code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> List[str]: lowerCamelCase__ : Optional[int] = SwinConfig() lowerCamelCase__ : Any = swin_name.split("""_""" ) lowerCamelCase__ : str = name_split[1] lowerCamelCase__ : int = int(name_split[4] ) lowerCamelCase__ : Tuple = int(name_split[3][-1] ) if model_size == "tiny": lowerCamelCase__ : Any = 96 lowerCamelCase__ : Optional[Any] = (2, 2, 6, 2) lowerCamelCase__ : Optional[Any] = (3, 6, 12, 24) elif model_size == "small": lowerCamelCase__ : List[Any] = 96 lowerCamelCase__ : Dict = (2, 2, 18, 2) lowerCamelCase__ : Optional[int] = (3, 6, 12, 24) elif model_size == "base": lowerCamelCase__ : Tuple = 128 lowerCamelCase__ : Union[str, Any] = (2, 2, 18, 2) lowerCamelCase__ : Optional[int] = (4, 8, 16, 32) else: lowerCamelCase__ : int = 192 lowerCamelCase__ : List[str] = (2, 2, 18, 2) lowerCamelCase__ : Any = (6, 12, 24, 48) if "in22k" in swin_name: lowerCamelCase__ : int = 21841 else: lowerCamelCase__ : List[str] = 1000 lowerCamelCase__ : Tuple = """huggingface/label-files""" lowerCamelCase__ : Dict = """imagenet-1k-id2label.json""" lowerCamelCase__ : Tuple = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase__ : Optional[int] = {int(UpperCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : List[str] = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : str = img_size lowerCamelCase__ : Any = num_classes lowerCamelCase__ : List[Any] = embed_dim lowerCamelCase__ : Union[str, Any] = depths lowerCamelCase__ : Any = num_heads lowerCamelCase__ : Dict = window_size return config def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> List[Any]: if "patch_embed.proj" in name: lowerCamelCase__ : int = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCamelCase__ : str = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: lowerCamelCase__ : str = """encoder.""" + name if "attn.proj" in name: lowerCamelCase__ : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCamelCase__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCamelCase__ : List[str] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCamelCase__ : Optional[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCamelCase__ : Optional[int] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCamelCase__ : List[str] = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": lowerCamelCase__ : Union[str, Any] = """layernorm.weight""" if name == "norm.bias": lowerCamelCase__ : Tuple = """layernorm.bias""" if "head" in name: lowerCamelCase__ : Optional[Any] = name.replace("""head""" , """classifier""" ) else: lowerCamelCase__ : List[str] = """swin.""" + name return name def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Optional[int]: for key in orig_state_dict.copy().keys(): lowerCamelCase__ : Optional[Any] = orig_state_dict.pop(UpperCamelCase ) if "mask" in key: continue elif "qkv" in key: lowerCamelCase__ : List[Any] = key.split(""".""" ) lowerCamelCase__ : List[str] = int(key_split[1] ) lowerCamelCase__ : List[Any] = int(key_split[3] ) lowerCamelCase__ : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCamelCase__ : Any = val[:dim, :] lowerCamelCase__ : Tuple = val[ dim : dim * 2, : ] lowerCamelCase__ : Tuple = val[-dim:, :] else: lowerCamelCase__ : int = val[ :dim ] lowerCamelCase__ : Any = val[ dim : dim * 2 ] lowerCamelCase__ : Any = val[ -dim: ] else: lowerCamelCase__ : Tuple = val return orig_state_dict def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Tuple: lowerCamelCase__ : Union[str, Any] = timm.create_model(UpperCamelCase , pretrained=UpperCamelCase ) timm_model.eval() lowerCamelCase__ : Union[str, Any] = get_swin_config(UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = SwinForImageClassification(UpperCamelCase ) model.eval() lowerCamelCase__ : Optional[int] = convert_state_dict(timm_model.state_dict() , UpperCamelCase ) model.load_state_dict(UpperCamelCase ) lowerCamelCase__ : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__ : Tuple = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) lowerCamelCase__ : Union[str, Any] = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) lowerCamelCase__ : Tuple = image_processor(images=UpperCamelCase , return_tensors="""pt""" ) lowerCamelCase__ : List[str] = timm_model(inputs["""pixel_values"""] ) lowerCamelCase__ : Union[str, Any] = model(**UpperCamelCase ).logits assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) print(f'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _A : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _A : int =parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
41
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] _UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def lowerCAmelCase__( lowercase : str ) -> Optional[Any]: __snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" ) return sd def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict: __snake_case : Tuple = OrderedDict() __snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __snake_case : Optional[Any] = key for name_pair in rename_keys_prefix: __snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] ) __snake_case : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __snake_case : List[Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]: assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: __snake_case : Any = "pretraining" if "vcr" in checkpoint_path: __snake_case : Optional[Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __snake_case : Tuple = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __snake_case : Any = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 512} __snake_case : Any = "multichoice" elif "vqa_advanced" in checkpoint_path: __snake_case : List[Any] = {"visual_embedding_dim": 2048} __snake_case : Optional[Any] = "vqa_advanced" elif "vqa" in checkpoint_path: __snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} __snake_case : Union[str, Any] = "vqa" elif "nlvr" in checkpoint_path: __snake_case : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } __snake_case : List[Any] = "nlvr" __snake_case : Union[str, Any] = VisualBertConfig(**lowercase ) # Load State Dict __snake_case : Any = load_state_dict(lowercase ) __snake_case : Dict = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": __snake_case : Optional[Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": __snake_case : Tuple = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": __snake_case : Tuple = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": __snake_case : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
326
0
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if len(lowerCAmelCase_ ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _snake_case = list(lowerCAmelCase_ ) _snake_case = degree def __add__( self , lowerCAmelCase_ ): """simple docstring""" if self.degree > polynomial_a.degree: _snake_case = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCAmelCase_ ) else: _snake_case = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCAmelCase_ ) def __sub__( self , lowerCAmelCase_ ): """simple docstring""" return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ): """simple docstring""" return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ): """simple docstring""" _snake_case = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCAmelCase_ ) return polynomial def __repr__( self ): """simple docstring""" return self.__str__() def lowerCamelCase ( self ): """simple docstring""" _snake_case = [0] * self.degree for i in range(self.degree ): _snake_case = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ = 0 ): """simple docstring""" _snake_case = [0] * (self.degree + 2) _snake_case = constant for i in range(self.degree + 1 ): _snake_case = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCAmelCase_ ) def __eq__( self , lowerCAmelCase_ ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , lowerCAmelCase_ ): """simple docstring""" return not self.__eq__(lowerCAmelCase_ )
42
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple: # Load configuration defined in the metadata file with open(lowercase ) as metadata_file: __snake_case : int = json.load(lowercase ) __snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file __snake_case : Tuple = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] __snake_case : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) __snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: __snake_case : Tuple = json.load(lowercase ) __snake_case : List[Any] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) __snake_case : Any = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens __snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0] __snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0] __snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"] __snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __snake_case : List[Any] = state_dict[bias_name] __snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) __snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 ) __snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self.""" __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] __snake_case : str = state_dict[prefix + matrix_name] __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"] __snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __snake_case : List[Any] = state_dict["entity_predictions.bias"] __snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __snake_case : Any = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __snake_case : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __snake_case : str = state_dict[key] else: __snake_case : str = state_dict[key] __snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) __snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __snake_case : Union[str, Any] = (0, 9) __snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : Any = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : Optional[Any] = torch.Size((1, 33, 768) ) __snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : str = torch.Size((1, 1, 768) ) __snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __snake_case : str = MLukeTokenizer.from_pretrained(lowercase ) __snake_case : Dict = "Tokyo is the capital of <mask>." __snake_case : Union[str, Any] = (24, 30) __snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : int = model(**lowercase ) __snake_case : Dict = encoding["input_ids"][0].tolist() __snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) __snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item() __snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]: __snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"] __snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )] __snake_case : Any = {} for entry in data: __snake_case : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __snake_case : Optional[int] = entity_id break __snake_case : Union[str, Any] = f"""{language}:{entity_name}""" __snake_case : Any = entity_id return new_mapping if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE ) as metadata_file: __UpperCamelCase :int = json.load(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path __UpperCamelCase :Optional[Any] = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file __UpperCamelCase :str = load_original_entity_vocab(SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] __UpperCamelCase :Tuple = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __UpperCamelCase :Any = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks __UpperCamelCase :Optional[int] = AddedToken('''<ent>''' , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) __UpperCamelCase :str = AddedToken('''<ent2>''' , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) with open(os.path.join(SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: __UpperCamelCase :Any = json.load(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = '''MLukeTokenizer''' with open(os.path.join(SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with open(os.path.join(SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens __UpperCamelCase :List[str] = tokenizer.convert_tokens_to_ids(['''@'''] )[0] __UpperCamelCase :Optional[int] = tokenizer.convert_tokens_to_ids(['''#'''] )[0] __UpperCamelCase :List[Any] = state_dict['''embeddings.word_embeddings.weight'''] __UpperCamelCase :Tuple = word_emb[ent_init_index].unsqueeze(0 ) __UpperCamelCase :List[str] = word_emb[enta_init_index].unsqueeze(0 ) __UpperCamelCase :Tuple = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __UpperCamelCase :Optional[int] = state_dict[bias_name] __UpperCamelCase :int = decoder_bias[ent_init_index].unsqueeze(0 ) __UpperCamelCase :Optional[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) __UpperCamelCase :Optional[Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __UpperCamelCase :List[str] = f"""encoder.layer.{layer_index}.attention.self.""" __UpperCamelCase :str = state_dict[prefix + matrix_name] __UpperCamelCase :Optional[Any] = state_dict[prefix + matrix_name] __UpperCamelCase :Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __UpperCamelCase :int = state_dict['''entity_embeddings.entity_embeddings.weight'''] __UpperCamelCase :Union[str, Any] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) __UpperCamelCase :Tuple = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __UpperCamelCase :List[str] = state_dict['''entity_predictions.bias'''] __UpperCamelCase :int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) __UpperCamelCase :int = torch.cat([entity_prediction_bias, entity_mask_bias] ) __UpperCamelCase :str = LukeForMaskedLM(config=SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) __UpperCamelCase :Any = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): __UpperCamelCase :Union[str, Any] = state_dict[key] else: __UpperCamelCase :Optional[int] = state_dict[key] __UpperCamelCase , __UpperCamelCase :List[Any] = model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) if set(SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __UpperCamelCase :List[str] = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , task='''entity_classification''' ) __UpperCamelCase :Dict = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' __UpperCamelCase :Optional[Any] = (0, 9) __UpperCamelCase :Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) __UpperCamelCase :int = model(**SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __UpperCamelCase :Optional[int] = torch.Size((1, 33, 768) ) __UpperCamelCase :Union[str, Any] = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __UpperCamelCase :Union[str, Any] = torch.Size((1, 1, 768) ) __UpperCamelCase :Union[str, Any] = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction __UpperCamelCase :Optional[Any] = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = '''Tokyo is the capital of <mask>.''' __UpperCamelCase :Any = (24, 30) __UpperCamelCase :Optional[int] = tokenizer(SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) __UpperCamelCase :Tuple = model(**SCREAMING_SNAKE_CASE ) __UpperCamelCase :int = encoding['''input_ids'''][0].tolist() __UpperCamelCase :int = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) __UpperCamelCase :Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(SCREAMING_SNAKE_CASE ) __UpperCamelCase :int = outputs.entity_logits[0][0].argmax().item() __UpperCamelCase :Union[str, Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(SCREAMING_SNAKE_CASE ) ) model.save_pretrained(SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[Any] = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] __UpperCamelCase :List[Any] = [json.loads(SCREAMING_SNAKE_CASE ) for line in open(SCREAMING_SNAKE_CASE )] __UpperCamelCase :int = {} for entry in data: __UpperCamelCase :int = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __UpperCamelCase :Optional[int] = entity_id break __UpperCamelCase :Tuple = f"""{language}:{entity_name}""" __UpperCamelCase :Union[str, Any] = entity_id return new_mapping if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowercase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
43
from maths.prime_factors import prime_factors def lowerCAmelCase__( lowercase : int ) -> int: if not isinstance(lowercase , lowercase ): __snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(lowercase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __A ( self ): _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Tuple = 3 _lowerCAmelCase : Optional[int] = (32, 32) _lowerCAmelCase : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a__ ) return image @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(a__ ) @property def __A ( self ): def extract(*a__ , **a__ ): class __A : def __init__( self ): _lowerCAmelCase : Dict = torch.ones([0] ) def __A ( self , a__ ): self.pixel_values.to(a__ ) return self return Out() return extract def __A ( self ): _lowerCAmelCase : int = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Optional[Any] = self.dummy_cond_unet _lowerCAmelCase : Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=a__ , set_alpha_to_one=a__ , ) _lowerCAmelCase : str = self.dummy_vae _lowerCAmelCase : Tuple = self.dummy_text_encoder _lowerCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _lowerCAmelCase : Optional[int] = StableDiffusionPipeline( unet=a__ , scheduler=a__ , vae=a__ , text_encoder=a__ , tokenizer=a__ , safety_checker=a__ , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase : int = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Optional[Any] = """A painting of a squirrel eating a burger""" _lowerCAmelCase : List[Any] = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = sd_pipe([prompt] , generator=a__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) _lowerCAmelCase : Any = output.images _lowerCAmelCase : str = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : int = sd_pipe( [prompt] , generator=a__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=a__ , )[0] _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] _lowerCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Dict = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): _lowerCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : int = self.dummy_cond_unet _lowerCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a__ ) _lowerCAmelCase : List[str] = self.dummy_vae _lowerCAmelCase : Any = self.dummy_text_encoder _lowerCAmelCase : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _lowerCAmelCase : str = StableDiffusionPipeline( unet=a__ , scheduler=a__ , vae=a__ , text_encoder=a__ , tokenizer=a__ , safety_checker=a__ , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase : Optional[Any] = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : str = """A painting of a squirrel eating a burger""" _lowerCAmelCase : str = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : Tuple = sd_pipe([prompt] , generator=a__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) _lowerCAmelCase : Tuple = output.images _lowerCAmelCase : Dict = torch.Generator(device=a__ ).manual_seed(0 ) _lowerCAmelCase : List[str] = sd_pipe( [prompt] , generator=a__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=a__ , )[0] _lowerCAmelCase : Any = image[0, -3:, -3:, -1] _lowerCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Union[str, Any] = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): _lowerCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=a__ ) assert isinstance(a__ , a__ ) assert isinstance(pipe.scheduler , a__ ) assert pipe.safety_checker is None _lowerCAmelCase : Any = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a__ ) _lowerCAmelCase : str = StableDiffusionPipeline.from_pretrained(a__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _lowerCAmelCase : Optional[Any] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __A ( self ): _lowerCAmelCase : int = self.dummy_cond_unet _lowerCAmelCase : str = PNDMScheduler(skip_prk_steps=a__ ) _lowerCAmelCase : Any = self.dummy_vae _lowerCAmelCase : Dict = self.dummy_text_encoder _lowerCAmelCase : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _lowerCAmelCase : str = unet.half() _lowerCAmelCase : List[str] = vae.half() _lowerCAmelCase : Tuple = bert.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase : Dict = StableDiffusionPipeline( unet=a__ , scheduler=a__ , vae=a__ , text_encoder=a__ , tokenizer=a__ , safety_checker=a__ , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase : int = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : int = """A painting of a squirrel eating a burger""" _lowerCAmelCase : Dict = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __A ( unittest.TestCase ): def __A ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ): _lowerCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=a__ ) _lowerCAmelCase : List[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _lowerCAmelCase : Optional[int] = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Dict = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _lowerCAmelCase : List[Any] = 4003660346 _lowerCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _lowerCAmelCase : int = torch.manual_seed(a__ ) _lowerCAmelCase : Dict = sd_pipe( [prompt] , generator=a__ , guidance_scale=a__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) _lowerCAmelCase : int = output.images _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : Dict = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _lowerCAmelCase : Optional[int] = torch.manual_seed(a__ ) _lowerCAmelCase : List[str] = sd_pipe( [prompt] , generator=a__ , guidance_scale=a__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCAmelCase : Optional[int] = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] _lowerCAmelCase : str = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): _lowerCAmelCase : Tuple = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=a__ ) _lowerCAmelCase : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _lowerCAmelCase : Optional[Any] = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : List[str] = """padme amidala taking a bath artwork, safe for work, no nudity""" _lowerCAmelCase : Tuple = 2734971755 _lowerCAmelCase : Union[str, Any] = 7 _lowerCAmelCase : Optional[int] = torch.manual_seed(a__ ) _lowerCAmelCase : Any = sd_pipe( [prompt] , generator=a__ , guidance_scale=a__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = image[0, -3:, -3:, -1] _lowerCAmelCase : Dict = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _lowerCAmelCase : Optional[Any] = torch.manual_seed(a__ ) _lowerCAmelCase : Any = sd_pipe( [prompt] , generator=a__ , guidance_scale=a__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCAmelCase : List[Any] = output.images _lowerCAmelCase : List[Any] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self ): _lowerCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _lowerCAmelCase : Any = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : Dict = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _lowerCAmelCase : int = 1044355234 _lowerCAmelCase : Tuple = 12 _lowerCAmelCase : int = torch.manual_seed(a__ ) _lowerCAmelCase : str = sd_pipe( [prompt] , generator=a__ , guidance_scale=a__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) _lowerCAmelCase : List[str] = output.images _lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] _lowerCAmelCase : int = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _lowerCAmelCase : Optional[int] = torch.manual_seed(a__ ) _lowerCAmelCase : List[Any] = sd_pipe( [prompt] , generator=a__ , guidance_scale=a__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _lowerCAmelCase : List[str] = output.images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] _lowerCAmelCase : List[str] = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
44
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" ) __snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids __snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids __snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits __snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() __snake_case : Any = -(labels.shape[-1] * loss.item()) __snake_case : List[str] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
326
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ : int = 600851475143 ) -> int: try: __a = int(lowerCAmelCase__ ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) __a = 2 __a = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __a = i while n % i == 0: __a = n // i i += 1 return int(lowerCAmelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
45
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]: '''simple docstring''' super().__init__(UpperCAmelCase ) __snake_case : Optional[int] = proj_size __snake_case : str = CLIPVisionModel(UpperCAmelCase ) __snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase ) __snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size ) __snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' __snake_case : int = self.model(pixel_values=UpperCAmelCase ) __snake_case : Optional[int] = clip_output.pooler_output __snake_case : Any = self.mapper(latent_states[:, None] ) __snake_case : Any = self.final_layer_norm(UpperCAmelCase ) __snake_case : str = self.proj_out(UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__() __snake_case : List[Any] = (config.num_hidden_layers + 1) // 5 __snake_case : Dict = config.hidden_size __snake_case : str = 1 __snake_case : List[Any] = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase ) for _ in range(UpperCAmelCase ) ] ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' for block in self.blocks: __snake_case : int = block(UpperCAmelCase ) return hidden_states
326
0
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient SCREAMING_SNAKE_CASE__ = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase = test_results.split(""" """ ) lowerCAmelCase = 0 lowerCAmelCase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowerCAmelCase = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(SCREAMING_SNAKE_CASE ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase = {} lowerCAmelCase = None lowerCAmelCase = False for line in failures_short_lines.split("""\n""" ): if re.search(R"""_ \[doctest\]""" , SCREAMING_SNAKE_CASE ): lowerCAmelCase = True lowerCAmelCase = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): lowerCAmelCase = line lowerCAmelCase = False return failures class lowercase : def __init__( self , lowercase , lowercase ) -> List[str]: lowerCAmelCase = title lowerCAmelCase = doc_test_results["""time_spent"""].split(""",""" )[0] lowerCAmelCase = doc_test_results["""success"""] lowerCAmelCase = doc_test_results["""failures"""] lowerCAmelCase = self.n_success + self.n_failures # Failures and success of the modeling tests lowerCAmelCase = doc_test_results @property def _snake_case ( self ) -> str: lowerCAmelCase = [self._time_spent] lowerCAmelCase = 0 for time in time_spent: lowerCAmelCase = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(lowercase ) == 1: lowerCAmelCase = [0, 0, time_parts[0]] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_600 + minutes * 60 + seconds lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = total_secs // 3_600, (total_secs % 3_600) // 60, total_secs % 60 return f'{int(lowercase )}h{int(lowercase )}m{int(lowercase )}s' @property def _snake_case ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _snake_case ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def _snake_case ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' f' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def _snake_case ( self ) -> Dict: lowerCAmelCase = 40 lowerCAmelCase = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(lowercase , lowercase )} lowerCAmelCase = """""" for category, failures in category_failures.items(): if len(lowercase ) == 0: continue if report != "": report += "\n\n" report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(lowercase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'The following examples had failures:\n\n\n{report}\n', }, } @property def _snake_case ( self ) -> str: lowerCAmelCase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(lowercase ) @staticmethod def _snake_case ( ) -> int: lowerCAmelCase = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(lowercase )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=lowercase , ) def _snake_case ( self ) -> Union[str, Any]: print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) lowerCAmelCase = f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else """All tests passed.""" lowerCAmelCase = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=lowercase , ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase ) -> int: lowerCAmelCase = """""" for key, value in failures.items(): lowerCAmelCase = value[:200] + """ [Truncated]""" if len(lowercase ) > 250 else value failures_text += f'*{key}*\n_{value}_\n\n' lowerCAmelCase = job_name lowerCAmelCase = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: lowerCAmelCase = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _snake_case ( self ) -> List[str]: if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) lowerCAmelCase = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) lowerCAmelCase = sorted(self.doc_test_results.items() , key=lambda lowercase : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): lowerCAmelCase = f'*Num failures* :{len(job_result["failed"] )} \n' lowerCAmelCase = job_result["""failures"""] lowerCAmelCase = self.get_reply_blocks(lowercase , lowercase , lowercase , text=lowercase ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=f'Results for {job}' , blocks=lowercase , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = os.environ["""GITHUB_RUN_ID"""] lowerCAmelCase = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' lowerCAmelCase = requests.get(SCREAMING_SNAKE_CASE ).json() lowerCAmelCase = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCAmelCase = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase = requests.get(url + F'&page={i + 2}' ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""" , SCREAMING_SNAKE_CASE ) return {} def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase = {} if os.path.exists(SCREAMING_SNAKE_CASE ): lowerCAmelCase = os.listdir(SCREAMING_SNAKE_CASE ) for file in files: try: with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , encoding="""utf-8""" ) as f: lowerCAmelCase = f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}.' ) from e return _artifact def UpperCAmelCase__ ( ): '''simple docstring''' class lowercase : def __init__( self , lowercase ) -> Optional[int]: lowerCAmelCase = name lowerCAmelCase = [] def __str__( self ) -> Union[str, Any]: return self.name def _snake_case ( self , lowercase ) -> Optional[Any]: self.paths.append({"""name""": self.name, """path""": path} ) lowerCAmelCase = {} lowerCAmelCase = filter(os.path.isdir , os.listdir() ) for directory in directories: lowerCAmelCase = directory if artifact_name not in _available_artifacts: lowerCAmelCase = Artifact(SCREAMING_SNAKE_CASE ) _available_artifacts[artifact_name].add_path(SCREAMING_SNAKE_CASE ) return _available_artifacts if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = get_job_links() SCREAMING_SNAKE_CASE__ = retrieve_available_artifacts() SCREAMING_SNAKE_CASE__ = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' SCREAMING_SNAKE_CASE__ = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job SCREAMING_SNAKE_CASE__ = github_actions_job_links.get("run_doctests") SCREAMING_SNAKE_CASE__ = available_artifacts["doc_tests_gpu_test_reports"].paths[0] SCREAMING_SNAKE_CASE__ = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = handle_test_results(artifact["stats"]) SCREAMING_SNAKE_CASE__ = failed SCREAMING_SNAKE_CASE__ = success SCREAMING_SNAKE_CASE__ = time_spent[1:-1] + ", " SCREAMING_SNAKE_CASE__ = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): SCREAMING_SNAKE_CASE__ = line.replace("FAILED ", "") SCREAMING_SNAKE_CASE__ = line.split()[0].replace("\n", "") if "::" in line: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = line.split("::") else: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): SCREAMING_SNAKE_CASE__ = docs[file_regex] doc_test_results[category]["failed"].append(test) SCREAMING_SNAKE_CASE__ = all_failures[test] if test in all_failures else "N/A" SCREAMING_SNAKE_CASE__ = failure break SCREAMING_SNAKE_CASE__ = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
46
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
326
0
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase : Optional[int] = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } lowerCamelCase : Optional[int] = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def _lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Tuple=False ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =create_model( 'HTSAT-tiny' , 'roberta' , _UpperCamelCase , precision='fp32' , device='cuda:0' if torch.cuda.is_available() else 'cpu' , enable_fusion=_UpperCamelCase , fusion_type='aff_2d' if enable_fusion else None , ) return model, model_cfg def _lowerCAmelCase ( _UpperCamelCase : int ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =r'.*sequential.(\d+).*' _SCREAMING_SNAKE_CASE =r'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _SCREAMING_SNAKE_CASE =key.replace(_UpperCamelCase , _UpperCamelCase ) if re.match(_UpperCamelCase , _UpperCamelCase ): # replace sequential layers with list _SCREAMING_SNAKE_CASE =re.match(_UpperCamelCase , _UpperCamelCase ).group(1 ) _SCREAMING_SNAKE_CASE =key.replace(f"sequential.{sequential_layer}." , f"layers.{int(_UpperCamelCase )//3}.linear." ) elif re.match(_UpperCamelCase , _UpperCamelCase ): _SCREAMING_SNAKE_CASE =int(re.match(_UpperCamelCase , _UpperCamelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _SCREAMING_SNAKE_CASE =1 if projecton_layer == 0 else 2 _SCREAMING_SNAKE_CASE =key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value _SCREAMING_SNAKE_CASE =value _SCREAMING_SNAKE_CASE =mixed_qkv.size(0 ) // 3 _SCREAMING_SNAKE_CASE =mixed_qkv[:qkv_dim] _SCREAMING_SNAKE_CASE =mixed_qkv[qkv_dim : qkv_dim * 2] _SCREAMING_SNAKE_CASE =mixed_qkv[qkv_dim * 2 :] _SCREAMING_SNAKE_CASE =query_layer _SCREAMING_SNAKE_CASE =key_layer _SCREAMING_SNAKE_CASE =value_layer else: _SCREAMING_SNAKE_CASE =value return model_state_dict def _lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any]=False ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =init_clap(_UpperCamelCase , enable_fusion=_UpperCamelCase ) clap_model.eval() _SCREAMING_SNAKE_CASE =clap_model.state_dict() _SCREAMING_SNAKE_CASE =rename_state_dict(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =ClapConfig() _SCREAMING_SNAKE_CASE =enable_fusion _SCREAMING_SNAKE_CASE =ClapModel(_UpperCamelCase ) # ignore the spectrogram embedding layer model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) transformers_config.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") lowerCamelCase : Union[str, Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
47
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = torch.device('''cpu''') def lowerCAmelCase__( ) -> Any: __snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCAmelCase__( lowercase : Dict ) -> List[Any]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = dct.pop(lowercase ) __snake_case : List[Any] = val def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple: __snake_case : Optional[Any] = [] for k in state_dict.keys(): __snake_case : Union[str, Any] = k if ".pwconv" in k: __snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: __snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: __snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: __snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: __snake_case : int = k_new.split("." ) if ls[2].isdigit(): __snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: __snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]: __snake_case : List[str] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __snake_case : Tuple = 1000 __snake_case : Any = "huggingface/label-files" __snake_case : int = "imagenet-1k-id2label.json" __snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) __snake_case : str = {int(lowercase ): v for k, v in idalabel.items()} __snake_case : int = idalabel __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __snake_case : Optional[Any] = [3, 3, 6, 4] __snake_case : Optional[int] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __snake_case : List[str] = [3, 3, 9, 6] __snake_case : Optional[Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __snake_case : Optional[int] = [4, 3, 10, 5] __snake_case : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __snake_case : str = [4, 4, 12, 6] __snake_case : Optional[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): __snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase ) else: __snake_case : Tuple = torch.load(lowercase , map_location="cpu" ) __snake_case : Optional[int] = checkpoint __snake_case : Any = create_rename_keys(lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # load HuggingFace model __snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval() hf_model.load_state_dict(lowercase ) # prepare test inputs __snake_case : Optional[Any] = prepare_img() __snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" ) __snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" ) # compare outputs from both models __snake_case : str = get_expected_output(lowercase ) __snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _UpperCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
326
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: lowerCamelCase : List[str] = state_dict.pop(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Tuple = val def A ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: lowerCamelCase : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowerCamelCase : Optional[int] = key.replace("backbone.0.body" ,"backbone.conv_encoder.model" ) lowerCamelCase : Optional[int] = value else: lowerCamelCase : List[Any] = value return new_state_dict def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=False ) -> List[str]: lowerCamelCase : int = "" if is_panoptic: lowerCamelCase : Dict = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCamelCase : List[Any] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) lowerCamelCase : Any = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase : List[Any] = in_proj_weight[:256, :] lowerCamelCase : int = in_proj_bias[:256] lowerCamelCase : Optional[int] = in_proj_weight[256:512, :] lowerCamelCase : int = in_proj_bias[256:512] lowerCamelCase : Any = in_proj_weight[-256:, :] lowerCamelCase : Dict = in_proj_bias[-256:] def A ( ) -> List[str]: lowerCamelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase : int = Image.open(requests.get(_SCREAMING_SNAKE_CASE ,stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: lowerCamelCase : Optional[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowerCamelCase : str = "resnet101" if "dc5" in model_name: lowerCamelCase : int = True lowerCamelCase : int = "panoptic" in model_name if is_panoptic: lowerCamelCase : List[str] = 250 else: lowerCamelCase : int = 91 lowerCamelCase : Tuple = "huggingface/label-files" lowerCamelCase : Optional[Any] = "coco-detection-id2label.json" lowerCamelCase : Dict = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,repo_type="dataset" ) ,"r" ) ) lowerCamelCase : Optional[int] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCamelCase : Optional[Any] = idalabel lowerCamelCase : str = {v: k for k, v in idalabel.items()} # load image processor lowerCamelCase : Tuple = "coco_panoptic" if is_panoptic else "coco_detection" lowerCamelCase : List[str] = ConditionalDetrImageProcessor(format=_SCREAMING_SNAKE_CASE ) # prepare image lowerCamelCase : List[str] = prepare_img() lowerCamelCase : Union[str, Any] = image_processor(images=_SCREAMING_SNAKE_CASE ,return_tensors="pt" ) lowerCamelCase : int = encoding["pixel_values"] logger.info(f'''Converting model {model_name}...''' ) # load original model from torch hub lowerCamelCase : Tuple = torch.hub.load("DeppMeng/ConditionalDETR" ,_SCREAMING_SNAKE_CASE ,pretrained=_SCREAMING_SNAKE_CASE ).eval() lowerCamelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowerCamelCase : Optional[Any] = "conditional_detr." + src rename_key(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : Dict = rename_backbone_keys(_SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(_SCREAMING_SNAKE_CASE ,is_panoptic=_SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCamelCase : Optional[int] = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): lowerCamelCase : Dict = state_dict.pop(_SCREAMING_SNAKE_CASE ) lowerCamelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCamelCase : Optional[int] = state_dict.pop(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Dict = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: lowerCamelCase : str = state_dict.pop(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Dict = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): lowerCamelCase : Dict = state_dict.pop(_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[str] = val # finally, create HuggingFace model and load state dict lowerCamelCase : List[str] = ConditionalDetrForSegmentation(_SCREAMING_SNAKE_CASE ) if is_panoptic else ConditionalDetrForObjectDetection(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() model.push_to_hub(repo_id=_SCREAMING_SNAKE_CASE ,organization="DepuMeng" ,commit_message="Add model" ) # verify our conversion lowerCamelCase : Any = conditional_detr(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) assert torch.allclose(outputs.logits ,original_outputs["pred_logits"] ,atol=1e-4 ) assert torch.allclose(outputs.pred_boxes ,original_outputs["pred_boxes"] ,atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs["pred_masks"] ,atol=1e-4 ) # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : List[Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
48
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) _UpperCamelCase = logging.getLogger(__name__) def lowerCAmelCase__( lowercase : str ) -> List[str]: __snake_case : int = git.Repo(search_parent_directories=lowercase ) __snake_case : Union[str, Any] = { "repo_id": str(lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f: json.dump(lowercase , lowercase , indent=4 ) def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]: if params.n_gpu <= 0: __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = -1 __snake_case : Union[str, Any] = True __snake_case : Tuple = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : int = int(os.environ["N_GPU_NODE"] ) __snake_case : Union[str, Any] = int(os.environ["RANK"] ) # number of nodes / node ID __snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node __snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node __snake_case : Union[str, Any] = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 __snake_case : Any = 1 __snake_case : str = 0 __snake_case : Optional[Any] = 0 __snake_case : Dict = 0 __snake_case : int = 1 __snake_case : Optional[Any] = 1 __snake_case : Tuple = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0 __snake_case : List[Any] = params.n_nodes > 1 # summary __snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
326
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class _A ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : Callable , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : float = 1.0 , __SCREAMING_SNAKE_CASE : str = None , ): '''simple docstring''' super().__init__() __a = initial_learning_rate __a = warmup_steps __a = power __a = decay_schedule_fn __a = name def __call__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' with tf.name_scope(self.name or '''WarmUp''') as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __a = tf.cast(__SCREAMING_SNAKE_CASE , tf.floataa) __a = tf.cast(self.warmup_steps , tf.floataa) __a = global_step_float / warmup_steps_float __a = self.initial_learning_rate * tf.math.pow(__SCREAMING_SNAKE_CASE , self.power) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps) , name=__SCREAMING_SNAKE_CASE , ) def _lowerCamelCase ( self : List[str]): '''simple docstring''' return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 0.9 , _UpperCAmelCase = 0.9_99 , _UpperCAmelCase = 1E-8 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 1.0 , _UpperCAmelCase = None , ): __a = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_UpperCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_UpperCAmelCase , ) if num_warmup_steps: __a = WarmUp( initial_learning_rate=_UpperCAmelCase , decay_schedule_fn=_UpperCAmelCase , warmup_steps=_UpperCAmelCase , ) if weight_decay_rate > 0.0: __a = AdamWeightDecay( learning_rate=_UpperCAmelCase , weight_decay_rate=_UpperCAmelCase , beta_a=_UpperCAmelCase , beta_a=_UpperCAmelCase , epsilon=_UpperCAmelCase , clipnorm=_UpperCAmelCase , global_clipnorm=_UpperCAmelCase , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=_UpperCAmelCase , ) else: __a = tf.keras.optimizers.Adam( learning_rate=_UpperCAmelCase , beta_a=_UpperCAmelCase , beta_a=_UpperCAmelCase , epsilon=_UpperCAmelCase , clipnorm=_UpperCAmelCase , global_clipnorm=_UpperCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class _A ( __UpperCAmelCase ): def __init__( self : str , __SCREAMING_SNAKE_CASE : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.0_01 , __SCREAMING_SNAKE_CASE : float = 0.9 , __SCREAMING_SNAKE_CASE : float = 0.9_99 , __SCREAMING_SNAKE_CASE : float = 1E-7 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : float = 0.0 , __SCREAMING_SNAKE_CASE : Optional[List[str]] = None , __SCREAMING_SNAKE_CASE : Optional[List[str]] = None , __SCREAMING_SNAKE_CASE : str = "AdamWeightDecay" , **__SCREAMING_SNAKE_CASE : Tuple , ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) __a = weight_decay_rate __a = include_in_weight_decay __a = exclude_from_weight_decay @classmethod def _lowerCamelCase ( cls : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a = {'''WarmUp''': WarmUp} return super(__SCREAMING_SNAKE_CASE , cls).from_config(__SCREAMING_SNAKE_CASE , custom_objects=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' super(__SCREAMING_SNAKE_CASE , self)._prepare_local(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''') def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' __a , __a = list(zip(*__SCREAMING_SNAKE_CASE)) return super(__SCREAMING_SNAKE_CASE , self).apply_gradients(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) , name=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' if apply_state is None: return self._decayed_lr_t[var_dtype], {} __a = apply_state or {} __a = apply_state.get((var_device, var_dtype)) if coefficients is None: __a = self._fallback_apply_state(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None): '''simple docstring''' __a , __a = self._get_lr(var.device , var.dtype.base_dtype , __SCREAMING_SNAKE_CASE) __a = self._decay_weights_op(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) with tf.control_dependencies([decay]): return super(__SCREAMING_SNAKE_CASE , self)._resource_apply_dense(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any]=None): '''simple docstring''' __a , __a = self._get_lr(var.device , var.dtype.base_dtype , __SCREAMING_SNAKE_CASE) __a = self._decay_weights_op(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) with tf.control_dependencies([decay]): return super(__SCREAMING_SNAKE_CASE , self)._resource_apply_sparse(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate}) return config def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) is not None: return False return True class _A ( __UpperCAmelCase ): def __init__( self : Tuple): '''simple docstring''' __a = [] __a = None @property def _lowerCamelCase ( self : Dict): '''simple docstring''' if self._accum_steps is None: __a = tf.Variable( tf.constant(0 , dtype=tf.intaa) , trainable=__SCREAMING_SNAKE_CASE , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _lowerCamelCase ( self : Any): '''simple docstring''' if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''') return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' if not self._gradients: __a = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__SCREAMING_SNAKE_CASE) , trainable=__SCREAMING_SNAKE_CASE , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ]) if len(__SCREAMING_SNAKE_CASE) != len(self._gradients): raise ValueError(F'Expected {len(self._gradients)} gradients, but got {len(__SCREAMING_SNAKE_CASE)}') for accum_gradient, gradient in zip(self._gradients , __SCREAMING_SNAKE_CASE): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__SCREAMING_SNAKE_CASE) self._accum_steps.assign_add(1) def _lowerCamelCase ( self : List[str]): '''simple docstring''' if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__SCREAMING_SNAKE_CASE))
49
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str =JukeboxTokenizer UpperCAmelCase_ : Tuple ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : int = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
326
0
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="attention" ) -> Dict: lowerCamelCase__ : int = params[F"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] lowerCamelCase__ : int = params[F"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] lowerCamelCase__ : List[Any] = params[F"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] lowerCamelCase__ : str = params[F"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> List[Any]: if split_mlp_wi: lowerCamelCase__ : Optional[Any] = params[F"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] lowerCamelCase__ : Optional[int] = params[F"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] lowerCamelCase__ : Union[str, Any] = (wi_a, wi_a) else: lowerCamelCase__ : Tuple = params[F"""{prefix}/layers_{i}/mlp/wi/kernel"""] lowerCamelCase__ : str = params[F"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: return params[F"""{prefix}/layers_{i}/{layer_name}/scale"""] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , *, _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: lowerCamelCase__ : List[str] = traverse_util.flatten_dict(variables['target'] ) lowerCamelCase__ : Optional[int] = {'/'.join(_UpperCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCamelCase__ : Optional[Any] = 'encoder/layers_0/mlp/wi_0/kernel' in old print('Split MLP:' , _UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = collections.OrderedDict() # Shared embeddings. lowerCamelCase__ : Optional[Any] = old['token_embedder/embedding'] # Encoder. for i in range(_UpperCAmelCase ): # Block i, layer 0 (Self Attention). lowerCamelCase__ : str = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , 'encoder' , 'pre_attention_layer_norm' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , 'encoder' , 'attention' ) lowerCamelCase__ : Dict = layer_norm lowerCamelCase__ : List[Any] = k.T lowerCamelCase__ : Dict = o.T lowerCamelCase__ : Optional[int] = q.T lowerCamelCase__ : Union[str, Any] = v.T # Block i, layer 1 (MLP). lowerCamelCase__ : Dict = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , 'encoder' , 'pre_mlp_layer_norm' ) lowerCamelCase__ , lowerCamelCase__ : Any = tax_mlp_lookup(_UpperCAmelCase , _UpperCAmelCase , 'encoder' , _UpperCAmelCase ) lowerCamelCase__ : List[Any] = layer_norm if split_mlp_wi: lowerCamelCase__ : str = wi[0].T lowerCamelCase__ : Dict = wi[1].T else: lowerCamelCase__ : Optional[Any] = wi.T lowerCamelCase__ : Tuple = wo.T lowerCamelCase__ : int = old[ 'encoder/relpos_bias/rel_embedding' ].T lowerCamelCase__ : int = old['encoder/encoder_norm/scale'] if not is_encoder_only: # Decoder. for i in range(_UpperCAmelCase ): # Block i, layer 0 (Self Attention). lowerCamelCase__ : Optional[int] = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , 'decoder' , 'pre_self_attention_layer_norm' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , 'decoder' , 'self_attention' ) lowerCamelCase__ : List[Any] = layer_norm lowerCamelCase__ : List[Any] = k.T lowerCamelCase__ : Union[str, Any] = o.T lowerCamelCase__ : str = q.T lowerCamelCase__ : int = v.T # Block i, layer 1 (Cross Attention). lowerCamelCase__ : str = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , 'decoder' , 'pre_cross_attention_layer_norm' ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , 'decoder' , 'encoder_decoder_attention' ) lowerCamelCase__ : str = layer_norm lowerCamelCase__ : List[str] = k.T lowerCamelCase__ : Tuple = o.T lowerCamelCase__ : List[Any] = q.T lowerCamelCase__ : int = v.T # Block i, layer 2 (MLP). lowerCamelCase__ : Optional[Any] = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , 'decoder' , 'pre_mlp_layer_norm' ) lowerCamelCase__ , lowerCamelCase__ : List[Any] = tax_mlp_lookup(_UpperCAmelCase , _UpperCAmelCase , 'decoder' , _UpperCAmelCase ) lowerCamelCase__ : List[str] = layer_norm if split_mlp_wi: lowerCamelCase__ : str = wi[0].T lowerCamelCase__ : str = wi[1].T else: lowerCamelCase__ : Any = wi.T lowerCamelCase__ : Optional[Any] = wo.T lowerCamelCase__ : int = old['decoder/decoder_norm/scale'] lowerCamelCase__ : Optional[int] = old[ 'decoder/relpos_bias/rel_embedding' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCamelCase__ : Dict = old['decoder/logits_dense/kernel'].T return new def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: lowerCamelCase__ : int = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCamelCase__ : Optional[int] = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCamelCase__ : Union[str, Any] = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) lowerCamelCase__ : Optional[int] = state_dict['shared.weight'] return state_dict def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Any = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) lowerCamelCase__ : Dict = convert_tax_to_pytorch(_UpperCAmelCase , num_layers=config.num_layers , is_encoder_only=_UpperCAmelCase ) lowerCamelCase__ : Tuple = make_state_dict(_UpperCAmelCase , _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False ) -> str: lowerCamelCase__ : Optional[int] = TaConfig.from_json_file(_UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCamelCase__ : List[str] = TaEncoderModel(_UpperCAmelCase ) else: lowerCamelCase__ : Tuple = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_UpperCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_UpperCAmelCase ) print('Done' ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) _UpperCAmelCase : Tuple = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
50
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : str UpperCAmelCase_ : str =None @staticmethod def UpperCAmelCase ( ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def UpperCAmelCase ( cls ) -> Tuple: '''simple docstring''' return F"""`pip install {cls.pip_package or cls.name}`""" class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[int] ="optuna" @staticmethod def UpperCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' return is_optuna_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' return default_hp_space_optuna(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : List[str] ="ray" UpperCAmelCase_ : Dict ="'ray[tune]'" @staticmethod def UpperCAmelCase ( ) -> str: '''simple docstring''' return is_ray_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' return default_hp_space_ray(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="sigopt" @staticmethod def UpperCAmelCase ( ) -> int: '''simple docstring''' return is_sigopt_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return default_hp_space_sigopt(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : str ="wandb" @staticmethod def UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' return is_wandb_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return default_hp_space_wandb(UpperCAmelCase ) _UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase__( ) -> str: __snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase ) > 0: __snake_case : Dict = available_backends[0].name if len(lowercase ) > 1: logger.info( f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
326
0
def A (__A : bytes ) -> str: """simple docstring""" return "".join([hex(__A )[2:].zfill(2 ).upper() for byte in list(__A )] ) def A (__A : str ) -> bytes: """simple docstring""" if (len(__A ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__A ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(__A ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
51
import math def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list: __snake_case : Any = end or len(lowercase ) for i in range(lowercase , lowercase ): __snake_case : List[str] = i __snake_case : Union[str, Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case : Optional[Any] = array[temp_index - 1] temp_index -= 1 __snake_case : Any = temp_index_value return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap __snake_case : Any = index __snake_case : Optional[Any] = 2 * index + 1 # Left Node __snake_case : str = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case : Tuple = right_index if largest != index: __snake_case , __snake_case : int = array[largest], array[index] heapify(lowercase , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list ) -> list: __snake_case : List[str] = len(lowercase ) for i in range(n // 2 , -1 , -1 ): heapify(lowercase , lowercase , lowercase ) for i in range(n - 1 , 0 , -1 ): __snake_case , __snake_case : Optional[Any] = array[0], array[i] heapify(lowercase , 0 , lowercase ) return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: __snake_case : Union[str, Any] = low __snake_case : Union[str, Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case , __snake_case : str = array[j], array[i] i += 1 def lowerCAmelCase__( lowercase : list ) -> list: if len(lowercase ) == 0: return array __snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) ) __snake_case : Dict = 16 return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 __snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase ) intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase ) __snake_case : List[str] = p return insertion_sort(lowercase , lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip() _UpperCamelCase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
326
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( __snake_case ): _UpperCAmelCase :int = ['image_processor', 'tokenizer'] _UpperCAmelCase :Optional[Any] = 'CLIPImageProcessor' _UpperCAmelCase :List[str] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , A_=None , A_=None , **A_ ): '''simple docstring''' UpperCamelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , A_ , ) UpperCamelCase : int = kwargs.pop("feature_extractor" ) UpperCamelCase : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(A_ , A_ ) def __call__( self , A_=None , A_=None , A_=None , **A_ ): '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: UpperCamelCase : int = self.tokenizer(A_ , return_tensors=A_ , **A_ ) if images is not None: UpperCamelCase : int = self.image_processor(A_ , return_tensors=A_ , **A_ ) if text is not None and images is not None: UpperCamelCase : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A_ ) , tensor_type=A_ ) def __UpperCamelCase( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.batch_decode(*A_ , **A_ ) def __UpperCamelCase( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.decode(*A_ , **A_ ) @property def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.tokenizer.model_input_names UpperCamelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase( self ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , A_ , ) return self.image_processor_class @property def __UpperCamelCase( self ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , A_ , ) return self.image_processor
52
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Any = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase__( lowercase : Dict ) -> Dict: __snake_case : Any = [1, 2] __snake_case : Dict = {"a": 1, "b": 2} __snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]} __snake_case : int = {"a": {"1": 1}, "b": 2} __snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case : Dict = [2, 3] __snake_case : Tuple = {"a": 2, "b": 3} __snake_case : int = {"a": [2, 3], "b": [4, 5]} __snake_case : Dict = {"a": {"1": 2}, "b": 3} __snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
326
0
'''simple docstring''' import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowercase__ ( __lowercase : List[str] ) -> Optional[int]: """simple docstring""" __UpperCamelCase = fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , __lowercase ).groups()[0] class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self : List[Any] , __A : Dict , __A : Dict=None , __A : List[str]=None ): __UpperCamelCase = file_names __UpperCamelCase = image_transform __UpperCamelCase = label_to_id def __len__( self : int ): return len(self.file_names ) def __getitem__( self : Tuple , __A : List[str] ): __UpperCamelCase = self.file_names[idx] __UpperCamelCase = PIL.Image.open(__A ) __UpperCamelCase = raw_image.convert('RGB' ) if self.image_transform is not None: __UpperCamelCase = self.image_transform(__A ) __UpperCamelCase = extract_label(__A ) if self.label_to_id is not None: __UpperCamelCase = self.label_to_id[label] return {"image": image, "label": label} def lowercase__ ( __lowercase : Tuple , __lowercase : Tuple ) -> List[str]: """simple docstring""" if args.with_tracking: __UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: __UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['lr'] __UpperCamelCase = int(config['num_epochs'] ) __UpperCamelCase = int(config['seed'] ) __UpperCamelCase = int(config['batch_size'] ) __UpperCamelCase = config['image_size'] if not isinstance(__lowercase , (list, tuple) ): __UpperCamelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": __UpperCamelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): __UpperCamelCase = int(args.checkpointing_steps ) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: __UpperCamelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: __UpperCamelCase = os.path.split(__lowercase )[-1].split('.' )[0] accelerator.init_trackers(__lowercase , __lowercase ) # Grab all the image filenames __UpperCamelCase = [os.path.join(args.data_dir , __lowercase ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences __UpperCamelCase = [extract_label(__lowercase ) for fname in file_names] __UpperCamelCase = list(set(__lowercase ) ) id_to_label.sort() __UpperCamelCase = {lbl: i for i, lbl in enumerate(__lowercase )} # Set the seed before splitting the data. np.random.seed(__lowercase ) torch.manual_seed(__lowercase ) torch.cuda.manual_seed_all(__lowercase ) # Split our filenames between train and validation __UpperCamelCase = np.random.permutation(len(__lowercase ) ) __UpperCamelCase = int(0.8 * len(__lowercase ) ) __UpperCamelCase = random_perm[:cut] __UpperCamelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop __UpperCamelCase = Compose([RandomResizedCrop(__lowercase , scale=(0.5, 1.0) ), ToTensor()] ) __UpperCamelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=__lowercase , label_to_id=__lowercase ) # For evaluation, we use a deterministic Resize __UpperCamelCase = Compose([Resize(__lowercase ), ToTensor()] ) __UpperCamelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=__lowercase , label_to_id=__lowercase ) # Instantiate dataloaders. __UpperCamelCase = DataLoader(__lowercase , shuffle=__lowercase , batch_size=__lowercase , num_workers=4 ) __UpperCamelCase = DataLoader(__lowercase , shuffle=__lowercase , batch_size=__lowercase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = create_model('resnet50d' , pretrained=__lowercase , num_classes=len(__lowercase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): __UpperCamelCase = False for param in model.get_classifier().parameters(): __UpperCamelCase = True # We normalize the batches of images to be a bit faster. __UpperCamelCase = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) __UpperCamelCase = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler __UpperCamelCase = OneCycleLR(optimizer=__lowercase , max_lr=__lowercase , epochs=__lowercase , steps_per_epoch=len(__lowercase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # We need to keep track of how many total steps we have iterated over __UpperCamelCase = 0 # We also need to keep track of the starting epoch so files are named properly __UpperCamelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) __UpperCamelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint __UpperCamelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) __UpperCamelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` __UpperCamelCase = os.path.splitext(__lowercase )[0] if "epoch" in training_difference: __UpperCamelCase = int(training_difference.replace('epoch_' , '' ) ) + 1 __UpperCamelCase = None else: __UpperCamelCase = int(training_difference.replace('step_' , '' ) ) __UpperCamelCase = resume_step // len(__lowercase ) resume_step -= starting_epoch * len(__lowercase ) # Now we train the model for epoch in range(__lowercase , __lowercase ): model.train() if args.with_tracking: __UpperCamelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step __UpperCamelCase = accelerator.skip_first_batches(__lowercase , __lowercase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader __UpperCamelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. __UpperCamelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __UpperCamelCase = (batch['image'] - mean) / std __UpperCamelCase = model(__lowercase ) __UpperCamelCase = torch.nn.functional.cross_entropy(__lowercase , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__lowercase , __lowercase ): __UpperCamelCase = F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: __UpperCamelCase = os.path.join(args.output_dir , __lowercase ) accelerator.save_state(__lowercase ) model.eval() __UpperCamelCase = 0 __UpperCamelCase = 0 for step, batch in enumerate(__lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. __UpperCamelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} __UpperCamelCase = (batch['image'] - mean) / std with torch.no_grad(): __UpperCamelCase = model(__lowercase ) __UpperCamelCase = outputs.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['label']) ) __UpperCamelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() __UpperCamelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {100 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { 'accuracy': 100 * eval_metric, 'train_loss': total_loss.item() / len(__lowercase ), 'epoch': epoch, } , step=__lowercase , ) if checkpointing_steps == "epoch": __UpperCamelCase = F'''epoch_{epoch}''' if args.output_dir is not None: __UpperCamelCase = os.path.join(args.output_dir , __lowercase ) accelerator.save_state(__lowercase ) if args.with_tracking: accelerator.end_training() def lowercase__ ( ) -> int: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=__lowercase , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=__lowercase , default=__lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=__lowercase , default=__lowercase , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=__lowercase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=__lowercase , default=__lowercase , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=__lowercase , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224} training_function(__lowercase , __lowercase ) if __name__ == "__main__": main()
53
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any: __snake_case : Optional[Any] = False __snake_case : Optional[Any] = search_prob __snake_case : str = start_temperate __snake_case : List[Any] = [] __snake_case : str = 0 __snake_case : Dict = None while not search_end: __snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case : List[Any] = current_state scores.append(lowercase ) iterations += 1 __snake_case : Dict = None __snake_case : str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor __snake_case : int = neighbors.pop(lowercase ) __snake_case : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case : List[str] = picked_neighbor else: __snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case : str = picked_neighbor __snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case : Optional[Any] = True else: __snake_case : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase ) , lowercase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any: return (3 * x**2) - (6 * y) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' ) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' )
326
0
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (boundary[1] - boundary[0]) / steps __SCREAMING_SNAKE_CASE = boundary[0] __SCREAMING_SNAKE_CASE = boundary[1] __SCREAMING_SNAKE_CASE = make_points(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = 0.0 y += (h / 2.0) * f(lowerCAmelCase_ ) for i in x_i: # print(i) y += h * f(lowerCAmelCase_ ) y += (h / 2.0) * f(lowerCAmelCase_ ) return y def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = a + h while x < (b - h): yield x __SCREAMING_SNAKE_CASE = x + h def UpperCAmelCase__ (lowerCAmelCase_ ): # enter your function here '''simple docstring''' __SCREAMING_SNAKE_CASE = (x - 0) * (x - 0) return y def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0.0 # Lower bound of integration __SCREAMING_SNAKE_CASE = 1.0 # Upper bound of integration __SCREAMING_SNAKE_CASE = 10.0 # define number of steps or resolution __SCREAMING_SNAKE_CASE = [a, b] # define boundary of integration __SCREAMING_SNAKE_CASE = method_a(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
54
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : Tuple ="FlavaImageProcessor" UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = self.image_processor def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if images is not None: __snake_case : Union[str, Any] = self.image_processor( UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if text is not None and images is not None: encoding.update(UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
326
0
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record a_ : Any = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ a_ : Dict = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ a_ : Tuple = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def __snake_case ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple ): return float((preds == labels).mean() ) def __snake_case ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int="binary" ): lowerCamelCase_ = simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase_ = float(fa_score(y_true=UpperCAmelCase_ , y_pred=UpperCAmelCase_ , average=UpperCAmelCase_ ) ) return { "accuracy": acc, "f1": fa, } def __snake_case ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ): lowerCamelCase_ = {} for id_pred, label in zip(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' lowerCamelCase_ = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCamelCase_ = [(pred, label)] lowerCamelCase_ ,lowerCamelCase_ = [], [] for question, preds_labels in question_map.items(): lowerCamelCase_ ,lowerCamelCase_ = zip(*UpperCAmelCase_ ) lowerCamelCase_ = fa_score(y_true=UpperCAmelCase_ , y_pred=UpperCAmelCase_ , average="macro" ) fas.append(UpperCAmelCase_ ) lowerCamelCase_ = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCAmelCase_ ) ) ems.append(UpperCAmelCase_ ) lowerCamelCase_ = float(sum(UpperCAmelCase_ ) / len(UpperCAmelCase_ ) ) lowerCamelCase_ = sum(UpperCAmelCase_ ) / len(UpperCAmelCase_ ) lowerCamelCase_ = float(fa_score(y_true=UpperCAmelCase_ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def snake_case ( self ): """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def snake_case ( self ): """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCamelCase , UpperCamelCase )} elif self.config_name == "cb": return acc_and_fa(UpperCamelCase , UpperCamelCase , fa_avg="macro" ) elif self.config_name == "record": lowerCamelCase_ = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] lowerCamelCase_ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(UpperCamelCase , UpperCamelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCamelCase , UpperCamelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCamelCase , UpperCamelCase )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
55
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } _UpperCamelCase = { '''camembert-base''': 512, } _UpperCamelCase = '''▁''' class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : str =["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' __snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token __snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __snake_case : Dict = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __snake_case : Optional[int] = len(self.fairseq_tokens_to_ids ) __snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = [] __snake_case : Union[str, Any] = "" __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase ) + token __snake_case : List[Any] = True __snake_case : Union[str, Any] = [] else: current_sub_tokens.append(UpperCAmelCase ) __snake_case : int = False out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def __getstate__( self ) -> List[Any]: '''simple docstring''' __snake_case : str = self.__dict__.copy() __snake_case : Optional[Any] = None return state def __setstate__( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : List[str] = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Optional[Any] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: __snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
326
0
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class a ( _lowerCamelCase ): def A_ ( self : Optional[int] ): snake_case_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase_ , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowercase_ , '''num_attention_heads''' ) ) self.parent.assertTrue(hasattr(lowercase_ , '''num_encoder_blocks''' ) ) class a : def __init__( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Any=13 , lowercase_ : Optional[Any]=64 , lowercase_ : Any=3 , lowercase_ : Optional[Any]=4 , lowercase_ : Dict=[2, 2, 2, 2] , lowercase_ : int=[8, 4, 2, 1] , lowercase_ : str=[16, 32, 64, 128] , lowercase_ : Optional[Any]=[1, 4, 8, 16] , lowercase_ : Any=[1, 2, 4, 8] , lowercase_ : Optional[int]=True , lowercase_ : str=True , lowercase_ : List[str]="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Any=0.02 , lowercase_ : Union[str, Any]=3 , lowercase_ : Union[str, Any]=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = num_encoder_blocks snake_case_ = sr_ratios snake_case_ = depths snake_case_ = hidden_sizes snake_case_ = downsampling_rates snake_case_ = num_attention_heads snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = scope def A_ ( self : str ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def A_ ( self : int ): return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def A_ ( self : Any , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Any ): snake_case_ = SegformerModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ ) snake_case_ = snake_case_ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def A_ ( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Any ): snake_case_ = self.num_labels snake_case_ = SegformerForSemanticSegmentation(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) snake_case_ = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def A_ ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : str ): snake_case_ = 1 snake_case_ = SegformerForSemanticSegmentation(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(lowercase_ ) snake_case_ = model(lowercase_ , labels=lowercase_ ) self.parent.assertGreater(result.loss , 0.0 ) def A_ ( self : List[str] ): snake_case_ = self.prepare_config_and_inputs() snake_case_ ,snake_case_ ,snake_case_ = config_and_inputs snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) snake_case_ = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False def A_ ( self : Any ): snake_case_ = SegformerModelTester(self ) snake_case_ = SegformerConfigTester(self , config_class=lowercase_ ) def A_ ( self : Tuple ): self.config_tester.run_common_tests() def A_ ( self : int ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def A_ ( self : int ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowercase_ ) def A_ ( self : Any ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowercase_ ) @unittest.skip('''SegFormer does not use inputs_embeds''' ) def A_ ( self : str ): pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' ) def A_ ( self : List[Any] ): pass def A_ ( self : Optional[Any] ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowercase_ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_ ) def A_ ( self : str ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) snake_case_ = outputs.attentions snake_case_ = sum(self.model_tester.depths ) self.assertEqual(len(lowercase_ ) , lowercase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) snake_case_ = outputs.attentions self.assertEqual(len(lowercase_ ) , lowercase_ ) # verify the first attentions (first block, first layer) snake_case_ = (self.model_tester.image_size // 4) ** 2 snake_case_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) snake_case_ = (self.model_tester.image_size // 32) ** 2 snake_case_ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) snake_case_ = len(lowercase_ ) # Check attention is always last and order is fine snake_case_ = True snake_case_ = True snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) self.assertEqual(out_len + 1 , len(lowercase_ ) ) snake_case_ = outputs.attentions self.assertEqual(len(lowercase_ ) , lowercase_ ) # verify the first attentions (first block, first layer) snake_case_ = (self.model_tester.image_size // 4) ** 2 snake_case_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def A_ ( self : str ): def check_hidden_states_output(lowercase_ : str , lowercase_ : List[str] , lowercase_ : List[str] ): snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) snake_case_ = outputs.hidden_states snake_case_ = self.model_tester.num_encoder_blocks self.assertEqual(len(lowercase_ ) , lowercase_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def A_ ( self : Union[str, Any] ): if not self.model_tester.is_training: return snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: if model_class in get_values(lowercase_ ): continue snake_case_ = model_class(lowercase_ ) model.to(lowercase_ ) model.train() snake_case_ = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) snake_case_ = model(**lowercase_ ).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A_ ( self : List[Any] ): pass @slow def A_ ( self : Dict ): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = SegformerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __magic_name__ ( ) -> Optional[int]: '''simple docstring''' snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class a ( unittest.TestCase ): @slow def A_ ( self : List[Any] ): # only resize + normalize snake_case_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase_ , align=lowercase_ , do_random_crop=lowercase_ ) snake_case_ = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( lowercase_ ) snake_case_ = prepare_img() snake_case_ = image_processor(images=lowercase_ , return_tensors='''pt''' ) snake_case_ = encoded_inputs.pixel_values.to(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ ) snake_case_ = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , lowercase_ ) snake_case_ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase_ , atol=1e-4 ) ) @slow def A_ ( self : List[str] ): # only resize + normalize snake_case_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase_ , align=lowercase_ , do_random_crop=lowercase_ ) snake_case_ = SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(lowercase_ ) snake_case_ = prepare_img() snake_case_ = image_processor(images=lowercase_ , return_tensors='''pt''' ) snake_case_ = encoded_inputs.pixel_values.to(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ ) snake_case_ = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , lowercase_ ) snake_case_ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase_ , atol=1e-1 ) ) @slow def A_ ( self : str ): # only resize + normalize snake_case_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase_ , align=lowercase_ , do_random_crop=lowercase_ ) snake_case_ = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( lowercase_ ) snake_case_ = prepare_img() snake_case_ = image_processor(images=lowercase_ , return_tensors='''pt''' ) snake_case_ = encoded_inputs.pixel_values.to(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ ) snake_case_ = outputs.logits.detach().cpu() snake_case_ = image_processor.post_process_semantic_segmentation(outputs=lowercase_ , target_sizes=[(500, 300)] ) snake_case_ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowercase_ ) snake_case_ = image_processor.post_process_semantic_segmentation(outputs=lowercase_ ) snake_case_ = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , lowercase_ )
56
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool: __snake_case : List[str] = len(lowercase ) __snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __snake_case : Optional[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __snake_case : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __snake_case : List[str] = subset[i - 1][j] if arr[i - 1] <= j: __snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" import sys from collections import defaultdict class _UpperCamelCase : '''simple docstring''' def __init__( self ): __lowerCAmelCase = [] def snake_case ( self , __a ): return self.node_position[vertex] def snake_case ( self , __a , __a ): __lowerCAmelCase = pos def snake_case ( self , __a , __a , __a , __a ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCAmelCase = 2 * start + 1 else: __lowerCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCAmelCase , __lowerCAmelCase = heap[smallest_child], positions[smallest_child] __lowerCAmelCase , __lowerCAmelCase = ( heap[start], positions[start], ) __lowerCAmelCase , __lowerCAmelCase = temp, tempa __lowerCAmelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __a ) self.top_to_bottom(__a , __a , __a , __a ) def snake_case ( self , __a , __a , __a , __a ): __lowerCAmelCase = position[index] while index != 0: __lowerCAmelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCAmelCase = heap[parent] __lowerCAmelCase = position[parent] self.set_position(position[parent] , __a ) else: __lowerCAmelCase = val __lowerCAmelCase = temp self.set_position(__a , __a ) break __lowerCAmelCase = parent else: __lowerCAmelCase = val __lowerCAmelCase = temp self.set_position(__a , 0 ) def snake_case ( self , __a , __a ): __lowerCAmelCase = len(__a ) // 2 - 1 for i in range(__a , -1 , -1 ): self.top_to_bottom(__a , __a , len(__a ) , __a ) def snake_case ( self , __a , __a ): __lowerCAmelCase = positions[0] __lowerCAmelCase = sys.maxsize self.top_to_bottom(__a , 0 , len(__a ) , __a ) return temp def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = Heap() __lowerCAmelCase = [0] * len(_UpperCamelCase ) __lowerCAmelCase = [-1] * len(_UpperCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCAmelCase = [] for vertex in range(len(_UpperCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_UpperCamelCase ) heap.node_position.append(_UpperCamelCase ) __lowerCAmelCase = [] __lowerCAmelCase = 1 __lowerCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCAmelCase = 0 __lowerCAmelCase = distance heap.heapify(_UpperCamelCase , _UpperCamelCase ) for _ in range(1 , len(_UpperCamelCase ) ): __lowerCAmelCase = heap.delete_minimum(_UpperCamelCase , _UpperCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_UpperCamelCase )] ): __lowerCAmelCase = distance heap.bottom_to_top( _UpperCamelCase , heap.get_position(_UpperCamelCase ) , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A : Optional[Any] = int(input("Enter number of edges: ").strip()) A : Dict = defaultdict(list) for _ in range(edges_number): A : str = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
57
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _UpperCamelCase = 4 _UpperCamelCase = 3 class _lowerCamelCase ( a ): """simple docstring""" pass def lowerCAmelCase__( lowercase : List[str] ) -> Any: for shard in shards: for i in range(lowercase ): yield {"i": i, "shard": shard} def lowerCAmelCase__( ) -> Optional[int]: __snake_case : List[Any] = int(os.environ["RANK"] ) __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : List[str] = ArgumentParser() parser.add_argument("--streaming" , type=lowercase ) parser.add_argument("--local_rank" , type=lowercase ) parser.add_argument("--num_workers" , type=lowercase , default=0 ) __snake_case : Any = parser.parse_args() __snake_case : Dict = args.streaming __snake_case : Union[str, Any] = args.num_workers __snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]} __snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase ) if not streaming: __snake_case : Any = Dataset.from_list(list(lowercase ) ) __snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase ) __snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase ) __snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __snake_case : Dict = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
326
0
'''simple docstring''' import random def lowerCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ) ->Optional[int]: _SCREAMING_SNAKE_CASE = a[left_index] _SCREAMING_SNAKE_CASE = left_index + 1 for j in range(left_index + 1 , __lowerCamelCase ): if a[j] < pivot: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = a[i], a[j] i += 1 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = a[i - 1], a[left_index] return i - 1 def lowerCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ) ->str: if left < right: _SCREAMING_SNAKE_CASE = random.randint(__lowerCamelCase , right - 1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( a[left], a[pivot], ) # switches the pivot with the left most bound _SCREAMING_SNAKE_CASE = partition(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) quick_sort_random( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( __lowerCamelCase , pivot_index + 1 , __lowerCamelCase ) # recursive quicksort to the right of the pivot point def lowerCamelCase ( ) ->Tuple: _SCREAMING_SNAKE_CASE = input("""Enter numbers separated by a comma:\n""" ).strip() _SCREAMING_SNAKE_CASE = [int(__lowerCamelCase ) for item in user_input.split(""",""" )] quick_sort_random(__lowerCamelCase , 0 , len(__lowerCamelCase ) ) print(__lowerCamelCase ) if __name__ == "__main__": main()
58
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int: __snake_case : List[Any] = limit + 1 __snake_case : List[str] = [0] * limit for first_term in range(1 , lowercase ): for n in range(lowercase , lowercase , lowercase ): __snake_case : Union[str, Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
326
0
from collections.abc import Sequence def UpperCamelCase ( __lowerCamelCase : Sequence[float] , __lowerCamelCase : bool = False ): if not arr: return 0 snake_case : Tuple = 0 if allow_empty_subarrays else float("-inf" ) snake_case : int = 0.0 for num in arr: snake_case : Dict = max(0 if allow_empty_subarrays else num , curr_sum + num ) snake_case : str = max(__lowerCamelCase , __lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() __lowerCamelCase = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
59
from __future__ import annotations def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]: __snake_case : List[str] = word_bank or [] # create a table __snake_case : int = len(lowercase ) + 1 __snake_case : list[list[list[str]]] = [] for _ in range(lowercase ): table.append([] ) # seed value __snake_case : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase )] == word: __snake_case : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase )]: combination.reverse() return table[len(lowercase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
326
0
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def _snake_case ( _snake_case : int = 1000000 , _snake_case : int = 10 ): lowerCAmelCase : defaultdict = defaultdict(_snake_case ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCAmelCase : int = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowerCAmelCase : Any = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_snake_case , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
60
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : int = use_attention_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[str] = vocab_size __snake_case : int = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[Any] = num_choices __snake_case : Union[str, Any] = rescale_embeddings __snake_case : List[Any] = attention_type __snake_case : str = use_bias __snake_case : Dict = block_size __snake_case : Optional[Any] = num_random_blocks def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase_ : Dict =False UpperCAmelCase_ : str =False def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
326
0
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir('fixtures/test_sentencepiece.model') _a = get_tests_dir('fixtures/test_sentencepiece_bpe.model') _a = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = CamembertTokenizer SCREAMING_SNAKE_CASE__ : List[Any] = CamembertTokenizerFast SCREAMING_SNAKE_CASE__ : Tuple = True SCREAMING_SNAKE_CASE__ : str = True def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ : str = CamembertTokenizer(lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = "<pad>" UpperCAmelCase_ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>NOTUSED" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowercase_ ) , 1004 ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = CamembertTokenizer(lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : List[str] = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) UpperCAmelCase_ : Tuple = "I was born in 92000, and this is falsé." UpperCAmelCase_ : List[str] = tokenizer.encode(lowercase_ ) UpperCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase_ : Any = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) UpperCAmelCase_ : List[Any] = tokenizer.convert_ids_to_tokens(lowercase_ ) UpperCAmelCase_ : List[Any] = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : List[str] = self.get_rust_tokenizer() UpperCAmelCase_ : str = "I was born in 92000, and this is falsé." UpperCAmelCase_ : List[str] = tokenizer.tokenize(lowercase_ ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase_ : Union[str, Any] = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) UpperCAmelCase_ : Any = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(lowercase_ ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" # fmt: off UpperCAmelCase_ : int = {"input_ids": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 2_7575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 2_2804, 1_8818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 1_0326, 24, 2267, 20, 416, 5072, 1_5612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. UpperCAmelCase_ : Tuple = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=lowercase_ , )
61
import argparse import datetime def lowerCAmelCase__( lowercase : str ) -> str: __snake_case : int = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } __snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase ) < 11: raise ValueError("Must be 10 characters long" ) # Get month __snake_case : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12" ) __snake_case : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day __snake_case : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31" ) # Get second separator __snake_case : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year __snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation __snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) ) # Start math if m <= 2: __snake_case : Optional[Any] = y - 1 __snake_case : Tuple = m + 12 # maths var __snake_case : int = int(str(lowercase )[:2] ) __snake_case : int = int(str(lowercase )[2:] ) __snake_case : int = int(2.6 * m - 5.3_9 ) __snake_case : int = int(c / 4 ) __snake_case : int = int(k / 4 ) __snake_case : int = int(d + k ) __snake_case : int = int(t + u + v + x ) __snake_case : int = int(z - (2 * c) ) __snake_case : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response __snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) _UpperCamelCase = parser.parse_args() zeller(args.date_input)
326
0
from __future__ import annotations import math class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ ) -> None: __UpperCamelCase =size # approximate the overall size of segment tree with given value __UpperCamelCase =[0 for i in range(0 , 4 * size )] # create array to store lazy update __UpperCamelCase =[0 for i in range(0 , 4 * size )] __UpperCamelCase =[0 for i in range(0 , 4 * size )] # flag for lazy update def _a ( self , A_ ) -> int: return idx * 2 def _a ( self , A_ ) -> int: return idx * 2 + 1 def _a ( self , A_ , A_ , A_ , A_ ) -> None: if left_element == right_element: __UpperCamelCase =a[left_element - 1] else: __UpperCamelCase =(left_element + right_element) // 2 self.build(self.left(A_ ) , A_ , A_ , A_ ) self.build(self.right(A_ ) , mid + 1 , A_ , A_ ) __UpperCamelCase =max( self.segment_tree[self.left(A_ )] , self.segment_tree[self.right(A_ )] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> bool: if self.flag[idx] is True: __UpperCamelCase =self.lazy[idx] __UpperCamelCase =False if left_element != right_element: __UpperCamelCase =self.lazy[idx] __UpperCamelCase =self.lazy[idx] __UpperCamelCase =True __UpperCamelCase =True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __UpperCamelCase =val if left_element != right_element: __UpperCamelCase =val __UpperCamelCase =val __UpperCamelCase =True __UpperCamelCase =True return True __UpperCamelCase =(left_element + right_element) // 2 self.update(self.left(A_ ) , A_ , A_ , A_ , A_ , A_ ) self.update(self.right(A_ ) , mid + 1 , A_ , A_ , A_ , A_ ) __UpperCamelCase =max( self.segment_tree[self.left(A_ )] , self.segment_tree[self.right(A_ )] ) return True def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> int | float: if self.flag[idx] is True: __UpperCamelCase =self.lazy[idx] __UpperCamelCase =False if left_element != right_element: __UpperCamelCase =self.lazy[idx] __UpperCamelCase =self.lazy[idx] __UpperCamelCase =True __UpperCamelCase =True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __UpperCamelCase =(left_element + right_element) // 2 __UpperCamelCase =self.query(self.left(A_ ) , A_ , A_ , A_ , A_ ) __UpperCamelCase =self.query(self.right(A_ ) , mid + 1 , A_ , A_ , A_ ) return max(A_ , A_ ) def __str__( self ) -> str: return str([self.query(1 , 1 , self.size , A_ , A_ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _A = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _A = 15 _A = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
62
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int: if index == r: for j in range(lowercase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __snake_case : Union[str, Any] = arr[i] combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]: # A temporary array to store all combination one by one __snake_case : Tuple = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 ) if __name__ == "__main__": # Driver code to check the function above _UpperCamelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
326
0
'''simple docstring''' import argparse import os import re import packaging.version lowerCAmelCase_ : Any = 'examples/' lowerCAmelCase_ : List[str] = { 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } lowerCAmelCase_ : Union[str, Any] = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } lowerCAmelCase_ : List[str] = 'README.md' def _lowerCamelCase ( lowercase : str , lowercase : Union[str, Any] , lowercase : Dict ) -> int: with open(lowercase , "r" , encoding="utf-8" , newline="\n" ) as f: _a = f.read() _a , _a = REPLACE_PATTERNS[pattern] _a = replace.replace("VERSION" , lowercase ) _a = re_pattern.sub(lowercase , lowercase ) with open(lowercase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(lowercase ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Tuple: for folder, directories, fnames in os.walk(lowercase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(lowercase , lowercase ) , lowercase , pattern="examples" ) def _lowerCamelCase ( lowercase : List[str] , lowercase : Any=False ) -> List[str]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowercase , lowercase , lowercase ) if not patch: update_version_in_examples(lowercase ) def _lowerCamelCase ( ) -> Union[str, Any]: _a = "🤗 Transformers currently provides the following architectures" _a = "1. Want to contribute a new model?" with open(lowercase , "r" , encoding="utf-8" , newline="\n" ) as f: _a = f.readlines() # Find the start of the list. _a = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _a = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): _a = lines[index].replace( "https://huggingface.co/docs/diffusers/main/model_doc" , "https://huggingface.co/docs/diffusers/model_doc" , ) index += 1 with open(lowercase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lowercase ) def _lowerCamelCase ( ) -> Tuple: with open(REPLACE_FILES["init"] , "r" ) as f: _a = f.read() _a = REPLACE_PATTERNS["init"][0].search(lowercase ).groups()[0] return packaging.version.parse(lowercase ) def _lowerCamelCase ( lowercase : str=False ) -> int: _a = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: _a = default_version.base_version elif patch: _a = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: _a = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. _a = input(F'Which version are you releasing? [{default_version}]' ) if len(lowercase ) == 0: _a = default_version print(F'Updating version to {version}.' ) global_version_update(lowercase , patch=lowercase ) def _lowerCamelCase ( ) -> List[Any]: _a = get_version() _a = F'{current_version.major}.{current_version.minor + 1}.0.dev0' _a = current_version.base_version # Check with the user we got that right. _a = input(F'Which version are we developing now? [{dev_version}]' ) if len(lowercase ) == 0: _a = dev_version print(F'Updating version to {version}.' ) global_version_update(lowercase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": lowerCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') lowerCAmelCase_ : Any = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
63
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] _UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def lowerCAmelCase__( lowercase : str ) -> Optional[Any]: __snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" ) return sd def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict: __snake_case : Tuple = OrderedDict() __snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __snake_case : Optional[Any] = key for name_pair in rename_keys_prefix: __snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] ) __snake_case : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __snake_case : List[Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]: assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: __snake_case : Any = "pretraining" if "vcr" in checkpoint_path: __snake_case : Optional[Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __snake_case : Tuple = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __snake_case : Any = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 512} __snake_case : Any = "multichoice" elif "vqa_advanced" in checkpoint_path: __snake_case : List[Any] = {"visual_embedding_dim": 2048} __snake_case : Optional[Any] = "vqa_advanced" elif "vqa" in checkpoint_path: __snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} __snake_case : Union[str, Any] = "vqa" elif "nlvr" in checkpoint_path: __snake_case : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } __snake_case : List[Any] = "nlvr" __snake_case : Union[str, Any] = VisualBertConfig(**lowercase ) # Load State Dict __snake_case : Any = load_state_dict(lowercase ) __snake_case : Dict = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": __snake_case : Optional[Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": __snake_case : Tuple = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": __snake_case : Tuple = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": __snake_case : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
326
0
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 A_ = get_tests_dir('''fixtures''') class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : str = mock.Mock() _snake_case : List[Any] = 500 _snake_case : List[Any] = {} _snake_case : int = HTTPError _snake_case : Optional[int] = {} # Download this model to make sure it's in the cache. _snake_case : Any = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""", return_value=a_ ) as mock_head: _snake_case : str = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : List[Any] = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' with self.assertRaises(a_ ): # config is in subfolder, the following should not work without specifying the subfolder _snake_case : Optional[int] = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) _snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""", subfolder="""feature_extractor""" ) self.assertIsNotNone(a_ ) @is_staging_test class lowercase( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase_ ( cls: List[Any] ): '''simple docstring''' _snake_case : int = TOKEN HfFolder.save_token(a_ ) @classmethod def UpperCamelCase_ ( cls: int ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = ViTImageProcessor.from_pretrained(a_ ) image_processor.push_to_hub("""test-image-processor""", use_auth_token=self._token ) _snake_case : Optional[Any] = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(a_, getattr(a_, a_ ) ) # Reset repo delete_repo(token=self._token, repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( a_, repo_id="""test-image-processor""", push_to_hub=a_, use_auth_token=self._token ) _snake_case : int = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(a_, getattr(a_, a_ ) ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = ViTImageProcessor.from_pretrained(a_ ) image_processor.push_to_hub("""valid_org/test-image-processor""", use_auth_token=self._token ) _snake_case : List[str] = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(a_, getattr(a_, a_ ) ) # Reset repo delete_repo(token=self._token, repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( a_, repo_id="""valid_org/test-image-processor-org""", push_to_hub=a_, use_auth_token=self._token ) _snake_case : Any = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(a_, getattr(a_, a_ ) ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' CustomImageProcessor.register_for_auto_class() _snake_case : Dict = CustomImageProcessor.from_pretrained(a_ ) image_processor.push_to_hub("""test-dynamic-image-processor""", use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map, {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""}, ) _snake_case : Optional[int] = AutoImageProcessor.from_pretrained( f"{USER}/test-dynamic-image-processor", trust_remote_code=a_ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__, """CustomImageProcessor""" )
64
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple: # Load configuration defined in the metadata file with open(lowercase ) as metadata_file: __snake_case : int = json.load(lowercase ) __snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file __snake_case : Tuple = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] __snake_case : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) __snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: __snake_case : Tuple = json.load(lowercase ) __snake_case : List[Any] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) __snake_case : Any = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens __snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0] __snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0] __snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"] __snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __snake_case : List[Any] = state_dict[bias_name] __snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) __snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 ) __snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self.""" __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] __snake_case : str = state_dict[prefix + matrix_name] __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"] __snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __snake_case : List[Any] = state_dict["entity_predictions.bias"] __snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __snake_case : Any = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __snake_case : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __snake_case : str = state_dict[key] else: __snake_case : str = state_dict[key] __snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) __snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __snake_case : Union[str, Any] = (0, 9) __snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : Any = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : Optional[Any] = torch.Size((1, 33, 768) ) __snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : str = torch.Size((1, 1, 768) ) __snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __snake_case : str = MLukeTokenizer.from_pretrained(lowercase ) __snake_case : Dict = "Tokyo is the capital of <mask>." __snake_case : Union[str, Any] = (24, 30) __snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : int = model(**lowercase ) __snake_case : Dict = encoding["input_ids"][0].tolist() __snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) __snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item() __snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]: __snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"] __snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )] __snake_case : Any = {} for entry in data: __snake_case : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __snake_case : Optional[int] = entity_id break __snake_case : Union[str, Any] = f"""{language}:{entity_name}""" __snake_case : Any = entity_id return new_mapping if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
0
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCamelCase__ = parser.parse_args() if args.model_type == "bert": UpperCamelCase__ = BertForMaskedLM.from_pretrained(args.model_name) UpperCamelCase__ = 'bert' else: raise ValueError('args.model_type should be "bert".') UpperCamelCase__ = model.state_dict() UpperCamelCase__ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCamelCase__ = state_dict[f'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[f'''{prefix}.embeddings.LayerNorm.{w}'''] UpperCamelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] UpperCamelCase__ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] UpperCamelCase__ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] UpperCamelCase__ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] UpperCamelCase__ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] UpperCamelCase__ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] UpperCamelCase__ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] UpperCamelCase__ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 UpperCamelCase__ = state_dict['cls.predictions.decoder.weight'] UpperCamelCase__ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: UpperCamelCase__ = state_dict[f'''cls.predictions.transform.dense.{w}'''] UpperCamelCase__ = state_dict[f'''cls.predictions.transform.LayerNorm.{w}'''] print(f'''N layers selected for distillation: {std_idx}''') print(f'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(f'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
65
from maths.prime_factors import prime_factors def lowerCAmelCase__( lowercase : int ) -> int: if not isinstance(lowercase , lowercase ): __snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(lowercase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" ) __snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids __snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids __snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits __snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() __snake_case : Any = -(labels.shape[-1] * loss.item()) __snake_case : List[str] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
326
0
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __UpperCAmelCase =logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class a__ ( UpperCAmelCase__ ): def __init__( self : str , **a : List[Any] ): """simple docstring""" super().__init__(**a ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict , a : Union[str, List[str], "Image", List["Image"]] , **a : Dict ): """simple docstring""" return super().__call__(a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , **a : Optional[Any] ): """simple docstring""" __lowerCamelCase = {} if "candidate_labels" in kwargs: __lowerCamelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __lowerCamelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : str , a : Dict=None , a : Any="This is a photo of {}." ): """simple docstring""" __lowerCamelCase = load_image(a ) __lowerCamelCase = self.image_processor(images=[image] , return_tensors=self.framework ) __lowerCamelCase = candidate_labels __lowerCamelCase = [hypothesis_template.format(a ) for x in candidate_labels] __lowerCamelCase = self.tokenizer(a , return_tensors=self.framework , padding=a ) __lowerCamelCase = [text_inputs] return inputs def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : Optional[Any] ): """simple docstring""" __lowerCamelCase = model_inputs.pop('''candidate_labels''' ) __lowerCamelCase = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , a ): __lowerCamelCase = text_inputs[0] else: # Batching case. __lowerCamelCase = text_inputs[0][0] __lowerCamelCase = self.model(**a , **a ) __lowerCamelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def SCREAMING_SNAKE_CASE__ ( self : Dict , a : Union[str, Any] ): """simple docstring""" __lowerCamelCase = model_outputs.pop('''candidate_labels''' ) __lowerCamelCase = model_outputs['''logits'''][0] if self.framework == "pt": __lowerCamelCase = logits.softmax(dim=-1 ).squeeze(-1 ) __lowerCamelCase = probs.tolist() if not isinstance(a , a ): __lowerCamelCase = [scores] elif self.framework == "tf": __lowerCamelCase = stable_softmax(a , axis=-1 ) __lowerCamelCase = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __lowerCamelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(a , a ) , key=lambda a : -x[0] ) ] return result
67
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]: '''simple docstring''' super().__init__(UpperCAmelCase ) __snake_case : Optional[int] = proj_size __snake_case : str = CLIPVisionModel(UpperCAmelCase ) __snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase ) __snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size ) __snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' __snake_case : int = self.model(pixel_values=UpperCAmelCase ) __snake_case : Optional[int] = clip_output.pooler_output __snake_case : Any = self.mapper(latent_states[:, None] ) __snake_case : Any = self.final_layer_norm(UpperCAmelCase ) __snake_case : str = self.proj_out(UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__() __snake_case : List[Any] = (config.num_hidden_layers + 1) // 5 __snake_case : Dict = config.hidden_size __snake_case : str = 1 __snake_case : List[Any] = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase ) for _ in range(UpperCAmelCase ) ] ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' for block in self.blocks: __snake_case : int = block(UpperCAmelCase ) return hidden_states
326
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class a__ : """simple docstring""" def __init__( self , lowercase , ) -> Any: '''simple docstring''' A__ = parent A__ = 13 A__ = 7 A__ = 30 A__ = self.seq_length + self.mem_len A__ = 15 A__ = True A__ = True A__ = 99 A__ = [10, 50, 80] A__ = 32 A__ = 32 A__ = 4 A__ = 8 A__ = 128 A__ = 2 A__ = 2 A__ = None A__ = 1 A__ = 0 A__ = 3 A__ = self.vocab_size - 1 A__ = 0.01 def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' random.seed(self.seed ) tf.random.set_seed(self.seed ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> str: '''simple docstring''' A__ = TFTransfoXLModel(lowercase ) A__ , A__ = model(lowercase ).to_tuple() A__ = {"input_ids": input_ids_a, "mems": mems_a} A__ , A__ = model(lowercase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> List[str]: '''simple docstring''' A__ = TFTransfoXLLMHeadModel(lowercase ) A__ , A__ = model(lowercase ).to_tuple() A__ = {"input_ids": input_ids_a, "labels": lm_labels} A__ , A__ = model(lowercase ).to_tuple() A__ , A__ = model([input_ids_a, mems_a] ).to_tuple() A__ = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} A__ , A__ = model(lowercase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> Dict: '''simple docstring''' A__ = TFTransfoXLForSequenceClassification(lowercase ) A__ = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() ((A__) , (A__) , (A__) , (A__)) = config_and_inputs A__ = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class a__ ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __lowerCamelCase = () if is_tf_available() else () __lowerCamelCase = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def UpperCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = TFTransfoXLModelTester(self ) A__ = ConfigTester(self , config_class=lowercase , d_embed=37 ) def UpperCamelCase ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' self.model_tester.set_seed() A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowercase ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' self.model_tester.set_seed() A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowercase ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowercase ) def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: A__ = model_class(lowercase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: A__ = model.get_output_embeddings() assert isinstance(lowercase , tf.keras.layers.Layer ) A__ = model.get_bias() assert name is None else: A__ = model.get_output_embeddings() assert x is None A__ = model.get_bias() assert name is None def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @slow def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFTransfoXLModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @require_tf class a__ ( unittest.TestCase ): """simple docstring""" @unittest.skip("Skip test until #12651 is resolved." ) @slow def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" ) # fmt: off A__ = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off A__ = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> A__ = model.generate(lowercase , max_length=200 , do_sample=lowercase ) self.assertListEqual(output_ids[0].numpy().tolist() , lowercase )
68
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
326
0
"""simple docstring""" import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def UpperCAmelCase ( UpperCAmelCase ) -> Dict: if hor == 128: snake_case_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') snake_case_ = (32, 128, 256) snake_case_ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: snake_case_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') snake_case_ = (32, 64, 128, 256) snake_case_ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') snake_case_ = torch.load(f'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' ) snake_case_ = model.state_dict() snake_case_ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } snake_case_ = UNetaDModel(**UpperCAmelCase ) print(f'length of state dict: {len(state_dict.keys() )}' ) print(f'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) snake_case_ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): snake_case_ = state_dict.pop(UpperCAmelCase ) hf_value_function.load_state_dict(UpperCAmelCase ) torch.save(hf_value_function.state_dict() , f'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' ) with open(f'hub/hopper-medium-v2/unet/hor{hor}/config.json' , 'w' ) as f: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( ) -> int: snake_case_ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } snake_case_ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) snake_case_ = model snake_case_ = UNetaDModel(**UpperCAmelCase ) print(f'length of state dict: {len(state_dict.keys() )}' ) print(f'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) snake_case_ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): snake_case_ = state_dict.pop(UpperCAmelCase ) hf_value_function.load_state_dict(UpperCAmelCase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
69
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = torch.device('''cpu''') def lowerCAmelCase__( ) -> Any: __snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCAmelCase__( lowercase : Dict ) -> List[Any]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = dct.pop(lowercase ) __snake_case : List[Any] = val def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple: __snake_case : Optional[Any] = [] for k in state_dict.keys(): __snake_case : Union[str, Any] = k if ".pwconv" in k: __snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: __snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: __snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: __snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: __snake_case : int = k_new.split("." ) if ls[2].isdigit(): __snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: __snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]: __snake_case : List[str] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __snake_case : Tuple = 1000 __snake_case : Any = "huggingface/label-files" __snake_case : int = "imagenet-1k-id2label.json" __snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) __snake_case : str = {int(lowercase ): v for k, v in idalabel.items()} __snake_case : int = idalabel __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __snake_case : Optional[Any] = [3, 3, 6, 4] __snake_case : Optional[int] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __snake_case : List[str] = [3, 3, 9, 6] __snake_case : Optional[Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __snake_case : Optional[int] = [4, 3, 10, 5] __snake_case : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __snake_case : str = [4, 4, 12, 6] __snake_case : Optional[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): __snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase ) else: __snake_case : Tuple = torch.load(lowercase , map_location="cpu" ) __snake_case : Optional[int] = checkpoint __snake_case : Any = create_rename_keys(lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # load HuggingFace model __snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval() hf_model.load_state_dict(lowercase ) # prepare test inputs __snake_case : Optional[Any] = prepare_img() __snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" ) __snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" ) # compare outputs from both models __snake_case : str = get_expected_output(lowercase ) __snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _UpperCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
326
0
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever A__ : Tuple =logging.getLogger(__name__) class UpperCAmelCase ( snake_case_ ): def __init__( self : int , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Any , __snake_case : str=None ) -> Union[str, Any]: super().__init__( __snake_case , question_encoder_tokenizer=__snake_case , generator_tokenizer=__snake_case , index=__snake_case , init_retrieval=__snake_case , ) _lowerCAmelCase = None def lowercase__ ( self : List[Any] , __snake_case : int ) -> Optional[Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually _lowerCAmelCase = self._infer_socket_ifname() # avoid clash with the NCCL port _lowerCAmelCase = str(distributed_port + 1 ) _lowerCAmelCase = dist.new_group(ranks=__snake_case , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def lowercase__ ( self : str ) -> Any: return dist.get_rank(group=self.process_group ) == 0 def lowercase__ ( self : str , __snake_case : str , __snake_case : List[Any] , __snake_case : str=torch.floataa ) -> List[str]: _lowerCAmelCase = torch.empty(__snake_case , dtype=__snake_case ) dist.scatter(__snake_case , src=0 , scatter_list=__snake_case , group=self.process_group ) return target_tensor def lowercase__ ( self : Optional[Any] ) -> int: _lowerCAmelCase = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _lowerCAmelCase = next((addr for addr in addrs if addr.startswith("""e""" )) , __snake_case ) return ifname def lowercase__ ( self : Optional[int] , __snake_case : np.ndarray , __snake_case : int ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): _lowerCAmelCase , _lowerCAmelCase = self._main_retrieve(__snake_case , __snake_case ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__snake_case ) # distributed training _lowerCAmelCase = dist.get_world_size(group=self.process_group ) # gather logic _lowerCAmelCase = None if self._is_main(): _lowerCAmelCase = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__snake_case )] dist.gather(torch.tensor(__snake_case ) , dst=0 , gather_list=__snake_case , group=self.process_group ) # scatter logic _lowerCAmelCase = question_hidden_states.shape[0] _lowerCAmelCase = [] _lowerCAmelCase = [] if self._is_main(): assert len(__snake_case ) == world_size _lowerCAmelCase , _lowerCAmelCase = self._main_retrieve(torch.cat(__snake_case ).numpy() , __snake_case ) _lowerCAmelCase , _lowerCAmelCase = torch.tensor(__snake_case ), torch.tensor(__snake_case ) _lowerCAmelCase = self._chunk_tensor(__snake_case , __snake_case ) _lowerCAmelCase = self._chunk_tensor(__snake_case , __snake_case ) _lowerCAmelCase = self._scattered(__snake_case , [n_queries, n_docs] , target_type=torch.intaa ) _lowerCAmelCase = self._scattered(__snake_case , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__snake_case )
70
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) _UpperCamelCase = logging.getLogger(__name__) def lowerCAmelCase__( lowercase : str ) -> List[str]: __snake_case : int = git.Repo(search_parent_directories=lowercase ) __snake_case : Union[str, Any] = { "repo_id": str(lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f: json.dump(lowercase , lowercase , indent=4 ) def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]: if params.n_gpu <= 0: __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = -1 __snake_case : Union[str, Any] = True __snake_case : Tuple = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : int = int(os.environ["N_GPU_NODE"] ) __snake_case : Union[str, Any] = int(os.environ["RANK"] ) # number of nodes / node ID __snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node __snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node __snake_case : Union[str, Any] = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 __snake_case : Any = 1 __snake_case : str = 0 __snake_case : Optional[Any] = 0 __snake_case : Dict = 0 __snake_case : int = 1 __snake_case : Optional[Any] = 1 __snake_case : Tuple = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0 __snake_case : List[Any] = params.n_nodes > 1 # summary __snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
326
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __A ( a , a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Tuple =CycleDiffusionPipeline UpperCamelCase__ : Any =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } UpperCamelCase__ : Any =PipelineTesterMixin.required_optional_params - {"""latents"""} UpperCamelCase__ : Union[str, Any] =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) UpperCamelCase__ : Optional[Any] =IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase__ : Union[str, Any] =IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) __UpperCamelCase : List[Any] =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __UpperCamelCase : int =DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , num_train_timesteps=1000 , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) torch.manual_seed(0 ) __UpperCamelCase : Union[str, Any] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCamelCase : List[Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __UpperCamelCase : Any =CLIPTextModel(lowerCamelCase__ ) __UpperCamelCase : Any =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase : str ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=0 ): """simple docstring""" __UpperCamelCase : Optional[int] =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __UpperCamelCase : List[str] =image / 2 + 0.5 if str(lowerCamelCase__ ).startswith('mps' ): __UpperCamelCase : int =torch.manual_seed(lowerCamelCase__ ) else: __UpperCamelCase : Tuple =torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __UpperCamelCase : Optional[Any] ={ 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple ='cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase : Tuple =self.get_dummy_components() __UpperCamelCase : Optional[Any] =CycleDiffusionPipeline(**lowerCamelCase__ ) __UpperCamelCase : int =pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =self.get_dummy_inputs(lowerCamelCase__ ) __UpperCamelCase : Dict =pipe(**lowerCamelCase__ ) __UpperCamelCase : int =output.images __UpperCamelCase : Optional[int] =images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCamelCase : Any =np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =self.get_dummy_components() for name, module in components.items(): if hasattr(lowerCamelCase__ , 'half' ): __UpperCamelCase : List[str] =module.half() __UpperCamelCase : int =CycleDiffusionPipeline(**lowerCamelCase__ ) __UpperCamelCase : Any =pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : int =self.get_dummy_inputs(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =pipe(**lowerCamelCase__ ) __UpperCamelCase : Dict =output.images __UpperCamelCase : int =images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __UpperCamelCase : Optional[int] =np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowercase ( self ): """simple docstring""" return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def __lowercase ( self ): """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def __lowercase ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def __lowercase ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def __lowercase ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) __UpperCamelCase : Union[str, Any] =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) __UpperCamelCase : Union[str, Any] =init_image.resize((512, 512) ) __UpperCamelCase : Dict ='CompVis/stable-diffusion-v1-4' __UpperCamelCase : Optional[int] =DDIMScheduler.from_pretrained(lowerCamelCase__ , subfolder='scheduler' ) __UpperCamelCase : List[str] =CycleDiffusionPipeline.from_pretrained( lowerCamelCase__ , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() __UpperCamelCase : str ='A black colored car' __UpperCamelCase : Optional[int] ='A blue colored car' __UpperCamelCase : Optional[int] =torch.manual_seed(0 ) __UpperCamelCase : Dict =pipe( prompt=lowerCamelCase__ , source_prompt=lowerCamelCase__ , image=lowerCamelCase__ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowerCamelCase__ , output_type='np' , ) __UpperCamelCase : str =output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) __UpperCamelCase : int =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) __UpperCamelCase : Optional[int] =init_image.resize((512, 512) ) __UpperCamelCase : Optional[int] ='CompVis/stable-diffusion-v1-4' __UpperCamelCase : Any =DDIMScheduler.from_pretrained(lowerCamelCase__ , subfolder='scheduler' ) __UpperCamelCase : Optional[Any] =CycleDiffusionPipeline.from_pretrained(lowerCamelCase__ , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() __UpperCamelCase : Union[str, Any] ='A black colored car' __UpperCamelCase : Optional[Any] ='A blue colored car' __UpperCamelCase : str =torch.manual_seed(0 ) __UpperCamelCase : List[Any] =pipe( prompt=lowerCamelCase__ , source_prompt=lowerCamelCase__ , image=lowerCamelCase__ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowerCamelCase__ , output_type='np' , ) __UpperCamelCase : Any =output.images assert np.abs(image - expected_image ).max() < 2E-2
71
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str =JukeboxTokenizer UpperCAmelCase_ : Tuple ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : int = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
326
0
"""simple docstring""" def snake_case_ ( A_ : int, A_ : int ): '''simple docstring''' if not isinstance(A_, A_ ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(A_, A_ ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) _lowerCamelCase : Optional[int] = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(A_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
72
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : str UpperCAmelCase_ : str =None @staticmethod def UpperCAmelCase ( ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def UpperCAmelCase ( cls ) -> Tuple: '''simple docstring''' return F"""`pip install {cls.pip_package or cls.name}`""" class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[int] ="optuna" @staticmethod def UpperCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' return is_optuna_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' return default_hp_space_optuna(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : List[str] ="ray" UpperCAmelCase_ : Dict ="'ray[tune]'" @staticmethod def UpperCAmelCase ( ) -> str: '''simple docstring''' return is_ray_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' return default_hp_space_ray(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="sigopt" @staticmethod def UpperCAmelCase ( ) -> int: '''simple docstring''' return is_sigopt_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return default_hp_space_sigopt(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : str ="wandb" @staticmethod def UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' return is_wandb_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return default_hp_space_wandb(UpperCAmelCase ) _UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase__( ) -> str: __snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase ) > 0: __snake_case : Dict = available_backends[0].name if len(lowercase ) > 1: logger.info( f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
326
0
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""", datefmt="""%Y-%m-%d %H:%M:%S""", level=os.environ.get("""LOGLEVEL""", """INFO""").upper(), stream=sys.stdout, ) a =logging.getLogger(__name__) a ={"""facebook/bart-base""": BartForConditionalGeneration} a ={"""facebook/bart-base""": BartTokenizer} def SCREAMING_SNAKE_CASE__ ( ) -> int: __lowerCamelCase : Dict = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=lowerCamelCase__ , default=lowerCamelCase__ , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=lowerCamelCase__ , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=lowerCamelCase__ , default=lowerCamelCase__ , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=lowerCamelCase__ , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=lowerCamelCase__ , ) parser.add_argument( '--config_name' , type=lowerCamelCase__ , default=lowerCamelCase__ , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=lowerCamelCase__ , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=lowerCamelCase__ , default=lowerCamelCase__ , help='Where to store the final ONNX file.' ) __lowerCamelCase : Optional[Any] = parser.parse_args() return args def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__="cpu" ) -> Union[str, Any]: __lowerCamelCase : List[Any] = model_dict[model_name].from_pretrained(lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase : str = tokenizer_dict[model_name].from_pretrained(lowerCamelCase__ ) if model_name in ["facebook/bart-base"]: __lowerCamelCase : int = 0 __lowerCamelCase : Any = None __lowerCamelCase : Optional[int] = 0 return huggingface_model, tokenizer def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: model.eval() __lowerCamelCase : int = None __lowerCamelCase : str = torch.jit.script(BARTBeamSearchGenerator(lowerCamelCase__ ) ) with torch.no_grad(): __lowerCamelCase : Union[str, Any] = 'My friends are cool but they eat too many carbs.' __lowerCamelCase : Union[str, Any] = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors='pt' ).to(model.device ) __lowerCamelCase : Tuple = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=lowerCamelCase__ , max_length=lowerCamelCase__ , early_stopping=lowerCamelCase__ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( lowerCamelCase__ , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , lowerCamelCase__ , opset_version=1_4 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=lowerCamelCase__ , ) logger.info('Model exported to {}'.format(lowerCamelCase__ ) ) __lowerCamelCase : Dict = remove_dup_initializers(os.path.abspath(lowerCamelCase__ ) ) logger.info('Deduplicated and optimized model written to {}'.format(lowerCamelCase__ ) ) __lowerCamelCase : Dict = onnxruntime.InferenceSession(lowerCamelCase__ ) __lowerCamelCase : Optional[Any] = ort_sess.run( lowerCamelCase__ , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(lowerCamelCase__ ), 'max_length': np.array(lowerCamelCase__ ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: __lowerCamelCase : str = parse_args() __lowerCamelCase : List[str] = 5 __lowerCamelCase : Any = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() __lowerCamelCase : Dict = torch.device(args.device ) __lowerCamelCase , __lowerCamelCase : Tuple = load_model_tokenizer(args.model_name_or_path , lowerCamelCase__ ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(lowerCamelCase__ ) if args.max_length: __lowerCamelCase : Optional[int] = args.max_length if args.num_beams: __lowerCamelCase : int = args.num_beams if args.output_file_path: __lowerCamelCase : Any = args.output_file_path else: __lowerCamelCase : Dict = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
73
import math def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list: __snake_case : Any = end or len(lowercase ) for i in range(lowercase , lowercase ): __snake_case : List[str] = i __snake_case : Union[str, Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case : Optional[Any] = array[temp_index - 1] temp_index -= 1 __snake_case : Any = temp_index_value return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap __snake_case : Any = index __snake_case : Optional[Any] = 2 * index + 1 # Left Node __snake_case : str = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case : Tuple = right_index if largest != index: __snake_case , __snake_case : int = array[largest], array[index] heapify(lowercase , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list ) -> list: __snake_case : List[str] = len(lowercase ) for i in range(n // 2 , -1 , -1 ): heapify(lowercase , lowercase , lowercase ) for i in range(n - 1 , 0 , -1 ): __snake_case , __snake_case : Optional[Any] = array[0], array[i] heapify(lowercase , 0 , lowercase ) return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: __snake_case : Union[str, Any] = low __snake_case : Union[str, Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case , __snake_case : str = array[j], array[i] i += 1 def lowerCAmelCase__( lowercase : list ) -> list: if len(lowercase ) == 0: return array __snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) ) __snake_case : Dict = 16 return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 __snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase ) intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase ) __snake_case : List[str] = p return insertion_sort(lowercase , lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip() _UpperCamelCase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
326
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = StableDiffusionPanoramaPipeline _lowerCamelCase: int = TEXT_TO_IMAGE_PARAMS _lowerCamelCase: List[str] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase: Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase: List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=1 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) A = DDIMScheduler() torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) A = CLIPTextModel(A_ ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Union[str, Any] ,A_ : List[Any]=0 ) -> List[str]: A = torch.manual_seed(A_ ) A = { 'prompt': 'a photo of the dolomites', 'generator': generator, # Setting height and width to None to prevent OOMs on CPU. 'height': None, 'width': None, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = StableDiffusionPanoramaPipeline(**A_ ) A = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = sd_pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A = np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: super().test_inference_batch_single_identical(batch_size=2 ,expected_max_diff=3.25e-3 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = StableDiffusionPanoramaPipeline(**A_ ) A = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = 'french fries' A = sd_pipe(**A_ ,negative_prompt=A_ ) A = output.images A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = StableDiffusionPanoramaPipeline(**A_ ) A = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = sd_pipe(**A_ ,view_batch_size=2 ) A = output.images A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule='scaled_linear' ) A = StableDiffusionPanoramaPipeline(**A_ ) A = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = sd_pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A = np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = PNDMScheduler( beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule='scaled_linear' ,skip_prk_steps=A_ ) A = StableDiffusionPanoramaPipeline(**A_ ) A = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = sd_pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A = np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Union[str, Any]=0 ) -> int: A = torch.manual_seed(A_ ) A = { 'prompt': 'a photo of the dolomites', 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: A = 'stabilityai/stable-diffusion-2-base' A = DDIMScheduler.from_pretrained(A_ ,subfolder='scheduler' ) A = StableDiffusionPanoramaPipeline.from_pretrained(A_ ,scheduler=A_ ,safety_checker=A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() A = self.get_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) A = np.array( [ 0.36_96_83_92, 0.27_02_53_72, 0.32_44_67_66, 0.28_37_93_87, 0.36_36_32_74, 0.30_73_33_47, 0.27_10_00_27, 0.27_05_41_25, 0.25_53_60_96, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: A = StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base' ,safety_checker=A_ ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() A = self.get_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) A = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: A = 0 def callback_fn(A_ : int ,A_ : int ,A_ : torch.FloatTensor ) -> None: A = True nonlocal number_of_steps number_of_steps += 1 if step == 1: A = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) A = latents[0, -3:, -3:, -1] A = np.array( [ 0.18_68_18_69, 0.33_90_78_16, 0.5_36_12_76, 0.14_43_28_65, -0.02_85_66_11, -0.73_94_11_23, 0.23_39_79_87, 0.47_32_26_82, -0.37_82_31_64, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: A = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) A = latents[0, -3:, -3:, -1] A = np.array( [ 0.18_53_96_45, 0.33_98_72_48, 0.5_37_85_59, 0.14_43_71_42, -0.02_45_52_61, -0.7_33_83_17, 0.23_99_07_55, 0.47_35_62_72, -0.3_78_65_05, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 A = False A = 'stabilityai/stable-diffusion-2-base' A = DDIMScheduler.from_pretrained(A_ ,subfolder='scheduler' ) A = StableDiffusionPanoramaPipeline.from_pretrained(A_ ,scheduler=A_ ,safety_checker=A_ ) A = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() A = self.get_inputs() pipe(**A_ ,callback=A_ ,callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A = 'stabilityai/stable-diffusion-2-base' A = DDIMScheduler.from_pretrained(A_ ,subfolder='scheduler' ) A = StableDiffusionPanoramaPipeline.from_pretrained(A_ ,scheduler=A_ ,safety_checker=A_ ) A = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A = self.get_inputs() A = pipe(**A_ ) A = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
74
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Any = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase__( lowercase : Dict ) -> Dict: __snake_case : Any = [1, 2] __snake_case : Dict = {"a": 1, "b": 2} __snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]} __snake_case : int = {"a": {"1": 1}, "b": 2} __snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case : Dict = [2, 3] __snake_case : Tuple = {"a": 2, "b": 3} __snake_case : int = {"a": [2, 3], "b": [4, 5]} __snake_case : Dict = {"a": {"1": 2}, "b": 3} __snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
326
0
'''simple docstring''' a_ : Union[str, Any] = tuple[float, float, float] a_ : int = tuple[float, float, float] def a_ ( __snake_case : Pointad , __snake_case : Pointad ) -> Vectorad: """simple docstring""" lowerCamelCase_ =end_pointa[0] - end_pointa[0] lowerCamelCase_ =end_pointa[1] - end_pointa[1] lowerCamelCase_ =end_pointa[2] - end_pointa[2] return (x, y, z) def a_ ( __snake_case : Vectorad , __snake_case : Vectorad ) -> Vectorad: """simple docstring""" lowerCamelCase_ =ab[1] * ac[2] - ab[2] * ac[1] # *i lowerCamelCase_ =(ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j lowerCamelCase_ =ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def a_ ( __snake_case : Vectorad , __snake_case : int ) -> bool: """simple docstring""" return tuple(round(__snake_case , __snake_case ) for x in vector ) == (0, 0, 0) def a_ ( __snake_case : Pointad , __snake_case : Pointad , __snake_case : Pointad , __snake_case : int = 10 ) -> bool: """simple docstring""" lowerCamelCase_ =create_vector(__snake_case , __snake_case ) lowerCamelCase_ =create_vector(__snake_case , __snake_case ) return is_zero_vector(get_ad_vectors_cross(__snake_case , __snake_case ) , __snake_case )
75
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any: __snake_case : Optional[Any] = False __snake_case : Optional[Any] = search_prob __snake_case : str = start_temperate __snake_case : List[Any] = [] __snake_case : str = 0 __snake_case : Dict = None while not search_end: __snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case : List[Any] = current_state scores.append(lowercase ) iterations += 1 __snake_case : Dict = None __snake_case : str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor __snake_case : int = neighbors.pop(lowercase ) __snake_case : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case : List[str] = picked_neighbor else: __snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case : str = picked_neighbor __snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case : Optional[Any] = True else: __snake_case : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase ) , lowercase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any: return (3 * x**2) - (6 * y) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' ) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' )
326
0
from __future__ import annotations a_ = tuple[int, int, int] a_ = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase a_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- a_ = 'EGZWVONAHDCLFQMSIPJBYUKXTR' a_ = 'FOBHMDKEXQNRAULPGSJVTYICZW' a_ = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- a_ = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- a_ = 'RMDJXFUWGISLHVTCQNKYPBEZOA' a_ = 'SGLCPQWZHKXAREONTFBVIYJUDM' a_ = 'HVSICLTYKQUBXDWAJZOMFGPREN' a_ = 'RZWQHFMVDBKICJLNTUXAGYPSOE' a_ = 'LFKIJODBEGAMQPXVUHYSTCZRWN' a_ = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def lowerCamelCase__ ( _a , _a , _a): # Checks if there are 3 unique rotors if (unique_rotsel := len(set(_a))) < 3: SCREAMING_SNAKE_CASE : Dict = f"Please use 3 unique rotors (not {unique_rotsel})" raise Exception(_a) # Checks if rotor positions are valid SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = rotpos if not 0 < rotorposa <= len(_a): SCREAMING_SNAKE_CASE : int = f"First rotor position is not within range of 1..26 ({rotorposa}" raise ValueError(_a) if not 0 < rotorposa <= len(_a): SCREAMING_SNAKE_CASE : Optional[int] = f"Second rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(_a) if not 0 < rotorposa <= len(_a): SCREAMING_SNAKE_CASE : Any = f"Third rotor position is not within range of 1..26 ({rotorposa})" raise ValueError(_a) # Validates string and returns dict SCREAMING_SNAKE_CASE : Tuple = _plugboard(_a) return rotpos, rotsel, pbdict def lowerCamelCase__ ( _a): # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(_a , _a): SCREAMING_SNAKE_CASE : Optional[Any] = f"Plugboard setting isn't type string ({type(_a)})" raise TypeError(_a) elif len(_a) % 2 != 0: SCREAMING_SNAKE_CASE : Optional[Any] = f"Odd number of symbols ({len(_a)})" raise Exception(_a) elif pbstring == "": return {} pbstring.replace(" " , "") # Checks if all characters are unique SCREAMING_SNAKE_CASE : str = set() for i in pbstring: if i not in abc: SCREAMING_SNAKE_CASE : List[str] = f"'{i}' not in list of symbols" raise Exception(_a) elif i in tmppbl: SCREAMING_SNAKE_CASE : str = f"Duplicate symbol ({i})" raise Exception(_a) else: tmppbl.add(_a) del tmppbl # Created the dictionary SCREAMING_SNAKE_CASE : Optional[Any] = {} for j in range(0 , len(_a) - 1 , 2): SCREAMING_SNAKE_CASE : str = pbstring[j + 1] SCREAMING_SNAKE_CASE : Tuple = pbstring[j] return pb def lowerCamelCase__ ( _a , _a , _a = (rotora, rotora, rotora) , _a = "" , ): SCREAMING_SNAKE_CASE : Any = text.upper() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = _validator( _a , _a , plugb.upper()) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = rotor_position SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 SCREAMING_SNAKE_CASE : Any = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: SCREAMING_SNAKE_CASE : Union[str, Any] = plugboard[symbol] # rotor ra -------------------------- SCREAMING_SNAKE_CASE : Optional[Any] = abc.index(_a) + rotorposa SCREAMING_SNAKE_CASE : str = rotora[index % len(_a)] # rotor rb -------------------------- SCREAMING_SNAKE_CASE : Any = abc.index(_a) + rotorposa SCREAMING_SNAKE_CASE : Any = rotora[index % len(_a)] # rotor rc -------------------------- SCREAMING_SNAKE_CASE : Any = abc.index(_a) + rotorposa SCREAMING_SNAKE_CASE : Optional[int] = rotora[index % len(_a)] # reflector -------------------------- # this is the reason you don't need another machine to decipher SCREAMING_SNAKE_CASE : str = reflector[symbol] # 2nd rotors SCREAMING_SNAKE_CASE : int = abc[rotora.index(_a) - rotorposa] SCREAMING_SNAKE_CASE : str = abc[rotora.index(_a) - rotorposa] SCREAMING_SNAKE_CASE : Tuple = abc[rotora.index(_a) - rotorposa] # 2nd plugboard if symbol in plugboard: SCREAMING_SNAKE_CASE : Any = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_a): SCREAMING_SNAKE_CASE : List[Any] = 0 rotorposa += 1 if rotorposa >= len(_a): SCREAMING_SNAKE_CASE : Union[str, Any] = 0 rotorposa += 1 if rotorposa >= len(_a): SCREAMING_SNAKE_CASE : str = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_a) return "".join(_a) if __name__ == "__main__": a_ = 'This is my Python script that emulates the Enigma machine from WWII.' a_ = (1, 1, 1) a_ = 'pictures' a_ = (rotora, rotora, rotora) a_ = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
76
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : Tuple ="FlavaImageProcessor" UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = self.image_processor def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if images is not None: __snake_case : Union[str, Any] = self.image_processor( UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if text is not None and images is not None: encoding.update(UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
326
0
"""simple docstring""" import torch def a_ ( ): '''simple docstring''' if torch.cuda.is_available(): lowercase__ : Tuple = torch.cuda.device_count() else: lowercase__ : Optional[int] = 0 print(f"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
77
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } _UpperCamelCase = { '''camembert-base''': 512, } _UpperCamelCase = '''▁''' class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : str =["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' __snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token __snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __snake_case : Dict = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __snake_case : Optional[int] = len(self.fairseq_tokens_to_ids ) __snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = [] __snake_case : Union[str, Any] = "" __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase ) + token __snake_case : List[Any] = True __snake_case : Union[str, Any] = [] else: current_sub_tokens.append(UpperCAmelCase ) __snake_case : int = False out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def __getstate__( self ) -> List[Any]: '''simple docstring''' __snake_case : str = self.__dict__.copy() __snake_case : Optional[Any] = None return state def __setstate__( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : List[str] = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Optional[Any] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: __snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
326
0
"""simple docstring""" def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = current_set.copy() for row_index, row in enumerate(lowercase_ ): UpperCAmelCase = row[0] for column_index, column in enumerate(lowercase_ ): if magnitude == 0: UpperCAmelCase = column continue UpperCAmelCase = column / magnitude # Subtract to cancel term UpperCAmelCase = current_set[0] UpperCAmelCase = [first_row] UpperCAmelCase = current_set[1::] for row in current_set: UpperCAmelCase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowercase_ ) continue for column_index in range(len(lowercase_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowercase_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: UpperCAmelCase = final_set[0] UpperCAmelCase = [] UpperCAmelCase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) UpperCAmelCase = simplify(lowercase_ ) for i in range(len(lowercase_ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowercase_ ) UpperCAmelCase = resultant return final_set def _lowerCAmelCase ( lowercase_ ): if len(lowercase_ ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) UpperCAmelCase = len(lowercase_ ) + 1 if any(len(lowercase_ ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(lowercase_ , (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(lowercase_ ) == 1: return [equations[0][-1] / equations[0][0]] UpperCAmelCase = equations.copy() if any(0 in row for row in data_set ): UpperCAmelCase = data_set.copy() UpperCAmelCase = [] for row_index, row in enumerate(lowercase_ ): if 0 not in row: UpperCAmelCase = data_set.pop(lowercase_ ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0 , lowercase_ ) UpperCAmelCase = data_set.copy() UpperCAmelCase = simplify(lowercase_ ) UpperCAmelCase = simplified[::-1] UpperCAmelCase = [] for row in simplified: UpperCAmelCase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue UpperCAmelCase = row.copy()[: len(lowercase_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowercase_ ) == 0: solutions.append(0 ) continue UpperCAmelCase = temp_row[1::] UpperCAmelCase = temp_row[::-1] for column_index, column in enumerate(lowercase_ ): current_solution -= column * solutions[column_index] solutions.append(lowercase_ ) UpperCAmelCase = [] for item in solutions: final.append(float(round(lowercase_ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() snake_case_ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
78
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool: __snake_case : List[str] = len(lowercase ) __snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __snake_case : Optional[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __snake_case : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __snake_case : List[str] = subset[i - 1][j] if arr[i - 1] <= j: __snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
326
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[Any]=13 , __UpperCAmelCase : List[str]=7 , __UpperCAmelCase : int=True , __UpperCAmelCase : int=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : List[str]=99 , __UpperCAmelCase : List[str]=32 , __UpperCAmelCase : List[Any]=2 , __UpperCAmelCase : List[str]=4 , __UpperCAmelCase : Optional[Any]=37 , __UpperCAmelCase : Tuple="gelu" , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : Dict=512 , __UpperCAmelCase : Union[str, Any]=16 , __UpperCAmelCase : List[Any]=2 , __UpperCAmelCase : Optional[int]=0.02 , __UpperCAmelCase : int=False , __UpperCAmelCase : str=True , __UpperCAmelCase : List[Any]="None" , __UpperCAmelCase : Optional[Any]=3 , __UpperCAmelCase : str=4 , __UpperCAmelCase : int=None , ): '''simple docstring''' _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = relative_attention _A = position_biased_input _A = pos_att_type _A = scope def lowerCAmelCase ( self : int ): '''simple docstring''' _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int ): '''simple docstring''' _A = TFDebertaVaModel(config=__UpperCAmelCase ) _A = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _A = [input_ids, input_mask] _A = model(__UpperCAmelCase ) _A = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict ): '''simple docstring''' _A = TFDebertaVaForMaskedLM(config=__UpperCAmelCase ) _A = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _A = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any ): '''simple docstring''' _A = self.num_labels _A = TFDebertaVaForSequenceClassification(config=__UpperCAmelCase ) _A = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _A = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple ): '''simple docstring''' _A = self.num_labels _A = TFDebertaVaForTokenClassification(config=__UpperCAmelCase ) _A = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _A = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] ): '''simple docstring''' _A = TFDebertaVaForQuestionAnswering(config=__UpperCAmelCase ) _A = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _A = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) snake_case = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) snake_case = False snake_case = False def lowerCAmelCase ( self : int ): '''simple docstring''' _A = TFDebertaVaModelTester(self ) _A = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="Model not available yet" ) def lowerCAmelCase ( self : str ): '''simple docstring''' pass @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) _A = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _A = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _A = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] _A = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1E-4 )
79
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _UpperCamelCase = 4 _UpperCamelCase = 3 class _lowerCamelCase ( a ): """simple docstring""" pass def lowerCAmelCase__( lowercase : List[str] ) -> Any: for shard in shards: for i in range(lowercase ): yield {"i": i, "shard": shard} def lowerCAmelCase__( ) -> Optional[int]: __snake_case : List[Any] = int(os.environ["RANK"] ) __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : List[str] = ArgumentParser() parser.add_argument("--streaming" , type=lowercase ) parser.add_argument("--local_rank" , type=lowercase ) parser.add_argument("--num_workers" , type=lowercase , default=0 ) __snake_case : Any = parser.parse_args() __snake_case : Dict = args.streaming __snake_case : Union[str, Any] = args.num_workers __snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]} __snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase ) if not streaming: __snake_case : Any = Dataset.from_list(list(lowercase ) ) __snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase ) __snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase ) __snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __snake_case : Dict = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
326
0
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent a__ : Tuple = {'UserAgent': UserAgent().random} def _UpperCamelCase ( __A ) -> dict: '''simple docstring''' UpperCamelCase__ = script.contents[0] UpperCamelCase__ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowercase_ : def __init__( self , a ): UpperCamelCase__ = f'''https://www.instagram.com/{username}/''' UpperCamelCase__ = self.get_json() def __a ( self ): UpperCamelCase__ = requests.get(self.url , headers=a ).text UpperCamelCase__ = BeautifulSoup(a , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def __a ( self ): return self.user_data["username"] @property def __a ( self ): return self.user_data["full_name"] @property def __a ( self ): return self.user_data["biography"] @property def __a ( self ): return self.user_data["business_email"] @property def __a ( self ): return self.user_data["external_url"] @property def __a ( self ): return self.user_data["edge_followed_by"]["count"] @property def __a ( self ): return self.user_data["edge_follow"]["count"] @property def __a ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __a ( self ): return self.user_data["profile_pic_url_hd"] @property def __a ( self ): return self.user_data["is_verified"] @property def __a ( self ): return self.user_data["is_private"] def _UpperCamelCase ( __A = "github" ) -> None: '''simple docstring''' import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCamelCase__ = InstagramUser(__A ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __A ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() a__ : Any = InstagramUser('github') print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
80
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int: __snake_case : List[Any] = limit + 1 __snake_case : List[str] = [0] * limit for first_term in range(1 , lowercase ): for n in range(lowercase , lowercase , lowercase ): __snake_case : Union[str, Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
326
0
"""simple docstring""" def _A ( lowercase = 10_00 ): """simple docstring""" a =2**power a =0 while n: a , a =r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
81
from __future__ import annotations def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]: __snake_case : List[str] = word_bank or [] # create a table __snake_case : int = len(lowercase ) + 1 __snake_case : list[list[list[str]]] = [] for _ in range(lowercase ): table.append([] ) # seed value __snake_case : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase )] == word: __snake_case : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase )]: combination.reverse() return table[len(lowercase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
326
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
82
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : int = use_attention_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[str] = vocab_size __snake_case : int = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[Any] = num_choices __snake_case : Union[str, Any] = rescale_embeddings __snake_case : List[Any] = attention_type __snake_case : str = use_bias __snake_case : Dict = block_size __snake_case : Optional[Any] = num_random_blocks def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase_ : Dict =False UpperCAmelCase_ : str =False def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
326
0
'''simple docstring''' def A__ ( UpperCAmelCase_ ): if num < 0: return False _UpperCamelCase : int = num _UpperCamelCase : int = 0 while num > 0: _UpperCamelCase : str = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
83
import argparse import datetime def lowerCAmelCase__( lowercase : str ) -> str: __snake_case : int = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } __snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase ) < 11: raise ValueError("Must be 10 characters long" ) # Get month __snake_case : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12" ) __snake_case : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day __snake_case : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31" ) # Get second separator __snake_case : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year __snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation __snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) ) # Start math if m <= 2: __snake_case : Optional[Any] = y - 1 __snake_case : Tuple = m + 12 # maths var __snake_case : int = int(str(lowercase )[:2] ) __snake_case : int = int(str(lowercase )[2:] ) __snake_case : int = int(2.6 * m - 5.3_9 ) __snake_case : int = int(c / 4 ) __snake_case : int = int(k / 4 ) __snake_case : int = int(d + k ) __snake_case : int = int(t + u + v + x ) __snake_case : int = int(z - (2 * c) ) __snake_case : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response __snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) _UpperCamelCase = parser.parse_args() zeller(args.date_input)
326
0
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger() @dataclass class _SCREAMING_SNAKE_CASE : UpperCAmelCase_ :nn.Module UpperCAmelCase_ :List[nn.Module] = field(default_factory=A__ ) UpperCAmelCase_ :list = field(default_factory=A__ ) def __lowerCAmelCase ( self , __A , __A , __A ) -> List[Any]: lowerCAmelCase_ :Optional[int] = len(list(m.modules() ) ) == 1 or isinstance(__A , nn.Convad ) or isinstance(__A , nn.BatchNormad ) if has_not_submodules: self.traced.append(__A ) def __call__( self , __A ) -> Union[str, Any]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__A ) [x.remove() for x in self.handles] return self @property def __lowerCAmelCase ( self ) -> List[str]: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda __A : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _SCREAMING_SNAKE_CASE : UpperCAmelCase_ :nn.Module UpperCAmelCase_ :nn.Module UpperCAmelCase_ :int = 0 UpperCAmelCase_ :List = field(default_factory=A__ ) UpperCAmelCase_ :List = field(default_factory=A__ ) def __call__( self , __A ) -> List[str]: lowerCAmelCase_ :Tuple = Tracker(self.dest )(__A ).parametrized lowerCAmelCase_ :Optional[Any] = Tracker(self.src )(__A ).parametrized lowerCAmelCase_ :Optional[Any] = list(filter(lambda __A : type(__A ) not in self.src_skip , __A ) ) lowerCAmelCase_ :Dict = list(filter(lambda __A : type(__A ) not in self.dest_skip , __A ) ) if len(__A ) != len(__A ): raise Exception( f"""Numbers of operations are different. Source module has {len(__A )} operations while""" f""" destination module has {len(__A )}.""" ) for dest_m, src_m in zip(__A , __A ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def _snake_case ( lowercase__ : str , lowercase__ : ResNetConfig , lowercase__ : Path , lowercase__ : bool = True ) -> Union[str, Any]: '''simple docstring''' print(f"""Converting {name}...""" ) with torch.no_grad(): lowerCAmelCase_ :int = timm.create_model(lowercase__ , pretrained=lowercase__ ).eval() lowerCAmelCase_ :Tuple = ResNetForImageClassification(lowercase__ ).eval() lowerCAmelCase_ :List[Any] = ModuleTransfer(src=lowercase__ , dest=lowercase__ ) lowerCAmelCase_ :str = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(lowercase__ ) assert torch.allclose(from_model(lowercase__ ) , our_model(lowercase__ ).logits ), "The model logits don't match the original one." lowerCAmelCase_ :Optional[Any] = f"""resnet{"-".join(name.split("resnet" ) )}""" print(lowercase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add model""" , use_temp_dir=lowercase__ , ) # we can use the convnext one lowerCAmelCase_ :Optional[int] = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="""Add image processor""" , use_temp_dir=lowercase__ , ) print(f"""Pushed {checkpoint_name}""" ) def _snake_case ( lowercase__ : Path , lowercase__ : str = None , lowercase__ : bool = True ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :Union[str, Any] = """imagenet-1k-id2label.json""" lowerCAmelCase_ :Optional[Any] = 1_0_0_0 lowerCAmelCase_ :Union[str, Any] = (1, num_labels) lowerCAmelCase_ :str = """huggingface/label-files""" lowerCAmelCase_ :Optional[Any] = num_labels lowerCAmelCase_ :Dict = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ :int = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ :Dict = idalabel lowerCAmelCase_ :Dict = {v: k for k, v in idalabel.items()} lowerCAmelCase_ :Any = partial(lowercase__ , num_labels=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ ) lowerCAmelCase_ :str = { """resnet18""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet26""": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet34""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type="""basic""" ), """resnet50""": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet101""": ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), """resnet152""": ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type="""bottleneck""" ), } if model_name: convert_weight_and_push(lowercase__ , names_to_config[model_name] , lowercase__ , lowercase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) return config, expected_shape if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
84
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int: if index == r: for j in range(lowercase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __snake_case : Union[str, Any] = arr[i] combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]: # A temporary array to store all combination one by one __snake_case : Tuple = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 ) if __name__ == "__main__": # Driver code to check the function above _UpperCamelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
326
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE : str = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys _SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] _UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def lowerCAmelCase__( lowercase : str ) -> Optional[Any]: __snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" ) return sd def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict: __snake_case : Tuple = OrderedDict() __snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __snake_case : Optional[Any] = key for name_pair in rename_keys_prefix: __snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] ) __snake_case : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __snake_case : List[Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]: assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: __snake_case : Any = "pretraining" if "vcr" in checkpoint_path: __snake_case : Optional[Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __snake_case : Tuple = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __snake_case : Any = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 512} __snake_case : Any = "multichoice" elif "vqa_advanced" in checkpoint_path: __snake_case : List[Any] = {"visual_embedding_dim": 2048} __snake_case : Optional[Any] = "vqa_advanced" elif "vqa" in checkpoint_path: __snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} __snake_case : Union[str, Any] = "vqa" elif "nlvr" in checkpoint_path: __snake_case : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } __snake_case : List[Any] = "nlvr" __snake_case : Union[str, Any] = VisualBertConfig(**lowercase ) # Load State Dict __snake_case : Any = load_state_dict(lowercase ) __snake_case : Dict = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": __snake_case : Optional[Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": __snake_case : Tuple = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": __snake_case : Tuple = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": __snake_case : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
326
0
"""simple docstring""" from __future__ import annotations import time import numpy as np lowerCamelCase__ = [8, 5, 9, 7] lowerCamelCase__ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowerCamelCase__ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : List[str] = claim_vector __lowerCAmelCase : str = allocated_resources_table __lowerCAmelCase : Optional[int] = maximum_claim_table def __lowerCamelCase ( self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __lowerCamelCase ( self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __lowerCamelCase ( self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_SCREAMING_SNAKE_CASE ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __lowerCamelCase ( self ): return {self.__need().index(_SCREAMING_SNAKE_CASE ): i for i in self.__need()} def __lowerCamelCase ( self , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = self.__need() __lowerCAmelCase : int = self.__allocated_resources_table __lowerCAmelCase : List[str] = self.__available_resources() __lowerCAmelCase : Dict = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __lowerCAmelCase : Optional[Any] = False for each_need in need_list: __lowerCAmelCase : Optional[int] = True for index, need in enumerate(_SCREAMING_SNAKE_CASE ): if need > available_resources[index]: __lowerCAmelCase : List[Any] = False break if execution: __lowerCAmelCase : Optional[int] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __lowerCAmelCase : Optional[int] = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(_SCREAMING_SNAKE_CASE ) # update available/freed resources stack __lowerCAmelCase : Optional[int] = np.array(_SCREAMING_SNAKE_CASE ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(_SCREAMING_SNAKE_CASE ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __lowerCamelCase ( self ): print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(_SCREAMING_SNAKE_CASE ) + 1}" + ' '.join(f"{it:>8}" for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(_SCREAMING_SNAKE_CASE ) + 1}" + ' '.join(f"{it:>8}" for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(_SCREAMING_SNAKE_CASE ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(_SCREAMING_SNAKE_CASE ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
86
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple: # Load configuration defined in the metadata file with open(lowercase ) as metadata_file: __snake_case : int = json.load(lowercase ) __snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file __snake_case : Tuple = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] __snake_case : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) __snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: __snake_case : Tuple = json.load(lowercase ) __snake_case : List[Any] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) __snake_case : Any = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens __snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0] __snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0] __snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"] __snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __snake_case : List[Any] = state_dict[bias_name] __snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) __snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 ) __snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self.""" __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] __snake_case : str = state_dict[prefix + matrix_name] __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"] __snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __snake_case : List[Any] = state_dict["entity_predictions.bias"] __snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __snake_case : Any = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __snake_case : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __snake_case : str = state_dict[key] else: __snake_case : str = state_dict[key] __snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) __snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __snake_case : Union[str, Any] = (0, 9) __snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : Any = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : Optional[Any] = torch.Size((1, 33, 768) ) __snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : str = torch.Size((1, 1, 768) ) __snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __snake_case : str = MLukeTokenizer.from_pretrained(lowercase ) __snake_case : Dict = "Tokyo is the capital of <mask>." __snake_case : Union[str, Any] = (24, 30) __snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : int = model(**lowercase ) __snake_case : Dict = encoding["input_ids"][0].tolist() __snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) __snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item() __snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]: __snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"] __snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )] __snake_case : Any = {} for entry in data: __snake_case : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __snake_case : Optional[int] = entity_id break __snake_case : Union[str, Any] = f"""{language}:{entity_name}""" __snake_case : Any = entity_id return new_mapping if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowercase_ ( _lowerCamelCase : List[str]): if not is_accelerate_available(): return method lowercase__ : Optional[int] = version.parse(accelerate.__version__).base_version if version.parse(_lowerCamelCase) < version.parse("0.17.0"): return method def wrapper(self : Optional[int] , *_lowerCamelCase : str , **_lowerCamelCase : Optional[Any]): if hasattr(self , "_hf_hook") and hasattr(self._hf_hook , "pre_forward"): self._hf_hook.pre_forward(self) return method(self , *_lowerCamelCase , **_lowerCamelCase) return wrapper
87
from maths.prime_factors import prime_factors def lowerCAmelCase__( lowercase : int ) -> int: if not isinstance(lowercase , lowercase ): __snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(lowercase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
326
0
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int=13 , UpperCamelCase__ : Union[str, Any]=30 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : Any=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : List[str]=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : int=10 , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : List[str]=0.6 , UpperCamelCase__ : Dict=None , ) -> str: """simple docstring""" __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = mask_ratio __magic_name__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __magic_name__ = (image_size // patch_size) ** 2 __magic_name__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self : Dict ) -> Tuple: """simple docstring""" __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = self.get_config() return config, pixel_values, labels def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _lowercase ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int ) -> str: """simple docstring""" __magic_name__ = TFViTMAEModel(config=UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ) -> Any: """simple docstring""" __magic_name__ = TFViTMAEForPreTraining(UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , training=UpperCamelCase__ ) # expected sequence length = num_patches __magic_name__ = (self.image_size // self.patch_size) ** 2 __magic_name__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __magic_name__ = 1 __magic_name__ = TFViTMAEForPreTraining(UpperCamelCase__ ) __magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ = model(UpperCamelCase__ , training=UpperCamelCase__ ) __magic_name__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __magic_name__ = self.prepare_config_and_inputs() ((__magic_name__) , (__magic_name__) , (__magic_name__)) = config_and_inputs __magic_name__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _A , _A , unittest.TestCase ): '''simple docstring''' a__ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () a__ = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} a__ = False a__ = False a__ = False a__ = False def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" __magic_name__ = TFViTMAEModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self : Optional[int] ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" pass def _lowercase ( self : Optional[int] ) -> Any: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __magic_name__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , tf.keras.layers.Layer ) ) def _lowercase ( self : List[Any] ) -> List[Any]: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _lowercase ( self : List[Any] ) -> str: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self : Any ) -> Optional[int]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def _lowercase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = copy.deepcopy(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) __magic_name__ = model(**UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = outputs_dict[0].numpy() __magic_name__ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def _lowercase ( self : Dict ) -> Any: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(UpperCamelCase__ : int ): __magic_name__ = {} for k, v in inputs_dict.items(): if tf.is_tensor(UpperCamelCase__ ): __magic_name__ = v.numpy() else: __magic_name__ = np.array(UpperCamelCase__ ) return inputs_np_dict for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = prepare_numpy_arrays(UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = model(**UpperCamelCase__ , noise=UpperCamelCase__ ) self.assert_outputs_same(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ) -> List[Any]: """simple docstring""" np.random.seed(2 ) __magic_name__ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __magic_name__ = tf.constant(UpperCamelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __magic_name__ = tf_noise super().check_pt_tf_models(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self : List[str] ) -> Dict: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(UpperCamelCase__ ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(UpperCamelCase__ , UpperCamelCase__ ),) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(UpperCamelCase__ , """_keras_serializable""" , UpperCamelCase__ ) } __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __magic_name__ = tf.convert_to_tensor(UpperCamelCase__ ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: __magic_name__ = main_layer_class(UpperCamelCase__ ) __magic_name__ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } __magic_name__ = tf.keras.Model(UpperCamelCase__ , outputs=main_layer(UpperCamelCase__ ) ) __magic_name__ = model(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: __magic_name__ = os.path.join(UpperCamelCase__ , """keras_model.h5""" ) model.save(UpperCamelCase__ ) __magic_name__ = tf.keras.models.load_model( UpperCamelCase__ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(UpperCamelCase__ , tf.keras.Model ) __magic_name__ = model(UpperCamelCase__ ) self.assert_outputs_same(UpperCamelCase__ , UpperCamelCase__ ) @slow def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) if model_class.__name__ == "TFViTMAEModel": __magic_name__ = outputs.last_hidden_state.numpy() __magic_name__ = 0 else: __magic_name__ = outputs.logits.numpy() __magic_name__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ , saved_model=UpperCamelCase__ ) __magic_name__ = model_class.from_pretrained(UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) if model_class.__name__ == "TFViTMAEModel": __magic_name__ = after_outputs["""last_hidden_state"""].numpy() __magic_name__ = 0 else: __magic_name__ = after_outputs["""logits"""].numpy() __magic_name__ = 0 __magic_name__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase__ , 1E-5 ) def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = int((config.image_size // config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ , noise=UpperCamelCase__ ) __magic_name__ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(UpperCamelCase__ ) __magic_name__ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config __magic_name__ = model_class.from_config(model.config ) __magic_name__ = new_model(UpperCamelCase__ ) # Build model new_model.set_weights(model.get_weights() ) __magic_name__ = new_model(UpperCamelCase__ , noise=UpperCamelCase__ ) self.assert_outputs_same(UpperCamelCase__ , UpperCamelCase__ ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _lowercase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass @slow def _lowercase ( self : Any ) -> str: """simple docstring""" __magic_name__ = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(UpperCamelCase__ ) def a__ ( ): '''simple docstring''' __magic_name__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def _lowercase ( self : Dict ) -> int: """simple docstring""" np.random.seed(2 ) __magic_name__ = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=UpperCamelCase__ , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __magic_name__ = ViTMAEConfig() __magic_name__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __magic_name__ = np.random.uniform(size=(1, num_patches) ) # forward pass __magic_name__ = model(**UpperCamelCase__ , noise=UpperCamelCase__ ) # verify the logits __magic_name__ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) __magic_name__ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1E-4 )
88
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" ) __snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids __snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids __snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits __snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() __snake_case : Any = -(labels.shape[-1] * loss.item()) __snake_case : List[str] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
326
0
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=5 ) -> Any: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('<mask>' ) == 1 _a : Tuple = torch.tensor(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ).unsqueeze(0 ) # Batch size 1 _a : Union[str, Any] = model(lowerCAmelCase_ )[0] # The last hidden-state is the first element of the output tuple _a : int = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _a : str = logits[0, masked_index, :] _a : int = logits.softmax(dim=0 ) _a , _a : Dict = prob.topk(k=lowerCAmelCase_ , dim=0 ) _a : str = ' '.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowerCAmelCase_ ) )] ) _a : Optional[int] = tokenizer.mask_token _a : Tuple = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ' ) ): _a : Optional[Any] = predicted_token_bpe.replace('\u2581' , ' ' ) if " {0}".format(lowerCAmelCase_ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(' {0}'.format(lowerCAmelCase_ ) , lowerCAmelCase_ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(lowerCAmelCase_ , lowerCAmelCase_ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __lowerCAmelCase = CamembertTokenizer.from_pretrained('''camembert-base''') __lowerCAmelCase = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() __lowerCAmelCase = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
89
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]: '''simple docstring''' super().__init__(UpperCAmelCase ) __snake_case : Optional[int] = proj_size __snake_case : str = CLIPVisionModel(UpperCAmelCase ) __snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase ) __snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size ) __snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' __snake_case : int = self.model(pixel_values=UpperCAmelCase ) __snake_case : Optional[int] = clip_output.pooler_output __snake_case : Any = self.mapper(latent_states[:, None] ) __snake_case : Any = self.final_layer_norm(UpperCAmelCase ) __snake_case : str = self.proj_out(UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__() __snake_case : List[Any] = (config.num_hidden_layers + 1) // 5 __snake_case : Dict = config.hidden_size __snake_case : str = 1 __snake_case : List[Any] = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase ) for _ in range(UpperCAmelCase ) ] ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' for block in self.blocks: __snake_case : int = block(UpperCAmelCase ) return hidden_states
326
0
from math import ceil def lowerCamelCase_ ( UpperCamelCase__ : int = 1001 ) -> int: """simple docstring""" __lowerCamelCase = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __lowerCamelCase = 2 * i + 1 __lowerCamelCase = 2 * i __lowerCamelCase = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __A = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
90
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
326
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Union[str, Any] = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "roberta" def __init__( self : List[Any] , lowercase_ : Optional[Any]=50265 , lowercase_ : List[Any]=768 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=12 , lowercase_ : Any=3072 , lowercase_ : Tuple="gelu" , lowercase_ : Tuple=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=2 , lowercase_ : List[str]=0.02 , lowercase_ : Tuple=1e-12 , lowercase_ : Any=1 , lowercase_ : Any=0 , lowercase_ : Optional[int]=2 , lowercase_ : Optional[int]="absolute" , lowercase_ : str=True , lowercase_ : str=None , **lowercase_ : int , ): '''simple docstring''' super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_size SCREAMING_SNAKE_CASE_ : int = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : str = hidden_act SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : str = position_embedding_type SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE_ : Tuple = classifier_dropout class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE_ : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
91
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = torch.device('''cpu''') def lowerCAmelCase__( ) -> Any: __snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCAmelCase__( lowercase : Dict ) -> List[Any]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = dct.pop(lowercase ) __snake_case : List[Any] = val def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple: __snake_case : Optional[Any] = [] for k in state_dict.keys(): __snake_case : Union[str, Any] = k if ".pwconv" in k: __snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: __snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: __snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: __snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: __snake_case : int = k_new.split("." ) if ls[2].isdigit(): __snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: __snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]: __snake_case : List[str] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __snake_case : Tuple = 1000 __snake_case : Any = "huggingface/label-files" __snake_case : int = "imagenet-1k-id2label.json" __snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) __snake_case : str = {int(lowercase ): v for k, v in idalabel.items()} __snake_case : int = idalabel __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __snake_case : Optional[Any] = [3, 3, 6, 4] __snake_case : Optional[int] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __snake_case : List[str] = [3, 3, 9, 6] __snake_case : Optional[Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __snake_case : Optional[int] = [4, 3, 10, 5] __snake_case : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __snake_case : str = [4, 4, 12, 6] __snake_case : Optional[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): __snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase ) else: __snake_case : Tuple = torch.load(lowercase , map_location="cpu" ) __snake_case : Optional[int] = checkpoint __snake_case : Any = create_rename_keys(lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # load HuggingFace model __snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval() hf_model.load_state_dict(lowercase ) # prepare test inputs __snake_case : Optional[Any] = prepare_img() __snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" ) __snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" ) # compare outputs from both models __snake_case : str = get_expected_output(lowercase ) __snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _UpperCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
326
0
import numpy as np def _a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float = 1E-12 , SCREAMING_SNAKE_CASE_ : int = 1_00 , ): assert np.shape(SCREAMING_SNAKE_CASE_ )[0] == np.shape(SCREAMING_SNAKE_CASE_ )[1] # Ensure proper dimensionality. assert np.shape(SCREAMING_SNAKE_CASE_ )[0] == np.shape(SCREAMING_SNAKE_CASE_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(SCREAMING_SNAKE_CASE_ ) == np.iscomplexobj(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = np.iscomplexobj(SCREAMING_SNAKE_CASE_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(SCREAMING_SNAKE_CASE_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(SCREAMING_SNAKE_CASE_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(SCREAMING_SNAKE_CASE_ , np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_ ) return lambda_, vector def _a ( ): __lowerCAmelCase = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __lowerCAmelCase = np.array([41, 4, 20] ) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa ) __lowerCAmelCase = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(SCREAMING_SNAKE_CASE_ ) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(SCREAMING_SNAKE_CASE_ ) - np.abs(SCREAMING_SNAKE_CASE_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
92
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) _UpperCamelCase = logging.getLogger(__name__) def lowerCAmelCase__( lowercase : str ) -> List[str]: __snake_case : int = git.Repo(search_parent_directories=lowercase ) __snake_case : Union[str, Any] = { "repo_id": str(lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f: json.dump(lowercase , lowercase , indent=4 ) def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]: if params.n_gpu <= 0: __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = -1 __snake_case : Union[str, Any] = True __snake_case : Tuple = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : int = int(os.environ["N_GPU_NODE"] ) __snake_case : Union[str, Any] = int(os.environ["RANK"] ) # number of nodes / node ID __snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node __snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node __snake_case : Union[str, Any] = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 __snake_case : Any = 1 __snake_case : str = 0 __snake_case : Optional[Any] = 0 __snake_case : Dict = 0 __snake_case : int = 1 __snake_case : Optional[Any] = 1 __snake_case : Tuple = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0 __snake_case : List[Any] = params.n_nodes > 1 # summary __snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
326
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( __SCREAMING_SNAKE_CASE : int | str ): """simple docstring""" lowercase_ : Optional[int] = str(__SCREAMING_SNAKE_CASE ) return n == n[::-1] def snake_case_ ( __SCREAMING_SNAKE_CASE : int = 1000000 ): """simple docstring""" lowercase_ : Union[str, Any] = 0 for i in range(1 , __SCREAMING_SNAKE_CASE ): if is_palindrome(__SCREAMING_SNAKE_CASE ) and is_palindrome(bin(__SCREAMING_SNAKE_CASE ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
93
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str =JukeboxTokenizer UpperCAmelCase_ : Tuple ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : int = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
326
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig snake_case : Tuple = logging.get_logger(__name__) class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase ): a :List[Any] = question_encoder a :Any = generator a :List[str] = self.question_encoder def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if os.path.isfile(_lowerCamelCase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) a :Tuple = os.path.join(_lowerCamelCase , '''question_encoder_tokenizer''' ) a :List[str] = os.path.join(_lowerCamelCase , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(_lowerCamelCase ) self.generator.save_pretrained(_lowerCamelCase ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , _lowerCamelCase , **_lowerCamelCase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer a :Optional[int] = kwargs.pop('''config''' , _lowerCamelCase ) if config is None: a :Any = RagConfig.from_pretrained(_lowerCamelCase ) a :List[Any] = AutoTokenizer.from_pretrained( _lowerCamelCase , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) a :str = AutoTokenizer.from_pretrained( _lowerCamelCase , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=_lowerCamelCase , generator=_lowerCamelCase ) def __call__( self , *_lowerCamelCase , **_lowerCamelCase ): return self.current_tokenizer(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.generator.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.generator.decode(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.question_encoder def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = self.generator def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "longest" , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ): warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _lowerCamelCase , ) if max_length is None: a :Any = self.current_tokenizer.model_max_length a :Dict = self( _lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , max_length=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , **_lowerCamelCase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: a :Union[str, Any] = self.current_tokenizer.model_max_length a :Union[str, Any] = self( text_target=_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , truncation=_lowerCamelCase , **_lowerCamelCase , ) a :Optional[int] = labels['''input_ids'''] return model_inputs
94
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : str UpperCAmelCase_ : str =None @staticmethod def UpperCAmelCase ( ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def UpperCAmelCase ( cls ) -> Tuple: '''simple docstring''' return F"""`pip install {cls.pip_package or cls.name}`""" class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[int] ="optuna" @staticmethod def UpperCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' return is_optuna_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' return default_hp_space_optuna(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : List[str] ="ray" UpperCAmelCase_ : Dict ="'ray[tune]'" @staticmethod def UpperCAmelCase ( ) -> str: '''simple docstring''' return is_ray_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' return default_hp_space_ray(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="sigopt" @staticmethod def UpperCAmelCase ( ) -> int: '''simple docstring''' return is_sigopt_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return default_hp_space_sigopt(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : str ="wandb" @staticmethod def UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' return is_wandb_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return default_hp_space_wandb(UpperCAmelCase ) _UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase__( ) -> str: __snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase ) > 0: __snake_case : Dict = available_backends[0].name if len(lowercase ) > 1: logger.info( f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
326
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : List[Any] = """canine""" def __init__( self , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_6_3_8_4 , lowerCAmelCase__=1_6 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__=0XE0_00 , lowerCAmelCase__=0XE0_01 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__=8 , lowerCAmelCase__=1_6_3_8_4 , lowerCAmelCase__=1_2_8 , **lowerCAmelCase__ , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : Optional[int] =max_position_embeddings a__ : str =hidden_size a__ : Optional[Any] =num_hidden_layers a__ : Tuple =num_attention_heads a__ : Optional[Any] =intermediate_size a__ : Optional[int] =hidden_act a__ : List[Any] =hidden_dropout_prob a__ : Union[str, Any] =attention_probs_dropout_prob a__ : Optional[Any] =initializer_range a__ : Union[str, Any] =type_vocab_size a__ : Optional[int] =layer_norm_eps # Character config: a__ : int =downsampling_rate a__ : Optional[Any] =upsampling_kernel_size a__ : Union[str, Any] =num_hash_functions a__ : Any =num_hash_buckets a__ : int =local_transformer_stride
95
import math def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list: __snake_case : Any = end or len(lowercase ) for i in range(lowercase , lowercase ): __snake_case : List[str] = i __snake_case : Union[str, Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case : Optional[Any] = array[temp_index - 1] temp_index -= 1 __snake_case : Any = temp_index_value return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap __snake_case : Any = index __snake_case : Optional[Any] = 2 * index + 1 # Left Node __snake_case : str = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case : Tuple = right_index if largest != index: __snake_case , __snake_case : int = array[largest], array[index] heapify(lowercase , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list ) -> list: __snake_case : List[str] = len(lowercase ) for i in range(n // 2 , -1 , -1 ): heapify(lowercase , lowercase , lowercase ) for i in range(n - 1 , 0 , -1 ): __snake_case , __snake_case : Optional[Any] = array[0], array[i] heapify(lowercase , 0 , lowercase ) return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: __snake_case : Union[str, Any] = low __snake_case : Union[str, Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case , __snake_case : str = array[j], array[i] i += 1 def lowerCAmelCase__( lowercase : list ) -> list: if len(lowercase ) == 0: return array __snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) ) __snake_case : Dict = 16 return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 __snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase ) intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase ) __snake_case : List[str] = p return insertion_sort(lowercase , lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip() _UpperCamelCase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
326
0
"""simple docstring""" import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _snake_case ( lowercase__ ): _lowerCamelCase : Dict = VideoMAEConfig() set_architecture_configs(lowercase__ , lowercase__ ) if "finetuned" not in model_name: _lowerCamelCase : Tuple = False if "finetuned" in model_name: _lowerCamelCase : Optional[Any] = 'huggingface/label-files' if "kinetics" in model_name: _lowerCamelCase : Union[str, Any] = 400 _lowerCamelCase : str = 'kinetics400-id2label.json' elif "ssv2" in model_name: _lowerCamelCase : List[Any] = 174 _lowerCamelCase : Optional[Any] = 'something-something-v2-id2label.json' else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase : List[Any] = {int(lowercase__ ): v for k, v in idalabel.items()} _lowerCamelCase : List[Any] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} return config def _snake_case ( lowercase__ , lowercase__ ): if "small" in model_name: _lowerCamelCase : List[str] = 384 _lowerCamelCase : Dict = 1536 _lowerCamelCase : int = 12 _lowerCamelCase : List[Any] = 16 _lowerCamelCase : Any = 12 _lowerCamelCase : int = 3 _lowerCamelCase : Dict = 192 _lowerCamelCase : Optional[Any] = 768 elif "large" in model_name: _lowerCamelCase : Optional[Any] = 1024 _lowerCamelCase : Tuple = 4096 _lowerCamelCase : int = 24 _lowerCamelCase : Union[str, Any] = 16 _lowerCamelCase : Tuple = 12 _lowerCamelCase : List[str] = 8 _lowerCamelCase : List[Any] = 512 _lowerCamelCase : Any = 2048 elif "huge" in model_name: _lowerCamelCase : Dict = 1280 _lowerCamelCase : Any = 5120 _lowerCamelCase : str = 32 _lowerCamelCase : Union[str, Any] = 16 _lowerCamelCase : str = 12 _lowerCamelCase : Union[str, Any] = 8 _lowerCamelCase : Tuple = 640 _lowerCamelCase : Any = 2560 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"' ) def _snake_case ( lowercase__ ): if "encoder." in name: _lowerCamelCase : Any = name.replace('encoder.' , '' ) if "cls_token" in name: _lowerCamelCase : Any = name.replace('cls_token' , 'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: _lowerCamelCase : Dict = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: _lowerCamelCase : Tuple = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: _lowerCamelCase : Any = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowerCamelCase : List[Any] = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' ) if "decoder.blocks" in name: _lowerCamelCase : Optional[Any] = name.replace('decoder.blocks' , 'decoder.decoder_layers' ) if "blocks" in name: _lowerCamelCase : Optional[Any] = name.replace('blocks' , 'videomae.encoder.layer' ) if "attn.proj" in name: _lowerCamelCase : Optional[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "bias" not in name: _lowerCamelCase : List[Any] = name.replace('attn' , 'attention.self' ) if "attn" in name: _lowerCamelCase : Optional[Any] = name.replace('attn' , 'attention.attention' ) if "norm1" in name: _lowerCamelCase : List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowerCamelCase : str = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _lowerCamelCase : Optional[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowerCamelCase : Optional[int] = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: _lowerCamelCase : Optional[int] = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: _lowerCamelCase : Optional[Any] = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: _lowerCamelCase : Optional[Any] = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: _lowerCamelCase : int = name.replace('norm.weight' , 'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: _lowerCamelCase : Union[str, Any] = name.replace('norm.bias' , 'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: _lowerCamelCase : Any = name.replace('head' , 'classifier' ) return name def _snake_case ( lowercase__ , lowercase__ ): for key in orig_state_dict.copy().keys(): _lowerCamelCase : List[str] = orig_state_dict.pop(lowercase__ ) if key.startswith('encoder.' ): _lowerCamelCase : int = key.replace('encoder.' , '' ) if "qkv" in key: _lowerCamelCase : str = key.split('.' ) if key.startswith('decoder.blocks' ): _lowerCamelCase : Any = config.decoder_hidden_size _lowerCamelCase : Optional[int] = int(key_split[2] ) _lowerCamelCase : List[str] = 'decoder.decoder_layers.' if "weight" in key: _lowerCamelCase : Optional[Any] = val[:dim, :] _lowerCamelCase : Any = val[dim : dim * 2, :] _lowerCamelCase : Union[str, Any] = val[-dim:, :] else: _lowerCamelCase : int = config.hidden_size _lowerCamelCase : Optional[int] = int(key_split[1] ) _lowerCamelCase : Tuple = 'videomae.encoder.layer.' if "weight" in key: _lowerCamelCase : List[str] = val[:dim, :] _lowerCamelCase : Optional[int] = val[dim : dim * 2, :] _lowerCamelCase : List[Any] = val[-dim:, :] else: _lowerCamelCase : int = val return orig_state_dict def _snake_case ( ): _lowerCamelCase : Optional[Any] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _lowerCamelCase : Any = np.load(lowercase__ ) return list(lowercase__ ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : str = get_videomae_config(lowercase__ ) if "finetuned" in model_name: _lowerCamelCase : str = VideoMAEForVideoClassification(lowercase__ ) else: _lowerCamelCase : Union[str, Any] = VideoMAEForPreTraining(lowercase__ ) # download original checkpoint, hosted on Google Drive _lowerCamelCase : Any = 'pytorch_model.bin' gdown.cached_download(lowercase__ , lowercase__ , quiet=lowercase__ ) _lowerCamelCase : Optional[int] = torch.load(lowercase__ , map_location='cpu' ) if "model" in files: _lowerCamelCase : Any = files['model'] else: _lowerCamelCase : Dict = files['module'] _lowerCamelCase : Union[str, Any] = convert_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() # verify model on basic input _lowerCamelCase : Any = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) _lowerCamelCase : Tuple = prepare_video() _lowerCamelCase : List[Any] = image_processor(lowercase__ , return_tensors='pt' ) if "finetuned" not in model_name: _lowerCamelCase : Tuple = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) _lowerCamelCase : List[Any] = torch.load(lowercase__ ) _lowerCamelCase : Any = model(**lowercase__ ) _lowerCamelCase : Union[str, Any] = outputs.logits _lowerCamelCase : Optional[int] = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": _lowerCamelCase : Optional[Any] = torch.Size([1, 400] ) _lowerCamelCase : int = torch.tensor([-0.9_2_9_1, -0.4_0_6_1, -0.9_3_0_7] ) elif model_name == "videomae-small-finetuned-ssv2": _lowerCamelCase : Optional[int] = torch.Size([1, 174] ) _lowerCamelCase : int = torch.tensor([0.2_6_7_1, -0.4_6_8_9, -0.8_2_3_5] ) elif model_name == "videomae-base": _lowerCamelCase : int = torch.Size([1, 1408, 1536] ) _lowerCamelCase : Dict = torch.tensor([[0.7_7_3_9, 0.7_9_6_8, 0.7_0_8_9], [0.6_7_0_1, 0.7_4_8_7, 0.6_2_0_9], [0.4_2_8_7, 0.5_1_5_8, 0.4_7_7_3]] ) elif model_name == "videomae-base-short": _lowerCamelCase : Any = torch.Size([1, 1408, 1536] ) _lowerCamelCase : Optional[Any] = torch.tensor([[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ) # we verified the loss both for normalized and unnormalized targets for this one _lowerCamelCase : str = torch.tensor([0.5_1_4_2] ) if config.norm_pix_loss else torch.tensor([0.6_4_6_9] ) elif model_name == "videomae-large": _lowerCamelCase : Any = torch.Size([1, 1408, 1536] ) _lowerCamelCase : int = torch.tensor([[0.7_1_4_9, 0.7_9_9_7, 0.6_9_6_6], [0.6_7_6_8, 0.7_8_6_9, 0.6_9_4_8], [0.5_1_3_9, 0.6_2_2_1, 0.5_6_0_5]] ) elif model_name == "videomae-large-finetuned-kinetics": _lowerCamelCase : List[str] = torch.Size([1, 400] ) _lowerCamelCase : Optional[int] = torch.tensor([0.0_7_7_1, 0.0_0_1_1, -0.3_6_2_5] ) elif model_name == "videomae-huge-finetuned-kinetics": _lowerCamelCase : Any = torch.Size([1, 400] ) _lowerCamelCase : Any = torch.tensor([0.2_4_3_3, 0.1_6_3_2, -0.4_8_9_4] ) elif model_name == "videomae-base-short-finetuned-kinetics": _lowerCamelCase : Union[str, Any] = torch.Size([1, 400] ) _lowerCamelCase : Tuple = torch.tensor([0.6_5_8_8, 0.0_9_9_0, -0.2_4_9_3] ) elif model_name == "videomae-base-finetuned-kinetics": _lowerCamelCase : Dict = torch.Size([1, 400] ) _lowerCamelCase : List[str] = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ) elif model_name == "videomae-base-short-ssv2": _lowerCamelCase : Any = torch.Size([1, 1408, 1536] ) _lowerCamelCase : Optional[Any] = torch.tensor([[0.4_7_1_2, 0.5_2_9_6, 0.5_7_8_6], [0.2_2_7_8, 0.2_7_2_9, 0.4_0_2_6], [0.0_3_5_2, 0.0_7_3_0, 0.2_5_0_6]] ) elif model_name == "videomae-base-short-finetuned-ssv2": _lowerCamelCase : Union[str, Any] = torch.Size([1, 174] ) _lowerCamelCase : Dict = torch.tensor([-0.0_5_3_7, -0.1_5_3_9, -0.3_2_6_6] ) elif model_name == "videomae-base-ssv2": _lowerCamelCase : Optional[int] = torch.Size([1, 1408, 1536] ) _lowerCamelCase : str = torch.tensor([[0.8_1_3_1, 0.8_7_2_7, 0.8_5_4_6], [0.7_3_6_6, 0.9_3_7_7, 0.8_8_7_0], [0.5_9_3_5, 0.8_8_7_4, 0.8_5_6_4]] ) elif model_name == "videomae-base-finetuned-ssv2": _lowerCamelCase : Tuple = torch.Size([1, 174] ) _lowerCamelCase : Dict = torch.tensor([0.1_9_6_1, -0.8_3_3_7, -0.6_3_8_9] ) else: raise ValueError(f'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase__ , atol=1E-4 ) else: print('Logits:' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase__ , atol=1E-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": _lowerCamelCase : Dict = outputs.loss assert torch.allclose(lowercase__ , lowercase__ , atol=1E-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase__ ) model.save_pretrained(lowercase__ ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(lowercase__ , organization='nielsr' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase__ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
96
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Any = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase__( lowercase : Dict ) -> Dict: __snake_case : Any = [1, 2] __snake_case : Dict = {"a": 1, "b": 2} __snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]} __snake_case : int = {"a": {"1": 1}, "b": 2} __snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case : Dict = [2, 3] __snake_case : Tuple = {"a": 2, "b": 3} __snake_case : int = {"a": [2, 3], "b": [4, 5]} __snake_case : Dict = {"a": {"1": 2}, "b": 3} __snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
326
0
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def a ( __a ) -> Any: '''simple docstring''' UpperCamelCase__ :str = torch.exp(__a ) UpperCamelCase__ :Tuple = torch.sum(__a , dim=1 ) # sum of exp(x_i) UpperCamelCase__ :Optional[Any] = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(__a ) - B / A class lowercase ( nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase_ ): '''simple docstring''' super().__init__() UpperCamelCase__ :Dict = config.output_attentions UpperCamelCase__ :Union[str, Any] = config.output_hidden_states UpperCamelCase__ :List[str] = nn.ModuleList([BertLayer(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) UpperCamelCase__ :int = nn.ModuleList([BertHighway(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) UpperCamelCase__ :str = [-1 for _ in range(config.num_hidden_layers )] def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if (type(UpperCamelCase_ ) is float) or (type(UpperCamelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): UpperCamelCase__ :Union[str, Any] = x else: UpperCamelCase__ :Optional[Any] = x def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[str] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , ): '''simple docstring''' UpperCamelCase__ :str = () UpperCamelCase__ :Optional[int] = () UpperCamelCase__ :Optional[int] = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: UpperCamelCase__ :Optional[int] = all_hidden_states + (hidden_states,) UpperCamelCase__ :Dict = layer_module( UpperCamelCase_ , UpperCamelCase_ , head_mask[i] , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :str = layer_outputs[0] if self.output_attentions: UpperCamelCase__ :int = all_attentions + (layer_outputs[1],) UpperCamelCase__ :List[Any] = (hidden_states,) if self.output_hidden_states: UpperCamelCase__ :Union[str, Any] = current_outputs + (all_hidden_states,) if self.output_attentions: UpperCamelCase__ :int = current_outputs + (all_attentions,) UpperCamelCase__ :Optional[int] = self.highway[i](UpperCamelCase_ ) # logits, pooled_output if not self.training: UpperCamelCase__ :List[str] = highway_exit[0] UpperCamelCase__ :List[Any] = entropy(UpperCamelCase_ ) UpperCamelCase__ :Tuple = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy UpperCamelCase__ :int = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: UpperCamelCase__ :str = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCamelCase_ , i + 1 ) else: UpperCamelCase__ :int = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: UpperCamelCase__ :int = all_hidden_states + (hidden_states,) UpperCamelCase__ :List[Any] = (hidden_states,) if self.output_hidden_states: UpperCamelCase__ :Union[str, Any] = outputs + (all_hidden_states,) if self.output_attentions: UpperCamelCase__ :int = outputs + (all_attentions,) UpperCamelCase__ :Optional[Any] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( 'The Bert Model transformer with early exiting (DeeBERT). ' , A__ , ) class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_ ): '''simple docstring''' super().__init__(UpperCamelCase_ ) UpperCamelCase__ :Tuple = config UpperCamelCase__ :Dict = BertEmbeddings(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = DeeBertEncoder(UpperCamelCase_ ) UpperCamelCase__ :str = BertPooler(UpperCamelCase_ ) self.init_weights() def lowerCAmelCase__ ( self ): '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def lowerCAmelCase__ ( self ): '''simple docstring''' return self.embeddings.word_embeddings def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = value def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCamelCase_ ) @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , ): '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: UpperCamelCase__ :List[str] = input_ids.size() elif inputs_embeds is not None: UpperCamelCase__ :int = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) UpperCamelCase__ :Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCamelCase__ :str = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if encoder_attention_mask is None: UpperCamelCase__ :str = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if token_type_ids is None: UpperCamelCase__ :Optional[int] = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCamelCase__ :torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: UpperCamelCase__ :Tuple = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: UpperCamelCase__ :int = encoder_attention_mask[:, None, None, :] UpperCamelCase__ :int = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility UpperCamelCase__ :str = (1.0 - encoder_extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCamelCase__ :Dict = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers ) UpperCamelCase__ :List[str] = self.embeddings( input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ ) UpperCamelCase__ :Tuple = self.encoder( UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) UpperCamelCase__ :Any = encoder_outputs[0] UpperCamelCase__ :Tuple = self.pooler(UpperCamelCase_ ) UpperCamelCase__ :List[str] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :str = message UpperCamelCase__ :Union[str, Any] = exit_layer # start from 1! class lowercase ( nn.Module ): """simple docstring""" def __init__( self , UpperCamelCase_ ): '''simple docstring''' super().__init__() UpperCamelCase__ :Dict = BertPooler(UpperCamelCase_ ) UpperCamelCase__ :Tuple = nn.Dropout(config.hidden_dropout_prob ) UpperCamelCase__ :Optional[int] = nn.Linear(config.hidden_size , config.num_labels ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :int = encoder_outputs[0] UpperCamelCase__ :Optional[Any] = self.pooler(UpperCamelCase_ ) # "return" pooler_output # BertModel UpperCamelCase__ :Union[str, Any] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification UpperCamelCase__ :Any = bmodel_output[1] UpperCamelCase__ :Union[str, Any] = self.dropout(UpperCamelCase_ ) UpperCamelCase__ :List[Any] = self.classifier(UpperCamelCase_ ) return logits, pooled_output @add_start_docstrings( 'Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ' , A__ , ) class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_ ): '''simple docstring''' super().__init__(UpperCamelCase_ ) UpperCamelCase__ :List[Any] = config.num_labels UpperCamelCase__ :Tuple = config.num_hidden_layers UpperCamelCase__ :Any = DeeBertModel(UpperCamelCase_ ) UpperCamelCase__ :Any = nn.Dropout(config.hidden_dropout_prob ) UpperCamelCase__ :Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=-1 , UpperCamelCase_=False , ): '''simple docstring''' UpperCamelCase__ :int = self.num_layers try: UpperCamelCase__ :Optional[int] = self.bert( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits UpperCamelCase__ :List[str] = outputs[1] UpperCamelCase__ :int = self.dropout(UpperCamelCase_ ) UpperCamelCase__ :Any = self.classifier(UpperCamelCase_ ) UpperCamelCase__ :List[str] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: UpperCamelCase__ :Any = e.message UpperCamelCase__ :Union[str, Any] = e.exit_layer UpperCamelCase__ :str = outputs[0] if not self.training: UpperCamelCase__ :Optional[Any] = entropy(UpperCamelCase_ ) UpperCamelCase__ :Dict = [] UpperCamelCase__ :int = [] if labels is not None: if self.num_labels == 1: # We are doing regression UpperCamelCase__ :Union[str, Any] = MSELoss() UpperCamelCase__ :Dict = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: UpperCamelCase__ :Dict = CrossEntropyLoss() UpperCamelCase__ :Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits UpperCamelCase__ :Optional[Any] = [] for highway_exit in outputs[-1]: UpperCamelCase__ :Any = highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression UpperCamelCase__ :int = MSELoss() UpperCamelCase__ :List[str] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: UpperCamelCase__ :Union[str, Any] = CrossEntropyLoss() UpperCamelCase__ :Any = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCamelCase_ ) if train_highway: UpperCamelCase__ :Dict = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: UpperCamelCase__ :Union[str, Any] = (loss,) + outputs if not self.training: UpperCamelCase__ :Any = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: UpperCamelCase__ :Optional[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
97
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any: __snake_case : Optional[Any] = False __snake_case : Optional[Any] = search_prob __snake_case : str = start_temperate __snake_case : List[Any] = [] __snake_case : str = 0 __snake_case : Dict = None while not search_end: __snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case : List[Any] = current_state scores.append(lowercase ) iterations += 1 __snake_case : Dict = None __snake_case : str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor __snake_case : int = neighbors.pop(lowercase ) __snake_case : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case : List[str] = picked_neighbor else: __snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case : str = picked_neighbor __snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case : Optional[Any] = True else: __snake_case : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase ) , lowercase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any: return (3 * x**2) - (6 * y) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' ) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' )
326
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" snake_case__ = StableDiffusionInpaintPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case__ = frozenset([] ) def __lowerCAmelCase ( self : str ): torch.manual_seed(0 ) UpperCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=9 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,attention_head_dim=(2, 4) ,use_linear_projection=lowerCamelCase__ ,) UpperCAmelCase__ = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) torch.manual_seed(0 ) UpperCAmelCase__ = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) UpperCAmelCase__ = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,hidden_act='gelu' ,projection_dim=512 ,) UpperCAmelCase__ = CLIPTextModel(lowerCamelCase__ ) UpperCAmelCase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCAmelCase__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : int=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCAmelCase__ = floats_tensor((1, 3, 32, 32) ,rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) UpperCAmelCase__ = image.cpu().permute(0 ,2 ,3 ,1 )[0] UpperCAmelCase__ = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert('RGB' ).resize((64, 64) ) UpperCAmelCase__ = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((64, 64) ) if str(lowerCamelCase__ ).startswith('mps' ): UpperCAmelCase__ = torch.manual_seed(lowerCamelCase__ ) else: UpperCAmelCase__ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) UpperCAmelCase__ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ = self.get_dummy_components() UpperCAmelCase__ = StableDiffusionInpaintPipeline(**lowerCamelCase__ ) UpperCAmelCase__ = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase__ = self.get_dummy_inputs(lowerCamelCase__ ) UpperCAmelCase__ = sd_pipe(**lowerCamelCase__ ).images UpperCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ = np.array([0.4_7_2_7, 0.5_7_3_5, 0.3_9_4_1, 0.5_4_4_6, 0.5_9_2_6, 0.4_3_9_4, 0.5_0_6_2, 0.4_6_5_4, 0.4_4_7_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : Optional[int] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : List[Any] ): UpperCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) UpperCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) UpperCAmelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) UpperCAmelCase__ = 'stabilityai/stable-diffusion-2-inpainting' UpperCAmelCase__ = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase__ ,safety_checker=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() UpperCAmelCase__ = 'Face of a yellow cat, high resolution, sitting on a park bench' UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe( prompt=lowerCamelCase__ ,image=lowerCamelCase__ ,mask_image=lowerCamelCase__ ,generator=lowerCamelCase__ ,output_type='np' ,) UpperCAmelCase__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) UpperCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) UpperCAmelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) UpperCAmelCase__ = 'stabilityai/stable-diffusion-2-inpainting' UpperCAmelCase__ = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase__ ,torch_dtype=torch.floataa ,safety_checker=lowerCamelCase__ ,) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() UpperCAmelCase__ = 'Face of a yellow cat, high resolution, sitting on a park bench' UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe( prompt=lowerCamelCase__ ,image=lowerCamelCase__ ,mask_image=lowerCamelCase__ ,generator=lowerCamelCase__ ,output_type='np' ,) UpperCAmelCase__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __lowerCAmelCase ( self : List[str] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) UpperCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) UpperCAmelCase__ = 'stabilityai/stable-diffusion-2-inpainting' UpperCAmelCase__ = PNDMScheduler.from_pretrained(lowerCamelCase__ ,subfolder='scheduler' ) UpperCAmelCase__ = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase__ ,safety_checker=lowerCamelCase__ ,scheduler=lowerCamelCase__ ,torch_dtype=torch.floataa ,) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase__ = 'Face of a yellow cat, high resolution, sitting on a park bench' UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe( prompt=lowerCamelCase__ ,image=lowerCamelCase__ ,mask_image=lowerCamelCase__ ,generator=lowerCamelCase__ ,num_inference_steps=2 ,output_type='np' ,) UpperCAmelCase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.6_5 * 10**9
98
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : Tuple ="FlavaImageProcessor" UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = self.image_processor def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if images is not None: __snake_case : Union[str, Any] = self.image_processor( UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if text is not None and images is not None: encoding.update(UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
326
0
def A_ ( A__ ) -> int: a__ : Any = len(A__ ) a__ : Union[str, Any] = len(matrix[0] ) a__ : Union[str, Any] = min(A__ , A__ ) for row in range(A__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , A__ ): a__ : int = matrix[col][row] / matrix[row][row] for i in range(A__ , A__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows a__ : Optional[Any] = True for i in range(row + 1 , A__ ): if matrix[i][row] != 0: a__ , a__ : Tuple = matrix[i], matrix[row] a__ : Optional[Any] = False break if reduce: rank -= 1 for i in range(A__ ): a__ : int = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
99
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } _UpperCamelCase = { '''camembert-base''': 512, } _UpperCamelCase = '''▁''' class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : str =["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' __snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token __snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __snake_case : Dict = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __snake_case : Optional[int] = len(self.fairseq_tokens_to_ids ) __snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = [] __snake_case : Union[str, Any] = "" __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase ) + token __snake_case : List[Any] = True __snake_case : Union[str, Any] = [] else: current_sub_tokens.append(UpperCAmelCase ) __snake_case : int = False out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def __getstate__( self ) -> List[Any]: '''simple docstring''' __snake_case : str = self.__dict__.copy() __snake_case : Optional[Any] = None return state def __setstate__( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : List[str] = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Optional[Any] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: __snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
326
0
"""simple docstring""" from math import pow def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count __SCREAMING_SNAKE_CASE = int(pow(UpperCamelCase_ , UpperCamelCase_ ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = backtrack( UpperCamelCase_ , UpperCamelCase_ , current_number + 1 , UpperCamelCase_ , UpperCamelCase_ ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = backtrack( UpperCamelCase_ , UpperCamelCase_ , current_number + 1 , UpperCamelCase_ , UpperCamelCase_ ) return current_sum, solutions_count def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(UpperCamelCase_ , UpperCamelCase_ , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
100
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool: __snake_case : List[str] = len(lowercase ) __snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __snake_case : Optional[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __snake_case : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __snake_case : List[str] = subset[i - 1][j] if arr[i - 1] <= j: __snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
326
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Optional[Any] =IFPipeline lowercase_ : List[str] =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} lowercase_ : List[str] =TEXT_TO_IMAGE_BATCH_PARAMS lowercase_ : int =PipelineTesterMixin.required_optional_params - {'''latents'''} def A__ ( self): return self._get_dummy_components() def A__ ( self ,A__ ,A__=0): if str(A__).startswith('''mps'''): lowercase = torch.manual_seed(A__) else: lowercase = torch.Generator(device=A__).manual_seed(A__) lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def A__ ( self): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' ,reason='''float16 requires CUDA''') def A__ ( self): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1) def A__ ( self): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def A__ ( self): self._test_save_load_local() def A__ ( self): self._test_inference_batch_single_identical( expected_max_diff=1E-2 ,) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def A__ ( self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def A__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self): # if lowercase = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' ,variant='''fp16''' ,torch_dtype=torch.floataa) lowercase = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' ,variant='''fp16''' ,torch_dtype=torch.floataa ,text_encoder=A__ ,tokenizer=A__) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''') lowercase , lowercase = pipe_a.encode_prompt('''anime turtle''' ,device='''cuda''') del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowercase = None lowercase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(A__ ,A__ ,A__ ,A__) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowercase = IFImgaImgPipeline(**pipe_a.components) lowercase = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(A__ ,A__ ,A__ ,A__) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowercase = IFInpaintingPipeline(**pipe_a.components) lowercase = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(A__ ,A__ ,A__ ,A__) def A__ ( self ,A__ ,A__ ,A__ ,A__): # pipeline 1 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,num_inference_steps=2 ,generator=A__ ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''') assert_mean_pixel_difference(A__ ,A__) # pipeline 2 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,generator=A__ ,num_inference_steps=2 ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''') assert_mean_pixel_difference(A__ ,A__) def A__ ( self ,A__ ,A__ ,A__ ,A__): # pipeline 1 _start_torch_memory_measurement() lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,num_inference_steps=2 ,generator=A__ ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''') assert_mean_pixel_difference(A__ ,A__) # pipeline 2 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,original_image=A__ ,generator=A__ ,num_inference_steps=2 ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''') assert_mean_pixel_difference(A__ ,A__) def A__ ( self ,A__ ,A__ ,A__ ,A__): # pipeline 1 _start_torch_memory_measurement() lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(1)).to(A__) lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,mask_image=A__ ,num_inference_steps=2 ,generator=A__ ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''') assert_mean_pixel_difference(A__ ,A__) # pipeline 2 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) ,rng=random.Random(1)).to(A__) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,mask_image=A__ ,original_image=A__ ,generator=A__ ,num_inference_steps=2 ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''') assert_mean_pixel_difference(A__ ,A__) def UpperCamelCase ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
101
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _UpperCamelCase = 4 _UpperCamelCase = 3 class _lowerCamelCase ( a ): """simple docstring""" pass def lowerCAmelCase__( lowercase : List[str] ) -> Any: for shard in shards: for i in range(lowercase ): yield {"i": i, "shard": shard} def lowerCAmelCase__( ) -> Optional[int]: __snake_case : List[Any] = int(os.environ["RANK"] ) __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : List[str] = ArgumentParser() parser.add_argument("--streaming" , type=lowercase ) parser.add_argument("--local_rank" , type=lowercase ) parser.add_argument("--num_workers" , type=lowercase , default=0 ) __snake_case : Any = parser.parse_args() __snake_case : Dict = args.streaming __snake_case : Union[str, Any] = args.num_workers __snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]} __snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase ) if not streaming: __snake_case : Any = Dataset.from_list(list(lowercase ) ) __snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase ) __snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase ) __snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __snake_case : Dict = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
326
0
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process SCREAMING_SNAKE_CASE : int = logging.getLogger(__name__) SCREAMING_SNAKE_CASE : Dict = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) SCREAMING_SNAKE_CASE : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =field( default=__snake_case, metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) }, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__snake_case )}, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, ) @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'The input training data file (a text file).'} ) lowerCamelCase__ =field( default=__snake_case, metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) }, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'}, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'}, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'}, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'}, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) lowerCamelCase__ =field(default=__snake_case, metadata={'help': 'Whether ot not to use whole word mask.'} ) lowerCamelCase__ =field( default=0.1_5, metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) lowerCamelCase__ =field( default=1 / 6, metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) }, ) lowerCamelCase__ =field( default=5, metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) lowerCamelCase__ =field( default=-1, metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) }, ) lowerCamelCase__ =field( default=__snake_case, metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def lowercase ( _snake_case : DataTrainingArguments , _snake_case : PreTrainedTokenizer , _snake_case : bool = False , _snake_case : Optional[str] = None , ) ->Any: """simple docstring""" def _dataset(_snake_case : List[Any] , _snake_case : str=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=_snake_case , file_path=_snake_case , block_size=args.block_size , ref_path=_snake_case , ) return LineByLineTextDataset(tokenizer=_snake_case , file_path=_snake_case , block_size=args.block_size ) else: return TextDataset( tokenizer=_snake_case , file_path=_snake_case , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_snake_case , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_snake_case ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowercase ( ) ->List[Any]: """simple docstring""" __snake_case : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __snake_case , __snake_case , __snake_case : Union[str, Any] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _snake_case ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __snake_case : Optional[Any] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __snake_case : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __snake_case : Tuple = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: __snake_case : Dict = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __snake_case : List[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: __snake_case : int = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) __snake_case : List[Any] = AutoModelWithLMHead.from_config(_snake_case ) model.resize_token_embeddings(len(_snake_case ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: __snake_case : List[str] = tokenizer.max_len # Our input block size will be the max possible for the model else: __snake_case : Optional[int] = min(data_args.block_size , tokenizer.max_len ) # Get datasets __snake_case : Optional[Any] = ( get_dataset(_snake_case , tokenizer=_snake_case , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __snake_case : Any = ( get_dataset(_snake_case , tokenizer=_snake_case , evaluate=_snake_case , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __snake_case : List[Any] = DataCollatorForPermutationLanguageModeling( tokenizer=_snake_case , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __snake_case : Optional[Any] = DataCollatorForWholeWordMask( tokenizer=_snake_case , mlm_probability=data_args.mlm_probability ) else: __snake_case : Union[str, Any] = DataCollatorForLanguageModeling( tokenizer=_snake_case , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __snake_case : Optional[int] = Trainer( model=_snake_case , args=_snake_case , data_collator=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , prediction_loss_only=_snake_case , ) # Training if training_args.do_train: __snake_case : Dict = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_snake_case ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __snake_case : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __snake_case : Dict = trainer.evaluate() __snake_case : Dict = math.exp(eval_output['''eval_loss'''] ) __snake_case : List[Any] = {'''perplexity''': perplexity} __snake_case : str = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(_snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , _snake_case , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(_snake_case ) return results def lowercase ( _snake_case : Optional[int] ) ->Tuple: """simple docstring""" main() if __name__ == "__main__": main()
102
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int: __snake_case : List[Any] = limit + 1 __snake_case : List[str] = [0] * limit for first_term in range(1 , lowercase ): for n in range(lowercase , lowercase , lowercase ): __snake_case : Union[str, Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
326
0
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets A__ : List[str] = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' A__ : Any = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' A__ : Union[str, Any] = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def UpperCAmelCase__ ( self : Any): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def UpperCAmelCase__ ( self : int , A_ : Optional[int] , A_ : Union[str, Any] , A_ : Optional[int]=None , A_ : Optional[Any]=True , A_ : Optional[int]=False): if rouge_types is None: lowerCAmelCase_ : Dict = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] lowerCAmelCase_ : List[str] = rouge_scorer.RougeScorer(rouge_types=A_ , use_stemmer=A_) if use_aggregator: lowerCAmelCase_ : List[Any] = scoring.BootstrapAggregator() else: lowerCAmelCase_ : int = [] for ref, pred in zip(A_ , A_): lowerCAmelCase_ : List[Any] = scorer.score(A_ , A_) if use_aggregator: aggregator.add_scores(A_) else: scores.append(A_) if use_aggregator: lowerCAmelCase_ : Optional[int] = aggregator.aggregate() else: lowerCAmelCase_ : Union[str, Any] = {} for key in scores[0]: lowerCAmelCase_ : List[Any] = [score[key] for score in scores] return result
103
from __future__ import annotations def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]: __snake_case : List[str] = word_bank or [] # create a table __snake_case : int = len(lowercase ) + 1 __snake_case : list[list[list[str]]] = [] for _ in range(lowercase ): table.append([] ) # seed value __snake_case : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase )] == word: __snake_case : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase )]: combination.reverse() return table[len(lowercase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
326
0
'''simple docstring''' import operator as op def _A ( A__ ): """simple docstring""" __lowercase = [] __lowercase = lambda A__ , A__ : int(x / y ) # noqa: E731 integer division operation __lowercase = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(A__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(A__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' ) else: __lowercase = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' ) __lowercase = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' ) stack.append( str(opr[x](int(A__ ) , int(A__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": lowerCAmelCase__ = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
104
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : int = use_attention_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[str] = vocab_size __snake_case : int = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[Any] = num_choices __snake_case : Union[str, Any] = rescale_embeddings __snake_case : List[Any] = attention_type __snake_case : str = use_bias __snake_case : Dict = block_size __snake_case : Optional[Any] = num_random_blocks def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase_ : Dict =False UpperCAmelCase_ : str =False def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
326
0
"""simple docstring""" from __future__ import annotations from typing import Any class __UpperCamelCase : def __init__( self , lowerCAmelCase__ ) -> None: a : Union[str, Any] = num_of_nodes a : list[list[int]] = [] a : dict[int, int] = {} def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: self.m_edges.append([u_node, v_node, weight] ) def __a ( self , lowerCAmelCase__ ) -> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def __a ( self , lowerCAmelCase__ ) -> None: if self.m_component[u_node] != u_node: for k in self.m_component: a : Tuple = self.find_component(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if component_size[u_node] <= component_size[v_node]: a : List[Any] = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCAmelCase__ ) elif component_size[u_node] >= component_size[v_node]: a : Dict = self.find_component(lowerCAmelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(lowerCAmelCase__ ) def __a ( self ) -> None: a : List[str] = [] a : str = 0 a : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) a : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: a, a, a : Any = edge a : Tuple = self.m_component[u] a : List[str] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): a : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a, a, a : Union[str, Any] = edge a : Any = self.m_component[u] a : str = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 a : List[str] = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _SCREAMING_SNAKE_CASE ( ) ->None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
105
import argparse import datetime def lowerCAmelCase__( lowercase : str ) -> str: __snake_case : int = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } __snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase ) < 11: raise ValueError("Must be 10 characters long" ) # Get month __snake_case : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12" ) __snake_case : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day __snake_case : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31" ) # Get second separator __snake_case : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year __snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation __snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) ) # Start math if m <= 2: __snake_case : Optional[Any] = y - 1 __snake_case : Tuple = m + 12 # maths var __snake_case : int = int(str(lowercase )[:2] ) __snake_case : int = int(str(lowercase )[2:] ) __snake_case : int = int(2.6 * m - 5.3_9 ) __snake_case : int = int(c / 4 ) __snake_case : int = int(k / 4 ) __snake_case : int = int(d + k ) __snake_case : int = int(t + u + v + x ) __snake_case : int = int(z - (2 * c) ) __snake_case : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response __snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) _UpperCamelCase = parser.parse_args() zeller(args.date_input)
326
0
"""simple docstring""" from collections.abc import Iterable from typing import Any class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[int] ,lowercase_ : int | None = None ): lowerCAmelCase__ : List[str] = value lowerCAmelCase__ : Node | None = None # Added in order to delete a node easier lowerCAmelCase__ : Node | None = None lowerCAmelCase__ : Node | None = None def __repr__( self : List[str] ): from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'{self.value}': (self.left, self.right)} ,indent=1 ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : int ,lowercase_ : Node | None = None ): lowerCAmelCase__ : Union[str, Any] = root def __str__( self : Union[str, Any] ): return str(self.root ) def __lowerCAmelCase ( self : Dict ,lowercase_ : Node ,lowercase_ : Node | None ): if new_children is not None: # reset its kids lowerCAmelCase__ : List[str] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowercase_ ): # If it is the right children lowerCAmelCase__ : Union[str, Any] = new_children else: lowerCAmelCase__ : Optional[Any] = new_children else: lowerCAmelCase__ : List[str] = new_children def __lowerCAmelCase ( self : List[Any] ,lowercase_ : Node ): if node.parent and node.parent.right: return node == node.parent.right return False def __lowerCAmelCase ( self : List[str] ): return self.root is None def __lowerCAmelCase ( self : Tuple ,lowercase_ : Any ): lowerCAmelCase__ : Union[str, Any] = Node(lowercase_ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase__ : Dict = new_node # set its root else: # Tree is not empty lowerCAmelCase__ : Union[str, Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase__ : int = new_node # We insert the new node in a leaf break else: lowerCAmelCase__ : Any = parent_node.left else: if parent_node.right is None: lowerCAmelCase__ : Any = new_node break else: lowerCAmelCase__ : List[str] = parent_node.right lowerCAmelCase__ : Dict = parent_node def __lowerCAmelCase ( self : str ,*lowercase_ : Dict ): for value in values: self.__insert(lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : Any ): if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: lowerCAmelCase__ : str = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase__ : Tuple = node.left if value < node.value else node.right return node def __lowerCAmelCase ( self : int ,lowercase_ : Node | None = None ): if node is None: if self.root is None: return None lowerCAmelCase__ : str = self.root if not self.empty(): while node.right is not None: lowerCAmelCase__ : List[Any] = node.right return node def __lowerCAmelCase ( self : Any ,lowercase_ : Node | None = None ): if node is None: lowerCAmelCase__ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase__ : str = self.root while node.left is not None: lowerCAmelCase__ : int = node.left return node def __lowerCAmelCase ( self : Dict ,lowercase_ : int ): lowerCAmelCase__ : Tuple = self.search(lowercase_ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowercase_ ,lowercase_ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowercase_ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowercase_ ,node.left ) else: lowerCAmelCase__ : Dict = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase__ : List[str] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : Node | None ): if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __lowerCAmelCase ( self : str ,lowercase_ : List[str]=None ): if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __lowerCAmelCase ( self : Dict ,lowercase_ : list ,lowercase_ : Node | None ): if node: self.inorder(lowercase_ ,node.left ) arr.append(node.value ) self.inorder(lowercase_ ,node.right ) def __lowerCAmelCase ( self : Tuple ,lowercase_ : int ,lowercase_ : Node ): lowerCAmelCase__ : list[int] = [] self.inorder(lowercase_ ,lowercase_ ) # append all values to list using inorder traversal return arr[k - 1] def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Union[str, Any] = [] if curr_node is not None: lowerCAmelCase__ : int = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase__ : Optional[int] = BinarySearchTree() for i in testlist: t.insert(A_ ) # Prints all the elements of the list in order traversal print(A_ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(A_ ) print(A_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
106
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int: if index == r: for j in range(lowercase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __snake_case : Union[str, Any] = arr[i] combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]: # A temporary array to store all combination one by one __snake_case : Tuple = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 ) if __name__ == "__main__": # Driver code to check the function above _UpperCamelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
326
0
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = field( metadata={"""help""": """The output directory where the model will be written."""} , ) SCREAMING_SNAKE_CASE_ : str = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } , ) SCREAMING_SNAKE_CASE_ : str = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def __magic_name__ ( ): '''simple docstring''' a = HfArgumentParser((ModelArguments,) ) ((a) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: a = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: a = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: a = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: a = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed a = True a = True a = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path, decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path, encoder_config=A, decoder_config=A, ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens a = decoder_config.decoder_start_token_id a = decoder_config.pad_token_id if decoder_start_token_id is None: a = decoder_config.bos_token_id if pad_token_id is None: a = decoder_config.eos_token_id # This is necessary to make Flax's generate() work a = decoder_config.eos_token_id a = decoder_start_token_id a = pad_token_id a = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) a = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) a = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
107
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] _UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def lowerCAmelCase__( lowercase : str ) -> Optional[Any]: __snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" ) return sd def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict: __snake_case : Tuple = OrderedDict() __snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __snake_case : Optional[Any] = key for name_pair in rename_keys_prefix: __snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] ) __snake_case : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __snake_case : List[Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]: assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: __snake_case : Any = "pretraining" if "vcr" in checkpoint_path: __snake_case : Optional[Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __snake_case : Tuple = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __snake_case : Any = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 512} __snake_case : Any = "multichoice" elif "vqa_advanced" in checkpoint_path: __snake_case : List[Any] = {"visual_embedding_dim": 2048} __snake_case : Optional[Any] = "vqa_advanced" elif "vqa" in checkpoint_path: __snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} __snake_case : Union[str, Any] = "vqa" elif "nlvr" in checkpoint_path: __snake_case : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } __snake_case : List[Any] = "nlvr" __snake_case : Union[str, Any] = VisualBertConfig(**lowercase ) # Load State Dict __snake_case : Any = load_state_dict(lowercase ) __snake_case : Dict = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": __snake_case : Optional[Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": __snake_case : Tuple = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": __snake_case : Tuple = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": __snake_case : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
326
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[str] = int(SCREAMING_SNAKE_CASE ) if decimal in (0, 1): # Exit cases for the recursion return str(SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Any = divmod(SCREAMING_SNAKE_CASE , 2 ) return binary_recursive(SCREAMING_SNAKE_CASE ) + str(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : Optional[int] = str(SCREAMING_SNAKE_CASE ).strip() if not number: raise ValueError("No input value was provided" ) lowerCAmelCase : Tuple = "-" if number.startswith("-" ) else "" lowerCAmelCase : Union[str, Any] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f"""{negative}0b{binary_recursive(int(SCREAMING_SNAKE_CASE ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
108
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple: # Load configuration defined in the metadata file with open(lowercase ) as metadata_file: __snake_case : int = json.load(lowercase ) __snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file __snake_case : Tuple = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] __snake_case : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) __snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: __snake_case : Tuple = json.load(lowercase ) __snake_case : List[Any] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) __snake_case : Any = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens __snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0] __snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0] __snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"] __snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __snake_case : List[Any] = state_dict[bias_name] __snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) __snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 ) __snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self.""" __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] __snake_case : str = state_dict[prefix + matrix_name] __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"] __snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __snake_case : List[Any] = state_dict["entity_predictions.bias"] __snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __snake_case : Any = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __snake_case : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __snake_case : str = state_dict[key] else: __snake_case : str = state_dict[key] __snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) __snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __snake_case : Union[str, Any] = (0, 9) __snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : Any = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : Optional[Any] = torch.Size((1, 33, 768) ) __snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : str = torch.Size((1, 1, 768) ) __snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __snake_case : str = MLukeTokenizer.from_pretrained(lowercase ) __snake_case : Dict = "Tokyo is the capital of <mask>." __snake_case : Union[str, Any] = (24, 30) __snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : int = model(**lowercase ) __snake_case : Dict = encoding["input_ids"][0].tolist() __snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) __snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item() __snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]: __snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"] __snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )] __snake_case : Any = {} for entry in data: __snake_case : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __snake_case : Optional[int] = entity_id break __snake_case : Union[str, Any] = f"""{language}:{entity_name}""" __snake_case : Any = entity_id return new_mapping if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
0
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) UpperCAmelCase , UpperCAmelCase : Optional[int] = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) UpperCAmelCase : List[str] = controlnet_params UpperCAmelCase : int = """bird""" UpperCAmelCase : Tuple = jax.device_count() UpperCAmelCase : Optional[int] = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCAmelCase : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) UpperCAmelCase : Tuple = pipe.prepare_image_inputs([canny_image] * num_samples ) UpperCAmelCase : List[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : str = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) UpperCAmelCase : int = replicate(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = shard(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = shard(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = pipe( prompt_ids=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , params=_SCREAMING_SNAKE_CASE , prng_seed=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , jit=_SCREAMING_SNAKE_CASE , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) UpperCAmelCase : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCAmelCase : Optional[Any] = images[0, 253:256, 253:256, -1] UpperCAmelCase : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase : Union[str, Any] = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : str = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) UpperCAmelCase , UpperCAmelCase : int = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) UpperCAmelCase : int = controlnet_params UpperCAmelCase : List[Any] = """Chef in the kitchen""" UpperCAmelCase : Dict = jax.device_count() UpperCAmelCase : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) UpperCAmelCase : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) UpperCAmelCase : List[str] = pipe.prepare_image_inputs([pose_image] * num_samples ) UpperCAmelCase : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase : Any = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) UpperCAmelCase : Tuple = replicate(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = shard(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = shard(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = pipe( prompt_ids=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , params=_SCREAMING_SNAKE_CASE , prng_seed=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , jit=_SCREAMING_SNAKE_CASE , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) UpperCAmelCase : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCAmelCase : int = images[0, 253:256, 253:256, -1] UpperCAmelCase : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase : Any = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
109
from maths.prime_factors import prime_factors def lowerCAmelCase__( lowercase : int ) -> int: if not isinstance(lowercase , lowercase ): __snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(lowercase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
326
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class A : __snake_case = 42 # setable values __snake_case = 42 __snake_case = 42 __snake_case = None @classmethod def SCREAMING_SNAKE_CASE__ ( cls, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" return cls(common=UpperCamelCase__, init_noise_sigma=UpperCamelCase__, timesteps=UpperCamelCase__ ) @dataclass class A ( __UpperCAmelCase ): __snake_case = 42 class A ( __UpperCAmelCase , __UpperCAmelCase ): __snake_case = [e.name for e in FlaxKarrasDiffusionSchedulers] __snake_case = 42 @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return True @register_to_config def __init__( self, UpperCamelCase__ = 1000, UpperCamelCase__ = 0.0_001, UpperCamelCase__ = 0.02, UpperCamelCase__ = "linear", UpperCamelCase__ = None, UpperCamelCase__ = "fixed_small", UpperCamelCase__ = True, UpperCamelCase__ = "epsilon", UpperCamelCase__ = jnp.floataa, ): """simple docstring""" lowerCAmelCase_ = dtype def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ = None ): """simple docstring""" if common is None: lowerCAmelCase_ = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase_ = jnp.array(1.0, dtype=self.dtype ) lowerCAmelCase_ = jnp.arange(0, self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=UpperCamelCase__, init_noise_sigma=UpperCamelCase__, timesteps=UpperCamelCase__, ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" return sample def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = () ): """simple docstring""" lowerCAmelCase_ = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase_ = (jnp.arange(0, UpperCamelCase__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=UpperCamelCase__, timesteps=UpperCamelCase__, ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__=None, UpperCamelCase__=None ): """simple docstring""" lowerCAmelCase_ = state.common.alphas_cumprod[t] lowerCAmelCase_ = jnp.where(t > 0, state.common.alphas_cumprod[t - 1], jnp.array(1.0, dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase_ = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase_ = jnp.clip(UpperCamelCase__, a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase_ = jnp.log(jnp.clip(UpperCamelCase__, a_min=1E-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase_ = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase_ = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase_ = variance lowerCAmelCase_ = state.common.betas[t] lowerCAmelCase_ = (predicted_variance + 1) / 2 lowerCAmelCase_ = frac * max_log + (1 - frac) * min_log return variance def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = True, ): """simple docstring""" lowerCAmelCase_ = timestep if key is None: lowerCAmelCase_ = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase_ = jnp.split(UpperCamelCase__, sample.shape[1], axis=1 ) else: lowerCAmelCase_ = None # 1. compute alphas, betas lowerCAmelCase_ = state.common.alphas_cumprod[t] lowerCAmelCase_ = jnp.where(t > 0, state.common.alphas_cumprod[t - 1], jnp.array(1.0, dtype=self.dtype ) ) lowerCAmelCase_ = 1 - alpha_prod_t lowerCAmelCase_ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase_ = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase_ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase_ = jnp.clip(UpperCamelCase__, -1, 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase_ = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase_ = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase_ = jax.random.split(UpperCamelCase__, num=1 ) lowerCAmelCase_ = jax.random.normal(UpperCamelCase__, shape=model_output.shape, dtype=self.dtype ) return (self._get_variance(UpperCamelCase__, UpperCamelCase__, predicted_variance=UpperCamelCase__ ) ** 0.5) * noise lowerCAmelCase_ = jnp.where(t > 0, random_variance(), jnp.zeros(model_output.shape, dtype=self.dtype ) ) lowerCAmelCase_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=UpperCamelCase__, state=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, ): """simple docstring""" return add_noise_common(state.common, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, ): """simple docstring""" return get_velocity_common(state.common, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
278
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" ) __snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids __snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids __snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits __snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() __snake_case : Any = -(labels.shape[-1] * loss.item()) __snake_case : List[str] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
326
0
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa a_ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = "summarization" snake_case_ = ["loss"] snake_case_ = ROUGE_KEYS snake_case_ = "rouge2" def __init__( self : Optional[Any] , __lowercase : str , **__lowercase : Tuple ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE__ : str =False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(__lowercase , num_labels=__lowercase , mode=self.mode , **__lowercase ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) SCREAMING_SNAKE_CASE__ : int =Path(self.output_dir ) / "metrics.json" SCREAMING_SNAKE_CASE__ : int =Path(self.output_dir ) / "hparams.pkl" pickle_save(self.hparams , self.hparams_save_path ) SCREAMING_SNAKE_CASE__ : Any =0 SCREAMING_SNAKE_CASE__ : Any =defaultdict(__lowercase ) SCREAMING_SNAKE_CASE__ : int =self.config.model_type SCREAMING_SNAKE_CASE__ : Dict =self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size SCREAMING_SNAKE_CASE__ : dict ={ "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE__ : Optional[int] ={ "train": self.hparams.n_train, "val": self.hparams.n_val, "test": self.hparams.n_test, } SCREAMING_SNAKE_CASE__ : Dict ={k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE__ : int ={ "train": self.hparams.max_target_length, "val": self.hparams.val_max_target_length, "test": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F"target_lens: {self.target_lens}" assert self.target_lens["train"] <= self.target_lens["test"], F"target_lens: {self.target_lens}" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =get_git_info()["repo_sha"] SCREAMING_SNAKE_CASE__ : List[Any] =hparams.num_workers SCREAMING_SNAKE_CASE__ : int =None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , __lowercase ): SCREAMING_SNAKE_CASE__ : int =self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE__ : Optional[int] =self.decoder_start_token_id SCREAMING_SNAKE_CASE__ : Any =( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE__ : int =False SCREAMING_SNAKE_CASE__ : Optional[int] =self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE__ : int =self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE__ : Tuple =self.model.config.max_length SCREAMING_SNAKE_CASE__ : int =self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def __magic_name__ ( self : Tuple , __lowercase : Union[str, Any] ) -> Dict[str, List[str]]: SCREAMING_SNAKE_CASE__ : Optional[int] ={ k: self.tokenizer.batch_decode(v.tolist() ) if "mask" not in k else v.shape for k, v in batch.items() } save_json(__lowercase , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =True return readable_batch def __magic_name__ ( self : Dict , __lowercase : Optional[Any] , **__lowercase : Any ) -> List[str]: return self.model(__lowercase , **__lowercase ) def __magic_name__ ( self : int , __lowercase : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : str =self.tokenizer.batch_decode( __lowercase , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase ) return lmap(str.strip , __lowercase ) def __magic_name__ ( self : List[str] , __lowercase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ : Dict =self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE__ : int =batch["input_ids"], batch["attention_mask"] SCREAMING_SNAKE_CASE__ : int =batch["labels"] if isinstance(self.model , __lowercase ): SCREAMING_SNAKE_CASE__ : List[str] =self.model._shift_right(__lowercase ) else: SCREAMING_SNAKE_CASE__ : Optional[int] =shift_tokens_right(__lowercase , __lowercase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE__ : List[Any] =decoder_input_ids self.save_readable_batch(__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =self(__lowercase , attention_mask=__lowercase , decoder_input_ids=__lowercase , use_cache=__lowercase ) SCREAMING_SNAKE_CASE__ : Any =outputs["logits"] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE__ : Tuple =nn.CrossEntropyLoss(ignore_index=__lowercase ) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE__ : str =ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ : Optional[int] =nn.functional.log_softmax(__lowercase , dim=-1 ) SCREAMING_SNAKE_CASE__ : Tuple =label_smoothed_nll_loss( __lowercase , __lowercase , self.hparams.label_smoothing , ignore_index=__lowercase ) return (loss,) @property def __magic_name__ ( self : List[str] ) -> int: return self.tokenizer.pad_token_id def __magic_name__ ( self : Tuple , __lowercase : Optional[int] , __lowercase : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ : Any =self._step(__lowercase ) SCREAMING_SNAKE_CASE__ : int =dict(zip(self.loss_names , __lowercase ) ) # tokens per batch SCREAMING_SNAKE_CASE__ : str =batch["input_ids"].ne(self.pad ).sum() + batch["labels"].ne(self.pad ).sum() SCREAMING_SNAKE_CASE__ : Union[str, Any] =batch["input_ids"].shape[0] SCREAMING_SNAKE_CASE__ : Any =batch["input_ids"].eq(self.pad ).sum() SCREAMING_SNAKE_CASE__ : str =batch["input_ids"].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def __magic_name__ ( self : Optional[Any] , __lowercase : str , __lowercase : List[str] ) -> Dict: return self._generative_step(__lowercase ) def __magic_name__ ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : Any="val" ) -> Dict: self.step_count += 1 SCREAMING_SNAKE_CASE__ : Optional[int] ={k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE__ : str =losses["loss"] SCREAMING_SNAKE_CASE__ : Optional[int] ={ k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["gen_time", "gen_len"] } SCREAMING_SNAKE_CASE__ : Any =( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE__ : torch.FloatTensor =torch.tensor(__lowercase ).type_as(__lowercase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] ={F"{prefix}_avg_{k}": x for k, x in losses.items()} SCREAMING_SNAKE_CASE__ : int =self.step_count self.metrics[prefix].append(__lowercase ) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE__ : Dict =flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F"{prefix}_loss": loss, F"{prefix}_{self.val_metric}": metric_tensor, } def __magic_name__ ( self : Optional[Any] , __lowercase : Dict , __lowercase : Any ) -> Dict: return calculate_rouge(__lowercase , __lowercase ) def __magic_name__ ( self : str , __lowercase : str ) -> dict: SCREAMING_SNAKE_CASE__ : Optional[int] =time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE__ : Optional[Any] =self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=__lowercase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE__ : Optional[int] =(time.time() - ta) / batch["input_ids"].shape[0] SCREAMING_SNAKE_CASE__ : List[str] =self.ids_to_clean_text(__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =self.ids_to_clean_text(batch['''labels'''] ) SCREAMING_SNAKE_CASE__ : List[Any] =self._step(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =dict(zip(self.loss_names , __lowercase ) ) SCREAMING_SNAKE_CASE__ : Dict =self.calc_generative_metrics(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =np.mean(lmap(__lowercase , __lowercase ) ) base_metrics.update(gen_time=__lowercase , gen_len=__lowercase , preds=__lowercase , target=__lowercase , **__lowercase ) return base_metrics def __magic_name__ ( self : Optional[int] , __lowercase : Tuple , __lowercase : int ) -> Union[str, Any]: return self._generative_step(__lowercase ) def __magic_name__ ( self : Optional[int] , __lowercase : Dict ) -> str: return self.validation_epoch_end(__lowercase , prefix='''test''' ) def __magic_name__ ( self : Any , __lowercase : int ) -> SeqaSeqDataset: SCREAMING_SNAKE_CASE__ : Optional[Any] =self.n_obs[type_path] SCREAMING_SNAKE_CASE__ : Optional[int] =self.target_lens[type_path] SCREAMING_SNAKE_CASE__ : Any =self.dataset_class( self.tokenizer , type_path=__lowercase , n_obs=__lowercase , max_target_length=__lowercase , **self.dataset_kwargs , ) return dataset def __magic_name__ ( self : Optional[Any] , __lowercase : Any , __lowercase : Optional[int] , __lowercase : Optional[Any] = False ) -> DataLoader: SCREAMING_SNAKE_CASE__ : List[str] =self.get_dataset(__lowercase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE__ : Union[str, Any] =dataset.make_sortish_sampler(__lowercase , distributed=self.hparams.gpus > 1 ) return DataLoader( __lowercase , batch_size=__lowercase , collate_fn=dataset.collate_fn , shuffle=__lowercase , num_workers=self.num_workers , sampler=__lowercase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE__ : Union[str, Any] =dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( __lowercase , batch_sampler=__lowercase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( __lowercase , batch_size=__lowercase , collate_fn=dataset.collate_fn , shuffle=__lowercase , num_workers=self.num_workers , sampler=__lowercase , ) def __magic_name__ ( self : str ) -> DataLoader: SCREAMING_SNAKE_CASE__ : str =self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=__lowercase ) return dataloader def __magic_name__ ( self : str ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def __magic_name__ ( self : Optional[int] ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def __magic_name__ ( __lowercase : Optional[Any] , __lowercase : Optional[Any] ) -> Any: BaseTransformer.add_model_specific_args(__lowercase , __lowercase ) add_generic_args(__lowercase , __lowercase ) parser.add_argument( '''--max_source_length''' , default=10_24 , type=__lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=__lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=1_42 , type=__lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=1_42 , type=__lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=__lowercase ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=__lowercase ) parser.add_argument('''--max_tokens_per_batch''' , type=__lowercase , default=__lowercase ) parser.add_argument('''--logger_name''' , type=__lowercase , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=__lowercase , default=-1 , required=__lowercase , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=__lowercase , default=5_00 , required=__lowercase , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=__lowercase , default=-1 , required=__lowercase , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=__lowercase , default='''summarization''' , required=__lowercase , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=__lowercase , default=0.0 , required=__lowercase ) parser.add_argument('''--src_lang''' , type=__lowercase , default='''''' , required=__lowercase ) parser.add_argument('''--tgt_lang''' , type=__lowercase , default='''''' , required=__lowercase ) parser.add_argument('''--eval_beams''' , type=__lowercase , default=__lowercase , required=__lowercase ) parser.add_argument( '''--val_metric''' , type=__lowercase , default=__lowercase , required=__lowercase , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=__lowercase , default=__lowercase , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=__lowercase , default=1 , required=__lowercase , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=__lowercase , default=-1 , required=__lowercase , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = "translation" snake_case_ = ["loss"] snake_case_ = ["bleu"] snake_case_ = "bleu" def __init__( self : Dict , __lowercase : List[Any] , **__lowercase : Optional[int] ) -> List[str]: super().__init__(__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =hparams.src_lang SCREAMING_SNAKE_CASE__ : Optional[int] =hparams.tgt_lang def __magic_name__ ( self : Any , __lowercase : Optional[int] , __lowercase : str ) -> dict: return calculate_bleu(__lowercase , __lowercase ) def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Union[str, Any]=None ): '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=UpperCamelCase__ ) check_output_dir(UpperCamelCase__, expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE__ : SummarizationModule =SummarizationModule(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE__ : SummarizationModule =TranslationModule(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Any =Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE__ : Union[str, Any] =True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE__ : List[str] =os.environ.get('''WANDB_PROJECT''', UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =WandbLogger(name=model.output_dir.name, project=UpperCamelCase__ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE__ : Union[str, Any] =WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}" ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE__ : Dict =get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE__ : Optional[int] =False SCREAMING_SNAKE_CASE__ : Dict =args.val_metric == "loss" SCREAMING_SNAKE_CASE__ : pl.Trainer =generic_train( UpperCamelCase__, UpperCamelCase__, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, UpperCamelCase__ ), early_stopping_callback=UpperCamelCase__, logger=UpperCamelCase__, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE__ : Tuple ="" SCREAMING_SNAKE_CASE__ : Union[str, Any] =sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=UpperCamelCase__ ) ) if checkpoints: SCREAMING_SNAKE_CASE__ : Tuple =checkpoints[-1] SCREAMING_SNAKE_CASE__ : Optional[Any] =checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": a_ = argparse.ArgumentParser() a_ = pl.Trainer.add_argparse_args(parser) a_ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) a_ = parser.parse_args() main(args)
152
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]: '''simple docstring''' super().__init__(UpperCAmelCase ) __snake_case : Optional[int] = proj_size __snake_case : str = CLIPVisionModel(UpperCAmelCase ) __snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase ) __snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size ) __snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' __snake_case : int = self.model(pixel_values=UpperCAmelCase ) __snake_case : Optional[int] = clip_output.pooler_output __snake_case : Any = self.mapper(latent_states[:, None] ) __snake_case : Any = self.final_layer_norm(UpperCAmelCase ) __snake_case : str = self.proj_out(UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__() __snake_case : List[Any] = (config.num_hidden_layers + 1) // 5 __snake_case : Dict = config.hidden_size __snake_case : str = 1 __snake_case : List[Any] = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase ) for _ in range(UpperCAmelCase ) ] ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' for block in self.blocks: __snake_case : int = block(UpperCAmelCase ) return hidden_states
326
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _UpperCamelCase : int = ["gpt2"] _UpperCamelCase : Tuple = "gpt2" if is_tf_available(): class UpperCAmelCase_ ( tf.Module): def __init__( self , a ) -> int: super().__init__() lowercase__ : int = tokenizer lowercase__ : Optional[int] = AutoConfig.from_pretrained(a ) lowercase__ : List[str] = TFGPTaLMHeadModel.from_config(a ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def _UpperCAmelCase ( self , a ) -> Any: lowercase__ : Union[str, Any] = self.tokenizer(a ) lowercase__ : Tuple = tokenized["input_ids"].to_tensor() lowercase__ : int = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) lowercase__ : Optional[int] = self.model(input_ids=a , attention_mask=a )["logits"] return outputs @require_tf @require_keras_nlp class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> List[str]: super().setUp() lowercase__ : Union[str, Any] = [GPTaTokenizer.from_pretrained(a ) for checkpoint in (TOKENIZER_CHECKPOINTS)] lowercase__ : Optional[Any] = [TFGPTaTokenizer.from_pretrained(a ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowercase__ : Tuple = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] lowercase__ : Optional[int] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _UpperCAmelCase ( self ) -> Any: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: lowercase__ : Any = tokenizer([test_inputs] , return_tensors='tf' ) lowercase__ : Optional[Any] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors lowercase__ : Any = python_outputs[key].numpy() lowercase__ : Tuple = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(a , tf.intaa ) == tf_outputs_values ) ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: lowercase__ : Tuple = tf.function(a ) for test_inputs in self.test_sentences: lowercase__ : str = tf.constant(a ) lowercase__ : Dict = compiled_tokenizer(a ) lowercase__ : Optional[int] = tf_tokenizer(a ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _UpperCAmelCase ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: lowercase__ : Union[str, Any] = ModelToSave(tokenizer=a ) lowercase__ : int = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase__ : Union[str, Any] = model.serving(a ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowercase__ : int = Path(a ) / "saved.model" tf.saved_model.save(a , a , signatures={'serving_default': model.serving} ) lowercase__ : Any = tf.saved_model.load(a ) lowercase__ : Dict = loaded_model.signatures["serving_default"](a )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _UpperCAmelCase ( self ) -> Any: for tf_tokenizer in self.tf_tokenizers: lowercase__ : Dict = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase__ : Any = tf_tokenizer(a ) # Build model with some sample inputs lowercase__ : Any = tf_tokenizer.get_config() lowercase__ : List[Any] = TFGPTaTokenizer.from_config(a ) lowercase__ : List[str] = model_from_config(a ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _UpperCAmelCase ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: # for the test to run lowercase__ : str = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: lowercase__ : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) lowercase__ : Any = tf_tokenizer(a , max_length=a ) lowercase__ : str = out["input_ids"].numpy().shape[1] assert out_length == max_length
77
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
326
0
from __future__ import annotations def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not nums: raise ValueError('''List is empty''' ) return sum(SCREAMING_SNAKE_CASE ) / len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = torch.device('''cpu''') def lowerCAmelCase__( ) -> Any: __snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCAmelCase__( lowercase : Dict ) -> List[Any]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = dct.pop(lowercase ) __snake_case : List[Any] = val def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple: __snake_case : Optional[Any] = [] for k in state_dict.keys(): __snake_case : Union[str, Any] = k if ".pwconv" in k: __snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: __snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: __snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: __snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: __snake_case : int = k_new.split("." ) if ls[2].isdigit(): __snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: __snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]: __snake_case : List[str] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __snake_case : Tuple = 1000 __snake_case : Any = "huggingface/label-files" __snake_case : int = "imagenet-1k-id2label.json" __snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) __snake_case : str = {int(lowercase ): v for k, v in idalabel.items()} __snake_case : int = idalabel __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __snake_case : Optional[Any] = [3, 3, 6, 4] __snake_case : Optional[int] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __snake_case : List[str] = [3, 3, 9, 6] __snake_case : Optional[Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __snake_case : Optional[int] = [4, 3, 10, 5] __snake_case : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __snake_case : str = [4, 4, 12, 6] __snake_case : Optional[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): __snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase ) else: __snake_case : Tuple = torch.load(lowercase , map_location="cpu" ) __snake_case : Optional[int] = checkpoint __snake_case : Any = create_rename_keys(lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # load HuggingFace model __snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval() hf_model.load_state_dict(lowercase ) # prepare test inputs __snake_case : Optional[Any] = prepare_img() __snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" ) __snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" ) # compare outputs from both models __snake_case : str = get_expected_output(lowercase ) __snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _UpperCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
326
0
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case : def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=False , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=3 , a__=4 , a__=None , ) -> str: '''simple docstring''' snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> List[Any]: '''simple docstring''' snake_case_ = BioGptModel(config=a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ , attention_mask=a__ ) snake_case_ = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) -> List[str]: '''simple docstring''' snake_case_ = BioGptForCausalLM(config=a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , *a__ ) -> List[Any]: '''simple docstring''' snake_case_ = BioGptModel(config=a__ ) model.to(a__ ) model.eval() # create attention mask snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=a__ ) snake_case_ = self.seq_length // 2 snake_case_ = 0 # first forward pass snake_case_ = model(a__ , attention_mask=a__ ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case_ = ids_tensor((1,) , a__ ).item() + 1 snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case_ = random_other_next_tokens # append to next input_ids and attn_mask snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=a__ )] , dim=1 , ) # get two different outputs snake_case_ = model(a__ , attention_mask=a__ )["last_hidden_state"] snake_case_ = model(a__ , past_key_values=a__ , attention_mask=a__ )["last_hidden_state"] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a__ , a__ , atol=1e-3 ) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , *a__ ) -> Optional[Any]: '''simple docstring''' snake_case_ = BioGptModel(config=a__ ).to(a__ ).eval() snake_case_ = torch.ones(input_ids.shape , dtype=torch.long , device=a__ ) # first forward pass snake_case_ = model(a__ , attention_mask=a__ , use_cache=a__ ) snake_case_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case_ = model(a__ , attention_mask=a__ )["last_hidden_state"] snake_case_ = model(a__ , attention_mask=a__ , past_key_values=a__ )[ "last_hidden_state" ] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a__ , a__ , atol=1e-3 ) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , *a__ , a__=False ) -> Union[str, Any]: '''simple docstring''' snake_case_ = BioGptForCausalLM(a__ ) model.to(a__ ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case_ = model(a__ , labels=a__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def lowerCAmelCase__ ( self , a__ , *a__ ) -> Optional[Any]: '''simple docstring''' snake_case_ = BioGptModel(a__ ) snake_case_ = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ , a__ , *a__ ) -> List[Any]: '''simple docstring''' snake_case_ = self.num_labels snake_case_ = BioGptForTokenClassification(a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ , attention_mask=a__ , token_type_ids=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.prepare_config_and_inputs() ( snake_case_ ) = config_and_inputs snake_case_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _snake_case ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): lowerCAmelCase_ : List[Any] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowerCAmelCase_ : Union[str, Any] = (BioGptForCausalLM,) if is_torch_available() else () lowerCAmelCase_ : Tuple = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ : Optional[int] = False def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = BioGptModelTester(self ) snake_case_ = ConfigTester(self , config_class=a__ , hidden_size=37 ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*a__ ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*a__ ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*a__ , gradient_checkpointing=a__ ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*a__ ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*a__ ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*a__ ) @slow def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(a__ ) snake_case_ = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) snake_case_ = "left" # Define PAD Token = EOS Token = 50256 snake_case_ = tokenizer.eos_token snake_case_ = model.config.eos_token_id # use different length sentences to test batching snake_case_ = [ "Hello, my dog is a little", "Today, I", ] snake_case_ = tokenizer(a__ , return_tensors="pt" , padding=a__ ) snake_case_ = inputs["input_ids"].to(a__ ) snake_case_ = model.generate( input_ids=a__ , attention_mask=inputs["attention_mask"].to(a__ ) , ) snake_case_ = tokenizer(sentences[0] , return_tensors="pt" ).input_ids.to(a__ ) snake_case_ = model.generate(input_ids=a__ ) snake_case_ = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() snake_case_ = tokenizer(sentences[1] , return_tensors="pt" ).input_ids.to(a__ ) snake_case_ = model.generate(input_ids=a__ , max_length=model.config.max_length - num_paddings ) snake_case_ = tokenizer.batch_decode(a__ , skip_special_tokens=a__ ) snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=a__ ) snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=a__ ) snake_case_ = [ "Hello, my dog is a little bit bigger than a little bit.", "Today, I have a good idea of how to use the information", ] self.assertListEqual(a__ , a__ ) self.assertListEqual(a__ , [non_padded_sentence, padded_sentence] ) @slow def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BioGptModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict["input_ids"] snake_case_ = input_ids.ne(1 ).to(a__ ) snake_case_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case_ = BioGptForSequenceClassification(a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = "multi_label_classification" snake_case_ = input_dict["input_ids"] snake_case_ = input_ids.ne(1 ).to(a__ ) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case_ = BioGptForSequenceClassification(a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class _snake_case ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) snake_case_ = torch.tensor([[2, 4_805, 9, 656, 21]] ) snake_case_ = model(a__ )[0] snake_case_ = 42_384 snake_case_ = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , a__ ) snake_case_ = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a__ , atol=1e-4 ) ) @slow def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) snake_case_ = BioGptForCausalLM.from_pretrained("microsoft/biogpt" ) model.to(a__ ) torch.manual_seed(0 ) snake_case_ = tokenizer("COVID-19 is" , return_tensors="pt" ).to(a__ ) snake_case_ = model.generate( **a__ , min_length=100 , max_length=1_024 , num_beams=5 , early_stopping=a__ , ) snake_case_ = tokenizer.decode(output_ids[0] , skip_special_tokens=a__ ) snake_case_ = ( "COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" " causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" " territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," " and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" " more than 800,000 deaths." ) self.assertEqual(a__ , a__ )
85
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) _UpperCamelCase = logging.getLogger(__name__) def lowerCAmelCase__( lowercase : str ) -> List[str]: __snake_case : int = git.Repo(search_parent_directories=lowercase ) __snake_case : Union[str, Any] = { "repo_id": str(lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f: json.dump(lowercase , lowercase , indent=4 ) def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]: if params.n_gpu <= 0: __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = -1 __snake_case : Union[str, Any] = True __snake_case : Tuple = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : int = int(os.environ["N_GPU_NODE"] ) __snake_case : Union[str, Any] = int(os.environ["RANK"] ) # number of nodes / node ID __snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node __snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node __snake_case : Union[str, Any] = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 __snake_case : Any = 1 __snake_case : str = 0 __snake_case : Optional[Any] = 0 __snake_case : Dict = 0 __snake_case : int = 1 __snake_case : Optional[Any] = 1 __snake_case : Tuple = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0 __snake_case : List[Any] = params.n_nodes > 1 # summary __snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
326
0
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) class a ( __snake_case ): SCREAMING_SNAKE_CASE : Optional[int] = ["input_values", "attention_mask"] def __init__( self : str , __SCREAMING_SNAKE_CASE : Optional[int] = 1 , __SCREAMING_SNAKE_CASE : Any = 16000 , __SCREAMING_SNAKE_CASE : Optional[int] = 0.0 , __SCREAMING_SNAKE_CASE : str = False , __SCREAMING_SNAKE_CASE : Tuple = 80 , __SCREAMING_SNAKE_CASE : Union[str, Any] = 16 , __SCREAMING_SNAKE_CASE : Optional[Any] = 64 , __SCREAMING_SNAKE_CASE : str = "hann_window" , __SCREAMING_SNAKE_CASE : Union[str, Any] = 1.0 , __SCREAMING_SNAKE_CASE : int = 80 , __SCREAMING_SNAKE_CASE : List[str] = 7600 , __SCREAMING_SNAKE_CASE : Tuple = 1e-1_0 , __SCREAMING_SNAKE_CASE : Optional[int] = 2 , __SCREAMING_SNAKE_CASE : Any = True , **__SCREAMING_SNAKE_CASE : List[str] , ) -> Tuple: super().__init__(feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = do_normalize lowerCamelCase_ = return_attention_mask lowerCamelCase_ = num_mel_bins lowerCamelCase_ = hop_length lowerCamelCase_ = win_length lowerCamelCase_ = win_function lowerCamelCase_ = frame_signal_scale lowerCamelCase_ = fmin lowerCamelCase_ = fmax lowerCamelCase_ = mel_floor lowerCamelCase_ = reduction_factor lowerCamelCase_ = win_length * sampling_rate // 1000 lowerCamelCase_ = hop_length * sampling_rate // 1000 lowerCamelCase_ = optimal_fft_length(self.sample_size ) lowerCamelCase_ = (self.n_fft // 2) + 1 lowerCamelCase_ = window_function(window_length=self.sample_size , name=self.win_function , periodic=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , __SCREAMING_SNAKE_CASE , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , __SCREAMING_SNAKE_CASE , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCamelCase ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: lowerCamelCase_ = np.array(__SCREAMING_SNAKE_CASE , np.intaa ) lowerCamelCase_ = [] for vector, length in zip(__SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): lowerCamelCase_ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCamelCase_ = padding_value normed_input_values.append(__SCREAMING_SNAKE_CASE ) else: lowerCamelCase_ = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Tuple , ) -> np.ndarray: lowerCamelCase_ = spectrogram( __SCREAMING_SNAKE_CASE , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] = None , __SCREAMING_SNAKE_CASE : Tuple = None , __SCREAMING_SNAKE_CASE : List[str] = False , __SCREAMING_SNAKE_CASE : int = None , __SCREAMING_SNAKE_CASE : str = False , __SCREAMING_SNAKE_CASE : Tuple = None , __SCREAMING_SNAKE_CASE : List[str] = None , __SCREAMING_SNAKE_CASE : Any = None , __SCREAMING_SNAKE_CASE : int = None , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> BatchFeature: if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: lowerCamelCase_ = self._process_audio( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) else: lowerCamelCase_ = None if audio_target is not None: lowerCamelCase_ = self._process_audio( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) if inputs is None: return inputs_target else: lowerCamelCase_ = inputs_target["input_values"] lowerCamelCase_ = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: lowerCamelCase_ = decoder_attention_mask return inputs def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any = False , __SCREAMING_SNAKE_CASE : List[str] = False , __SCREAMING_SNAKE_CASE : Tuple = None , __SCREAMING_SNAKE_CASE : List[str] = False , __SCREAMING_SNAKE_CASE : Dict = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : List[str] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> BatchFeature: lowerCamelCase_ = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowerCamelCase_ = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase_ = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): lowerCamelCase_ = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowerCamelCase_ = speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase_ = [speech] # needed to make pad() work on spectrogram inputs lowerCamelCase_ = self.feature_size # convert into correct format for padding if is_target: lowerCamelCase_ = [self._extract_mel_features(__SCREAMING_SNAKE_CASE ) for waveform in speech] lowerCamelCase_ = BatchFeature({'input_values': features} ) lowerCamelCase_ = self.num_mel_bins else: lowerCamelCase_ = BatchFeature({'input_values': speech} ) lowerCamelCase_ = self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) lowerCamelCase_ = feature_size_hack # convert input values to correct format lowerCamelCase_ = padded_inputs["input_values"] if not isinstance(input_values[0] , np.ndarray ): lowerCamelCase_ = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for array in input_values] elif ( not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowerCamelCase_ = [array.astype(np.floataa ) for array in input_values] elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowerCamelCase_ = input_values.astype(np.floataa ) # convert attention_mask to correct format lowerCamelCase_ = padded_inputs.get('attention_mask' ) if attention_mask is not None: lowerCamelCase_ = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowerCamelCase_ = ( attention_mask if self._get_padding_strategies(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCamelCase_ = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=__SCREAMING_SNAKE_CASE , padding_value=self.padding_value ) if return_tensors is not None: lowerCamelCase_ = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs def UpperCamelCase ( self : str ) -> Dict[str, Any]: lowerCamelCase_ = super().to_dict() # Don't serialize these as they are derived from the other properties. lowerCamelCase_ = ["window", "mel_filters", "sample_size", "sample_stride", "n_fft", "n_freqs"] for name in names: if name in output: del output[name] return output
183
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str =JukeboxTokenizer UpperCAmelCase_ : Tuple ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : int = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
326
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : Any = '▁' __lowerCAmelCase : Any = {'vocab_file': 'spiece.model'} __lowerCAmelCase : Optional[int] = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } __lowerCAmelCase : Any = { 'google/reformer-crime-and-punishment': 524288, } class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any]="</s>" , UpperCamelCase__ : int="<unk>" , UpperCamelCase__ : Optional[Any]=[] , UpperCamelCase__ : List[Any] = None , **UpperCamelCase__ : List[str] , ) -> None: """simple docstring""" __magic_name__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) __magic_name__ = vocab_file __magic_name__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def _lowercase ( self : Optional[int] ) -> Dict: """simple docstring""" return self.sp_model.get_piece_size() def _lowercase ( self : Dict ) -> Dict[str, int]: """simple docstring""" __magic_name__ = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : int ) -> Optional[int]: """simple docstring""" __magic_name__ = self.__dict__.copy() __magic_name__ = None return state def __setstate__( self : List[str] , UpperCamelCase__ : Dict ) -> int: """simple docstring""" __magic_name__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ = {} __magic_name__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : List[str] ) -> List[str]: """simple docstring""" return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def _lowercase ( self : int , UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" return self.sp_model.piece_to_id(UpperCamelCase__ ) def _lowercase ( self : Any , UpperCamelCase__ : int ) -> Tuple: """simple docstring""" if index < self.sp_model.get_piece_size(): __magic_name__ = self.sp_model.IdToPiece(UpperCamelCase__ ) return token def _lowercase ( self : int , UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" __magic_name__ = [] __magic_name__ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase__ ) + token __magic_name__ = [] else: current_sub_tokens.append(UpperCamelCase__ ) out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def _lowercase ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __magic_name__ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , """wb""" ) as fi: __magic_name__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
88
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : str UpperCAmelCase_ : str =None @staticmethod def UpperCAmelCase ( ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def UpperCAmelCase ( cls ) -> Tuple: '''simple docstring''' return F"""`pip install {cls.pip_package or cls.name}`""" class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[int] ="optuna" @staticmethod def UpperCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' return is_optuna_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' return default_hp_space_optuna(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : List[str] ="ray" UpperCAmelCase_ : Dict ="'ray[tune]'" @staticmethod def UpperCAmelCase ( ) -> str: '''simple docstring''' return is_ray_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' return default_hp_space_ray(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="sigopt" @staticmethod def UpperCAmelCase ( ) -> int: '''simple docstring''' return is_sigopt_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return default_hp_space_sigopt(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : str ="wandb" @staticmethod def UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' return is_wandb_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return default_hp_space_wandb(UpperCAmelCase ) _UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase__( ) -> str: __snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase ) > 0: __snake_case : Dict = available_backends[0].name if len(lowercase ) > 1: logger.info( f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
326
0
import glob import os import random from string import ascii_lowercase, digits import cva _UpperCAmelCase : List[Any] = "" _UpperCAmelCase : str = "" _UpperCAmelCase : int = "" _UpperCAmelCase : Union[str, Any] = 1 # (0 is vertical, 1 is horizontal) def A ( ) -> None: '''simple docstring''' UpperCamelCase = get_dataset(lowercase , lowercase ) print('Processing...' ) UpperCamelCase = update_image_and_anno(lowercase , lowercase , lowercase ) for index, image in enumerate(lowercase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCamelCase = random_chars(32 ) UpperCamelCase = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] UpperCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , lowercase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(lowercase )} with {file_name}''' ) UpperCamelCase = [] for anno in new_annos[index]: UpperCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(lowercase ) with open(f'''/{file_root}.txt''' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def A ( lowercase , lowercase ) -> tuple[list, list]: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = [] for label_file in glob.glob(os.path.join(lowercase , '*.txt' ) ): UpperCamelCase = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(lowercase ) as in_file: UpperCamelCase = in_file.readlines() UpperCamelCase = os.path.join(lowercase , f'''{label_name}.jpg''' ) UpperCamelCase = [] for obj_list in obj_lists: UpperCamelCase = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(lowercase ) labels.append(lowercase ) return img_paths, labels def A ( lowercase , lowercase , lowercase = 1 ) -> tuple[list, list, list]: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] for idx in range(len(lowercase ) ): UpperCamelCase = [] UpperCamelCase = img_list[idx] path_list.append(lowercase ) UpperCamelCase = anno_list[idx] UpperCamelCase = cva.imread(lowercase ) if flip_type == 1: UpperCamelCase = cva.flip(lowercase , lowercase ) for bbox in img_annos: UpperCamelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCamelCase = cva.flip(lowercase , lowercase ) for bbox in img_annos: UpperCamelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(lowercase ) new_imgs_list.append(lowercase ) return new_imgs_list, new_annos_lists, path_list def A ( lowercase = 32 ) -> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" UpperCamelCase = ascii_lowercase + digits return "".join(random.choice(lowercase ) for _ in range(lowercase ) ) if __name__ == "__main__": main() print("DONE ✅")
222
import math def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list: __snake_case : Any = end or len(lowercase ) for i in range(lowercase , lowercase ): __snake_case : List[str] = i __snake_case : Union[str, Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case : Optional[Any] = array[temp_index - 1] temp_index -= 1 __snake_case : Any = temp_index_value return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap __snake_case : Any = index __snake_case : Optional[Any] = 2 * index + 1 # Left Node __snake_case : str = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case : Tuple = right_index if largest != index: __snake_case , __snake_case : int = array[largest], array[index] heapify(lowercase , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list ) -> list: __snake_case : List[str] = len(lowercase ) for i in range(n // 2 , -1 , -1 ): heapify(lowercase , lowercase , lowercase ) for i in range(n - 1 , 0 , -1 ): __snake_case , __snake_case : Optional[Any] = array[0], array[i] heapify(lowercase , 0 , lowercase ) return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: __snake_case : Union[str, Any] = low __snake_case : Union[str, Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case , __snake_case : str = array[j], array[i] i += 1 def lowerCAmelCase__( lowercase : list ) -> list: if len(lowercase ) == 0: return array __snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) ) __snake_case : Dict = 16 return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 __snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase ) intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase ) __snake_case : List[str] = p return insertion_sort(lowercase , lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip() _UpperCamelCase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
326
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class lowercase__ ( unittest.TestCase ): def A_ ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ): return F'gaussian_noise_s={seed}_shape={"_".join([str(UpperCAmelCase_ ) for s in shape] )}.npy' def A_ ( self : Tuple ): super().tearDown() gc.collect() def A_ ( self : List[Any] , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : Dict=(4, 4, 64, 64) , UpperCAmelCase_ : Union[str, Any]=False ): SCREAMING_SNAKE_CASE__ = jnp.bfloataa if fpaa else jnp.floataa SCREAMING_SNAKE_CASE__ = jnp.array(load_hf_numpy(self.get_file_format(UpperCAmelCase_ , UpperCAmelCase_ ) ) , dtype=UpperCAmelCase_ ) return image def A_ ( self : Optional[int] , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): SCREAMING_SNAKE_CASE__ = jnp.bfloataa if fpaa else jnp.floataa SCREAMING_SNAKE_CASE__ = "bf16" if fpaa else None SCREAMING_SNAKE_CASE__ = FlaxUNetaDConditionModel.from_pretrained( UpperCAmelCase_ , subfolder='unet' , dtype=UpperCAmelCase_ , revision=UpperCAmelCase_ ) return model, params def A_ ( self : int , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : List[Any]=(4, 77, 768) , UpperCAmelCase_ : Union[str, Any]=False ): SCREAMING_SNAKE_CASE__ = jnp.bfloataa if fpaa else jnp.floataa SCREAMING_SNAKE_CASE__ = jnp.array(load_hf_numpy(self.get_file_format(UpperCAmelCase_ , UpperCAmelCase_ ) ) , dtype=UpperCAmelCase_ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def A_ ( self : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE__ = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.get_latents(UpperCAmelCase_ , fpaa=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.get_encoder_hidden_states(UpperCAmelCase_ , fpaa=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model.apply( {'params': params} , UpperCAmelCase_ , jnp.array(UpperCAmelCase_ , dtype=jnp.intaa ) , encoder_hidden_states=UpperCAmelCase_ , ).sample assert sample.shape == latents.shape SCREAMING_SNAKE_CASE__ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = jnp.array(UpperCAmelCase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def A_ ( self : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE__ = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.get_latents(UpperCAmelCase_ , shape=(4, 4, 96, 96) , fpaa=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.get_encoder_hidden_states(UpperCAmelCase_ , shape=(4, 77, 1024) , fpaa=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model.apply( {'params': params} , UpperCAmelCase_ , jnp.array(UpperCAmelCase_ , dtype=jnp.intaa ) , encoder_hidden_states=UpperCAmelCase_ , ).sample assert sample.shape == latents.shape SCREAMING_SNAKE_CASE__ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__ = jnp.array(UpperCAmelCase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-2 )
176
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Any = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase__( lowercase : Dict ) -> Dict: __snake_case : Any = [1, 2] __snake_case : Dict = {"a": 1, "b": 2} __snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]} __snake_case : int = {"a": {"1": 1}, "b": 2} __snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case : Dict = [2, 3] __snake_case : Tuple = {"a": 2, "b": 3} __snake_case : int = {"a": [2, 3], "b": [4, 5]} __snake_case : Dict = {"a": {"1": 2}, "b": 3} __snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
326
0
"""simple docstring""" def lowercase ( a__ : int ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(a__ , a__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(a__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
256
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any: __snake_case : Optional[Any] = False __snake_case : Optional[Any] = search_prob __snake_case : str = start_temperate __snake_case : List[Any] = [] __snake_case : str = 0 __snake_case : Dict = None while not search_end: __snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case : List[Any] = current_state scores.append(lowercase ) iterations += 1 __snake_case : Dict = None __snake_case : str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor __snake_case : int = neighbors.pop(lowercase ) __snake_case : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case : List[str] = picked_neighbor else: __snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case : str = picked_neighbor __snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case : Optional[Any] = True else: __snake_case : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase ) , lowercase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any: return (3 * x**2) - (6 * y) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' ) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' )
326
0
from __future__ import annotations from dataclasses import dataclass @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase : float _UpperCAmelCase : TreeNode | None = None _UpperCAmelCase : TreeNode | None = None def A_ ( _UpperCAmelCase ): # Validation def is_valid_tree(_UpperCAmelCase ) -> bool: if node is None: return True if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(_UpperCAmelCase ): raise ValueError( "Each node should be type of TreeNode and data should be float." ) def is_binary_search_tree_recursive_check( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _UpperCAmelCase , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , _UpperCAmelCase ) ) return is_binary_search_tree_recursive_check(_UpperCAmelCase , -float("inf" ) , float("inf" ) ) if __name__ == "__main__": import doctest doctest.testmod()
13
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : Tuple ="FlavaImageProcessor" UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = self.image_processor def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if images is not None: __snake_case : Union[str, Any] = self.image_processor( UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if text is not None and images is not None: encoding.update(UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
326
0
import math import random from typing import Any from .hill_climbing import SearchProblem def __UpperCamelCase ( _A , _A = True , _A = math.inf , _A = -math.inf , _A = math.inf , _A = -math.inf , _A = False , _A = 100 , _A = 0.0_1 , _A = 1 , ): lowerCAmelCase_ = False lowerCAmelCase_ = search_prob lowerCAmelCase_ = start_temperate lowerCAmelCase_ = [] lowerCAmelCase_ = 0 lowerCAmelCase_ = None while not search_end: lowerCAmelCase_ = current_state.score() if best_state is None or current_score > best_state.score(): lowerCAmelCase_ = current_state scores.append(_A ) iterations += 1 lowerCAmelCase_ = None lowerCAmelCase_ = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCAmelCase_ = random.randint(0 , len(_A ) - 1 ) # picking a random neighbor lowerCAmelCase_ = neighbors.pop(_A ) lowerCAmelCase_ = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCAmelCase_ = change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCAmelCase_ = picked_neighbor else: lowerCAmelCase_ = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCAmelCase_ = picked_neighbor lowerCAmelCase_ = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCAmelCase_ = True else: lowerCAmelCase_ = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_A ) , _A ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def __UpperCamelCase ( _A , _A ): return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _A = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _A = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) # starting the problem with initial coordinates (12, 47) _A = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _A = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) def __UpperCamelCase ( _A , _A ): return (3 * x**2) - (6 * y) _A = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _A = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f"{local_min.score()}" ) _A = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _A = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f"{local_min.score()}" )
278
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } _UpperCamelCase = { '''camembert-base''': 512, } _UpperCamelCase = '''▁''' class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : str =["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' __snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token __snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __snake_case : Dict = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __snake_case : Optional[int] = len(self.fairseq_tokens_to_ids ) __snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = [] __snake_case : Union[str, Any] = "" __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase ) + token __snake_case : List[Any] = True __snake_case : Union[str, Any] = [] else: current_sub_tokens.append(UpperCAmelCase ) __snake_case : int = False out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def __getstate__( self ) -> List[Any]: '''simple docstring''' __snake_case : str = self.__dict__.copy() __snake_case : Optional[Any] = None return state def __setstate__( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : List[str] = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Optional[Any] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: __snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
326
0
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers a_ = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =os.path.dirname(os.path.realpath(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =os.path.join(UpperCamelCase__, '''words.txt''' ) SCREAMING_SNAKE_CASE__ : int ="" with open(UpperCamelCase__ ) as f: SCREAMING_SNAKE_CASE__ : Optional[int] =f.readline() SCREAMING_SNAKE_CASE__ : Optional[int] =[word.strip('''\"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] SCREAMING_SNAKE_CASE__ : Optional[Any] =[ word for word in [sum(ord(UpperCamelCase__ ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(UpperCamelCase__ ) if __name__ == "__main__": print(solution())
152
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool: __snake_case : List[str] = len(lowercase ) __snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __snake_case : Optional[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __snake_case : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __snake_case : List[str] = subset[i - 1][j] if arr[i - 1] <= j: __snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" import string import numpy def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , _lowerCAmelCase ) class UpperCAmelCase_ : lowerCamelCase__ : Any = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowerCamelCase__ : List[str] = numpy.vectorize(lambda _a: x % 3_6) lowerCamelCase__ : Any = numpy.vectorize(_a) def __init__( self , a ) -> None: lowercase__ : str = self.modulus(a ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowercase__ : List[Any] = encrypt_key.shape[0] def _UpperCAmelCase ( self , a ) -> int: return self.key_string.index(a ) def _UpperCAmelCase ( self , a ) -> str: return self.key_string[round(a )] def _UpperCAmelCase ( self ) -> None: lowercase__ : List[str] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase__ : Union[str, Any] = det % len(self.key_string ) lowercase__ : int = len(self.key_string ) if greatest_common_divisor(a , len(self.key_string ) ) != 1: lowercase__ : Union[str, Any] = ( f"""determinant modular {req_l} of encryption key({det}) """ f"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(a ) def _UpperCAmelCase ( self , a ) -> str: lowercase__ : str = [char for char in text.upper() if char in self.key_string] lowercase__ : Optional[int] = chars[-1] while len(a ) % self.break_key != 0: chars.append(a ) return "".join(a ) def _UpperCAmelCase ( self , a ) -> str: lowercase__ : Dict = self.process_text(text.upper() ) lowercase__ : Tuple = "" for i in range(0 , len(a ) - self.break_key + 1 , self.break_key ): lowercase__ : Optional[Any] = text[i : i + self.break_key] lowercase__ : int = [self.replace_letters(a ) for char in batch] lowercase__ : Tuple = numpy.array([vec] ).T lowercase__ : Optional[Any] = self.modulus(self.encrypt_key.dot(a ) ).T.tolist()[ 0 ] lowercase__ : List[str] = "".join( self.replace_digits(a ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def _UpperCAmelCase ( self ) -> numpy.ndarray: lowercase__ : Union[str, Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase__ : Optional[int] = det % len(self.key_string ) lowercase__ : Any = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: lowercase__ : List[str] = i break lowercase__ : Union[str, Any] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(a ) ) def _UpperCAmelCase ( self , a ) -> str: lowercase__ : int = self.make_decrypt_key() lowercase__ : Dict = self.process_text(text.upper() ) lowercase__ : Dict = "" for i in range(0 , len(a ) - self.break_key + 1 , self.break_key ): lowercase__ : Optional[int] = text[i : i + self.break_key] lowercase__ : Dict = [self.replace_letters(a ) for char in batch] lowercase__ : Optional[int] = numpy.array([vec] ).T lowercase__ : Any = self.modulus(decrypt_key.dot(a ) ).T.tolist()[0] lowercase__ : List[Any] = "".join( self.replace_digits(a ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def a_ ( ): '''simple docstring''' lowercase__ : List[Any] = int(input('Enter the order of the encryption key: ' ) ) lowercase__ : List[str] = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(_lowerCAmelCase ): lowercase__ : Tuple = [int(_lowerCAmelCase ) for x in input().split()] hill_matrix.append(_lowerCAmelCase ) lowercase__ : Optional[int] = HillCipher(numpy.array(_lowerCAmelCase ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) lowercase__ : List[Any] = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": lowercase__ : Optional[Any] = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(_lowerCAmelCase ) ) elif option == "2": lowercase__ : List[Any] = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
77
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _UpperCamelCase = 4 _UpperCamelCase = 3 class _lowerCamelCase ( a ): """simple docstring""" pass def lowerCAmelCase__( lowercase : List[str] ) -> Any: for shard in shards: for i in range(lowercase ): yield {"i": i, "shard": shard} def lowerCAmelCase__( ) -> Optional[int]: __snake_case : List[Any] = int(os.environ["RANK"] ) __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : List[str] = ArgumentParser() parser.add_argument("--streaming" , type=lowercase ) parser.add_argument("--local_rank" , type=lowercase ) parser.add_argument("--num_workers" , type=lowercase , default=0 ) __snake_case : Any = parser.parse_args() __snake_case : Dict = args.streaming __snake_case : Union[str, Any] = args.num_workers __snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]} __snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase ) if not streaming: __snake_case : Any = Dataset.from_list(list(lowercase ) ) __snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase ) __snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase ) __snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __snake_case : Dict = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
326
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Tuple = "cvt" def __init__( self , __lowercase=3 , __lowercase=[7, 3, 3] , __lowercase=[4, 2, 2] , __lowercase=[2, 1, 1] , __lowercase=[64, 192, 384] , __lowercase=[1, 3, 6] , __lowercase=[1, 2, 10] , __lowercase=[4.0, 4.0, 4.0] , __lowercase=[0.0, 0.0, 0.0] , __lowercase=[0.0, 0.0, 0.0] , __lowercase=[0.0, 0.0, 0.1] , __lowercase=[True, True, True] , __lowercase=[False, False, True] , __lowercase=["dw_bn", "dw_bn", "dw_bn"] , __lowercase=[3, 3, 3] , __lowercase=[1, 1, 1] , __lowercase=[2, 2, 2] , __lowercase=[1, 1, 1] , __lowercase=[1, 1, 1] , __lowercase=0.02 , __lowercase=1E-1_2 , **__lowercase , ) -> Optional[Any]: super().__init__(**__lowercase) __UpperCamelCase :Optional[int] = num_channels __UpperCamelCase :Tuple = patch_sizes __UpperCamelCase :int = patch_stride __UpperCamelCase :int = patch_padding __UpperCamelCase :Tuple = embed_dim __UpperCamelCase :Optional[int] = num_heads __UpperCamelCase :Tuple = depth __UpperCamelCase :Optional[int] = mlp_ratio __UpperCamelCase :List[Any] = attention_drop_rate __UpperCamelCase :Optional[int] = drop_rate __UpperCamelCase :Dict = drop_path_rate __UpperCamelCase :Any = qkv_bias __UpperCamelCase :List[str] = cls_token __UpperCamelCase :Union[str, Any] = qkv_projection_method __UpperCamelCase :Union[str, Any] = kernel_qkv __UpperCamelCase :Optional[int] = padding_kv __UpperCamelCase :Optional[int] = stride_kv __UpperCamelCase :Optional[int] = padding_q __UpperCamelCase :Tuple = stride_q __UpperCamelCase :int = initializer_range __UpperCamelCase :Union[str, Any] = layer_norm_eps
43
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int: __snake_case : List[Any] = limit + 1 __snake_case : List[str] = [0] * limit for first_term in range(1 , lowercase ): for n in range(lowercase , lowercase , lowercase ): __snake_case : Union[str, Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
326
0
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _SCREAMING_SNAKE_CASE : Optional[int] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def UpperCamelCase_( snake_case : List[Any] ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: snake_case_ = k.replace(snake_case , snake_case ) return k def UpperCamelCase_( snake_case : dict , snake_case : dict ): '''simple docstring''' snake_case_ = DEFAULTS.copy() cfg_kwargs.update(snake_case ) snake_case_ = PegasusConfig(**snake_case ) snake_case_ = PegasusForConditionalGeneration(snake_case ) snake_case_ = torch_model.model.state_dict() snake_case_ = {} for k, v in tf_weights.items(): snake_case_ = rename_state_dict_key(snake_case ) if new_k not in sd: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: snake_case_ = v.T snake_case_ = torch.tensor(snake_case , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected snake_case_ = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) snake_case_ = mapping["shared.weight"] snake_case_ = mapping["shared.weight"] snake_case_ = {k: torch.zeros_like(snake_case ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**snake_case ) snake_case_ = torch_model.model.load_state_dict(snake_case , strict=snake_case ) snake_case_ = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def UpperCamelCase_( snake_case : int="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' snake_case_ = tf.train.list_variables(snake_case ) snake_case_ = {} snake_case_ = ["Adafactor", "global_step"] for name, shape in tqdm(snake_case , desc="converting tf checkpoint to dict" ): snake_case_ = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case_ = tf.train.load_variable(snake_case , snake_case ) snake_case_ = array return tf_weights def UpperCamelCase_( snake_case : str , snake_case : str ): '''simple docstring''' snake_case_ = Path(snake_case ).parent.name snake_case_ = task_specific_params[f'summarization_{dataset}']["max_position_embeddings"] snake_case_ = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=snake_case ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case ) # convert model snake_case_ = get_tf_weights_as_numpy(snake_case ) snake_case_ = task_specific_params[f'summarization_{dataset}'] if dataset == "large": snake_case_ = task_specific_params snake_case_ = convert_pegasus(snake_case , snake_case ) torch_model.save_pretrained(snake_case ) snake_case_ = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(snake_case , Path(snake_case ) / "pytorch_model.bin" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() if args.save_dir is None: _SCREAMING_SNAKE_CASE : Tuple = Path(args.tf_ckpt_path).parent.name _SCREAMING_SNAKE_CASE : List[str] = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
85
from __future__ import annotations def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]: __snake_case : List[str] = word_bank or [] # create a table __snake_case : int = len(lowercase ) + 1 __snake_case : list[list[list[str]]] = [] for _ in range(lowercase ): table.append([] ) # seed value __snake_case : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase )] == word: __snake_case : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase )]: combination.reverse() return table[len(lowercase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
326
0
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _SCREAMING_SNAKE_CASE : Tuple = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class a ( unittest.TestCase ): def UpperCamelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any = None , __SCREAMING_SNAKE_CASE : List[Any] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Any = True , ) -> List[Any]: lowerCamelCase_ = [file for file in os.listdir(__SCREAMING_SNAKE_CASE ) if os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )] if identifier is not None: lowerCamelCase_ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for n_ in n_identifier: lowerCamelCase_ = [file for file in files if n_ not in file] else: lowerCamelCase_ = [file for file in files if n_identifier not in file] lowerCamelCase_ = ignore_files or [] ignore_files.append('__init__.py' ) lowerCamelCase_ = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , __SCREAMING_SNAKE_CASE ) if only_modules: lowerCamelCase_ = file.split('.' )[0] try: lowerCamelCase_ = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = doctest.DocTestSuite(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = unittest.TextTestRunner().run(__SCREAMING_SNAKE_CASE ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: lowerCamelCase_ = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCamelCase ( self : Optional[int] ) -> Any: lowerCamelCase_ = Path('src/transformers' ) lowerCamelCase_ = "modeling" lowerCamelCase_ = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(__SCREAMING_SNAKE_CASE , identifier=__SCREAMING_SNAKE_CASE , ignore_files=__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Optional[Any] ) -> Dict: lowerCamelCase_ = Path('src/transformers' ) lowerCamelCase_ = "tokenization" self.analyze_directory(__SCREAMING_SNAKE_CASE , identifier=__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Dict ) -> Dict: lowerCamelCase_ = Path('src/transformers' ) lowerCamelCase_ = "configuration" self.analyze_directory(__SCREAMING_SNAKE_CASE , identifier=__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Tuple ) -> List[Any]: lowerCamelCase_ = Path('src/transformers' ) lowerCamelCase_ = ["configuration", "modeling", "tokenization"] self.analyze_directory(__SCREAMING_SNAKE_CASE , n_identifier=__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : List[str] ) -> List[Any]: lowerCamelCase_ = Path('docs/source' ) lowerCamelCase_ = ["favicon.ico"] self.analyze_directory(__SCREAMING_SNAKE_CASE , ignore_files=__SCREAMING_SNAKE_CASE , only_modules=__SCREAMING_SNAKE_CASE )
183
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : int = use_attention_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[str] = vocab_size __snake_case : int = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[Any] = num_choices __snake_case : Union[str, Any] = rescale_embeddings __snake_case : List[Any] = attention_type __snake_case : str = use_bias __snake_case : Dict = block_size __snake_case : Optional[Any] = num_random_blocks def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase_ : Dict =False UpperCAmelCase_ : str =False def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
326
0
from sklearn.metrics import matthews_corrcoef import datasets __lowerCAmelCase : List[Any] = '\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n' __lowerCAmelCase : List[str] = '\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results[\'matthews_correlation\'], 2))\n -0.25\n' __lowerCAmelCase : Optional[int] = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self : str ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any=None ) -> Optional[int]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(UpperCamelCase__ , UpperCamelCase__ , sample_weight=UpperCamelCase__ ) ), }
88
import argparse import datetime def lowerCAmelCase__( lowercase : str ) -> str: __snake_case : int = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } __snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase ) < 11: raise ValueError("Must be 10 characters long" ) # Get month __snake_case : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12" ) __snake_case : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day __snake_case : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31" ) # Get second separator __snake_case : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year __snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation __snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) ) # Start math if m <= 2: __snake_case : Optional[Any] = y - 1 __snake_case : Tuple = m + 12 # maths var __snake_case : int = int(str(lowercase )[:2] ) __snake_case : int = int(str(lowercase )[2:] ) __snake_case : int = int(2.6 * m - 5.3_9 ) __snake_case : int = int(c / 4 ) __snake_case : int = int(k / 4 ) __snake_case : int = int(d + k ) __snake_case : int = int(t + u + v + x ) __snake_case : int = int(z - (2 * c) ) __snake_case : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response __snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) _UpperCamelCase = parser.parse_args() zeller(args.date_input)
326
0
from math import log from scipy.constants import Boltzmann, physical_constants _UpperCAmelCase : Any = 300 # TEMPERATURE (unit = K) def A ( lowercase , lowercase , lowercase , ) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
222
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int: if index == r: for j in range(lowercase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __snake_case : Union[str, Any] = arr[i] combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]: # A temporary array to store all combination one by one __snake_case : Tuple = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 ) if __name__ == "__main__": # Driver code to check the function above _UpperCamelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
326
0
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowercase__ : def __init__( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any]=99 , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Optional[int]=9 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : List[Any]=37 , UpperCAmelCase_ : Dict=8 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : List[str]=0.002 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Optional[Any]=0 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Tuple=None , ): SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = encoder_seq_length SCREAMING_SNAKE_CASE__ = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ = self.decoder_seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_attention_mask SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = d_ff SCREAMING_SNAKE_CASE__ = relative_attention_num_buckets SCREAMING_SNAKE_CASE__ = dropout_rate SCREAMING_SNAKE_CASE__ = initializer_factor SCREAMING_SNAKE_CASE__ = eos_token_id SCREAMING_SNAKE_CASE__ = pad_token_id SCREAMING_SNAKE_CASE__ = decoder_start_token_id SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = decoder_layers def A_ ( self : Tuple ): return TaConfig.from_pretrained('google/umt5-base' ) def A_ ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : List[Any]=None , ): if attention_mask is None: SCREAMING_SNAKE_CASE__ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: SCREAMING_SNAKE_CASE__ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase_ ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase_ ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input SCREAMING_SNAKE_CASE__ = input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE__ = decoder_input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE__ = self.get_config() SCREAMING_SNAKE_CASE__ = config.num_attention_heads SCREAMING_SNAKE_CASE__ = self.prepare_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return config, input_dict def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() return config, inputs_dict def A_ ( self : Any ): return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : List[Any] ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , ): SCREAMING_SNAKE_CASE__ = UMTaModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = model( input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , decoder_attention_mask=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = model(input_ids=UpperCAmelCase_ , decoder_input_ids=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = result.last_hidden_state SCREAMING_SNAKE_CASE__ = result.past_key_values SCREAMING_SNAKE_CASE__ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase_ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def A_ ( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , ): SCREAMING_SNAKE_CASE__ = UMTaModel(config=UpperCAmelCase_ ).get_decoder().to(UpperCAmelCase_ ).eval() # first forward pass SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) self.parent.assertTrue(len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) ) self.parent.assertTrue(len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) + 1 ) SCREAMING_SNAKE_CASE__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and SCREAMING_SNAKE_CASE__ = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ )["last_hidden_state"] SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , past_key_values=UpperCAmelCase_ )["last_hidden_state"] # select random slice SCREAMING_SNAKE_CASE__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ = output_from_no_past[:, -1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-3 ) ) def A_ ( self : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , ): SCREAMING_SNAKE_CASE__ = UMTaModel(config=UpperCAmelCase_ ).to(UpperCAmelCase_ ).half().eval() SCREAMING_SNAKE_CASE__ = model(**UpperCAmelCase_ )["last_hidden_state"] self.parent.assertFalse(torch.isnan(UpperCAmelCase_ ).any().item() ) @require_torch class lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A__ : Any =( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) A__ : List[Any] =(UMTaForConditionalGeneration,) if is_torch_available() else () A__ : int =( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) A__ : int =True A__ : Optional[int] =False A__ : int =False A__ : Optional[int] =True A__ : int =True # The small UMT5 model needs higher percentages for CPU/MP tests A__ : List[str] =[0.8, 0.9] def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase_ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=UpperCAmelCase_ , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase_ ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = ["encoder_attentions", "decoder_attentions", "cross_attentions"] SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = config_and_inputs[0] SCREAMING_SNAKE_CASE__ = UMTaForConditionalGeneration(UpperCAmelCase_ ).eval() model.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = { "head_mask": torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase_ ), "decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase_ ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase_ ), } for attn_name, (name, mask) in zip(UpperCAmelCase_ , head_masking.items() ): SCREAMING_SNAKE_CASE__ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": SCREAMING_SNAKE_CASE__ = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase_ , return_dict_in_generate=UpperCAmelCase_ , **UpperCAmelCase_ , ) # We check the state of decoder_attentions and cross_attentions just from the last step SCREAMING_SNAKE_CASE__ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def A_ ( self : Union[str, Any] ): pass @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=UpperCAmelCase_ ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=UpperCAmelCase_ , legacy=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] SCREAMING_SNAKE_CASE__ = tokenizer(UpperCAmelCase_ , return_tensors='pt' , padding=UpperCAmelCase_ ).input_ids # fmt: off SCREAMING_SNAKE_CASE__ = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model.generate(input_ids.to(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ )
176
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] _UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def lowerCAmelCase__( lowercase : str ) -> Optional[Any]: __snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" ) return sd def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict: __snake_case : Tuple = OrderedDict() __snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __snake_case : Optional[Any] = key for name_pair in rename_keys_prefix: __snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] ) __snake_case : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __snake_case : List[Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]: assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: __snake_case : Any = "pretraining" if "vcr" in checkpoint_path: __snake_case : Optional[Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __snake_case : Tuple = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __snake_case : Any = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 512} __snake_case : Any = "multichoice" elif "vqa_advanced" in checkpoint_path: __snake_case : List[Any] = {"visual_embedding_dim": 2048} __snake_case : Optional[Any] = "vqa_advanced" elif "vqa" in checkpoint_path: __snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} __snake_case : Union[str, Any] = "vqa" elif "nlvr" in checkpoint_path: __snake_case : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } __snake_case : List[Any] = "nlvr" __snake_case : Union[str, Any] = VisualBertConfig(**lowercase ) # Load State Dict __snake_case : Any = load_state_dict(lowercase ) __snake_case : Dict = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": __snake_case : Optional[Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": __snake_case : Tuple = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": __snake_case : Tuple = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": __snake_case : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
326
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
256
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple: # Load configuration defined in the metadata file with open(lowercase ) as metadata_file: __snake_case : int = json.load(lowercase ) __snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file __snake_case : Tuple = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] __snake_case : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) __snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: __snake_case : Tuple = json.load(lowercase ) __snake_case : List[Any] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) __snake_case : Any = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens __snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0] __snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0] __snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"] __snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __snake_case : List[Any] = state_dict[bias_name] __snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) __snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 ) __snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self.""" __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] __snake_case : str = state_dict[prefix + matrix_name] __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"] __snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __snake_case : List[Any] = state_dict["entity_predictions.bias"] __snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __snake_case : Any = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __snake_case : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __snake_case : str = state_dict[key] else: __snake_case : str = state_dict[key] __snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) __snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __snake_case : Union[str, Any] = (0, 9) __snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : Any = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : Optional[Any] = torch.Size((1, 33, 768) ) __snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : str = torch.Size((1, 1, 768) ) __snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __snake_case : str = MLukeTokenizer.from_pretrained(lowercase ) __snake_case : Dict = "Tokyo is the capital of <mask>." __snake_case : Union[str, Any] = (24, 30) __snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : int = model(**lowercase ) __snake_case : Dict = encoding["input_ids"][0].tolist() __snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) __snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item() __snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]: __snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"] __snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )] __snake_case : Any = {} for entry in data: __snake_case : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __snake_case : Optional[int] = entity_id break __snake_case : Union[str, Any] = f"""{language}:{entity_name}""" __snake_case : Any = entity_id return new_mapping if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Any = logging.get_logger(__name__) def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_: Any = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE_: List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE_: Dict = "" else: SCREAMING_SNAKE_CASE_: Any = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE_: Dict = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE_: List[str] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_: Any = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE_: Optional[Any] = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE_: Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_: List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE_: Optional[int] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE_: Union[str, Any] = in_proj_bias[-config.hidden_size :] def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = dct.pop(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = val def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_: List[str] = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_: List[Any] = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: Dict = ViTHybridConfig(backbone_config=_UpperCAmelCase , image_size=3_84 , num_labels=10_00 ) SCREAMING_SNAKE_CASE_: List[Any] = False # load original model from timm SCREAMING_SNAKE_CASE_: List[Any] = timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE_: List[Any] = timm_model.state_dict() if base_model: remove_classification_head_(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = create_rename_keys(_UpperCAmelCase , _UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = "huggingface/label-files" SCREAMING_SNAKE_CASE_: int = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_: Union[str, Any] = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE_: int = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: int = idalabel SCREAMING_SNAKE_CASE_: Dict = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE_: str = ViTHybridModel(_UpperCAmelCase ).eval() else: SCREAMING_SNAKE_CASE_: Optional[Any] = ViTHybridForImageClassification(_UpperCAmelCase ).eval() model.load_state_dict(_UpperCAmelCase ) # create image processor SCREAMING_SNAKE_CASE_: Dict = create_transform(**resolve_data_config({} , model=_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_: List[Any] = transform.transforms SCREAMING_SNAKE_CASE_: Optional[int] = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } SCREAMING_SNAKE_CASE_: int = ViTHybridImageProcessor( do_resize=_UpperCAmelCase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_UpperCAmelCase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_UpperCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) SCREAMING_SNAKE_CASE_: int = prepare_img() SCREAMING_SNAKE_CASE_: Tuple = transform(_UpperCAmelCase ).unsqueeze(0 ) SCREAMING_SNAKE_CASE_: Optional[int] = processor(_UpperCAmelCase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase ) # verify logits with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: SCREAMING_SNAKE_CASE_: Tuple = timm_model.forward_features(_UpperCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_UpperCAmelCase , outputs.pooler_output , atol=1e-3 ) else: SCREAMING_SNAKE_CASE_: int = timm_model(_UpperCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_UpperCAmelCase , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(f"ybelkada/{vit_name}" ) processor.push_to_hub(f"ybelkada/{vit_name}" ) if __name__ == "__main__": lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) lowerCAmelCase : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
13
from maths.prime_factors import prime_factors def lowerCAmelCase__( lowercase : int ) -> int: if not isinstance(lowercase , lowercase ): __snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(lowercase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
326
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
278
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" ) __snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids __snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids __snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits __snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() __snake_case : Any = -(labels.shape[-1] * loss.item()) __snake_case : List[str] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
326
0
'''simple docstring''' class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): pass class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): pass class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : int =[ [], [], [], ] def __magic_name__ ( self : Any , __lowercase : Dict , __lowercase : int ) -> None: try: if len(self.queues[priority] ) >= 1_00: raise OverflowError('''Maximum queue size is 100''' ) self.queues[priority].append(__lowercase ) except IndexError: raise ValueError('''Valid priorities are 0, 1, and 2''' ) def __magic_name__ ( self : Optional[int] ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('''All queues are empty''' ) def __str__( self : Dict ) -> str: return "\n".join(F"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class __SCREAMING_SNAKE_CASE : def __init__( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =[] def __magic_name__ ( self : Optional[Any] , __lowercase : List[str] ) -> None: if len(self.queue ) == 1_00: raise OverFlowError('''Maximum queue size is 100''' ) self.queue.append(__lowercase ) def __magic_name__ ( self : Optional[Any] ) -> int: if not self.queue: raise UnderFlowError('''The queue is empty''' ) else: SCREAMING_SNAKE_CASE__ : Optional[int] =min(self.queue ) self.queue.remove(__lowercase ) return data def __str__( self : Optional[Any] ) -> str: return str(self.queue ) def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =FixedPriorityQueue() fpq.enqueue(0, 1_0 ) fpq.enqueue(1, 7_0 ) fpq.enqueue(0, 1_0_0 ) fpq.enqueue(2, 1 ) fpq.enqueue(2, 5 ) fpq.enqueue(1, 7 ) fpq.enqueue(2, 4 ) fpq.enqueue(1, 6_4 ) fpq.enqueue(0, 1_2_8 ) print(UpperCamelCase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(UpperCamelCase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str =ElementPriorityQueue() epq.enqueue(1_0 ) epq.enqueue(7_0 ) epq.enqueue(1_0_0 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(6_4 ) epq.enqueue(1_2_8 ) print(UpperCamelCase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(UpperCamelCase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
152
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]: '''simple docstring''' super().__init__(UpperCAmelCase ) __snake_case : Optional[int] = proj_size __snake_case : str = CLIPVisionModel(UpperCAmelCase ) __snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase ) __snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size ) __snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' __snake_case : int = self.model(pixel_values=UpperCAmelCase ) __snake_case : Optional[int] = clip_output.pooler_output __snake_case : Any = self.mapper(latent_states[:, None] ) __snake_case : Any = self.final_layer_norm(UpperCAmelCase ) __snake_case : str = self.proj_out(UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__() __snake_case : List[Any] = (config.num_hidden_layers + 1) // 5 __snake_case : Dict = config.hidden_size __snake_case : str = 1 __snake_case : List[Any] = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase ) for _ in range(UpperCAmelCase ) ] ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' for block in self.blocks: __snake_case : int = block(UpperCAmelCase ) return hidden_states
326
0
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : str ): '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : Optional[int] = tmp_path / "cache" lowercase__ : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ : Union[str, Any] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : Dict = tmp_path / "cache" lowercase__ : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : Dict = features.copy() if features else default_expected_features lowercase__ : str = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ : Any = ParquetDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): '''simple docstring''' lowercase__ : str = tmp_path / "cache" lowercase__ : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : Tuple = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ): '''simple docstring''' if issubclass(_lowerCAmelCase , _lowerCAmelCase ): lowercase__ : Optional[Any] = parquet_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): lowercase__ : str = [parquet_path] lowercase__ : Tuple = tmp_path / "cache" lowercase__ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : Union[str, Any] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict=("train",) ): '''simple docstring''' assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: lowercase__ : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' lowercase__ : List[str] = tmp_path / "cache" lowercase__ : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ : Any = ParquetDatasetReader( {'train': parquet_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] ): '''simple docstring''' lowercase__ : Tuple = tmp_path / "cache" lowercase__ : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : List[Any] = features.copy() if features else default_expected_features lowercase__ : Optional[int] = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ : Any = ParquetDatasetReader({'train': parquet_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' if split: lowercase__ : int = {split: parquet_path} else: lowercase__ : Dict = "train" lowercase__ : Optional[Any] = {"train": parquet_path, "test": parquet_path} lowercase__ : Tuple = tmp_path / "cache" lowercase__ : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ : Dict = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' lowercase__ : str = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 lowercase__ : Tuple = pq.ParquetFile(tmp_path / 'foo.parquet' ) lowercase__ : Optional[Any] = pf.read() assert dataset.data.table == output_table def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int ): '''simple docstring''' lowercase__ : List[str] = str(shared_datadir / 'test_image_rgb.jpg' ) lowercase__ : Union[str, Any] = {"image": [image_path]} lowercase__ : List[str] = Features({'image': Image()} ) lowercase__ : List[Any] = Dataset.from_dict(_lowerCAmelCase , features=_lowerCAmelCase ) lowercase__ : Union[str, Any] = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 lowercase__ : Optional[int] = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features lowercase__ : Dict = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=_lowerCAmelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' , [ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple ): '''simple docstring''' assert get_writer_batch_size(_lowerCAmelCase ) == expected
77
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
326
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE ) as metadata_file: __UpperCamelCase :int = json.load(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path __UpperCamelCase :List[Any] = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' )["module"] # Load the entity vocab file __UpperCamelCase :Tuple = load_original_entity_vocab(SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] __UpperCamelCase :Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __UpperCamelCase :Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks __UpperCamelCase :Optional[int] = AddedToken('''<ent>''' , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = AddedToken('''<ent2>''' , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) with open(os.path.join(SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: __UpperCamelCase :Tuple = json.load(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[Any] = "MLukeTokenizer" with open(os.path.join(SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with open(os.path.join(SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens __UpperCamelCase :str = tokenizer.convert_tokens_to_ids(['''@'''] )[0] __UpperCamelCase :List[str] = tokenizer.convert_tokens_to_ids(['''#'''] )[0] __UpperCamelCase :List[Any] = state_dict["embeddings.word_embeddings.weight"] __UpperCamelCase :Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) __UpperCamelCase :Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) __UpperCamelCase :Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __UpperCamelCase :List[Any] = state_dict[bias_name] __UpperCamelCase :Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) __UpperCamelCase :int = decoder_bias[enta_init_index].unsqueeze(0 ) __UpperCamelCase :Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __UpperCamelCase :Dict = f"""encoder.layer.{layer_index}.attention.self.""" __UpperCamelCase :Union[str, Any] = state_dict[prefix + matrix_name] __UpperCamelCase :str = state_dict[prefix + matrix_name] __UpperCamelCase :Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __UpperCamelCase :Any = state_dict["entity_embeddings.entity_embeddings.weight"] __UpperCamelCase :List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __UpperCamelCase :Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __UpperCamelCase :List[Any] = state_dict["entity_predictions.bias"] __UpperCamelCase :List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __UpperCamelCase :Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __UpperCamelCase :Any = LukeForMaskedLM(config=SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) __UpperCamelCase :int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): __UpperCamelCase :str = state_dict[key] else: __UpperCamelCase :str = state_dict[key] __UpperCamelCase :Union[str, Any] = model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) if set(SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __UpperCamelCase :int = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , task='''entity_classification''' ) __UpperCamelCase :Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __UpperCamelCase :Union[str, Any] = (0, 9) __UpperCamelCase :Optional[int] = tokenizer(SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) __UpperCamelCase :Any = model(**SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __UpperCamelCase :Optional[Any] = torch.Size((1, 33, 768) ) __UpperCamelCase :Optional[int] = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __UpperCamelCase :str = torch.Size((1, 1, 768) ) __UpperCamelCase :int = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction __UpperCamelCase :str = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = "Tokyo is the capital of <mask>." __UpperCamelCase :Union[str, Any] = (24, 30) __UpperCamelCase :int = tokenizer(SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) __UpperCamelCase :int = model(**SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = encoding["input_ids"][0].tolist() __UpperCamelCase :Dict = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) __UpperCamelCase :Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[Any] = outputs.entity_logits[0][0].argmax().item() __UpperCamelCase :Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(SCREAMING_SNAKE_CASE ) ) model.save_pretrained(SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Any = ["[MASK]", "[PAD]", "[UNK]"] __UpperCamelCase :Any = [json.loads(SCREAMING_SNAKE_CASE ) for line in open(SCREAMING_SNAKE_CASE )] __UpperCamelCase :Any = {} for entry in data: __UpperCamelCase :Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __UpperCamelCase :Optional[int] = entity_id break __UpperCamelCase :Union[str, Any] = f"""{language}:{entity_name}""" __UpperCamelCase :Any = entity_id return new_mapping if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowercase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
43
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = torch.device('''cpu''') def lowerCAmelCase__( ) -> Any: __snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCAmelCase__( lowercase : Dict ) -> List[Any]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = dct.pop(lowercase ) __snake_case : List[Any] = val def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple: __snake_case : Optional[Any] = [] for k in state_dict.keys(): __snake_case : Union[str, Any] = k if ".pwconv" in k: __snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: __snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: __snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: __snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: __snake_case : int = k_new.split("." ) if ls[2].isdigit(): __snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: __snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]: __snake_case : List[str] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __snake_case : Tuple = 1000 __snake_case : Any = "huggingface/label-files" __snake_case : int = "imagenet-1k-id2label.json" __snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) __snake_case : str = {int(lowercase ): v for k, v in idalabel.items()} __snake_case : int = idalabel __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __snake_case : Optional[Any] = [3, 3, 6, 4] __snake_case : Optional[int] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __snake_case : List[str] = [3, 3, 9, 6] __snake_case : Optional[Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __snake_case : Optional[int] = [4, 3, 10, 5] __snake_case : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __snake_case : str = [4, 4, 12, 6] __snake_case : Optional[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): __snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase ) else: __snake_case : Tuple = torch.load(lowercase , map_location="cpu" ) __snake_case : Optional[int] = checkpoint __snake_case : Any = create_rename_keys(lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # load HuggingFace model __snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval() hf_model.load_state_dict(lowercase ) # prepare test inputs __snake_case : Optional[Any] = prepare_img() __snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" ) __snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" ) # compare outputs from both models __snake_case : str = get_expected_output(lowercase ) __snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _UpperCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
326
0
'''simple docstring''' def UpperCamelCase_( snake_case : int ): '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case_ = 4 snake_case_ = (1 << p) - 1 for _ in range(p - 2 ): snake_case_ = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
85
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) _UpperCamelCase = logging.getLogger(__name__) def lowerCAmelCase__( lowercase : str ) -> List[str]: __snake_case : int = git.Repo(search_parent_directories=lowercase ) __snake_case : Union[str, Any] = { "repo_id": str(lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f: json.dump(lowercase , lowercase , indent=4 ) def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]: if params.n_gpu <= 0: __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = -1 __snake_case : Union[str, Any] = True __snake_case : Tuple = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : int = int(os.environ["N_GPU_NODE"] ) __snake_case : Union[str, Any] = int(os.environ["RANK"] ) # number of nodes / node ID __snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node __snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node __snake_case : Union[str, Any] = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 __snake_case : Any = 1 __snake_case : str = 0 __snake_case : Optional[Any] = 0 __snake_case : Dict = 0 __snake_case : int = 1 __snake_case : Optional[Any] = 1 __snake_case : Tuple = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0 __snake_case : List[Any] = params.n_nodes > 1 # summary __snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
326
0
"""simple docstring""" import functools def lowerCamelCase__ ( _lowerCamelCase : list[int] , _lowerCamelCase : list[int] ) -> int: # Validation if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not all(isinstance(_lowerCamelCase , _lowerCamelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(_lowerCamelCase ) != 3 or not all(isinstance(_lowerCamelCase , _lowerCamelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(_lowerCamelCase ) == 0: return 0 if min(_lowerCamelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(_lowerCamelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) lowerCamelCase_ = set(_lowerCamelCase ) @functools.cache def dynamic_programming(_lowerCamelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
183
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str =JukeboxTokenizer UpperCAmelCase_ : Tuple ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : int = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
326
0
def a__ ( A_, A_, A_=False ): '''simple docstring''' if isinstance(A_, A_ ) and isinstance(A_, A_ ): __magic_name__ = len(set_a.intersection(A_ ) ) if alternative_union: __magic_name__ = len(A_ ) + len(A_ ) else: __magic_name__ = len(set_a.union(A_ ) ) return intersection / union if isinstance(A_, (list, tuple) ) and isinstance(A_, (list, tuple) ): __magic_name__ = [element for element in set_a if element in set_b] if alternative_union: __magic_name__ = len(A_ ) + len(A_ ) return len(A_ ) / union else: __magic_name__ = set_a + [element for element in set_b if element not in set_a] return len(A_ ) / len(A_ ) return len(A_ ) / len(A_ ) return None if __name__ == "__main__": __lowerCAmelCase : int = {'a', 'b', 'c', 'd', 'e'} __lowerCAmelCase : List[str] = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
88
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : str UpperCAmelCase_ : str =None @staticmethod def UpperCAmelCase ( ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def UpperCAmelCase ( cls ) -> Tuple: '''simple docstring''' return F"""`pip install {cls.pip_package or cls.name}`""" class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[int] ="optuna" @staticmethod def UpperCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' return is_optuna_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' return default_hp_space_optuna(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : List[str] ="ray" UpperCAmelCase_ : Dict ="'ray[tune]'" @staticmethod def UpperCAmelCase ( ) -> str: '''simple docstring''' return is_ray_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' return default_hp_space_ray(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="sigopt" @staticmethod def UpperCAmelCase ( ) -> int: '''simple docstring''' return is_sigopt_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return default_hp_space_sigopt(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : str ="wandb" @staticmethod def UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' return is_wandb_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return default_hp_space_wandb(UpperCAmelCase ) _UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase__( ) -> str: __snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase ) > 0: __snake_case : Dict = available_backends[0].name if len(lowercase ) > 1: logger.info( f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
326
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 255 , A_=True , ) -> List[Any]: """simple docstring""" UpperCamelCase = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_pad def __UpperCamelCase ( self ) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __UpperCamelCase ( self , A_ , A_=False ) -> Dict: """simple docstring""" if not batched: UpperCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): UpperCamelCase = image.size else: UpperCamelCase = image.shape[1], image.shape[2] if w < h: UpperCamelCase = int(self.size['shortest_edge'] * h / w ) UpperCamelCase = self.size["shortest_edge"] elif w > h: UpperCamelCase = self.size["shortest_edge"] UpperCamelCase = int(self.size['shortest_edge'] * w / h ) else: UpperCamelCase = self.size["shortest_edge"] UpperCamelCase = self.size["shortest_edge"] else: UpperCamelCase = [] for image in image_inputs: UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase = max(A_ , key=lambda A_ : item[0] )[0] UpperCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : str = ConditionalDetrImageProcessor if is_vision_available() else None def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = ConditionalDetrImageProcessingTester(self ) @property def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad , A_ ) UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def __UpperCamelCase ( self ) -> str: """simple docstring""" pass def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values UpperCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values UpperCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values UpperCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = {"image_id": 39_769, "annotations": target} # encode them UpperCamelCase = ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) UpperCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors='pt' ) # verify pixel values UpperCamelCase = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , A_ ) UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A_ , atol=1e-4 ) ) # verify area UpperCamelCase = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A_ ) ) # verify boxes UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , A_ ) UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A_ , atol=1e-3 ) ) # verify image_id UpperCamelCase = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A_ ) ) # verify is_crowd UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A_ ) ) # verify class_labels UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A_ ) ) # verify orig_size UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A_ ) ) # verify size UpperCamelCase = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A_ ) ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target} UpperCamelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them UpperCamelCase = ConditionalDetrImageProcessor(format='coco_panoptic' ) UpperCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='pt' ) # verify pixel values UpperCamelCase = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , A_ ) UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A_ , atol=1e-4 ) ) # verify area UpperCamelCase = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A_ ) ) # verify boxes UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , A_ ) UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A_ , atol=1e-3 ) ) # verify image_id UpperCamelCase = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A_ ) ) # verify is_crowd UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A_ ) ) # verify class_labels UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A_ ) ) # verify masks UpperCamelCase = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , A_ ) # verify orig_size UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A_ ) ) # verify size UpperCamelCase = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A_ ) )
222
import math def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list: __snake_case : Any = end or len(lowercase ) for i in range(lowercase , lowercase ): __snake_case : List[str] = i __snake_case : Union[str, Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case : Optional[Any] = array[temp_index - 1] temp_index -= 1 __snake_case : Any = temp_index_value return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap __snake_case : Any = index __snake_case : Optional[Any] = 2 * index + 1 # Left Node __snake_case : str = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case : Tuple = right_index if largest != index: __snake_case , __snake_case : int = array[largest], array[index] heapify(lowercase , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list ) -> list: __snake_case : List[str] = len(lowercase ) for i in range(n // 2 , -1 , -1 ): heapify(lowercase , lowercase , lowercase ) for i in range(n - 1 , 0 , -1 ): __snake_case , __snake_case : Optional[Any] = array[0], array[i] heapify(lowercase , 0 , lowercase ) return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: __snake_case : Union[str, Any] = low __snake_case : Union[str, Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case , __snake_case : str = array[j], array[i] i += 1 def lowerCAmelCase__( lowercase : list ) -> list: if len(lowercase ) == 0: return array __snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) ) __snake_case : Dict = 16 return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 __snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase ) intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase ) __snake_case : List[str] = p return insertion_sort(lowercase , lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip() _UpperCamelCase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
326
0
from math import factorial class lowercase__ : def __init__( self : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE__ = real if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = [1] * rank else: SCREAMING_SNAKE_CASE__ = rank def __repr__( self : Tuple ): return ( F'{self.real}+' F'{"+".join(str(UpperCAmelCase_ )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def A_ ( self : int ): SCREAMING_SNAKE_CASE__ = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , UpperCAmelCase_ ) def __add__( self : int , UpperCAmelCase_ : Optional[int] ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return Dual(self.real + other , self.duals ) SCREAMING_SNAKE_CASE__ = self.duals.copy() SCREAMING_SNAKE_CASE__ = other.duals.copy() if len(UpperCAmelCase_ ) > len(UpperCAmelCase_ ): o_dual.extend([1] * (len(UpperCAmelCase_ ) - len(UpperCAmelCase_ )) ) elif len(UpperCAmelCase_ ) < len(UpperCAmelCase_ ): s_dual.extend([1] * (len(UpperCAmelCase_ ) - len(UpperCAmelCase_ )) ) SCREAMING_SNAKE_CASE__ = [] for i in range(len(UpperCAmelCase_ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , UpperCAmelCase_ ) A__ : int =__add__ def __sub__( self : Dict , UpperCAmelCase_ : Tuple ): return self + other * -1 def __mul__( self : Union[str, Any] , UpperCAmelCase_ : Tuple ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , UpperCAmelCase_ ) A__ : Optional[Any] =__mul__ def __truediv__( self : Tuple , UpperCAmelCase_ : str ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , UpperCAmelCase_ ) raise ValueError def __floordiv__( self : Any , UpperCAmelCase_ : List[str] ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , UpperCAmelCase_ ) raise ValueError def __pow__( self : Dict , UpperCAmelCase_ : Optional[Any] ): if n < 0 or isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self SCREAMING_SNAKE_CASE__ = self for _ in range(n - 1 ): x *= self return x def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' if not callable(UpperCamelCase_ ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(UpperCamelCase_ , (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError('differentiate() requires an int as input for order' ) SCREAMING_SNAKE_CASE__ = Dual(UpperCamelCase_ , 1 ) SCREAMING_SNAKE_CASE__ = func(UpperCamelCase_ ) if order == 0: return result.real return result.duals[order - 1] * factorial(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
176
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Any = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase__( lowercase : Dict ) -> Dict: __snake_case : Any = [1, 2] __snake_case : Dict = {"a": 1, "b": 2} __snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]} __snake_case : int = {"a": {"1": 1}, "b": 2} __snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case : Dict = [2, 3] __snake_case : Tuple = {"a": 2, "b": 3} __snake_case : int = {"a": [2, 3], "b": [4, 5]} __snake_case : Dict = {"a": {"1": 2}, "b": 3} __snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
326
0