake_case : Optional[int] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , lowercase )
# New Code #
# We also run predictions on the test set at the very end
__snake_case : Any = []
for step, batch in enumerate(lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__snake_case : int = model(**lowercase )
__snake_case : List[Any] = outputs.logits
__snake_case , __snake_case : int = accelerator.gather_for_metrics((predictions, batch["labels"]) )
fold_predictions.append(predictions.cpu() )
if i == 0:
# We need all of the test predictions
test_references.append(references.cpu() )
# Use accelerator.print to print only on the main process.
test_predictions.append(torch.cat(lowercase , dim=0 ) )
# We now need to release all our memory and get rid of the current model, optimizer, etc
accelerator.free_memory()
# New Code #
# Finally we check the accuracy of our folded results:
__snake_case : int = torch.cat(lowercase , dim=0 )
__snake_case : Optional[int] = torch.stack(lowercase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 )
__snake_case : Tuple = metric.compute(predictions=lowercase , references=lowercase )
accelerator.print("Average test metrics from all folds:" , lowercase )
def lowerCAmelCase__( ) -> Union[str, Any]:
__snake_case : Optional[Any] = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument(
"--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
# New Code #
parser.add_argument("--num_folds" , type=lowercase , default=3 , help="The number of splits to perform across the dataset" )
__snake_case : Dict = parser.parse_args()
__snake_case : Optional[Any] = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16}
training_function(lowercase , lowercase )
if __name__ == "__main__":
main()
| 326 |
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any:
__snake_case : Optional[Any] = False
__snake_case : Optional[Any] = search_prob
__snake_case : str = start_temperate
__snake_case : List[Any] = []
__snake_case : str = 0
__snake_case : Dict = None
while not search_end:
__snake_case : List[Any] = current_state.score()
if best_state is None or current_score > best_state.score():
__snake_case : List[Any] = current_state
scores.append(lowercase )
iterations += 1
__snake_case : Dict = None
__snake_case : str = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
__snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor
__snake_case : int = neighbors.pop(lowercase )
__snake_case : Optional[Any] = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
__snake_case : Any = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
__snake_case : List[str] = picked_neighbor
else:
__snake_case : Optional[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
__snake_case : str = picked_neighbor
__snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
__snake_case : Optional[Any] = True
else:
__snake_case : str = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(lowercase ) , lowercase )
plt.xlabel("Iterations" )
plt.ylabel("Function values" )
plt.show()
return best_state
if __name__ == "__main__":
def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any:
return (3 * x**2) - (6 * y)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True)
print(
'''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True)
print(
'''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
| 326 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_UpperCamelCase = logging.get_logger(__name__)
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] =["pixel_values"]
def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 0.9 , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**UpperCAmelCase )
__snake_case : List[Any] = size if size is not None else {"shortest_edge": 224}
__snake_case : Tuple = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase )
__snake_case : List[str] = crop_size if crop_size is not None else {"height": 224, "width": 224}
__snake_case : Optional[Any] = get_size_dict(UpperCAmelCase , param_name="crop_size" )
__snake_case : Optional[Any] = do_resize
__snake_case : List[str] = size
__snake_case : str = crop_pct
__snake_case : Any = resample
__snake_case : Optional[Any] = do_center_crop
__snake_case : Dict = crop_size
__snake_case : Dict = do_rescale
__snake_case : List[Any] = rescale_factor
__snake_case : Optional[int] = do_normalize
__snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__snake_case : Optional[int] = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__snake_case : int = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase )
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
raise ValueError(F"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" )
if crop_pct is not None:
if "shortest_edge" in size:
__snake_case : List[Any] = int(size["shortest_edge"] / crop_pct )
elif "height" in size and "width" in size:
if size["height"] == size["width"]:
__snake_case : Dict = int(size["height"] / crop_pct )
else:
__snake_case : Tuple = (int(size["height"] / crop_pct ), int(size["width"] / crop_pct ))
else:
raise ValueError("Invalid size for resize: {}".format(UpperCAmelCase ) )
__snake_case : Tuple = get_resize_output_image_size(UpperCAmelCase , size=UpperCAmelCase , default_to_square=UpperCAmelCase )
else:
if "shortest_edge" in size:
__snake_case : List[str] = get_resize_output_image_size(UpperCAmelCase , size=size["shortest_edge"] , default_to_square=UpperCAmelCase )
elif "height" in size and "width" in size:
__snake_case : Optional[int] = (size["height"], size["width"])
else:
raise ValueError("Invalid size for resize: {}".format(UpperCAmelCase ) )
return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__snake_case : int = get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" )
return center_crop(UpperCAmelCase , size=(size["height"], size["width"]) , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> Tuple:
'''simple docstring'''
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image:
'''simple docstring'''
__snake_case : Optional[int] = do_resize if do_resize is not None else self.do_resize
__snake_case : Tuple = crop_pct if crop_pct is not None else self.crop_pct
__snake_case : str = resample if resample is not None else self.resample
__snake_case : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
__snake_case : int = do_rescale if do_rescale is not None else self.do_rescale
__snake_case : Any = rescale_factor if rescale_factor is not None else self.rescale_factor
__snake_case : int = do_normalize if do_normalize is not None else self.do_normalize
__snake_case : List[str] = image_mean if image_mean is not None else self.image_mean
__snake_case : Optional[Any] = image_std if image_std is not None else self.image_std
__snake_case : Dict = size if size is not None else self.size
__snake_case : int = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase )
__snake_case : Any = crop_size if crop_size is not None else self.crop_size
__snake_case : int = get_size_dict(UpperCAmelCase , param_name="crop_size" )
__snake_case : Union[str, Any] = make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_pct is None:
raise ValueError("Crop_pct must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
__snake_case : Dict = [to_numpy_array(UpperCAmelCase ) for image in images]
if do_resize:
__snake_case : List[Any] = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , crop_pct=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_center_crop:
__snake_case : Any = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images]
if do_rescale:
__snake_case : int = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images]
if do_normalize:
__snake_case : Tuple = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images]
__snake_case : Any = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
__snake_case : List[str] = {"pixel_values": images}
return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
| 326 |
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"]
UpperCAmelCase_ : Tuple ="FlavaImageProcessor"
UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast")
def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int:
'''simple docstring'''
__snake_case : List[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase , )
__snake_case : List[Any] = kwargs.pop("feature_extractor" )
__snake_case : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = self.image_processor
def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]:
'''simple docstring'''
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
__snake_case : Union[str, Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if images is not None:
__snake_case : Union[str, Any] = self.image_processor(
UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if text is not None and images is not None:
encoding.update(UpperCAmelCase )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : List[Any] = self.tokenizer.model_input_names
__snake_case : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , )
return self.image_processor
| 326 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''}
_UpperCamelCase = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
}
}
_UpperCamelCase = {
'''camembert-base''': 512,
}
_UpperCamelCase = '''▁'''
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES
UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : str =["input_ids", "attention_mask"]
def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
'''simple docstring'''
__snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
__snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , )
__snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCAmelCase ) )
__snake_case : Dict = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
__snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
__snake_case : Optional[int] = len(self.fairseq_tokens_to_ids )
__snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
__snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Dict = [self.cls_token_id]
__snake_case : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1]
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__snake_case : int = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(UpperCAmelCase ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__snake_case : Tuple = []
__snake_case : Union[str, Any] = ""
__snake_case : Optional[int] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase ) + token
__snake_case : List[Any] = True
__snake_case : Union[str, Any] = []
else:
current_sub_tokens.append(UpperCAmelCase )
__snake_case : int = False
out_string += self.sp_model.decode(UpperCAmelCase )
return out_string.strip()
def __getstate__( self ) -> List[Any]:
'''simple docstring'''
__snake_case : str = self.__dict__.copy()
__snake_case : Optional[Any] = None
return state
def __setstate__( self , UpperCAmelCase ) -> str:
'''simple docstring'''
__snake_case : Optional[Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__snake_case : List[str] = {}
__snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__snake_case : Optional[Any] = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase , "wb" ) as fi:
__snake_case : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase )
return (out_vocab_file,)
| 326 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''}
_UpperCamelCase = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
}
}
_UpperCamelCase = {
'''camembert-base''': 512,
}
_UpperCamelCase = '''▁'''
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES
UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : str =["input_ids", "attention_mask"]
def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
'''simple docstring'''
__snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
__snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , )
__snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCAmelCase ) )
__snake_case : Dict = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
__snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
__snake_case : Optional[int] = len(self.fairseq_tokens_to_ids )
__snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
__snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Dict = [self.cls_token_id]
__snake_case : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1]
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__snake_case : int = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(UpperCAmelCase ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__snake_case : Tuple = []
__snake_case : Union[str, Any] = ""
__snake_case : Optional[int] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase ) + token
__snake_case : List[Any] = True
__snake_case : Union[str, Any] = []
else:
current_sub_tokens.append(UpperCAmelCase )
__snake_case : int = False
out_string += self.sp_model.decode(UpperCAmelCase )
return out_string.strip()
def __getstate__( self ) -> List[Any]:
'''simple docstring'''
__snake_case : str = self.__dict__.copy()
__snake_case : Optional[Any] = None
return state
def __setstate__( self , UpperCAmelCase ) -> str:
'''simple docstring'''
__snake_case : Optional[Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__snake_case : List[str] = {}
__snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__snake_case : Optional[Any] = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase , "wb" ) as fi:
__snake_case : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase )
return (out_vocab_file,)
| 326 | 1 |
from typing import Callable, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''microsoft/xprophetnet-large-wiki100-cased''': (
'''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json'''
),
}
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Dict ="xlm-prophetnet"
UpperCAmelCase_ : int =["past_key_values"]
UpperCAmelCase_ : str ={
"num_attention_heads": "num_encoder_attention_heads",
}
def __init__( self , UpperCAmelCase = 0.1 , UpperCAmelCase = "gelu" , UpperCAmelCase = 30522 , UpperCAmelCase = 1024 , UpperCAmelCase = 4096 , UpperCAmelCase = 12 , UpperCAmelCase = 16 , UpperCAmelCase = 4096 , UpperCAmelCase = 12 , UpperCAmelCase = 16 , UpperCAmelCase = 0.1 , UpperCAmelCase = 0.1 , UpperCAmelCase = 512 , UpperCAmelCase = 0.02 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = 0 , UpperCAmelCase = 2 , UpperCAmelCase = 32 , UpperCAmelCase = 128 , UpperCAmelCase = False , UpperCAmelCase = 0.0 , UpperCAmelCase = True , UpperCAmelCase = 0 , UpperCAmelCase = 1 , UpperCAmelCase = 2 , **UpperCAmelCase , ) -> str:
'''simple docstring'''
__snake_case : List[Any] = vocab_size
__snake_case : Optional[Any] = hidden_size
__snake_case : Union[str, Any] = encoder_ffn_dim
__snake_case : Optional[int] = num_encoder_layers
__snake_case : Optional[Any] = num_encoder_attention_heads
__snake_case : Union[str, Any] = decoder_ffn_dim
__snake_case : List[str] = num_decoder_layers
__snake_case : List[str] = num_decoder_attention_heads
__snake_case : str = max_position_embeddings
__snake_case : str = init_std # Normal(0, this parameter)
__snake_case : Optional[int] = activation_function
# parameters for xlmprophetnet
__snake_case : Tuple = ngram
__snake_case : Optional[int] = num_buckets
__snake_case : Optional[int] = relative_max_distance
__snake_case : Any = disable_ngram_loss
__snake_case : Optional[Any] = eps
# 3 Types of Dropout
__snake_case : List[Any] = attention_dropout
__snake_case : List[str] = activation_dropout
__snake_case : Optional[Any] = dropout
__snake_case : Union[str, Any] = use_cache
super().__init__(
pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , is_encoder_decoder=UpperCAmelCase , add_cross_attention=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , **UpperCAmelCase , )
@property
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return self.num_encoder_layers + self.num_decoder_layers
@num_hidden_layers.setter
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
raise NotImplementedError(
"This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and"
" `num_decoder_layers`." )
| 326 |
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool:
__snake_case : List[str] = len(lowercase )
__snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__snake_case : Optional[Any] = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
__snake_case : Union[str, Any] = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
__snake_case : List[str] = subset[i - 1][j]
if arr[i - 1] <= j:
__snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 | 1 |
import logging
import os
from .state import PartialState
class _lowerCamelCase ( logging.LoggerAdapter ):
"""simple docstring"""
@staticmethod
def UpperCAmelCase ( UpperCAmelCase ) -> Dict:
'''simple docstring'''
__snake_case : str = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> Any:
'''simple docstring'''
if PartialState._shared_state == {}:
raise RuntimeError(
"You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." )
__snake_case : Union[str, Any] = kwargs.pop("main_process_only" , UpperCAmelCase )
__snake_case : Any = kwargs.pop("in_order" , UpperCAmelCase )
if self.isEnabledFor(UpperCAmelCase ):
if self._should_log(UpperCAmelCase ):
__snake_case , __snake_case : Tuple = self.process(UpperCAmelCase , UpperCAmelCase )
self.logger.log(UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase )
elif in_order:
__snake_case : Dict = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__snake_case , __snake_case : List[Any] = self.process(UpperCAmelCase , UpperCAmelCase )
self.logger.log(UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase )
state.wait_for_everyone()
def lowerCAmelCase__( lowercase : str , lowercase : str = None ) -> List[str]:
if log_level is None:
__snake_case : Any = os.environ.get("ACCELERATE_LOG_LEVEL" , lowercase )
__snake_case : List[str] = logging.getLogger(lowercase )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(lowercase , {} )
| 326 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
_UpperCamelCase = 4
_UpperCamelCase = 3
class _lowerCamelCase ( a ):
"""simple docstring"""
pass
def lowerCAmelCase__( lowercase : List[str] ) -> Any:
for shard in shards:
for i in range(lowercase ):
yield {"i": i, "shard": shard}
def lowerCAmelCase__( ) -> Optional[int]:
__snake_case : List[Any] = int(os.environ["RANK"] )
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : List[str] = ArgumentParser()
parser.add_argument("--streaming" , type=lowercase )
parser.add_argument("--local_rank" , type=lowercase )
parser.add_argument("--num_workers" , type=lowercase , default=0 )
__snake_case : Any = parser.parse_args()
__snake_case : Dict = args.streaming
__snake_case : Union[str, Any] = args.num_workers
__snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]}
__snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase )
if not streaming:
__snake_case : Any = Dataset.from_list(list(lowercase ) )
__snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase )
__snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase )
__snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD
__snake_case : List[str] = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
__snake_case : Dict = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" )
if __name__ == "__main__":
main()
| 326 | 1 |
from math import factorial
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> Any:
'''simple docstring'''
__snake_case : Optional[int] = real
if isinstance(UpperCAmelCase , UpperCAmelCase ):
__snake_case : Optional[Any] = [1] * rank
else:
__snake_case : List[str] = rank
def __repr__( self ) -> List[Any]:
'''simple docstring'''
return (
F"""{self.real}+"""
F"""{"+".join(str(UpperCAmelCase )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}"""
)
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case : str = self.duals.copy()
while cur[-1] == 0:
cur.pop(-1 )
return Dual(self.real , UpperCAmelCase )
def __add__( self , UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
return Dual(self.real + other , self.duals )
__snake_case : List[str] = self.duals.copy()
__snake_case : str = other.duals.copy()
if len(UpperCAmelCase ) > len(UpperCAmelCase ):
o_dual.extend([1] * (len(UpperCAmelCase ) - len(UpperCAmelCase )) )
elif len(UpperCAmelCase ) < len(UpperCAmelCase ):
s_dual.extend([1] * (len(UpperCAmelCase ) - len(UpperCAmelCase )) )
__snake_case : Dict = []
for i in range(len(UpperCAmelCase ) ):
new_duals.append(s_dual[i] + o_dual[i] )
return Dual(self.real + other.real , UpperCAmelCase )
UpperCAmelCase_ : int =__add__
def __sub__( self , UpperCAmelCase ) -> Dict:
'''simple docstring'''
return self + other * -1
def __mul__( self , UpperCAmelCase ) -> Any:
'''simple docstring'''
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
__snake_case : Dict = []
for i in self.duals:
new_duals.append(i * other )
return Dual(self.real * other , UpperCAmelCase )
__snake_case : int = [0] * (len(self.duals ) + len(other.duals ) + 1)
for i, item in enumerate(self.duals ):
for j, jtem in enumerate(other.duals ):
new_duals[i + j + 1] += item * jtem
for k in range(len(self.duals ) ):
new_duals[k] += self.duals[k] * other.real
for index in range(len(other.duals ) ):
new_duals[index] += other.duals[index] * self.real
return Dual(self.real * other.real , UpperCAmelCase )
UpperCAmelCase_ : Optional[Any] =__mul__
def __truediv__( self , UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
__snake_case : Tuple = []
for i in self.duals:
new_duals.append(i / other )
return Dual(self.real / other , UpperCAmelCase )
raise ValueError
def __floordiv__( self , UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
__snake_case : Optional[int] = []
for i in self.duals:
new_duals.append(i // other )
return Dual(self.real // other , UpperCAmelCase )
raise ValueError
def __pow__( self , UpperCAmelCase ) -> Dict:
'''simple docstring'''
if n < 0 or isinstance(UpperCAmelCase , UpperCAmelCase ):
raise ValueError("power must be a positive integer" )
if n == 0:
return 1
if n == 1:
return self
__snake_case : Union[str, Any] = self
for _ in range(n - 1 ):
x *= self
return x
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : int , lowercase : str ) -> Any:
if not callable(lowercase ):
raise ValueError("differentiate() requires a function as input for func" )
if not isinstance(lowercase , (float, int) ):
raise ValueError("differentiate() requires a float as input for position" )
if not isinstance(lowercase , lowercase ):
raise ValueError("differentiate() requires an int as input for order" )
__snake_case : int = Dual(lowercase , 1 )
__snake_case : Tuple = func(lowercase )
if order == 0:
return result.real
return result.duals[order - 1] * factorial(lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
def lowerCAmelCase__( lowercase : Union[str, Any] ) -> str:
return y**2 * y**4
print(differentiate(f, 9, 2))
| 326 |
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int:
__snake_case : List[Any] = limit + 1
__snake_case : List[str] = [0] * limit
for first_term in range(1 , lowercase ):
for n in range(lowercase , lowercase , lowercase ):
__snake_case : Union[str, Any] = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
__snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 326 | 1 |
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
_UpperCamelCase = ['''small''', '''medium''', '''large''']
_UpperCamelCase = '''lm_head.decoder.weight'''
_UpperCamelCase = '''lm_head.weight'''
def lowerCAmelCase__( lowercase : str , lowercase : str ) -> Optional[int]:
__snake_case : List[str] = torch.load(lowercase )
__snake_case : str = d.pop(lowercase )
os.makedirs(lowercase , exist_ok=lowercase )
torch.save(lowercase , os.path.join(lowercase , lowercase ) )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--dialogpt_path''', default='''.''', type=str)
_UpperCamelCase = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
_UpperCamelCase = os.path.join(args.dialogpt_path, F'''{MODEL}_ft.pkl''')
_UpperCamelCase = F'''./DialoGPT-{MODEL}'''
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 326 |
from __future__ import annotations
def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]:
__snake_case : List[str] = word_bank or []
# create a table
__snake_case : int = len(lowercase ) + 1
__snake_case : list[list[list[str]]] = []
for _ in range(lowercase ):
table.append([] )
# seed value
__snake_case : Optional[int] = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(lowercase ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(lowercase )] == word:
__snake_case : list[list[str]] = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(lowercase )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(lowercase )]:
combination.reverse()
return table[len(lowercase )]
if __name__ == "__main__":
print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa''']))
print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t''']))
print(
all_construct(
'''hexagonosaurus''',
['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''],
)
)
| 326 | 1 |
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from tax import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder
_UpperCamelCase = '''base_with_context'''
def lowerCAmelCase__( lowercase : List[str] , lowercase : str ) -> Tuple:
__snake_case : Any = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) )
__snake_case : Optional[int] = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=lowercase )
for lyr_num, lyr in enumerate(model.encoders ):
__snake_case : List[str] = weights[f"""layers_{lyr_num}"""]
__snake_case : int = nn.Parameter(
torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) )
__snake_case : str = ly_weight["attention"]
__snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
__snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
__snake_case : Dict = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
__snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
__snake_case : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) )
__snake_case : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) )
__snake_case : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) )
__snake_case : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) )
__snake_case : int = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) )
return model
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : List[Any] ) -> Dict:
__snake_case : List[Any] = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) )
__snake_case : Union[str, Any] = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=lowercase )
for lyr_num, lyr in enumerate(model.encoders ):
__snake_case : Tuple = weights[f"""layers_{lyr_num}"""]
__snake_case : List[str] = ly_weight["attention"]
__snake_case : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
__snake_case : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
__snake_case : Any = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
__snake_case : Any = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
__snake_case : Dict = nn.Parameter(
torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) )
__snake_case : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) )
__snake_case : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) )
__snake_case : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) )
__snake_case : Any = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) )
__snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) )
return model
def lowerCAmelCase__( lowercase : str , lowercase : Optional[int] ) -> Dict:
__snake_case : Optional[int] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) )
__snake_case : Optional[int] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) )
__snake_case : Dict = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=lowercase )
__snake_case : Tuple = nn.Parameter(
torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) )
for lyr_num, lyr in enumerate(model.decoders ):
__snake_case : Optional[Any] = weights[f"""layers_{lyr_num}"""]
__snake_case : Any = nn.Parameter(
torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) )
__snake_case : Dict = nn.Parameter(
torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) )
__snake_case : Optional[int] = ly_weight["self_attention"]
__snake_case : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
__snake_case : Any = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
__snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
__snake_case : Any = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
__snake_case : Tuple = ly_weight["MultiHeadDotProductAttention_0"]
__snake_case : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
__snake_case : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
__snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
__snake_case : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
__snake_case : Optional[Any] = nn.Parameter(
torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) )
__snake_case : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) )
__snake_case : int = nn.Parameter(
torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) )
__snake_case : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) )
__snake_case : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) )
__snake_case : Any = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) )
__snake_case : Dict = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) )
__snake_case : Any = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) )
return model
def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]:
__snake_case : List[Any] = checkpoints.load_tax_checkpoint(args.checkpoint_path )
__snake_case : List[Any] = jnp.tree_util.tree_map(onp.array , lowercase )
__snake_case : Tuple = [
"from __gin__ import dynamic_registration",
"from music_spectrogram_diffusion.models.diffusion import diffusion_utils",
"diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0",
"diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()",
]
__snake_case : Union[str, Any] = os.path.join(args.checkpoint_path , ".." , "config.gin" )
__snake_case : Dict = inference.parse_training_gin_file(lowercase , lowercase )
__snake_case : Union[str, Any] = inference.InferenceModel(args.checkpoint_path , lowercase )
__snake_case : List[str] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" )
__snake_case : List[Any] = SpectrogramNotesEncoder(
max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , )
__snake_case : Any = SpectrogramContEncoder(
input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , )
__snake_case : Tuple = TaFilmDecoder(
input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , )
__snake_case : Optional[Any] = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , lowercase )
__snake_case : Tuple = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , lowercase )
__snake_case : int = load_decoder(ta_checkpoint["target"]["decoder"] , lowercase )
__snake_case : List[Any] = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" )
__snake_case : Tuple = SpectrogramDiffusionPipeline(
notes_encoder=lowercase , continuous_encoder=lowercase , decoder=lowercase , scheduler=lowercase , melgan=lowercase , )
if args.save:
pipe.save_pretrained(args.output_path )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''')
parser.add_argument(
'''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.'''
)
parser.add_argument(
'''--checkpoint_path''',
default=F'''{MODEL}/checkpoint_500000''',
type=str,
required=False,
help='''Path to the original jax model checkpoint.''',
)
_UpperCamelCase = parser.parse_args()
main(args)
| 326 |
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple:
'''simple docstring'''
__snake_case : Optional[int] = parent
__snake_case : Tuple = batch_size
__snake_case : List[str] = seq_length
__snake_case : Optional[int] = is_training
__snake_case : int = use_attention_mask
__snake_case : Union[str, Any] = use_token_type_ids
__snake_case : Any = use_labels
__snake_case : List[str] = vocab_size
__snake_case : int = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : List[Any] = num_attention_heads
__snake_case : Optional[int] = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : Optional[int] = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : str = max_position_embeddings
__snake_case : List[Any] = type_vocab_size
__snake_case : int = type_sequence_label_size
__snake_case : Dict = initializer_range
__snake_case : List[Any] = num_choices
__snake_case : Union[str, Any] = rescale_embeddings
__snake_case : List[Any] = attention_type
__snake_case : str = use_bias
__snake_case : Dict = block_size
__snake_case : Optional[Any] = num_random_blocks
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Any = None
if self.use_attention_mask:
__snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Union[str, Any] = None
if self.use_token_type_ids:
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Optional[int] = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Optional[int] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs
__snake_case : int = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_flax
class _lowerCamelCase ( a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =(
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
UpperCAmelCase_ : Dict =False
UpperCAmelCase_ : str =False
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : Dict = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_hidden_states_output()
@slow
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" )
self.assertIsNotNone(UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = model_class(UpperCAmelCase )
@jax.jit
def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase )
with self.subTest("JIT Enabled" ):
__snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int:
'''simple docstring'''
if name.startswith("outputs.attentions" ):
return
else:
super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
| 326 | 1 |
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ) -> str:
'''simple docstring'''
__snake_case : Union[str, Any] = parent
__snake_case : int = 13
__snake_case : Tuple = 7
__snake_case : Tuple = True
__snake_case : int = True
__snake_case : List[Any] = True
__snake_case : Optional[Any] = True
__snake_case : Union[str, Any] = 99
__snake_case : Union[str, Any] = 32
__snake_case : List[Any] = 2
__snake_case : Optional[Any] = 4
__snake_case : Any = 37
__snake_case : Dict = "gelu"
__snake_case : Optional[int] = 0.1
__snake_case : str = 0.1
__snake_case : Dict = 512
__snake_case : Optional[Any] = 16
__snake_case : Optional[int] = 2
__snake_case : str = 0.02
__snake_case : Tuple = 3
__snake_case : List[Any] = 4
__snake_case : str = None
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : int = None
if self.use_input_mask:
__snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : List[str] = None
if self.use_token_type_ids:
__snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Optional[Any] = None
__snake_case : Optional[int] = None
__snake_case : List[str] = None
if self.use_labels:
__snake_case : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : List[Any] = ids_tensor([self.batch_size] , self.num_choices )
__snake_case : int = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
__snake_case : Union[str, Any] = TFRoFormerModel(config=UpperCAmelCase )
__snake_case : str = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__snake_case : List[str] = [input_ids, input_mask]
__snake_case : Tuple = model(UpperCAmelCase )
__snake_case : List[str] = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any:
'''simple docstring'''
__snake_case : Dict = True
__snake_case : Dict = TFRoFormerForCausalLM(config=UpperCAmelCase )
__snake_case : List[Any] = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
__snake_case : int = model(UpperCAmelCase )["logits"]
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int:
'''simple docstring'''
__snake_case : Union[str, Any] = TFRoFormerForMaskedLM(config=UpperCAmelCase )
__snake_case : List[str] = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
__snake_case : Union[str, Any] = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Dict = self.num_labels
__snake_case : Optional[int] = TFRoFormerForSequenceClassification(config=UpperCAmelCase )
__snake_case : Tuple = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
__snake_case : List[str] = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int:
'''simple docstring'''
__snake_case : Union[str, Any] = self.num_choices
__snake_case : Optional[Any] = TFRoFormerForMultipleChoice(config=UpperCAmelCase )
__snake_case : Dict = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__snake_case : Tuple = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__snake_case : List[Any] = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__snake_case : Optional[int] = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
__snake_case : Union[str, Any] = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__snake_case : int = self.num_labels
__snake_case : Optional[int] = TFRoFormerForTokenClassification(config=UpperCAmelCase )
__snake_case : int = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
__snake_case : List[Any] = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str:
'''simple docstring'''
__snake_case : str = TFRoFormerForQuestionAnswering(config=UpperCAmelCase )
__snake_case : List[Any] = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
__snake_case : Union[str, Any] = model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : Any = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Optional[int] = config_and_inputs
__snake_case : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class _lowerCamelCase ( a , a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Any =(
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
UpperCAmelCase_ : List[Any] =(
{
"feature-extraction": TFRoFormerModel,
"fill-mask": TFRoFormerForMaskedLM,
"question-answering": TFRoFormerForQuestionAnswering,
"text-classification": TFRoFormerForSequenceClassification,
"text-generation": TFRoFormerForCausalLM,
"token-classification": TFRoFormerForTokenClassification,
"zero-shot": TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCAmelCase_ : List[str] =False
UpperCAmelCase_ : List[Any] =False
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : Union[str, Any] = TFRoFormerModelTester(self )
__snake_case : Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase )
@slow
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : Any = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base" )
self.assertIsNotNone(UpperCAmelCase )
@require_tf
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case : Tuple = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" )
__snake_case : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] )
__snake_case : str = model(UpperCAmelCase )[0]
# TODO Replace vocab size
__snake_case : str = 50000
__snake_case : Union[str, Any] = [1, 6, vocab_size]
self.assertEqual(output.shape , UpperCAmelCase )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
__snake_case : Dict = tf.constant(
[
[
[-0.12_053_341, -1.0_264_901, 0.29_221_946],
[-1.5_133_783, 0.197_433, 0.15_190_607],
[-5.0_135_403, -3.900_256, -0.84_038_764],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
@require_tf
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Any =1e-4
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Tuple = tf.constant([[4, 10]] )
__snake_case : str = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
__snake_case : Optional[int] = emba(input_ids.shape )
__snake_case : str = tf.constant(
[[0.0_000, 0.0_000, 0.0_000, 1.0_000, 1.0_000, 1.0_000], [0.8_415, 0.0_464, 0.0_022, 0.5_403, 0.9_989, 1.0_000]] )
tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance )
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Optional[Any] = tf.constant(
[
[0.0_000, 0.0_000, 0.0_000, 0.0_000, 0.0_000],
[0.8_415, 0.8_219, 0.8_020, 0.7_819, 0.7_617],
[0.9_093, 0.9_364, 0.9_581, 0.9_749, 0.9_870],
] )
__snake_case : str = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 )
emba([2, 16, 512] )
__snake_case : Optional[int] = emba.weight[:3, :5]
tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance )
@require_tf
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : str =1e-4
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : List[str] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
__snake_case : Optional[Any] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
__snake_case : Optional[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 )
__snake_case : int = embed_positions([2, 16, 768] )[None, None, :, :]
__snake_case , __snake_case : Dict = TFRoFormerSelfAttention.apply_rotary_position_embeddings(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
__snake_case : Dict = tf.constant(
[
[0.0_000, 0.0_100, 0.0_200, 0.0_300, 0.0_400, 0.0_500, 0.0_600, 0.0_700],
[-0.2_012, 0.8_897, 0.0_263, 0.9_401, 0.2_074, 0.9_463, 0.3_481, 0.9_343],
[-1.7_057, 0.6_271, -1.2_145, 1.3_897, -0.6_303, 1.7_647, -0.1_173, 1.8_985],
[-2.1_731, -1.6_397, -2.7_358, 0.2_854, -2.1_840, 1.7_183, -1.3_018, 2.4_871],
[0.2_717, -3.6_173, -2.9_206, -2.1_988, -3.6_638, 0.3_858, -2.9_155, 2.2_980],
[3.9_859, -2.1_580, -0.7_984, -4.4_904, -4.1_181, -2.0_252, -4.4_782, 1.1_253],
] )
__snake_case : Optional[Any] = tf.constant(
[
[0.0_000, -0.0_100, -0.0_200, -0.0_300, -0.0_400, -0.0_500, -0.0_600, -0.0_700],
[0.2_012, -0.8_897, -0.0_263, -0.9_401, -0.2_074, -0.9_463, -0.3_481, -0.9_343],
[1.7_057, -0.6_271, 1.2_145, -1.3_897, 0.6_303, -1.7_647, 0.1_173, -1.8_985],
[2.1_731, 1.6_397, 2.7_358, -0.2_854, 2.1_840, -1.7_183, 1.3_018, -2.4_871],
[-0.2_717, 3.6_173, 2.9_206, 2.1_988, 3.6_638, -0.3_858, 2.9_155, -2.2_980],
[-3.9_859, 2.1_580, 0.7_984, 4.4_904, 4.1_181, 2.0_252, 4.4_782, -1.1_253],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
| 326 |
import argparse
import datetime
def lowerCAmelCase__( lowercase : str ) -> str:
__snake_case : int = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
__snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowercase ) < 11:
raise ValueError("Must be 10 characters long" )
# Get month
__snake_case : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12" )
__snake_case : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get day
__snake_case : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31" )
# Get second separator
__snake_case : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get year
__snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?" )
# Get datetime obj for validation
__snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) )
# Start math
if m <= 2:
__snake_case : Optional[Any] = y - 1
__snake_case : Tuple = m + 12
# maths var
__snake_case : int = int(str(lowercase )[:2] )
__snake_case : int = int(str(lowercase )[2:] )
__snake_case : int = int(2.6 * m - 5.3_9 )
__snake_case : int = int(c / 4 )
__snake_case : int = int(k / 4 )
__snake_case : int = int(d + k )
__snake_case : int = int(t + u + v + x )
__snake_case : int = int(z - (2 * c) )
__snake_case : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer." )
# Response
__snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
_UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 326 | 1 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] =["image_processor", "tokenizer"]
UpperCAmelCase_ : int ="CLIPImageProcessor"
UpperCAmelCase_ : Tuple =("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")
def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Any:
'''simple docstring'''
__snake_case : Optional[int] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase , )
__snake_case : int = kwargs.pop("feature_extractor" )
__snake_case : Tuple = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(UpperCAmelCase , UpperCAmelCase )
def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
__snake_case : Any = self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )
if images is not None:
__snake_case : Any = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )
if text is not None and images is not None:
__snake_case : Dict = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Tuple = self.tokenizer.model_input_names
__snake_case : Any = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 326 |
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int:
if index == r:
for j in range(lowercase ):
print(data[j] , end=" " )
print(" " )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
__snake_case : Union[str, Any] = arr[i]
combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]:
# A temporary array to store all combination one by one
__snake_case : Tuple = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 )
if __name__ == "__main__":
# Driver code to check the function above
_UpperCamelCase = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 326 | 1 |
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class _lowerCamelCase :
"""simple docstring"""
UpperCAmelCase_ : Optional[Union[str, Path]] =None
UpperCAmelCase_ : bool =False
UpperCAmelCase_ : bool =False
UpperCAmelCase_ : bool =False
UpperCAmelCase_ : Optional[Dict] =None
UpperCAmelCase_ : Optional[str] =None
UpperCAmelCase_ : bool =False
UpperCAmelCase_ : bool =False
UpperCAmelCase_ : bool =False
UpperCAmelCase_ : bool =True
UpperCAmelCase_ : Optional[int] =None
UpperCAmelCase_ : int =1
UpperCAmelCase_ : Optional[Union[str, bool]] =None
UpperCAmelCase_ : bool =False
UpperCAmelCase_ : Optional[Dict] =None
UpperCAmelCase_ : Optional[str] =None
def UpperCAmelCase ( self ) -> "DownloadConfig":
'''simple docstring'''
return self.__class__(**{k: copy.deepcopy(UpperCAmelCase ) for k, v in self.__dict__.items()} )
| 326 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
_UpperCamelCase = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def lowerCAmelCase__( lowercase : str ) -> Optional[Any]:
__snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" )
return sd
def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict:
__snake_case : Tuple = OrderedDict()
__snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__snake_case : Optional[Any] = key
for name_pair in rename_keys_prefix:
__snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] )
__snake_case : List[str] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__snake_case : List[Any] = new_d["cls.predictions.bias"]
return new_d
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]:
assert (
checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS
), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."""
# Get Config
if "pre" in checkpoint_path:
__snake_case : Any = "pretraining"
if "vcr" in checkpoint_path:
__snake_case : Optional[Any] = {"visual_embedding_dim": 512}
elif "vqa_advanced" in checkpoint_path:
__snake_case : Tuple = {"visual_embedding_dim": 2048}
elif "vqa" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 2048}
elif "nlvr" in checkpoint_path:
__snake_case : Any = {"visual_embedding_dim": 1024}
else:
raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" )
else:
if "vcr" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 512}
__snake_case : Any = "multichoice"
elif "vqa_advanced" in checkpoint_path:
__snake_case : List[Any] = {"visual_embedding_dim": 2048}
__snake_case : Optional[Any] = "vqa_advanced"
elif "vqa" in checkpoint_path:
__snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129}
__snake_case : Union[str, Any] = "vqa"
elif "nlvr" in checkpoint_path:
__snake_case : Tuple = {
"visual_embedding_dim": 1024,
"num_labels": 2,
}
__snake_case : List[Any] = "nlvr"
__snake_case : Union[str, Any] = VisualBertConfig(**lowercase )
# Load State Dict
__snake_case : Any = load_state_dict(lowercase )
__snake_case : Dict = get_new_dict(lowercase , lowercase )
if model_type == "pretraining":
__snake_case : Optional[Any] = VisualBertForPreTraining(lowercase )
elif model_type == "vqa":
__snake_case : Tuple = VisualBertForQuestionAnswering(lowercase )
elif model_type == "nlvr":
__snake_case : Tuple = VisualBertForVisualReasoning(lowercase )
elif model_type == "multichoice":
__snake_case : List[Any] = VisualBertForMultipleChoice(lowercase )
model.load_state_dict(lowercase )
# Save Checkpoints
Path(lowercase ).mkdir(exist_ok=lowercase )
model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 326 | 1 |
import os
# Precomputes a list of the 100 first triangular numbers
_UpperCamelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)]
def lowerCAmelCase__( ) -> Dict:
__snake_case : Tuple = os.path.dirname(os.path.realpath(lowercase ) )
__snake_case : Union[str, Any] = os.path.join(lowercase , "words.txt" )
__snake_case : int = ""
with open(lowercase ) as f:
__snake_case : Optional[int] = f.readline()
__snake_case : Optional[int] = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )]
__snake_case : Optional[Any] = [
word
for word in [sum(ord(lowercase ) - 64 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(lowercase )
if __name__ == "__main__":
print(solution())
| 326 |
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple:
# Load configuration defined in the metadata file
with open(lowercase ) as metadata_file:
__snake_case : int = json.load(lowercase )
__snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] )
# Load in the weights from the checkpoint_path
__snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"]
# Load the entity vocab file
__snake_case : Tuple = load_original_entity_vocab(lowercase )
# add an entry for [MASK2]
__snake_case : Optional[int] = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
__snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] )
# Add special tokens to the token vocabulary for downstream tasks
__snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase )
__snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase )
tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" )
tokenizer.save_pretrained(lowercase )
with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f:
__snake_case : Tuple = json.load(lowercase )
__snake_case : List[Any] = "MLukeTokenizer"
with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f:
json.dump(lowercase , lowercase )
with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f:
json.dump(lowercase , lowercase )
__snake_case : Any = MLukeTokenizer.from_pretrained(lowercase )
# Initialize the embeddings of the special tokens
__snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0]
__snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0]
__snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"]
__snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 )
__snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 )
__snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
__snake_case : List[Any] = state_dict[bias_name]
__snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 )
__snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 )
__snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
__snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self."""
__snake_case : Union[str, Any] = state_dict[prefix + matrix_name]
__snake_case : str = state_dict[prefix + matrix_name]
__snake_case : Union[str, Any] = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
__snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"]
__snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 )
__snake_case : Any = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
__snake_case : List[Any] = state_dict["entity_predictions.bias"]
__snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 )
__snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] )
__snake_case : Any = LukeForMaskedLM(config=lowercase ).eval()
state_dict.pop("entity_predictions.decoder.weight" )
state_dict.pop("lm_head.decoder.weight" )
state_dict.pop("lm_head.decoder.bias" )
__snake_case : int = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )):
__snake_case : str = state_dict[key]
else:
__snake_case : str = state_dict[key]
__snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase )
if set(lowercase ) != {"luke.embeddings.position_ids"}:
raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" )
if set(lowercase ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
__snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" )
__snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
__snake_case : Union[str, Any] = (0, 9)
__snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" )
__snake_case : Any = model(**lowercase )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
__snake_case : Optional[Any] = torch.Size((1, 33, 768) )
__snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
__snake_case : str = torch.Size((1, 1, 768) )
__snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"""
f""" {expected_shape}""" )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
__snake_case : str = MLukeTokenizer.from_pretrained(lowercase )
__snake_case : Dict = "Tokyo is the capital of <mask>."
__snake_case : Union[str, Any] = (24, 30)
__snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" )
__snake_case : int = model(**lowercase )
__snake_case : Dict = encoding["input_ids"][0].tolist()
__snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) )
__snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(lowercase )
__snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item()
__snake_case : Optional[int] = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print("Saving PyTorch model to {}".format(lowercase ) )
model.save_pretrained(lowercase )
def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]:
__snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"]
__snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )]
__snake_case : Any = {}
for entry in data:
__snake_case : Any = entry["id"]
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
__snake_case : Optional[int] = entity_id
break
__snake_case : Union[str, Any] = f"""{language}:{entity_name}"""
__snake_case : Any = entity_id
return new_mapping
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''')
parser.add_argument(
'''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.'''
)
parser.add_argument(
'''--entity_vocab_path''',
default=None,
type=str,
help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.'''
)
parser.add_argument(
'''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.'''
)
_UpperCamelCase = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 326 | 1 |
import itertools
import math
def lowerCAmelCase__( lowercase : int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowerCAmelCase__( ) -> Optional[Any]:
__snake_case : List[Any] = 2
while True:
if is_prime(lowercase ):
yield num
num += 1
def lowerCAmelCase__( lowercase : int = 1_0001 ) -> int:
return next(itertools.islice(prime_generator() , nth - 1 , lowercase ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 326 |
from maths.prime_factors import prime_factors
def lowerCAmelCase__( lowercase : int ) -> int:
if not isinstance(lowercase , lowercase ):
__snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer"""
raise TypeError(lowercase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(lowercase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 | 1 |
import re
from filelock import FileLock
try:
import nltk
_UpperCamelCase = True
except (ImportError, ModuleNotFoundError):
_UpperCamelCase = False
if NLTK_AVAILABLE:
with FileLock('''.lock''') as lock:
nltk.download('''punkt''', quiet=True)
def lowerCAmelCase__( lowercase : str ) -> str:
re.sub("<n>" , "" , lowercase ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(lowercase ) )
| 326 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" )
__snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" )
__snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids
__snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids
__snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
__snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits
__snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean()
__snake_case : Any = -(labels.shape[-1] * loss.item())
__snake_case : List[str] = -84.9_127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 326 | 1 |
import numpy as np
def lowerCAmelCase__( lowercase : np.ndarray ) -> np.ndarray:
return 1 / (1 + np.exp(-vector ))
def lowerCAmelCase__( lowercase : np.ndarray ) -> np.ndarray:
return vector * sigmoid(lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]:
'''simple docstring'''
super().__init__(UpperCAmelCase )
__snake_case : Optional[int] = proj_size
__snake_case : str = CLIPVisionModel(UpperCAmelCase )
__snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase )
__snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size )
__snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
__snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]:
'''simple docstring'''
__snake_case : int = self.model(pixel_values=UpperCAmelCase )
__snake_case : Optional[int] = clip_output.pooler_output
__snake_case : Any = self.mapper(latent_states[:, None] )
__snake_case : Any = self.final_layer_norm(UpperCAmelCase )
__snake_case : str = self.proj_out(UpperCAmelCase )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
super().__init__()
__snake_case : List[Any] = (config.num_hidden_layers + 1) // 5
__snake_case : Dict = config.hidden_size
__snake_case : str = 1
__snake_case : List[Any] = nn.ModuleList(
[
BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase )
for _ in range(UpperCAmelCase )
] )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
for block in self.blocks:
__snake_case : int = block(UpperCAmelCase )
return hidden_states
| 326 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''',
'''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''',
}
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] ="luke"
def __init__( self , UpperCAmelCase=50267 , UpperCAmelCase=500000 , UpperCAmelCase=768 , UpperCAmelCase=256 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1E-12 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , **UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
__snake_case : List[str] = vocab_size
__snake_case : int = entity_vocab_size
__snake_case : Dict = hidden_size
__snake_case : int = entity_emb_size
__snake_case : Tuple = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : List[str] = hidden_act
__snake_case : Union[str, Any] = intermediate_size
__snake_case : int = hidden_dropout_prob
__snake_case : Any = attention_probs_dropout_prob
__snake_case : Union[str, Any] = max_position_embeddings
__snake_case : Tuple = type_vocab_size
__snake_case : Union[str, Any] = initializer_range
__snake_case : int = layer_norm_eps
__snake_case : str = use_entity_aware_attention
__snake_case : Dict = classifier_dropout
| 326 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 326 | 1 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {'''configuration_mmbt''': ['''MMBTConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings''']
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 326 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = torch.device('''cpu''')
def lowerCAmelCase__( ) -> Any:
__snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
__snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw )
return im
def lowerCAmelCase__( lowercase : Dict ) -> List[Any]:
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] )
def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]:
__snake_case : List[Any] = dct.pop(lowercase )
__snake_case : List[Any] = val
def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple:
__snake_case : Optional[Any] = []
for k in state_dict.keys():
__snake_case : Union[str, Any] = k
if ".pwconv" in k:
__snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" )
if ".dwconv" in k:
__snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" )
if ".Proj." in k:
__snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." )
if "patch_embed" in k_new:
__snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" )
if "network" in k_new:
__snake_case : int = k_new.split("." )
if ls[2].isdigit():
__snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] )
else:
__snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]:
__snake_case : List[str] = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
__snake_case : Tuple = 1000
__snake_case : Any = "huggingface/label-files"
__snake_case : int = "imagenet-1k-id2label.json"
__snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) )
__snake_case : str = {int(lowercase ): v for k, v in idalabel.items()}
__snake_case : int = idalabel
__snake_case : Optional[int] = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
__snake_case : Optional[Any] = [3, 3, 6, 4]
__snake_case : Optional[int] = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
__snake_case : List[str] = [3, 3, 9, 6]
__snake_case : Optional[Any] = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
__snake_case : Optional[int] = [4, 3, 10, 5]
__snake_case : Dict = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
__snake_case : str = [4, 4, 12, 6]
__snake_case : Optional[Any] = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("https" ):
__snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase )
else:
__snake_case : Tuple = torch.load(lowercase , map_location="cpu" )
__snake_case : Optional[int] = checkpoint
__snake_case : Any = create_rename_keys(lowercase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(lowercase , lowercase , lowercase )
# load HuggingFace model
__snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval()
hf_model.load_state_dict(lowercase )
# prepare test inputs
__snake_case : Optional[Any] = prepare_img()
__snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" )
__snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" )
# compare outputs from both models
__snake_case : str = get_expected_output(lowercase )
__snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 )
Path(lowercase ).mkdir(exist_ok=lowercase )
print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" )
hf_model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--swiftformer_name''',
default='''swiftformer_xs''',
choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''],
type=str,
help='''Name of the SwiftFormer model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''./converted_outputs/''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''')
_UpperCamelCase = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 326 | 1 |
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
_UpperCamelCase = '''pt'''
elif is_tf_available():
_UpperCamelCase = '''tf'''
else:
_UpperCamelCase = '''jax'''
class _lowerCamelCase ( a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =PerceiverTokenizer
UpperCAmelCase_ : Union[str, Any] =False
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
super().setUp()
__snake_case : Any = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" )
def UpperCAmelCase ( self , **UpperCAmelCase ) -> PerceiverTokenizer:
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=20 , UpperCAmelCase=5 ) -> Tuple[str, list]:
'''simple docstring'''
__snake_case : int = []
for i in range(len(UpperCAmelCase ) ):
try:
__snake_case : List[str] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
__snake_case : Union[str, Any] = list(filter(lambda UpperCAmelCase : re.match(r"^[ a-zA-Z]+$" , t[1] ) , UpperCAmelCase ) )
__snake_case : Tuple = list(filter(lambda UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCAmelCase ) , UpperCAmelCase ) )
if max_length is not None and len(UpperCAmelCase ) > max_length:
__snake_case : Tuple = toks[:max_length]
if min_length is not None and len(UpperCAmelCase ) < min_length and len(UpperCAmelCase ) > 0:
while len(UpperCAmelCase ) < min_length:
__snake_case : int = toks + toks
# toks_str = [t[1] for t in toks]
__snake_case : int = [t[0] for t in toks]
# Ensure consistency
__snake_case : Optional[int] = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase )
if " " not in output_txt and len(UpperCAmelCase ) > 1:
__snake_case : List[str] = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCAmelCase )
+ " "
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCAmelCase )
)
if with_prefix_space:
__snake_case : Optional[int] = " " + output_txt
__snake_case : int = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
return output_txt, output_ids
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case : Optional[int] = self.perceiver_tokenizer
__snake_case : List[str] = "Unicode €."
__snake_case : str = tokenizer(UpperCAmelCase )
__snake_case : List[Any] = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5]
self.assertEqual(encoded["input_ids"] , UpperCAmelCase )
# decoding
__snake_case : Any = tokenizer.decode(UpperCAmelCase )
self.assertEqual(UpperCAmelCase , "[CLS]Unicode €.[SEP]" )
__snake_case : Tuple = tokenizer("e è é ê ë" )
__snake_case : Any = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5]
self.assertEqual(encoded["input_ids"] , UpperCAmelCase )
# decoding
__snake_case : List[Any] = tokenizer.decode(UpperCAmelCase )
self.assertEqual(UpperCAmelCase , "[CLS]e è é ê ë[SEP]" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" )
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Optional[int] = self.perceiver_tokenizer
__snake_case : Union[str, Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."]
# fmt: off
__snake_case : Dict = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0]
# fmt: on
__snake_case : Dict = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
if FRAMEWORK != "jax":
__snake_case : Any = list(batch.input_ids.numpy()[0] )
else:
__snake_case : Dict = list(batch.input_ids.tolist()[0] )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
self.assertEqual((2, 38) , batch.input_ids.shape )
self.assertEqual((2, 38) , batch.attention_mask.shape )
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : str = self.perceiver_tokenizer
__snake_case : Tuple = ["A long paragraph for summarization.", "Another paragraph for summarization."]
__snake_case : Tuple = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("input_ids" , UpperCAmelCase )
self.assertIn("attention_mask" , UpperCAmelCase )
self.assertNotIn("decoder_input_ids" , UpperCAmelCase )
self.assertNotIn("decoder_attention_mask" , UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case : Union[str, Any] = self.perceiver_tokenizer
__snake_case : Any = [
"Summary of the text.",
"Another summary.",
]
__snake_case : Any = tokenizer(
text_target=UpperCAmelCase , max_length=32 , padding="max_length" , truncation=UpperCAmelCase , return_tensors=UpperCAmelCase )
self.assertEqual(32 , targets["input_ids"].shape[1] )
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Union[str, Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__snake_case : Union[str, Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Tuple = tempfile.mkdtemp()
__snake_case : Union[str, Any] = " He is very happy, UNwant\u00E9d,running"
__snake_case : str = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
tokenizer.save_pretrained(UpperCAmelCase )
__snake_case : Optional[int] = tokenizer.__class__.from_pretrained(UpperCAmelCase )
__snake_case : Tuple = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
shutil.rmtree(UpperCAmelCase )
__snake_case : Any = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
# Isolate this from the other tests because we save additional tokens/etc
__snake_case : Any = tempfile.mkdtemp()
__snake_case : List[Any] = " He is very happy, UNwant\u00E9d,running"
tokenizer.add_tokens(["bim", "bambam"] )
__snake_case : str = tokenizer.additional_special_tokens
additional_special_tokens.append("new_additional_special_token" )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
__snake_case : List[Any] = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
tokenizer.save_pretrained(UpperCAmelCase )
__snake_case : Dict = tokenizer.__class__.from_pretrained(UpperCAmelCase )
__snake_case : Optional[Any] = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__snake_case : Optional[Any] = tokenizer.__class__.from_pretrained(UpperCAmelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(UpperCAmelCase )
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Union[str, Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(UpperCAmelCase )
with open(os.path.join(UpperCAmelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file:
__snake_case : List[Any] = json.load(UpperCAmelCase )
with open(os.path.join(UpperCAmelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file:
__snake_case : str = json.load(UpperCAmelCase )
__snake_case : Tuple = [F"""<extra_id_{i}>""" for i in range(125 )]
__snake_case : Any = added_tokens_extra_ids + [
"an_additional_special_token"
]
__snake_case : Union[str, Any] = added_tokens_extra_ids + [
"an_additional_special_token"
]
with open(os.path.join(UpperCAmelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(UpperCAmelCase , UpperCAmelCase )
with open(os.path.join(UpperCAmelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(UpperCAmelCase , UpperCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__snake_case : List[Any] = tokenizer_class.from_pretrained(
UpperCAmelCase , )
self.assertIn(
"an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__snake_case : List[str] = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=UpperCAmelCase )]
__snake_case : List[str] = tokenizer_class.from_pretrained(
UpperCAmelCase , additional_special_tokens=UpperCAmelCase , )
self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens )
self.assertEqual(
["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , )
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : Dict = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([178] ) , "�" )
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
pass
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
pass
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
pass
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
pass
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : Tuple = self.get_tokenizers(fast=UpperCAmelCase , do_lower_case=UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
__snake_case : List[Any] = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"]
__snake_case : Union[str, Any] = tokenizer.convert_tokens_to_string(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
| 326 |
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
_UpperCamelCase = logging.getLogger(__name__)
def lowerCAmelCase__( lowercase : str ) -> List[str]:
__snake_case : int = git.Repo(search_parent_directories=lowercase )
__snake_case : Union[str, Any] = {
"repo_id": str(lowercase ),
"repo_sha": str(repo.head.object.hexsha ),
"repo_branch": str(repo.active_branch ),
}
with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f:
json.dump(lowercase , lowercase , indent=4 )
def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]:
if params.n_gpu <= 0:
__snake_case : Union[str, Any] = 0
__snake_case : Optional[int] = -1
__snake_case : Union[str, Any] = True
__snake_case : Tuple = False
return
assert torch.cuda.is_available()
logger.info("Initializing GPUs" )
if params.n_gpu > 1:
assert params.local_rank != -1
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : int = int(os.environ["N_GPU_NODE"] )
__snake_case : Union[str, Any] = int(os.environ["RANK"] )
# number of nodes / node ID
__snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node
__snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node
__snake_case : Union[str, Any] = True
assert params.n_nodes == int(os.environ["N_NODES"] )
assert params.node_id == int(os.environ["NODE_RANK"] )
# local job (single GPU)
else:
assert params.local_rank == -1
__snake_case : Any = 1
__snake_case : str = 0
__snake_case : Optional[Any] = 0
__snake_case : Dict = 0
__snake_case : int = 1
__snake_case : Optional[Any] = 1
__snake_case : Tuple = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
__snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0
__snake_case : List[Any] = params.n_nodes > 1
# summary
__snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """
logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes )
logger.info(PREFIX + "Node ID : %i" % params.node_id )
logger.info(PREFIX + "Local rank : %i" % params.local_rank )
logger.info(PREFIX + "World size : %i" % params.world_size )
logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node )
logger.info(PREFIX + "Master : %s" % str(params.is_master ) )
logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) )
logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) )
logger.info(PREFIX + "Hostname : %s" % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info("Initializing PyTorch distributed" )
torch.distributed.init_process_group(
init_method="env://" , backend="nccl" , )
def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]:
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 326 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = '''▁'''
_UpperCamelCase = {'''vocab_file''': '''spiece.model'''}
_UpperCamelCase = {
'''vocab_file''': {
'''google/reformer-crime-and-punishment''': (
'''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model'''
)
}
}
_UpperCamelCase = {
'''google/reformer-crime-and-punishment''': 52_4288,
}
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES
UpperCAmelCase_ : int =PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : Optional[Any] =["input_ids", "attention_mask"]
def __init__( self , UpperCAmelCase , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase=[] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
'''simple docstring'''
__snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , )
__snake_case : Union[str, Any] = vocab_file
__snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCAmelCase )
@property
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
return self.sp_model.get_piece_size()
def UpperCAmelCase ( self ) -> Dict[str, int]:
'''simple docstring'''
__snake_case : Optional[Any] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Optional[int]:
'''simple docstring'''
__snake_case : List[Any] = self.__dict__.copy()
__snake_case : str = None
return state
def __setstate__( self , UpperCAmelCase ) -> int:
'''simple docstring'''
__snake_case : int = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__snake_case : List[str] = {}
__snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return self.sp_model.piece_to_id(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if index < self.sp_model.get_piece_size():
__snake_case : List[str] = self.sp_model.IdToPiece(UpperCAmelCase )
return token
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__snake_case : str = []
__snake_case : Optional[Any] = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(UpperCAmelCase ) + token
__snake_case : Any = []
else:
current_sub_tokens.append(UpperCAmelCase )
out_string += self.sp_model.decode(UpperCAmelCase )
return out_string.strip()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__snake_case : int = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase , "wb" ) as fi:
__snake_case : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase )
return (out_vocab_file,)
| 326 |
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : str =JukeboxTokenizer
UpperCAmelCase_ : Tuple ={
"artist": "Zac Brown Band",
"genres": "Country",
"lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ",
}
@require_torch
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
import torch
__snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" )
__snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"]
# fmt: off
__snake_case : Optional[Any] = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
import torch
__snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" )
__snake_case : Tuple = tokenizer(**self.metas )["input_ids"]
# fmt: off
__snake_case : int = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 326 | 1 |
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
_UpperCamelCase = logging.get_logger(__name__)
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> None:
'''simple docstring'''
warnings.warn(
"The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use DPTImageProcessor instead." , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 326 |
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
_UpperCamelCase = logging.get_logger(__name__)
class _lowerCamelCase :
"""simple docstring"""
UpperCAmelCase_ : str
UpperCAmelCase_ : str =None
@staticmethod
def UpperCAmelCase ( ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
if not self.is_available():
raise RuntimeError(
F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" )
@classmethod
def UpperCAmelCase ( cls ) -> Tuple:
'''simple docstring'''
return F"""`pip install {cls.pip_package or cls.name}`"""
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] ="optuna"
@staticmethod
def UpperCAmelCase ( ) -> Union[str, Any]:
'''simple docstring'''
return is_optuna_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict:
'''simple docstring'''
return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> int:
'''simple docstring'''
return default_hp_space_optuna(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : List[str] ="ray"
UpperCAmelCase_ : Dict ="'ray[tune]'"
@staticmethod
def UpperCAmelCase ( ) -> str:
'''simple docstring'''
return is_ray_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
return default_hp_space_ray(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Tuple ="sigopt"
@staticmethod
def UpperCAmelCase ( ) -> int:
'''simple docstring'''
return is_sigopt_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict:
'''simple docstring'''
return default_hp_space_sigopt(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : str ="wandb"
@staticmethod
def UpperCAmelCase ( ) -> Optional[Any]:
'''simple docstring'''
return is_wandb_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return default_hp_space_wandb(UpperCAmelCase )
_UpperCamelCase = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def lowerCAmelCase__( ) -> str:
__snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(lowercase ) > 0:
__snake_case : Dict = available_backends[0].name
if len(lowercase ) > 1:
logger.info(
f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" )
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
f""" - To install {backend.name} run {backend.pip_install()}"""
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 326 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.