code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a , __a=False , __a=False ): snake_case_ : Tuple = 'backbone.' if is_semantic else '' snake_case_ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", 'beit.embeddings.cls_token'), (f"""{prefix}patch_embed.proj.weight""", 'beit.embeddings.patch_embeddings.projection.weight'), (f"""{prefix}patch_embed.proj.bias""", 'beit.embeddings.patch_embeddings.projection.bias'), (f"""{prefix}pos_embed""", 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( __a , __a , __a=False , __a=False ): for i in range(config.num_hidden_layers ): snake_case_ : List[str] = 'backbone.' if is_semantic else '' # queries, keys and values snake_case_ : Optional[int] = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""" ) snake_case_ : Optional[int] = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""" ) snake_case_ : Union[str, Any] = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""" ) snake_case_ : str = in_proj_weight[ : config.hidden_size, : ] snake_case_ : Union[str, Any] = q_bias snake_case_ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ : Dict = in_proj_weight[ -config.hidden_size :, : ] snake_case_ : Optional[int] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained snake_case_ : Tuple = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""" ) snake_case_ : int = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""" ) snake_case_ : Union[str, Any] = gamma_a snake_case_ : Optional[Any] = gamma_a def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Optional[Any] = dct.pop(__a ) snake_case_ : str = val def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ : List[str] = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __a , __a , __a=False ): snake_case_ : List[str] = False if 'rvlcdip' in checkpoint_url else True snake_case_ : Optional[Any] = BeitConfig(use_absolute_position_embeddings=__a , use_mask_token=__a ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: snake_case_ : List[str] = 10_24 snake_case_ : Optional[Any] = 40_96 snake_case_ : List[Any] = 24 snake_case_ : Optional[Any] = 16 # labels if "rvlcdip" in checkpoint_url: snake_case_ : Any = 16 snake_case_ : str = 'huggingface/label-files' snake_case_ : List[str] = 'rvlcdip-id2label.json' snake_case_ : Any = json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) snake_case_ : Optional[Any] = {int(__a ): v for k, v in idalabel.items()} snake_case_ : List[str] = idalabel snake_case_ : List[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys snake_case_ : Tuple = torch.hub.load_state_dict_from_url(__a , map_location='cpu' )['model'] snake_case_ : Optional[Any] = create_rename_keys(__a , has_lm_head=__a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_q_k_v(__a , __a , has_lm_head=__a ) # load HuggingFace model snake_case_ : List[str] = BeitForMaskedImageModeling(__a ) if has_lm_head else BeitForImageClassification(__a ) model.eval() model.load_state_dict(__a ) # Check outputs on an image snake_case_ : Any = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__a ) snake_case_ : Tuple = prepare_img() snake_case_ : Tuple = image_processor(images=__a , return_tensors='pt' ) snake_case_ : Tuple = encoding['pixel_values'] snake_case_ : str = model(__a ) snake_case_ : Dict = outputs.logits # verify logits snake_case_ : Optional[int] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(__a ), "Shape of logits not as expected" Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if push_to_hub: if has_lm_head: snake_case_ : Optional[int] = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: snake_case_ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(__a , __a ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__a , ) model.push_to_hub( repo_path_or_name=Path(__a , __a ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__a , ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
327
from typing import Dict from .base import GenericTensor, Pipeline class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def UpperCAmelCase_ ( self : str , _A : Optional[Any]=None , _A : List[str]=None , _A : Optional[Any]=None , **_A : List[str] ) -> Any: """simple docstring""" if tokenize_kwargs is None: snake_case_ : Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) snake_case_ : int = truncation snake_case_ : Optional[int] = tokenize_kwargs snake_case_ : Dict = {} if return_tensors is not None: snake_case_ : Union[str, Any] = return_tensors return preprocess_params, {}, postprocess_params def UpperCAmelCase_ ( self : Optional[int] , _A : int , **_A : Any ) -> Dict[str, GenericTensor]: """simple docstring""" snake_case_ : Dict = self.framework snake_case_ : Any = self.tokenizer(_A , return_tensors=_A , **_A ) return model_inputs def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] ) -> int: """simple docstring""" snake_case_ : Tuple = self.model(**_A ) return model_outputs def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str=False ) -> Any: """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> List[str]: """simple docstring""" return super().__call__(*_A , **_A )
327
1
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Dict , _A : NestedDataStructureLike[PathLike] , _A : Optional[NamedSplit] = None , _A : Optional[Features] = None , _A : str = None , _A : bool = False , _A : bool = False , _A : Optional[str] = None , _A : Optional[int] = None , **_A : int , ) -> Tuple: """simple docstring""" super().__init__( _A , split=_A , features=_A , cache_dir=_A , keep_in_memory=_A , streaming=_A , num_proc=_A , **_A , ) snake_case_ : Optional[int] = field snake_case_ : Any = path_or_paths if isinstance(_A , _A ) else {self.split: path_or_paths} snake_case_ : str = Json( cache_dir=_A , data_files=_A , features=_A , field=_A , **_A , ) def UpperCAmelCase_ ( self : str ) -> List[Any]: """simple docstring""" if self.streaming: snake_case_ : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case_ : Optional[Any] = None snake_case_ : Tuple = None snake_case_ : Tuple = None snake_case_ : List[str] = None self.builder.download_and_prepare( download_config=_A , download_mode=_A , verification_mode=_A , base_path=_A , num_proc=self.num_proc , ) snake_case_ : Optional[Any] = self.builder.as_dataset( split=self.split , verification_mode=_A , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE_ : def __init__( self : Union[str, Any] , _A : Dataset , _A : Union[PathLike, BinaryIO] , _A : Optional[int] = None , _A : Optional[int] = None , **_A : str , ) -> Union[str, Any]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) snake_case_ : Union[str, Any] = dataset snake_case_ : Tuple = path_or_buf snake_case_ : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE snake_case_ : Tuple = num_proc snake_case_ : Any = 'utf-8' snake_case_ : Tuple = to_json_kwargs def UpperCAmelCase_ ( self : List[Any] ) -> int: """simple docstring""" snake_case_ : str = self.to_json_kwargs.pop('path_or_buf' , _A ) snake_case_ : List[str] = self.to_json_kwargs.pop('orient' , 'records' ) snake_case_ : Optional[int] = self.to_json_kwargs.pop('lines' , True if orient == 'records' else False ) snake_case_ : List[Any] = self.to_json_kwargs.pop('index' , False if orient in ['split', 'table'] else True ) snake_case_ : List[Any] = self.to_json_kwargs.pop('compression' , _A ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , 'wb' , compression=_A ) as buffer: snake_case_ : Any = self._write(file_obj=_A , orient=_A , lines=_A , index=_A , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" ' was passed. Please provide a local path instead.' ) snake_case_ : Tuple = self._write( file_obj=self.path_or_buf , orient=_A , lines=_A , index=_A , **self.to_json_kwargs ) return written def UpperCAmelCase_ ( self : List[Any] , _A : Optional[int] ) -> str: """simple docstring""" snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ : List[str] = args snake_case_ : Optional[int] = query_table( table=self.dataset.data , key=slice(_A , offset + self.batch_size ) , indices=self.dataset._indices , ) snake_case_ : str = batch.to_pandas().to_json( path_or_buf=_A , orient=_A , lines=_A , index=_A , **_A ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def UpperCAmelCase_ ( self : Optional[int] , _A : BinaryIO , _A : Optional[int] , _A : int , _A : str , **_A : Any , ) -> int: """simple docstring""" snake_case_ : str = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): snake_case_ : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(_A ) else: snake_case_ ,snake_case_ : Optional[int] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , _A , _A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): written += file_obj.write(_A ) return written
327
from itertools import permutations def SCREAMING_SNAKE_CASE__ ( __a ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False snake_case_ : Any = [7, 11, 13, 17] for i, test in enumerate(__a ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE__ ( __a = 10 ): return sum( int(''.join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(F'''{solution() = }''')
327
1
import argparse import copy def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : int = {} with open(__a ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case_ : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) snake_case_ : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case_ : Dict = [] _list.append([line.split()[0], line.split()[2]] ) snake_case_ : Union[str, Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def SCREAMING_SNAKE_CASE__ ( __a , __a ): with open(__a ) as f: snake_case_ : Tuple = f.read(1 ) snake_case_ : List[Any] = start_node snake_case_ : Any = [] snake_case_ : int = start_node snake_case_ : List[str] = 0 while visiting not in first_solution: snake_case_ : Optional[Any] = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__a ) and k[0] not in first_solution: snake_case_ : Any = k[1] snake_case_ : Tuple = k[0] first_solution.append(__a ) snake_case_ : Union[str, Any] = distance_of_first_solution + int(__a ) snake_case_ : Dict = best_node first_solution.append(__a ) snake_case_ : int = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case_ : str = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : str = [] for n in solution[1:-1]: snake_case_ : List[str] = solution.index(__a ) for kn in solution[1:-1]: snake_case_ : Tuple = solution.index(__a ) if n == kn: continue snake_case_ : Optional[int] = copy.deepcopy(__a ) snake_case_ : Optional[Any] = kn snake_case_ : Dict = n snake_case_ : List[Any] = 0 for k in _tmp[:-1]: snake_case_ : Optional[Any] = _tmp[_tmp.index(__a ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case_ : List[str] = distance + int(i[1] ) _tmp.append(__a ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case_ : Any = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __a : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a ): snake_case_ : Optional[Any] = 1 snake_case_ : str = first_solution snake_case_ : Dict = [] snake_case_ : Any = distance_of_first_solution snake_case_ : Optional[Any] = solution while count <= iters: snake_case_ : str = find_neighborhood(__a , __a ) snake_case_ : List[str] = 0 snake_case_ : Any = neighborhood[index_of_best_solution] snake_case_ : List[Any] = len(__a ) - 1 snake_case_ : Optional[Any] = False while not found: snake_case_ : Any = 0 while i < len(__a ): if best_solution[i] != solution[i]: snake_case_ : Any = best_solution[i] snake_case_ : Tuple = solution[i] break snake_case_ : Any = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case_ : Any = True snake_case_ : List[str] = best_solution[:-1] snake_case_ : Tuple = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case_ : Union[str, Any] = cost snake_case_ : Any = solution else: snake_case_ : int = index_of_best_solution + 1 snake_case_ : Optional[Any] = neighborhood[index_of_best_solution] if len(__a ) >= size: tabu_list.pop(0 ) snake_case_ : Union[str, Any] = count + 1 return best_solution_ever, best_cost def SCREAMING_SNAKE_CASE__ ( __a=None ): snake_case_ : Optional[int] = generate_neighbours(args.File ) snake_case_ ,snake_case_ : List[Any] = generate_first_solution( args.File , __a ) snake_case_ ,snake_case_ : Tuple = tabu_search( __a , __a , __a , args.Iterations , args.Size , ) print(f"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
327
from __future__ import annotations from collections import namedtuple def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Any = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
327
1
from math import isqrt def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Any = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __a , __a ): snake_case_ : str = False return [i for i in range(2 , __a ) if is_prime[i]] def SCREAMING_SNAKE_CASE__ ( __a = 10**8 ): snake_case_ : Optional[Any] = calculate_prime_numbers(max_number // 2 ) snake_case_ : Any = 0 snake_case_ : Tuple = 0 snake_case_ : int = len(__a ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'''{solution() = }''')
327
import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _SCREAMING_SNAKE_CASE = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _SCREAMING_SNAKE_CASE = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : int , _A : Tuple , _A : Tuple , _A : str=None , _A : Dict=False , _A : Tuple=False , _A : str=False , ) -> Tuple: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case_ : List[Any] = np.array([re.sub(_A , '' , _A ) for x in predictions] ) snake_case_ : Optional[Any] = np.array([re.sub(_A , '' , _A ) for x in references] ) else: snake_case_ : Dict = np.asarray(_A ) snake_case_ : Tuple = np.asarray(_A ) if ignore_case: snake_case_ : List[str] = np.char.lower(_A ) snake_case_ : Any = np.char.lower(_A ) if ignore_punctuation: snake_case_ : int = string.punctuation.maketrans('' , '' , string.punctuation ) snake_case_ : Tuple = np.char.translate(_A , table=_A ) snake_case_ : str = np.char.translate(_A , table=_A ) if ignore_numbers: snake_case_ : Optional[int] = string.digits.maketrans('' , '' , string.digits ) snake_case_ : str = np.char.translate(_A , table=_A ) snake_case_ : Union[str, Any] = np.char.translate(_A , table=_A ) snake_case_ : int = predictions == references return {"exact_match": np.mean(_A ) * 100}
327
1
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = params snake_case_ : int = np.array(_A ) snake_case_ : Optional[int] = np.array([len(_A ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Tuple , _A : Optional[int] ) -> str: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : List[str] ) -> str: """simple docstring""" return len(self.lengths ) def UpperCAmelCase_ ( self : Dict ) -> str: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: """simple docstring""" snake_case_ : Dict = self.params.max_model_input_size snake_case_ : Tuple = self.lengths > max_len logger.info(F"""Splitting {sum(_A )} too long sequences.""" ) def divide_chunks(_A : Union[str, Any] , _A : Dict ): return [l[i : i + n] for i in range(0 , len(_A ) , _A )] snake_case_ : Dict = [] snake_case_ : Union[str, Any] = [] if self.params.mlm: snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: snake_case_ : List[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: snake_case_ : Optional[int] = np.insert(_A , 0 , _A ) if sub_s[-1] != sep_id: snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A ) assert len(_A ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_A ) new_tok_ids.extend(_A ) new_lengths.extend([len(_A ) for l in sub_seqs] ) snake_case_ : Tuple = np.array(_A ) snake_case_ : int = np.array(_A ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ : Tuple = len(self ) snake_case_ : int = self.lengths > 11 snake_case_ : Dict = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : List[Any] = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = len(self ) snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) snake_case_ : Any = (unk_occs / self.lengths) < 0.5 snake_case_ : List[Any] = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : Tuple = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ : Any = [t[0] for t in batch] snake_case_ : int = [t[1] for t in batch] assert len(_A ) == len(_A ) # Max for paddings snake_case_ : str = max(_A ) # Pad token ids if self.params.mlm: snake_case_ : int = self.params.special_tok_ids['pad_token'] else: snake_case_ : Dict = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids] assert len(tk_ ) == len(_A ) assert all(len(_A ) == max_seq_len_ for t in tk_ ) snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs) return tk_t, lg_t
327
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , _A : Optional[Any] , _A : Dict=13 , _A : Union[str, Any]=30 , _A : Tuple=2 , _A : Union[str, Any]=3 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : str=32 , _A : int=2 , _A : List[str]=4 , _A : List[str]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=10 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=3 , _A : str=0.6 , _A : Union[str, Any]=None , ) -> Any: """simple docstring""" snake_case_ : Optional[int] = parent snake_case_ : Tuple = batch_size snake_case_ : List[Any] = image_size snake_case_ : List[str] = patch_size snake_case_ : List[str] = num_channels snake_case_ : Optional[Any] = is_training snake_case_ : Any = use_labels snake_case_ : Tuple = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Tuple = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[Any] = mask_ratio snake_case_ : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case_ : Optional[int] = (image_size // patch_size) ** 2 snake_case_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Union[str, Any] = None if self.use_labels: snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : int ) -> Optional[Any]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : Dict , _A : str ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = TFViTMAEModel(config=_A ) snake_case_ : str = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : Any , _A : List[Any] ) -> int: """simple docstring""" snake_case_ : Any = TFViTMAEForPreTraining(_A ) snake_case_ : Optional[Any] = model(_A , training=_A ) # expected sequence length = num_patches snake_case_ : List[str] = (self.image_size // self.patch_size) ** 2 snake_case_ : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case_ : str = 1 snake_case_ : Dict = TFViTMAEForPreTraining(_A ) snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : List[str] = model(_A , training=_A ) snake_case_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = self.prepare_config_and_inputs() ((snake_case_) ,(snake_case_) ,(snake_case_)) : Any = config_and_inputs snake_case_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __magic_name__: str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} __magic_name__: Dict = False __magic_name__: Dict = False __magic_name__: List[Any] = False __magic_name__: Dict = False def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" snake_case_ : List[Any] = TFViTMAEModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" snake_case_ ,snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: """simple docstring""" snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[str] = model_class(_A ) snake_case_ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Dict = [*signature.parameters.keys()] snake_case_ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Union[str, Any] = self._prepare_for_class(_A , _A ) snake_case_ : List[str] = model(_A , noise=_A ) snake_case_ : Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) ) snake_case_ : str = model(**_A , noise=_A ) snake_case_ : Union[str, Any] = outputs_dict[0].numpy() snake_case_ : Optional[Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Tuple = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_A : int ): snake_case_ : Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(_A ): snake_case_ : str = v.numpy() else: snake_case_ : Optional[Any] = np.array(_A ) return inputs_np_dict for model_class in self.all_model_classes: snake_case_ : int = model_class(_A ) snake_case_ : List[Any] = self._prepare_for_class(_A , _A ) snake_case_ : Any = prepare_numpy_arrays(_A ) snake_case_ : List[Any] = model(_A , noise=_A ) snake_case_ : List[Any] = model(**_A , noise=_A ) self.assert_outputs_same(_A , _A ) def UpperCAmelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> List[str]: """simple docstring""" np.random.seed(2 ) snake_case_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.constant(_A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case_ : Optional[Any] = tf_noise super().check_pt_tf_models(_A , _A , _A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_A ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(_A , _A ),) if isinstance(_A , _A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_A , '_keras_serializable' , _A ) } snake_case_ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.convert_to_tensor(_A ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: snake_case_ : Optional[Any] = main_layer_class(_A ) snake_case_ : List[str] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } snake_case_ : Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) ) snake_case_ : int = model(_A ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[Any] = os.path.join(_A , 'keras_model.h5' ) model.save(_A ) snake_case_ : str = tf.keras.models.load_model( _A , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_A , tf.keras.Model ) snake_case_ : List[str] = model(_A ) self.assert_outputs_same(_A , _A ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Optional[Any] = self._prepare_for_class(_A , _A ) snake_case_ : int = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Any = outputs.last_hidden_state.numpy() snake_case_ : Optional[int] = 0 else: snake_case_ : str = outputs.logits.numpy() snake_case_ : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) snake_case_ : Any = model_class.from_pretrained(_A ) snake_case_ : Any = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Dict = after_outputs['last_hidden_state'].numpy() snake_case_ : Dict = 0 else: snake_case_ : Any = after_outputs['logits'].numpy() snake_case_ : Optional[Any] = 0 snake_case_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) def UpperCAmelCase_ ( self : Any ) -> str: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : str = model_class(_A ) snake_case_ : int = self._prepare_for_class(_A , _A ) snake_case_ : str = model(_A , noise=_A ) snake_case_ : Dict = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_A ) snake_case_ : Any = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config snake_case_ : str = model_class.from_config(model.config ) snake_case_ : Union[str, Any] = new_model(_A ) # Build model new_model.set_weights(model.get_weights() ) snake_case_ : List[str] = new_model(_A , noise=_A ) self.assert_outputs_same(_A , _A ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @slow def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_A ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ : List[str] = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) snake_case_ : List[Any] = self.default_image_processor snake_case_ : Dict = prepare_img() snake_case_ : Optional[Any] = image_processor(images=_A , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case_ : int = ViTMAEConfig() snake_case_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass snake_case_ : Optional[Any] = model(**_A , noise=_A ) # verify the logits snake_case_ : Optional[int] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _A ) snake_case_ : Any = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
327
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : list[list[int]] = [] snake_case_ : list[int] = [] snake_case_ : List[Any] = 0 snake_case_ : Union[str, Any] = sum(__a ) create_state_space_tree(__a , __a , __a , __a , __a , __a ) return result def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ): if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum: return if sum(__a ) == max_sum: result.append(__a ) return for index in range(__a , len(__a ) ): create_state_space_tree( __a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , ) _SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2] _SCREAMING_SNAKE_CASE = 9 _SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
327
1
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str __magic_name__: List[str] __magic_name__: Optional[List[str]] @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: List[int] __magic_name__: List[int] __magic_name__: Optional[List[int]] = None __magic_name__: Optional[List[int]] = None class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: List[Any] = "train" __magic_name__: Any = "dev" __magic_name__: Dict = "test" class SCREAMING_SNAKE_CASE_ : @staticmethod def UpperCAmelCase_ ( _A : Optional[int] , _A : Union[Split, str] ) -> List[InputExample]: """simple docstring""" raise NotImplementedError @staticmethod def UpperCAmelCase_ ( _A : str ) -> List[str]: """simple docstring""" raise NotImplementedError @staticmethod def UpperCAmelCase_ ( _A : List[InputExample] , _A : List[str] , _A : int , _A : PreTrainedTokenizer , _A : Dict=False , _A : str="[CLS]" , _A : Union[str, Any]=1 , _A : Any="[SEP]" , _A : Optional[Any]=False , _A : Union[str, Any]=False , _A : Union[str, Any]=0 , _A : Tuple=0 , _A : Optional[Any]=-100 , _A : str=0 , _A : List[str]=True , ) -> List[InputFeatures]: """simple docstring""" snake_case_ : Optional[int] = {label: i for i, label in enumerate(_A )} snake_case_ : Any = [] for ex_index, example in enumerate(_A ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' , _A , len(_A ) ) snake_case_ : List[str] = [] snake_case_ : Tuple = [] for word, label in zip(example.words , example.labels ): snake_case_ : Dict = tokenizer.tokenize(_A ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_A ) > 0: tokens.extend(_A ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_A ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. snake_case_ : str = tokenizer.num_special_tokens_to_add() if len(_A ) > max_seq_length - special_tokens_count: snake_case_ : Dict = tokens[: (max_seq_length - special_tokens_count)] snake_case_ : Optional[Any] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] snake_case_ : Optional[int] = [sequence_a_segment_id] * len(_A ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: snake_case_ : Union[str, Any] = [cls_token] + tokens snake_case_ : List[Any] = [pad_token_label_id] + label_ids snake_case_ : Any = [cls_token_segment_id] + segment_ids snake_case_ : List[str] = tokenizer.convert_tokens_to_ids(_A ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. snake_case_ : Tuple = [1 if mask_padding_with_zero else 0] * len(_A ) # Zero-pad up to the sequence length. snake_case_ : Dict = max_seq_length - len(_A ) if pad_on_left: snake_case_ : Dict = ([pad_token] * padding_length) + input_ids snake_case_ : List[str] = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask snake_case_ : List[Any] = ([pad_token_segment_id] * padding_length) + segment_ids snake_case_ : int = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_A ) == max_seq_length assert len(_A ) == max_seq_length assert len(_A ) == max_seq_length assert len(_A ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' , example.guid ) logger.info('tokens: %s' , ' '.join([str(_A ) for x in tokens] ) ) logger.info('input_ids: %s' , ' '.join([str(_A ) for x in input_ids] ) ) logger.info('input_mask: %s' , ' '.join([str(_A ) for x in input_mask] ) ) logger.info('segment_ids: %s' , ' '.join([str(_A ) for x in segment_ids] ) ) logger.info('label_ids: %s' , ' '.join([str(_A ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: snake_case_ : List[str] = None features.append( InputFeatures( input_ids=_A , attention_mask=_A , token_type_ids=_A , label_ids=_A ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: List[InputFeatures] __magic_name__: int = nn.CrossEntropyLoss().ignore_index def __init__( self : Tuple , _A : TokenClassificationTask , _A : str , _A : PreTrainedTokenizer , _A : List[str] , _A : str , _A : Optional[int] = None , _A : List[str]=False , _A : Split = Split.train , ) -> Dict: """simple docstring""" snake_case_ : str = os.path.join( _A , 'cached_{}_{}_{}'.format(mode.value , tokenizer.__class__.__name__ , str(_A ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case_ : Union[str, Any] = cached_features_file + '.lock' with FileLock(_A ): if os.path.exists(_A ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) snake_case_ : Optional[Any] = torch.load(_A ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) snake_case_ : Optional[Any] = token_classification_task.read_examples_from_file(_A , _A ) # TODO clean up all this to leverage built-in features of tokenizers snake_case_ : Any = token_classification_task.convert_examples_to_features( _A , _A , _A , _A , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_A , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , _A ) def __len__( self : List[str] ) -> List[str]: """simple docstring""" return len(self.features ) def __getitem__( self : Optional[int] , _A : List[Any] ) -> InputFeatures: """simple docstring""" return self.features[i] if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE_ : __magic_name__: List[InputFeatures] __magic_name__: int = -100 def __init__( self : List[Any] , _A : TokenClassificationTask , _A : str , _A : PreTrainedTokenizer , _A : List[str] , _A : str , _A : Optional[int] = None , _A : Dict=False , _A : Split = Split.train , ) -> List[Any]: """simple docstring""" snake_case_ : Optional[int] = token_classification_task.read_examples_from_file(_A , _A ) # TODO clean up all this to leverage built-in features of tokenizers snake_case_ : Any = token_classification_task.convert_examples_to_features( _A , _A , _A , _A , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_A , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: snake_case_ : Optional[Any] = tf.data.Dataset.from_generator( _A , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) , ( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: snake_case_ : str = tf.data.Dataset.from_generator( _A , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) , ( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: """simple docstring""" snake_case_ : List[Any] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Tuple ) -> Optional[Any]: """simple docstring""" return len(self.features ) def __getitem__( self : Any , _A : int ) -> InputFeatures: """simple docstring""" return self.features[i]
327
def SCREAMING_SNAKE_CASE__ ( __a , __a ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
327
1
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel _SCREAMING_SNAKE_CASE = { """gwf-440k""": { """url""": """https://model-server.zqevans2.workers.dev/gwf-440k.ckpt""", """sample_rate""": 4_80_00, """sample_size""": 6_55_36, }, """jmann-small-190k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt""", """sample_rate""": 4_80_00, """sample_size""": 6_55_36, }, """jmann-large-580k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt""", """sample_rate""": 4_80_00, """sample_size""": 13_10_72, }, """maestro-uncond-150k""": { """url""": """https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt""", """sample_rate""": 1_60_00, """sample_size""": 6_55_36, }, """unlocked-uncond-250k""": { """url""": """https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt""", """sample_rate""": 1_60_00, """sample_size""": 6_55_36, }, """honk-140k""": { """url""": """https://model-server.zqevans2.workers.dev/honk-140k.ckpt""", """sample_rate""": 1_60_00, """sample_size""": 6_55_36, }, } def SCREAMING_SNAKE_CASE__ ( __a , __a ): return torch.atana(__a , __a ) / math.pi * 2 def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : List[Any] = torch.sin(t * math.pi / 2 ) ** 2 snake_case_ : int = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(__a , __a ) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): pass class SCREAMING_SNAKE_CASE_ ( nn.Module ): def __init__( self : Tuple , _A : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__() snake_case_ : str = DiffusionAttnUnetaD(_A , n_attn_layers=4 ) snake_case_ : Optional[int] = deepcopy(self.diffusion ) snake_case_ : Optional[Any] = torch.quasirandom.SobolEngine(1 , scramble=_A ) def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : List[str] = MODELS_MAP[model_name]['url'] os.system(f"""wget {url} ./""" ) return f"""./{model_name}.ckpt""" _SCREAMING_SNAKE_CASE = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", } _SCREAMING_SNAKE_CASE = { """8""": """resnets.0""", """9""": """attentions.0""", """10""": """resnets.1""", """11""": """attentions.1""", """12""": """resnets.2""", """13""": """attentions.2""", } _SCREAMING_SNAKE_CASE = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", """8""": """resnets.3""", """9""": """attentions.3""", """10""": """resnets.4""", """11""": """attentions.4""", """12""": """resnets.5""", """13""": """attentions.5""", } _SCREAMING_SNAKE_CASE = { """0""": """resnets.0""", """1""": """resnets.1""", """2""": """resnets.2""", """4""": """resnets.0""", """5""": """resnets.1""", """6""": """resnets.2""", } _SCREAMING_SNAKE_CASE = { """skip""": """conv_skip""", """main.0""": """conv_1""", """main.1""": """group_norm_1""", """main.3""": """conv_2""", """main.4""": """group_norm_2""", } _SCREAMING_SNAKE_CASE = { """norm""": """group_norm""", """qkv_proj""": ["""query""", """key""", """value"""], """out_proj""": ["""proj_attn"""], } def SCREAMING_SNAKE_CASE__ ( __a ): if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(f"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def SCREAMING_SNAKE_CASE__ ( __a ): for key, value in ATTN_MAP.items(): if name.startswith(__a ) and not isinstance(__a , __a ): return name.replace(__a , __a ) elif name.startswith(__a ): return [name.replace(__a , __a ) for v in value] raise ValueError(f"""Attn error with {name}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a=13 ): snake_case_ : List[str] = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) snake_case_ : Tuple = 0 if string.startswith('net.3.' ): depth += 1 snake_case_ : Any = string[6:] elif string.startswith('net.' ): snake_case_ : List[Any] = string[4:] while string.startswith('main.7.' ): depth += 1 snake_case_ : int = string[7:] if string.startswith('main.' ): snake_case_ : Tuple = string[5:] # mid block if string[:2].isdigit(): snake_case_ : List[str] = string[:2] snake_case_ : Optional[int] = string[2:] else: snake_case_ : Dict = string[0] snake_case_ : Union[str, Any] = string[1:] if depth == max_depth: snake_case_ : Tuple = MID_NUM_TO_LAYER[layer_num] snake_case_ : List[Any] = 'mid_block' elif depth > 0 and int(__a ) < 7: snake_case_ : List[str] = DOWN_NUM_TO_LAYER[layer_num] snake_case_ : int = f"""down_blocks.{depth}""" elif depth > 0 and int(__a ) > 7: snake_case_ : List[Any] = UP_NUM_TO_LAYER[layer_num] snake_case_ : Any = f"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: snake_case_ : Any = DEPTH_0_TO_LAYER[layer_num] snake_case_ : Dict = f"""up_blocks.{max_depth - 1}""" if int(__a ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(f"""Naming error with {input_string} and string_left: {string_left}.""" ) snake_case_ : List[str] = string_left[1:] if "resnets" in new_layer: snake_case_ : Any = convert_resconv_naming(__a ) elif "attentions" in new_layer: snake_case_ : List[Any] = convert_attn_naming(__a ) snake_case_ : List[str] = new_string_left if not isinstance(__a , __a ): snake_case_ : Dict = prefix + '.' + new_layer + '.' + string_left else: snake_case_ : Tuple = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : List[str] = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue snake_case_ : Union[str, Any] = rename(__a ) # check if we need to transform from Conv => Linear for attention if isinstance(__a , __a ): snake_case_ : str = transform_conv_attns(__a , __a , __a ) else: snake_case_ : List[Any] = v return new_state_dict def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): if len(__a ) == 1: if len(v.shape ) == 3: # weight snake_case_ : List[Any] = v[:, :, 0] else: # bias snake_case_ : Optional[int] = v else: # qkv matrices snake_case_ : Tuple = v.shape[0] snake_case_ : Union[str, Any] = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case_ : Union[str, Any] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case_ : List[str] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Optional[int] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) snake_case_ : Tuple = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" snake_case_ : Union[str, Any] = download(__a ) snake_case_ : List[Any] = MODELS_MAP[model_name]['sample_rate'] snake_case_ : Optional[int] = MODELS_MAP[model_name]['sample_size'] snake_case_ : Optional[int] = Object() snake_case_ : Any = sample_size snake_case_ : Union[str, Any] = sample_rate snake_case_ : Optional[int] = 0 snake_case_ : int = UNetaDModel(sample_size=__a , sample_rate=__a ) snake_case_ : Dict = diffusers_model.state_dict() snake_case_ : Any = DiffusionUncond(__a ) orig_model.load_state_dict(torch.load(args.model_path , map_location=__a )['state_dict'] ) snake_case_ : str = orig_model.diffusion_ema.eval() snake_case_ : Union[str, Any] = orig_model.state_dict() snake_case_ : Dict = rename_orig_weights(__a ) snake_case_ : Any = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case_ : Optional[int] = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(__a ) == 0, f"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('kernel' ) for k in list(__a ) ), f"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": snake_case_ : Optional[int] = value.squeeze() snake_case_ : Optional[Any] = value diffusers_model.load_state_dict(__a ) snake_case_ : Optional[Any] = 1_00 snake_case_ : Union[str, Any] = 33 snake_case_ : Dict = IPNDMScheduler(num_train_timesteps=__a ) snake_case_ : Union[str, Any] = torch.manual_seed(__a ) snake_case_ : Any = torch.randn([1, 2, config.sample_size] , generator=__a ).to(__a ) snake_case_ : List[Any] = torch.linspace(1 , 0 , steps + 1 , device=__a )[:-1] snake_case_ : List[Any] = get_crash_schedule(__a ) snake_case_ : Any = DanceDiffusionPipeline(unet=__a , scheduler=__a ) snake_case_ : Tuple = torch.manual_seed(33 ) snake_case_ : Any = pipe(num_inference_steps=__a , generator=__a ).audios snake_case_ : str = sampling.iplms_sample(__a , __a , __a , {} ) snake_case_ : List[Any] = generated.clamp(-1 , 1 ) snake_case_ : Union[str, Any] = (generated - audio).abs().sum() snake_case_ : Optional[int] = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , __a ) print('Diff max' , __a ) assert diff_max < 1E-3, f"""Diff max: {diff_max} is too much :-/""" print(f"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") _SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
327
from math import pi def SCREAMING_SNAKE_CASE__ ( __a , __a ): return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
327
1
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json""" }, """merges_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt""" }, } _SCREAMING_SNAKE_CASE = {"""allegro/herbert-base-cased""": 5_14} _SCREAMING_SNAKE_CASE = {} class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[int] = VOCAB_FILES_NAMES __magic_name__: Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__: Any = PRETRAINED_INIT_CONFIGURATION __magic_name__: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__: Dict = HerbertTokenizer def __init__( self : str , _A : Union[str, Any]=None , _A : Dict=None , _A : Union[str, Any]=None , _A : Union[str, Any]="<s>" , _A : Optional[Any]="<unk>" , _A : List[Any]="<pad>" , _A : Dict="<mask>" , _A : str="</s>" , **_A : Union[str, Any] , ) -> Optional[int]: """simple docstring""" super().__init__( _A , _A , tokenizer_file=_A , cls_token=_A , unk_token=_A , pad_token=_A , mask_token=_A , sep_token=_A , **_A , ) def UpperCAmelCase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : Tuple = [self.cls_token_id] snake_case_ : Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase_ ( self : List[Any] , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1] def UpperCAmelCase_ ( self : Tuple , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : Tuple = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Tuple , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
327
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[Any] = ["pixel_values"] def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PIL.Image.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : str , ) -> None: """simple docstring""" super().__init__(**_A ) snake_case_ : Dict = size if size is not None else {'height': 256, 'width': 256} snake_case_ : Tuple = get_size_dict(_A ) snake_case_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} snake_case_ : int = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Union[str, Any] = do_resize snake_case_ : str = size snake_case_ : List[str] = resample snake_case_ : List[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : Tuple = do_rescale snake_case_ : Optional[Any] = rescale_factor snake_case_ : Any = do_normalize snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray: """simple docstring""" snake_case_ : Tuple = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( _A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray: """simple docstring""" snake_case_ : Optional[int] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> str: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : List[str] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : Union[str, Any]=None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ) -> PIL.Image.Image: """simple docstring""" snake_case_ : int = do_resize if do_resize is not None else self.do_resize snake_case_ : str = resample if resample is not None else self.resample snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Any = image_mean if image_mean is not None else self.image_mean snake_case_ : Dict = image_std if image_std is not None else self.image_std snake_case_ : int = size if size is not None else self.size snake_case_ : Optional[int] = get_size_dict(_A ) snake_case_ : int = crop_size if crop_size is not None else self.crop_size snake_case_ : Any = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Optional[Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case_ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: snake_case_ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: snake_case_ : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images] snake_case_ : Tuple = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
327
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__a ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def SCREAMING_SNAKE_CASE__ ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__a ): http_head('https://huggingface.co' )
327
import sys _SCREAMING_SNAKE_CASE = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE__ ( __a = N ): snake_case_ : Optional[Any] = -sys.maxsize - 1 for i in range(len(__a ) - 12 ): snake_case_ : Optional[Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case_ : int = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
327
1
from __future__ import annotations from math import pi def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if inductance < 0: raise ValueError('Inductance cannot be negative' ) if frequency < 0: raise ValueError('Frequency cannot be negative' ) if reactance < 0: raise ValueError('Inductive reactance cannot be negative' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
327
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __magic_name__: Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) __magic_name__: Optional[int] = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} ) __magic_name__: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} ) __magic_name__: bool = field( default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(__a , os.path.join(__a , f"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ ,snake_case_ ,snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ ,snake_case_ ,snake_case_ : List[str] = parser.parse_args_into_dataclasses() check_output_dir(__a ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , __a ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(__a , __a , __a ): assert hasattr(__a , __a ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(__a , __a , getattr(__a , __a ) ) snake_case_ : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=__a , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__a , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: snake_case_ : Any = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__a , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__a , __a ): snake_case_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang] else: snake_case_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__a ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) snake_case_ : List[Any] = SeqaSeqDataset # Get datasets snake_case_ : List[Any] = ( dataset_class( __a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) snake_case_ : List[str] = ( dataset_class( __a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) snake_case_ : List[Any] = ( dataset_class( __a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer snake_case_ : Any = ( build_compute_metrics_fn(data_args.task , __a ) if training_args.predict_with_generate else None ) snake_case_ : List[str] = SeqaSeqTrainer( model=__a , args=__a , data_args=__a , train_dataset=__a , eval_dataset=__a , data_collator=SeqaSeqDataCollator( __a , __a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__a , tokenizer=__a , ) snake_case_ : Optional[int] = {} # Training if training_args.do_train: logger.info('*** Train ***' ) snake_case_ : Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) snake_case_ : Tuple = train_result.metrics snake_case_ : List[str] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , __a , training_args.output_dir ) all_metrics.update(__a ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ : List[Any] = trainer.evaluate(metric_key_prefix='val' ) snake_case_ : str = data_args.n_val snake_case_ : Union[str, Any] = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.do_predict: logger.info('*** Predict ***' ) snake_case_ : Dict = trainer.predict(test_dataset=__a , metric_key_prefix='test' ) snake_case_ : Union[str, Any] = test_output.metrics snake_case_ : int = data_args.n_test if trainer.is_world_process_zero(): snake_case_ : List[str] = round(metrics['test_loss'] , 4 ) handle_metrics('test' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.predict_with_generate: snake_case_ : Any = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) snake_case_ : Any = lmap(str.strip , __a ) write_txt_file(__a , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(__a , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def SCREAMING_SNAKE_CASE__ ( __a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
327
1
def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Union[str, Any] = current_set.copy() for row_index, row in enumerate(__a ): snake_case_ : Optional[Any] = row[0] for column_index, column in enumerate(__a ): if magnitude == 0: snake_case_ : List[str] = column continue snake_case_ : List[Any] = column / magnitude # Subtract to cancel term snake_case_ : List[Any] = current_set[0] snake_case_ : List[str] = [first_row] snake_case_ : str = current_set[1::] for row in current_set: snake_case_ : List[str] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(__a ) continue for column_index in range(len(__a ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(__a ) # Create next recursion iteration set if len(final_set[0] ) != 3: snake_case_ : Union[str, Any] = final_set[0] snake_case_ : Tuple = [] snake_case_ : int = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) snake_case_ : Tuple = simplify(__a ) for i in range(len(__a ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , __a ) snake_case_ : Dict = resultant return final_set def SCREAMING_SNAKE_CASE__ ( __a ): if len(__a ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) snake_case_ : Optional[int] = len(__a ) + 1 if any(len(__a ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(__a , (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(__a ) == 1: return [equations[0][-1] / equations[0][0]] snake_case_ : str = equations.copy() if any(0 in row for row in data_set ): snake_case_ : Dict = data_set.copy() snake_case_ : List[str] = [] for row_index, row in enumerate(__a ): if 0 not in row: snake_case_ : Tuple = data_set.pop(__a ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0 , __a ) snake_case_ : int = data_set.copy() snake_case_ : List[Any] = simplify(__a ) snake_case_ : Dict = simplified[::-1] snake_case_ : list = [] for row in simplified: snake_case_ : int = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue snake_case_ : int = row.copy()[: len(__a ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(__a ) == 0: solutions.append(0 ) continue snake_case_ : Dict = temp_row[1::] snake_case_ : List[str] = temp_row[::-1] for column_index, column in enumerate(__a ): current_solution -= column * solutions[column_index] solutions.append(__a ) snake_case_ : Optional[Any] = [] for item in solutions: final.append(float(round(__a , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
327
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
327
1
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a="attention" ): snake_case_ : str = params[f"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] snake_case_ : Optional[int] = params[f"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] snake_case_ : List[Any] = params[f"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] snake_case_ : Tuple = params[f"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a=False ): if split_mlp_wi: snake_case_ : Tuple = params[f"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] snake_case_ : Union[str, Any] = params[f"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] snake_case_ : int = (wi_a, wi_a) else: snake_case_ : Dict = params[f"""{prefix}/layers_{i}/mlp/wi/kernel"""] snake_case_ : int = params[f"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a ): return params[f"""{prefix}/layers_{i}/{layer_name}/scale"""] def SCREAMING_SNAKE_CASE__ ( __a , *, __a , __a ): snake_case_ : List[Any] = traverse_util.flatten_dict(variables['target'] ) snake_case_ : Tuple = {'/'.join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi snake_case_ : Union[str, Any] = 'encoder/layers_0/mlp/wi_0/kernel' in old print('Split MLP:' , __a ) snake_case_ : List[str] = collections.OrderedDict() # Shared embeddings. snake_case_ : Any = old['token_embedder/embedding'] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). snake_case_ : Dict = tax_layer_norm_lookup(__a , __a , 'encoder' , 'pre_attention_layer_norm' ) snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ : Optional[int] = tax_attention_lookup(__a , __a , 'encoder' , 'attention' ) snake_case_ : Union[str, Any] = layer_norm snake_case_ : List[str] = k.T snake_case_ : Union[str, Any] = o.T snake_case_ : Union[str, Any] = q.T snake_case_ : int = v.T # Block i, layer 1 (MLP). snake_case_ : Any = tax_layer_norm_lookup(__a , __a , 'encoder' , 'pre_mlp_layer_norm' ) snake_case_ ,snake_case_ : int = tax_mlp_lookup(__a , __a , 'encoder' , __a ) snake_case_ : str = layer_norm if split_mlp_wi: snake_case_ : Tuple = wi[0].T snake_case_ : Dict = wi[1].T else: snake_case_ : Optional[int] = wi.T snake_case_ : Union[str, Any] = wo.T snake_case_ : Optional[int] = old[ 'encoder/relpos_bias/rel_embedding' ].T snake_case_ : List[Any] = old['encoder/encoder_norm/scale'] if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). snake_case_ : Any = tax_layer_norm_lookup(__a , __a , 'decoder' , 'pre_self_attention_layer_norm' ) snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ : Any = tax_attention_lookup(__a , __a , 'decoder' , 'self_attention' ) snake_case_ : Optional[Any] = layer_norm snake_case_ : str = k.T snake_case_ : Any = o.T snake_case_ : List[str] = q.T snake_case_ : Optional[int] = v.T # Block i, layer 1 (Cross Attention). snake_case_ : Any = tax_layer_norm_lookup(__a , __a , 'decoder' , 'pre_cross_attention_layer_norm' ) snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ : Any = tax_attention_lookup(__a , __a , 'decoder' , 'encoder_decoder_attention' ) snake_case_ : int = layer_norm snake_case_ : List[str] = k.T snake_case_ : Any = o.T snake_case_ : Dict = q.T snake_case_ : List[Any] = v.T # Block i, layer 2 (MLP). snake_case_ : Dict = tax_layer_norm_lookup(__a , __a , 'decoder' , 'pre_mlp_layer_norm' ) snake_case_ ,snake_case_ : List[Any] = tax_mlp_lookup(__a , __a , 'decoder' , __a ) snake_case_ : Any = layer_norm if split_mlp_wi: snake_case_ : Optional[int] = wi[0].T snake_case_ : str = wi[1].T else: snake_case_ : Optional[int] = wi.T snake_case_ : str = wo.T snake_case_ : Union[str, Any] = old['decoder/decoder_norm/scale'] snake_case_ : Tuple = old[ 'decoder/relpos_bias/rel_embedding' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: snake_case_ : int = old['decoder/logits_dense/kernel'].T return new def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Any = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: snake_case_ : Union[str, Any] = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: snake_case_ : Union[str, Any] = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) snake_case_ : str = state_dict['shared.weight'] return state_dict def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a ): snake_case_ : List[str] = checkpoints.load_tax_checkpoint(__a ) snake_case_ : List[str] = convert_tax_to_pytorch(__a , num_layers=config.num_layers , is_encoder_only=__a ) snake_case_ : Any = make_state_dict(__a , __a ) model.load_state_dict(__a , strict=__a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a = False ): snake_case_ : Optional[Any] = TaConfig.from_json_file(__a ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: snake_case_ : List[Any] = TaEncoderModel(__a ) else: snake_case_ : Optional[int] = TaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a , __a , __a , __a ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print('Done' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
327
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Dict ) -> List[Any]: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_A ) snake_case_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : List[Any] = tokenizer('This is me' , return_tensors='pt' ) snake_case_ : Any = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case_ : Optional[Any] = model.generate(**_A ) snake_case_ : int = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_A ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case_ : Optional[Any] = model_reloaded.generate(**_A ) self.assertTrue(torch.allclose(_A , _A ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : int = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : Dict = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_A ): model.save_pretrained(_A ) snake_case_ : Union[str, Any] = model.reverse_bettertransformer() model.save_pretrained(_A )
327
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : str , _A : Dict , _A : List[Any]=7 , _A : int=3 , _A : List[Any]=30 , _A : int=400 , _A : Union[str, Any]=True , _A : int=None , _A : Dict=True , _A : Optional[Any]=[0.5, 0.5, 0.5] , _A : Any=[0.5, 0.5, 0.5] , _A : Optional[Any]=True , _A : List[str]=1 / 255 , _A : List[Any]=True , ) -> Dict: """simple docstring""" snake_case_ : Optional[int] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} snake_case_ : List[str] = parent snake_case_ : Optional[int] = batch_size snake_case_ : List[str] = num_channels snake_case_ : Optional[Any] = min_resolution snake_case_ : Dict = max_resolution snake_case_ : str = do_resize snake_case_ : Optional[Any] = size snake_case_ : List[str] = do_normalize snake_case_ : Dict = image_mean snake_case_ : Any = image_std snake_case_ : int = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : List[Any] = do_pad def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase_ ( self : str , _A : Dict , _A : Optional[Any]=False ) -> Union[str, Any]: """simple docstring""" if not batched: snake_case_ : Dict = image_inputs[0] if isinstance(_A , Image.Image ): snake_case_ ,snake_case_ : Dict = image.size else: snake_case_ ,snake_case_ : Dict = image.shape[1], image.shape[2] if w < h: snake_case_ : str = int(self.size['shortest_edge'] * h / w ) snake_case_ : Dict = self.size['shortest_edge'] elif w > h: snake_case_ : Optional[int] = self.size['shortest_edge'] snake_case_ : List[str] = int(self.size['shortest_edge'] * w / h ) else: snake_case_ : str = self.size['shortest_edge'] snake_case_ : List[str] = self.size['shortest_edge'] else: snake_case_ : Tuple = [] for image in image_inputs: snake_case_ ,snake_case_ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : Optional[Any] = max(_A , key=lambda _A : item[0] )[0] snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: List[str] = DetaImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case_ : Any = DetaImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Tuple ) -> List[str]: """simple docstring""" snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'do_rescale' ) ) self.assertTrue(hasattr(_A , 'do_pad' ) ) self.assertTrue(hasattr(_A , 'size' ) ) def UpperCAmelCase_ ( self : str ) -> int: """simple docstring""" snake_case_ : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" snake_case_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case_ : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : str = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ ,snake_case_ : str = self.image_processor_tester.get_expected_values(_A , batched=_A ) snake_case_ : Optional[Any] = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: """simple docstring""" snake_case_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case_ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : int = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : List[Any] = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : str = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case_ : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : List[str] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Tuple = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase_ ( self : str ) -> Optional[Any]: """simple docstring""" snake_case_ : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: snake_case_ : Tuple = json.loads(f.read() ) snake_case_ : str = {'image_id': 39769, 'annotations': target} # encode them snake_case_ : Optional[int] = DetaImageProcessor() snake_case_ : List[Any] = image_processing(images=_A , annotations=_A , return_tensors='pt' ) # verify pixel values snake_case_ : Optional[int] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _A ) snake_case_ : int = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _A , atol=1E-4 ) ) # verify area snake_case_ : Dict = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _A ) ) # verify boxes snake_case_ : str = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _A ) snake_case_ : Tuple = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _A , atol=1E-3 ) ) # verify image_id snake_case_ : str = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _A ) ) # verify is_crowd snake_case_ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _A ) ) # verify class_labels snake_case_ : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _A ) ) # verify orig_size snake_case_ : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _A ) ) # verify size snake_case_ : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _A ) ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: snake_case_ : Dict = json.loads(f.read() ) snake_case_ : str = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} snake_case_ : Dict = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them snake_case_ : Any = DetaImageProcessor(format='coco_panoptic' ) snake_case_ : Optional[Any] = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='pt' ) # verify pixel values snake_case_ : str = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _A ) snake_case_ : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _A , atol=1E-4 ) ) # verify area snake_case_ : Dict = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _A ) ) # verify boxes snake_case_ : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _A ) snake_case_ : Optional[Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _A , atol=1E-3 ) ) # verify image_id snake_case_ : Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _A ) ) # verify is_crowd snake_case_ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _A ) ) # verify class_labels snake_case_ : List[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _A ) ) # verify masks snake_case_ : List[str] = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _A ) # verify orig_size snake_case_ : Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _A ) ) # verify size snake_case_ : Optional[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _A ) )
327
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = params snake_case_ : int = np.array(_A ) snake_case_ : Optional[int] = np.array([len(_A ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Tuple , _A : Optional[int] ) -> str: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : List[str] ) -> str: """simple docstring""" return len(self.lengths ) def UpperCAmelCase_ ( self : Dict ) -> str: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: """simple docstring""" snake_case_ : Dict = self.params.max_model_input_size snake_case_ : Tuple = self.lengths > max_len logger.info(F"""Splitting {sum(_A )} too long sequences.""" ) def divide_chunks(_A : Union[str, Any] , _A : Dict ): return [l[i : i + n] for i in range(0 , len(_A ) , _A )] snake_case_ : Dict = [] snake_case_ : Union[str, Any] = [] if self.params.mlm: snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: snake_case_ : List[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: snake_case_ : Optional[int] = np.insert(_A , 0 , _A ) if sub_s[-1] != sep_id: snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A ) assert len(_A ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_A ) new_tok_ids.extend(_A ) new_lengths.extend([len(_A ) for l in sub_seqs] ) snake_case_ : Tuple = np.array(_A ) snake_case_ : int = np.array(_A ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ : Tuple = len(self ) snake_case_ : int = self.lengths > 11 snake_case_ : Dict = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : List[Any] = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = len(self ) snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) snake_case_ : Any = (unk_occs / self.lengths) < 0.5 snake_case_ : List[Any] = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : Tuple = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ : Any = [t[0] for t in batch] snake_case_ : int = [t[1] for t in batch] assert len(_A ) == len(_A ) # Max for paddings snake_case_ : str = max(_A ) # Pad token ids if self.params.mlm: snake_case_ : int = self.params.special_tok_ids['pad_token'] else: snake_case_ : Dict = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids] assert len(tk_ ) == len(_A ) assert all(len(_A ) == max_seq_len_ for t in tk_ ) snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs) return tk_t, lg_t
327
1
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration _SCREAMING_SNAKE_CASE = pytest.mark.integration _SCREAMING_SNAKE_CASE = {"""comet"""} _SCREAMING_SNAKE_CASE = importlib.util.find_spec("""fairseq""") is not None _SCREAMING_SNAKE_CASE = {"""code_eval"""} _SCREAMING_SNAKE_CASE = os.name == """nt""" _SCREAMING_SNAKE_CASE = {"""bertscore""", """frugalscore""", """perplexity"""} _SCREAMING_SNAKE_CASE = importlib.util.find_spec("""transformers""") is not None def SCREAMING_SNAKE_CASE__ ( __a ): @wraps(__a ) def wrapper(self , __a ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self , __a ) return wrapper def SCREAMING_SNAKE_CASE__ ( __a ): @wraps(__a ) def wrapper(self , __a ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self , __a ) return wrapper def SCREAMING_SNAKE_CASE__ ( __a ): @wraps(__a ) def wrapper(self , __a ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self , __a ) return wrapper def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Dict = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( snake_case_ , snake_case_ , snake_case_ ) @local class SCREAMING_SNAKE_CASE_ ( parameterized.TestCase ): __magic_name__: Union[str, Any] = {} __magic_name__: Optional[Any] = None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def UpperCAmelCase_ ( self : Any , _A : Dict ) -> Tuple: """simple docstring""" snake_case_ : Optional[int] = '[...]' snake_case_ : Any = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , _A ) ).module_path ) snake_case_ : Dict = datasets.load.import_main_class(metric_module.__name__ , dataset=_A ) # check parameters snake_case_ : Optional[Any] = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_A , metric_module.__name__ ): with self.use_local_metrics(): try: snake_case_ : Tuple = doctest.testmod(_A , verbose=_A , raise_on_error=_A ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def UpperCAmelCase_ ( self : Union[str, Any] , _A : str ) -> List[Any]: """simple docstring""" snake_case_ : List[str] = '[...]' snake_case_ : List[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , _A ) ).module_path ) # run doctest with self.use_local_metrics(): snake_case_ : Union[str, Any] = doctest.testmod(_A , verbose=_A , raise_on_error=_A ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def UpperCAmelCase_ ( self : int , _A : str , _A : Any ) -> List[Any]: """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_A ): yield else: yield @contextmanager def UpperCAmelCase_ ( self : int ) -> Tuple: """simple docstring""" def load_local_metric(_A : str , *_A : str , **_A : int ): return load_metric(os.path.join('metrics' , _A ) , *_A , **_A ) with patch('datasets.load_metric' ) as mock_load_metric: snake_case_ : List[Any] = load_local_metric yield @classmethod def UpperCAmelCase_ ( cls : str , _A : List[str] ) -> List[str]: """simple docstring""" def wrapper(_A : Dict ): snake_case_ : str = contextmanager(_A ) snake_case_ : Any = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def SCREAMING_SNAKE_CASE__ ( __a ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def UpperCAmelCase_ ( self : Any , _A : Optional[Any] ) -> List[Any]: """simple docstring""" assert len(input_dict['input_ids'] ) == 2 return np.array([1.0_3, 1.0_4] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: snake_case_ : Optional[Any] = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def SCREAMING_SNAKE_CASE__ ( __a ): import torch def bert_cos_score_idf(__a , __a , *__a , **__a ): return torch.tensor([[1.0, 1.0, 1.0]] * len(__a ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: snake_case_ : Union[str, Any] = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def SCREAMING_SNAKE_CASE__ ( __a ): def load_from_checkpoint(__a ): class SCREAMING_SNAKE_CASE_ : def UpperCAmelCase_ ( self : Optional[Any] , _A : Tuple , *_A : Union[str, Any] , **_A : List[str] ) -> str: """simple docstring""" assert len(_A ) == 2 snake_case_ : List[Any] = [0.1_9, 0.9_2] return scores, sum(_A ) / len(_A ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: snake_case_ : Optional[Any] = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: snake_case_ : Optional[int] = load_from_checkpoint yield def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : int = load_metric(os.path.join('metrics' , 'seqeval' ) ) snake_case_ : Optional[Any] = 'ERROR' snake_case_ : List[str] = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(__a , match=re.escape(__a ) ): metric.compute(predictions=[] , references=[] , scheme=__a )
327
def SCREAMING_SNAKE_CASE__ ( __a , __a ): while b: snake_case_ ,snake_case_ : Any = b, a % b return a def SCREAMING_SNAKE_CASE__ ( __a , __a ): return a if b == 0 else euclidean_gcd_recursive(__a , a % b ) def SCREAMING_SNAKE_CASE__ ( ): print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
327
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def SCREAMING_SNAKE_CASE__ ( __a , __a=False ): try: snake_case_ : Optional[Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. snake_case_ : Optional[int] = default else: # KEY is set, convert it to True or False. try: snake_case_ : int = strtobool(__a ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value _SCREAMING_SNAKE_CASE = parse_flag_from_env("""RUN_SLOW""", default=False) _SCREAMING_SNAKE_CASE = parse_flag_from_env("""RUN_REMOTE""", default=False) _SCREAMING_SNAKE_CASE = parse_flag_from_env("""RUN_LOCAL""", default=True) _SCREAMING_SNAKE_CASE = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression _SCREAMING_SNAKE_CASE = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") _SCREAMING_SNAKE_CASE = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") _SCREAMING_SNAKE_CASE = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio _SCREAMING_SNAKE_CASE = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam _SCREAMING_SNAKE_CASE = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility _SCREAMING_SNAKE_CASE = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows _SCREAMING_SNAKE_CASE = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def SCREAMING_SNAKE_CASE__ ( __a ): try: import faiss # noqa except ImportError: snake_case_ : List[Any] = unittest.skip('test requires faiss' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): try: import regex # noqa except ImportError: snake_case_ : Dict = unittest.skip('test requires regex' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): try: import elasticsearch # noqa except ImportError: snake_case_ : Optional[Any] = unittest.skip('test requires elasticsearch' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): try: import sqlalchemy # noqa except ImportError: snake_case_ : List[Any] = unittest.skip('test requires sqlalchemy' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): if not config.TORCH_AVAILABLE: snake_case_ : Tuple = unittest.skip('test requires PyTorch' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): if not config.TF_AVAILABLE: snake_case_ : str = unittest.skip('test requires TensorFlow' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): if not config.JAX_AVAILABLE: snake_case_ : int = unittest.skip('test requires JAX' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): if not config.PIL_AVAILABLE: snake_case_ : List[str] = unittest.skip('test requires Pillow' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__a ) else: return test_case def SCREAMING_SNAKE_CASE__ ( __a ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__a ) else: return test_case def SCREAMING_SNAKE_CASE__ ( __a ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__a ) else: return test_case def SCREAMING_SNAKE_CASE__ ( __a ): def _require_spacy_model(__a ): try: import spacy # noqa F401 spacy.load(__a ) except ImportError: return unittest.skip('test requires spacy' )(__a ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__a ) )(__a ) else: return test_case return _require_spacy_model def SCREAMING_SNAKE_CASE__ ( __a ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__a ) else: return test_case def SCREAMING_SNAKE_CASE__ ( __a ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__a ) else: return test_case def SCREAMING_SNAKE_CASE__ ( __a ): if not _run_slow_tests or _run_slow_tests == 0: snake_case_ : List[str] = unittest.skip('test is slow' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): if not _run_local_tests or _run_local_tests == 0: snake_case_ : Optional[int] = unittest.skip('test is local' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): if not _run_packaged_tests or _run_packaged_tests == 0: snake_case_ : Union[str, Any] = unittest.skip('test is packaged' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( __a ): if not _run_remote_tests or _run_remote_tests == 0: snake_case_ : Any = unittest.skip('test requires remote' )(__a ) return test_case def SCREAMING_SNAKE_CASE__ ( *__a ): def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__a ) and name.startswith('test' ): for decorator in decorators: snake_case_ : Dict = decorator(__a ) setattr(cls , __a , __a ) return cls return decorate class SCREAMING_SNAKE_CASE_ ( snake_case_ ): pass class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Any = 0 __magic_name__: Union[str, Any] = 1 __magic_name__: Optional[Any] = 2 @contextmanager def SCREAMING_SNAKE_CASE__ ( __a=OfflineSimulationMode.CONNECTION_FAILS , __a=1E-16 ): snake_case_ : Optional[Any] = requests.Session().request def timeout_request(__a , __a , __a , **__a ): # Change the url to an invalid url so that the connection hangs snake_case_ : List[Any] = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( f"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) snake_case_ : str = timeout try: return online_request(__a , __a , **__a ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier snake_case_ : List[Any] = url snake_case_ : Any = e.args[0] snake_case_ : Any = (max_retry_error.args[0].replace('10.255.255.1' , f"""OfflineMock[{url}]""" ),) snake_case_ : int = (max_retry_error,) raise def raise_connection_error(__a , __a , **__a ): raise requests.ConnectionError('Offline mode is enabled.' , request=__a ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __a ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __a ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __a ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def SCREAMING_SNAKE_CASE__ ( *__a , **__a ): snake_case_ : int = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__a , **__a ) as tmp_dir: try: os.chdir(__a ) yield finally: os.chdir(__a ) @contextmanager def SCREAMING_SNAKE_CASE__ ( ): import gc gc.collect() snake_case_ : str = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def SCREAMING_SNAKE_CASE__ ( ): import gc gc.collect() snake_case_ : Tuple = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def SCREAMING_SNAKE_CASE__ ( __a , __a ): return deepcopy(__a ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__a ).integers(0 , 1_00 , 10 ).tolist() def SCREAMING_SNAKE_CASE__ ( __a ): import decorator from requests.exceptions import HTTPError def _wrapper(__a , *__a , **__a ): try: return func(*__a , **__a ) except HTTPError as err: if str(__a ).startswith('500' ) or str(__a ).startswith('502' ): pytest.xfail(str(__a ) ) raise err return decorator.decorator(_wrapper , __a ) class SCREAMING_SNAKE_CASE_ : def __init__( self : Dict , _A : Optional[int] , _A : List[Any] , _A : List[str] ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = returncode snake_case_ : List[Any] = stdout snake_case_ : Tuple = stderr async def SCREAMING_SNAKE_CASE__ ( __a , __a ): while True: snake_case_ : Optional[Any] = await stream.readline() if line: callback(__a ) else: break async def SCREAMING_SNAKE_CASE__ ( __a , __a=None , __a=None , __a=None , __a=False , __a=False ): if echo: print('\nRunning: ' , ' '.join(__a ) ) snake_case_ : Optional[int] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__a , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__a , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) snake_case_ : Union[str, Any] = [] snake_case_ : Optional[Any] = [] def tee(__a , __a , __a , __a="" ): snake_case_ : Union[str, Any] = line.decode('utf-8' ).rstrip() sink.append(__a ) if not quiet: print(__a , __a , file=__a ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __a : tee(__a , __a , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __a : tee(__a , __a , sys.stderr , label='stderr:' ) ), ] , timeout=__a , ) return _RunOutput(await p.wait() , __a , __a ) def SCREAMING_SNAKE_CASE__ ( __a , __a=None , __a=None , __a=1_80 , __a=False , __a=True ): snake_case_ : Dict = asyncio.get_event_loop() snake_case_ : Tuple = loop.run_until_complete( _stream_subprocess(__a , env=__a , stdin=__a , timeout=__a , quiet=__a , echo=__a ) ) snake_case_ : Union[str, Any] = ' '.join(__a ) if result.returncode > 0: snake_case_ : Tuple = '\n'.join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"""'{cmd_str}' produced no output.""" ) return result def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) snake_case_ : Union[str, Any] = re.sub(r'^gw' , '' , __a , 0 , re.M ) return int(__a ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[int] = 2_95_00 snake_case_ : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
327
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE = get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : Dict = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Dict = os.path.join(__a , __a ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Dict = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Dict = os.path.join(__a , __a ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving model to {ckpt_dir}""" ) snake_case_ : int = {'model': state_dict} dist_cp.save_state_dict( state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Optional[Any] = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[Any] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Optional[Any] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Tuple = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Tuple = ( os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) snake_case_ : List[Any] = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , ) snake_case_ : Any = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ : str = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : Any = os.path.join(__a , __a ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__a , __a ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ : Union[str, Any] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : List[Any] = os.path.join(__a , __a ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: snake_case_ : str = ( os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) snake_case_ : Any = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , ) snake_case_ : Optional[int] = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a ) optimizer.load_state_dict(__a )
327
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a ): # Initialise PyTorch model snake_case_ : List[Any] = BigBirdConfig.from_json_file(__a ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: snake_case_ : Dict = BigBirdForQuestionAnswering(__a ) else: snake_case_ : Tuple = BigBirdForPreTraining(__a ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__a , __a , is_trivia_qa=__a ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
327
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _A : bool = True , _A : Tuple=7 , _A : Tuple=30 , _A : int=400 , _A : Tuple=3 , ) -> Optional[int]: """simple docstring""" snake_case_ : str = parent snake_case_ : str = do_resize snake_case_ : str = size if size is not None else {'shortest_edge': 288} snake_case_ : Any = size_divisor snake_case_ : Any = do_rescale snake_case_ : Union[str, Any] = rescale_factor snake_case_ : str = do_normalize snake_case_ : int = do_center_crop snake_case_ : str = image_mean snake_case_ : int = image_std snake_case_ : Any = do_pad snake_case_ : Optional[int] = batch_size snake_case_ : List[str] = num_channels snake_case_ : Any = min_resolution snake_case_ : str = max_resolution def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self : Dict , _A : str , _A : Union[str, Any]=False ) -> int: """simple docstring""" if not batched: snake_case_ : Optional[int] = self.size['shortest_edge'] snake_case_ : List[Any] = image_inputs[0] if isinstance(_A , Image.Image ): snake_case_ ,snake_case_ : Optional[Any] = image.size else: snake_case_ ,snake_case_ : str = image.shape[1], image.shape[2] snake_case_ : Dict = size / min(_A , _A ) if h < w: snake_case_ ,snake_case_ : str = size, scale * w else: snake_case_ ,snake_case_ : Tuple = scale * h, size snake_case_ : Dict = int((1333 / 800) * size ) if max(_A , _A ) > max_size: snake_case_ : Union[str, Any] = max_size / max(_A , _A ) snake_case_ : Any = newh * scale snake_case_ : Union[str, Any] = neww * scale snake_case_ ,snake_case_ : Any = int(newh + 0.5 ), int(neww + 0.5 ) snake_case_ ,snake_case_ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: snake_case_ : Optional[int] = [] for image in image_inputs: snake_case_ ,snake_case_ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : str = max(_A , key=lambda _A : item[0] )[0] snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'size_divisor' ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : List[str] = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Any = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : str = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
327
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a , __a=False , __a=False , __a=False ): snake_case_ : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""transformer.blocks.{i}.norm1.weight""", f"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm1.bias""", f"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.weight""", f"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.bias""", f"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.weight""", f"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.bias""", f"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.mlp.fc1.weight""", f"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc1.bias""", f"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.weight""", f"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.bias""", f"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def SCREAMING_SNAKE_CASE__ ( __a , __a ): for i in range(config.num_hidden_layers ): snake_case_ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ : Dict = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.weight""" ) snake_case_ : Tuple = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] snake_case_ : List[Any] = in_proj_bias[: config.hidden_size] snake_case_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ : Tuple = in_proj_weight[ -config.hidden_size :, : ] snake_case_ : Optional[Any] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Tuple = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__a , __a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Optional[int] = dct.pop(__a ) snake_case_ : Optional[int] = val @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Dict = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=__a ) snake_case_ : List[Any] = False snake_case_ : List[Any] = False snake_case_ : List[str] = False snake_case_ : Optional[int] = False if "vqa" in checkpoint_url: snake_case_ : Optional[Any] = True snake_case_ : List[str] = 31_29 snake_case_ : Any = 'huggingface/label-files' snake_case_ : Optional[Any] = 'vqa2-id2label.json' snake_case_ : List[Any] = json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) snake_case_ : List[str] = {int(__a ): v for k, v in idalabel.items()} snake_case_ : Union[str, Any] = idalabel snake_case_ : List[Any] = {v: k for k, v in idalabel.items()} snake_case_ : List[Any] = ViltForQuestionAnswering(__a ) elif "nlvr" in checkpoint_url: snake_case_ : str = True snake_case_ : List[Any] = 2 snake_case_ : List[str] = {0: 'False', 1: 'True'} snake_case_ : Optional[Any] = {v: k for k, v in config.idalabel.items()} snake_case_ : Tuple = 3 snake_case_ : str = ViltForImagesAndTextClassification(__a ) elif "irtr" in checkpoint_url: snake_case_ : Optional[Any] = True snake_case_ : Union[str, Any] = ViltForImageAndTextRetrieval(__a ) elif "mlm_itm" in checkpoint_url: snake_case_ : str = True snake_case_ : int = ViltForMaskedLM(__a ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys snake_case_ : Optional[int] = torch.hub.load_state_dict_from_url(__a , map_location='cpu' )['state_dict'] snake_case_ : List[str] = create_rename_keys(__a , __a , __a , __a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_q_k_v(__a , __a ) if mlm_model or irtr_model: snake_case_ : List[str] = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(__a , __a ) # load state dict into HuggingFace model model.eval() if mlm_model: snake_case_ ,snake_case_ : List[Any] = model.load_state_dict(__a , strict=__a ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__a ) # Define processor snake_case_ : Union[str, Any] = ViltImageProcessor(size=3_84 ) snake_case_ : Any = BertTokenizer.from_pretrained('bert-base-uncased' ) snake_case_ : Optional[int] = ViltProcessor(__a , __a ) # Forward pass on example inputs (image + text) if nlvr_model: snake_case_ : Optional[Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=__a ).raw ) snake_case_ : Union[str, Any] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=__a ).raw ) snake_case_ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) snake_case_ : Dict = processor(__a , __a , return_tensors='pt' ) snake_case_ : List[str] = processor(__a , __a , return_tensors='pt' ) snake_case_ : Dict = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: snake_case_ : Dict = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=__a ).raw ) if mlm_model: snake_case_ : Union[str, Any] = 'a bunch of [MASK] laying on a [MASK].' else: snake_case_ : Optional[int] = 'How many cats are there?' snake_case_ : List[str] = processor(__a , __a , return_tensors='pt' ) snake_case_ : int = model(**__a ) # Verify outputs if mlm_model: snake_case_ : List[str] = torch.Size([1, 11, 3_05_22] ) snake_case_ : Any = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __a , atol=1E-4 ) # verify masked token prediction equals "cats" snake_case_ : str = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: snake_case_ : Tuple = torch.Size([1, 31_29] ) snake_case_ : Optional[int] = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __a , atol=1E-4 ) # verify vqa prediction equals "2" snake_case_ : Optional[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: snake_case_ : str = torch.Size([1, 2] ) snake_case_ : Dict = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(__a ).mkdir(exist_ok=__a ) print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) processor.save_pretrained(__a ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
327
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _SCREAMING_SNAKE_CASE = 50_00_00 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = os.path.split(__file__) _SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : int = dataset.map(**__a ) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : Dict = dataset.filter(**__a ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Tuple = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Dict = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) snake_case_ : List[Any] = generate_example_dataset( os.path.join(__a , 'dataset.arrow' ) , __a , num_examples=__a ) snake_case_ : str = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__a ) def tokenize(__a ): return tokenizer(examples['text'] ) snake_case_ : Any = map(__a ) snake_case_ : Tuple = map(__a , batched=__a ) snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='numpy' ): snake_case_ : Optional[int] = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='pandas' ): snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='torch' , columns='numbers' ): snake_case_ : int = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): snake_case_ : List[Any] = map(__a , function=lambda __a : None , batched=__a ) snake_case_ : int = map(__a , function=__a , batched=__a ) snake_case_ : Optional[Any] = filter(__a ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__a , 'wb' ) as f: f.write(json.dumps(__a ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
327
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _SCREAMING_SNAKE_CASE = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
from collections import namedtuple import requests from lxml import html # type: ignore _SCREAMING_SNAKE_CASE = namedtuple("""covid_data""", """cases deaths recovered""") def SCREAMING_SNAKE_CASE__ ( __a = "https://www.worldometers.info/coronavirus/" ): snake_case_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) ) _SCREAMING_SNAKE_CASE = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
327
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Union[str, Any] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__a , __a ) def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Dict = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: snake_case_ : str = s_dict.pop(__a ) elif "subsample" in key: snake_case_ : int = s_dict.pop(__a ) def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ ,snake_case_ : Optional[Any] = emb.weight.shape snake_case_ : str = nn.Linear(__a , __a , bias=__a ) snake_case_ : Union[str, Any] = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Dict = torch.load(__a , map_location='cpu' ) snake_case_ : int = mam_aaa['args'] snake_case_ : int = mam_aaa['model'] snake_case_ : int = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(__a ) rename_keys(__a ) snake_case_ : Union[str, Any] = state_dict['decoder.embed_tokens.weight'].shape[0] snake_case_ : Dict = args.share_decoder_input_output_embed snake_case_ : Dict = [int(__a ) for i in args.conv_kernel_sizes.split(',' )] snake_case_ : int = SpeechaTextConfig( vocab_size=__a , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , num_conv_layers=len(__a ) , conv_channels=args.conv_channels , conv_kernel_sizes=__a , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__a , num_beams=5 , max_length=2_00 , use_cache=__a , decoder_start_token_id=2 , early_stopping=__a , ) snake_case_ : Optional[int] = SpeechaTextForConditionalGeneration(__a ) snake_case_ ,snake_case_ : str = model.model.load_state_dict(__a , strict=__a ) if len(__a ) > 0 and not set(__a ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' f""" but all the following weights are missing {missing}""" ) if tie_embeds: snake_case_ : Union[str, Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case_ : Optional[int] = lm_head_weights model.save_pretrained(__a ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("""--fairseq_path""", type=str, help="""Path to the fairseq model (.pt) file.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _SCREAMING_SNAKE_CASE = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
327
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": 5_12, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: List[Any] = VOCAB_FILES_NAMES __magic_name__: List[str] = PRETRAINED_VOCAB_FILES_MAP __magic_name__: List[str] = PRETRAINED_INIT_CONFIGURATION __magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__: Union[str, Any] = LxmertTokenizer def __init__( self : List[str] , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=True , _A : Dict="[UNK]" , _A : Optional[int]="[SEP]" , _A : Dict="[PAD]" , _A : Union[str, Any]="[CLS]" , _A : str="[MASK]" , _A : Tuple=True , _A : Dict=None , **_A : List[Any] , ) -> Optional[int]: """simple docstring""" super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _A ) != do_lower_case or normalizer_state.get('strip_accents' , _A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars ): snake_case_ : Tuple = getattr(_A , normalizer_state.pop('type' ) ) snake_case_ : Union[str, Any] = do_lower_case snake_case_ : int = strip_accents snake_case_ : Optional[Any] = tokenize_chinese_chars snake_case_ : List[Any] = normalizer_class(**_A ) snake_case_ : Tuple = do_lower_case def UpperCAmelCase_ ( self : Dict , _A : Any , _A : List[Any]=None ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : str = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
327
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): snake_case_ : int = f"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 0: return False snake_case_ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
327
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: List[str] = "gptj" __magic_name__: Any = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Union[str, Any] , _A : Optional[Any]=50400 , _A : Optional[Any]=2048 , _A : Dict=4096 , _A : Dict=28 , _A : Dict=16 , _A : Union[str, Any]=64 , _A : int=None , _A : Optional[Any]="gelu_new" , _A : Any=0.0 , _A : Tuple=0.0 , _A : Any=0.0 , _A : int=1E-5 , _A : Dict=0.0_2 , _A : List[str]=True , _A : str=50256 , _A : Optional[int]=50256 , _A : str=False , **_A : Optional[int] , ) -> Any: """simple docstring""" snake_case_ : Optional[int] = vocab_size snake_case_ : List[Any] = n_positions snake_case_ : Union[str, Any] = n_embd snake_case_ : int = n_layer snake_case_ : List[Any] = n_head snake_case_ : Optional[Any] = n_inner snake_case_ : List[str] = rotary_dim snake_case_ : Dict = activation_function snake_case_ : int = resid_pdrop snake_case_ : Optional[int] = embd_pdrop snake_case_ : Optional[Any] = attn_pdrop snake_case_ : Any = layer_norm_epsilon snake_case_ : List[str] = initializer_range snake_case_ : Dict = use_cache snake_case_ : Any = bos_token_id snake_case_ : str = eos_token_id super().__init__( bos_token_id=_A , eos_token_id=_A , tie_word_embeddings=_A , **_A ) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : List[Any] , _A : PretrainedConfig , _A : str = "default" , _A : List[PatchingSpec] = None , _A : bool = False , ) -> Optional[int]: """simple docstring""" super().__init__(_A , task=_A , patching_specs=_A , use_past=_A ) if not getattr(self._config , 'pad_token_id' , _A ): # TODO: how to do that better? snake_case_ : List[Any] = 0 @property def UpperCAmelCase_ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" snake_case_ : List[Any] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(_A , direction='inputs' ) snake_case_ : Dict = {0: 'batch', 1: 'past_sequence + sequence'} else: snake_case_ : str = {0: 'batch', 1: 'sequence'} return common_inputs @property def UpperCAmelCase_ ( self : Optional[Any] ) -> int: """simple docstring""" return self._config.n_layer @property def UpperCAmelCase_ ( self : str ) -> int: """simple docstring""" return self._config.n_head def UpperCAmelCase_ ( self : Union[str, Any] , _A : PreTrainedTokenizer , _A : int = -1 , _A : int = -1 , _A : bool = False , _A : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" snake_case_ : Optional[Any] = super(_A , self ).generate_dummy_inputs( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) # We need to order the input in the way they appears in the forward() snake_case_ : Optional[int] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch snake_case_ ,snake_case_ : str = common_inputs['input_ids'].shape # Not using the same length for past_key_values snake_case_ : Optional[Any] = seqlen + 2 snake_case_ : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) snake_case_ : int = [ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(self.num_layers ) ] snake_case_ : Tuple = common_inputs['attention_mask'] if self.use_past: snake_case_ : int = ordered_inputs['attention_mask'].dtype snake_case_ : Any = torch.cat( [ordered_inputs['attention_mask'], torch.ones(_A , _A , dtype=_A )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase_ ( self : Dict ) -> int: """simple docstring""" return 13
327
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
1
import sys _SCREAMING_SNAKE_CASE = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE__ ( __a = N ): snake_case_ : Optional[Any] = -sys.maxsize - 1 for i in range(len(__a ) - 12 ): snake_case_ : Optional[Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case_ : int = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
327
from typing import Dict from .base import GenericTensor, Pipeline class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def UpperCAmelCase_ ( self : str , _A : Optional[Any]=None , _A : List[str]=None , _A : Optional[Any]=None , **_A : List[str] ) -> Any: """simple docstring""" if tokenize_kwargs is None: snake_case_ : Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) snake_case_ : int = truncation snake_case_ : Optional[int] = tokenize_kwargs snake_case_ : Dict = {} if return_tensors is not None: snake_case_ : Union[str, Any] = return_tensors return preprocess_params, {}, postprocess_params def UpperCAmelCase_ ( self : Optional[int] , _A : int , **_A : Any ) -> Dict[str, GenericTensor]: """simple docstring""" snake_case_ : Dict = self.framework snake_case_ : Any = self.tokenizer(_A , return_tensors=_A , **_A ) return model_inputs def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] ) -> int: """simple docstring""" snake_case_ : Tuple = self.model(**_A ) return model_outputs def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str=False ) -> Any: """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> List[str]: """simple docstring""" return super().__call__(*_A , **_A )
327
1
from __future__ import annotations from math import pi, sqrt def SCREAMING_SNAKE_CASE__ ( __a , __a ): if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
327
from itertools import permutations def SCREAMING_SNAKE_CASE__ ( __a ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False snake_case_ : Any = [7, 11, 13, 17] for i, test in enumerate(__a ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE__ ( __a = 10 ): return sum( int(''.join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(F'''{solution() = }''')
327
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _SCREAMING_SNAKE_CASE = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
from __future__ import annotations from collections import namedtuple def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Any = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
327
1
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): if len(__a ) != len(__a ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. snake_case_ : List[Any] = [p / w for p, w in zip(__a , __a )] # Creating a copy of the list and sorting profit/weight in ascending order snake_case_ : str = sorted(__a ) # declaring useful variables snake_case_ : str = len(__a ) snake_case_ : Union[str, Any] = 0 snake_case_ : str = 0 snake_case_ : List[Any] = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight snake_case_ : Tuple = sorted_profit_by_weight[length - i - 1] snake_case_ : List[str] = profit_by_weight.index(__a ) snake_case_ : int = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) _SCREAMING_SNAKE_CASE = [int(x) for x in input("""Input profits separated by spaces: """).split()] _SCREAMING_SNAKE_CASE = [int(x) for x in input("""Input weights separated by spaces: """).split()] _SCREAMING_SNAKE_CASE = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
327
import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _SCREAMING_SNAKE_CASE = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _SCREAMING_SNAKE_CASE = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : int , _A : Tuple , _A : Tuple , _A : str=None , _A : Dict=False , _A : Tuple=False , _A : str=False , ) -> Tuple: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case_ : List[Any] = np.array([re.sub(_A , '' , _A ) for x in predictions] ) snake_case_ : Optional[Any] = np.array([re.sub(_A , '' , _A ) for x in references] ) else: snake_case_ : Dict = np.asarray(_A ) snake_case_ : Tuple = np.asarray(_A ) if ignore_case: snake_case_ : List[str] = np.char.lower(_A ) snake_case_ : Any = np.char.lower(_A ) if ignore_punctuation: snake_case_ : int = string.punctuation.maketrans('' , '' , string.punctuation ) snake_case_ : Tuple = np.char.translate(_A , table=_A ) snake_case_ : str = np.char.translate(_A , table=_A ) if ignore_numbers: snake_case_ : Optional[int] = string.digits.maketrans('' , '' , string.digits ) snake_case_ : str = np.char.translate(_A , table=_A ) snake_case_ : Union[str, Any] = np.char.translate(_A , table=_A ) snake_case_ : int = predictions == references return {"exact_match": np.mean(_A ) * 100}
327
1
from __future__ import annotations from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: float __magic_name__: TreeNode | None = None __magic_name__: TreeNode | None = None def SCREAMING_SNAKE_CASE__ ( __a ): # Validation def is_valid_tree(__a ) -> bool: if node is None: return True if not isinstance(__a , __a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( 'Each node should be type of TreeNode and data should be float.' ) def is_binary_search_tree_recursive_check( __a , __a , __a ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , __a , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , __a ) ) return is_binary_search_tree_recursive_check(__a , -float('inf' ) , float('inf' ) ) if __name__ == "__main__": import doctest doctest.testmod()
327
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , _A : Optional[Any] , _A : Dict=13 , _A : Union[str, Any]=30 , _A : Tuple=2 , _A : Union[str, Any]=3 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : str=32 , _A : int=2 , _A : List[str]=4 , _A : List[str]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=10 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=3 , _A : str=0.6 , _A : Union[str, Any]=None , ) -> Any: """simple docstring""" snake_case_ : Optional[int] = parent snake_case_ : Tuple = batch_size snake_case_ : List[Any] = image_size snake_case_ : List[str] = patch_size snake_case_ : List[str] = num_channels snake_case_ : Optional[Any] = is_training snake_case_ : Any = use_labels snake_case_ : Tuple = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Tuple = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[Any] = mask_ratio snake_case_ : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case_ : Optional[int] = (image_size // patch_size) ** 2 snake_case_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Union[str, Any] = None if self.use_labels: snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : int ) -> Optional[Any]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : Dict , _A : str ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = TFViTMAEModel(config=_A ) snake_case_ : str = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : Any , _A : List[Any] ) -> int: """simple docstring""" snake_case_ : Any = TFViTMAEForPreTraining(_A ) snake_case_ : Optional[Any] = model(_A , training=_A ) # expected sequence length = num_patches snake_case_ : List[str] = (self.image_size // self.patch_size) ** 2 snake_case_ : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case_ : str = 1 snake_case_ : Dict = TFViTMAEForPreTraining(_A ) snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : List[str] = model(_A , training=_A ) snake_case_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = self.prepare_config_and_inputs() ((snake_case_) ,(snake_case_) ,(snake_case_)) : Any = config_and_inputs snake_case_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __magic_name__: str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} __magic_name__: Dict = False __magic_name__: Dict = False __magic_name__: List[Any] = False __magic_name__: Dict = False def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" snake_case_ : List[Any] = TFViTMAEModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" snake_case_ ,snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: """simple docstring""" snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[str] = model_class(_A ) snake_case_ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Dict = [*signature.parameters.keys()] snake_case_ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Union[str, Any] = self._prepare_for_class(_A , _A ) snake_case_ : List[str] = model(_A , noise=_A ) snake_case_ : Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) ) snake_case_ : str = model(**_A , noise=_A ) snake_case_ : Union[str, Any] = outputs_dict[0].numpy() snake_case_ : Optional[Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Tuple = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_A : int ): snake_case_ : Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(_A ): snake_case_ : str = v.numpy() else: snake_case_ : Optional[Any] = np.array(_A ) return inputs_np_dict for model_class in self.all_model_classes: snake_case_ : int = model_class(_A ) snake_case_ : List[Any] = self._prepare_for_class(_A , _A ) snake_case_ : Any = prepare_numpy_arrays(_A ) snake_case_ : List[Any] = model(_A , noise=_A ) snake_case_ : List[Any] = model(**_A , noise=_A ) self.assert_outputs_same(_A , _A ) def UpperCAmelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> List[str]: """simple docstring""" np.random.seed(2 ) snake_case_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.constant(_A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case_ : Optional[Any] = tf_noise super().check_pt_tf_models(_A , _A , _A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_A ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(_A , _A ),) if isinstance(_A , _A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_A , '_keras_serializable' , _A ) } snake_case_ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.convert_to_tensor(_A ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: snake_case_ : Optional[Any] = main_layer_class(_A ) snake_case_ : List[str] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } snake_case_ : Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) ) snake_case_ : int = model(_A ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[Any] = os.path.join(_A , 'keras_model.h5' ) model.save(_A ) snake_case_ : str = tf.keras.models.load_model( _A , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_A , tf.keras.Model ) snake_case_ : List[str] = model(_A ) self.assert_outputs_same(_A , _A ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Optional[Any] = self._prepare_for_class(_A , _A ) snake_case_ : int = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Any = outputs.last_hidden_state.numpy() snake_case_ : Optional[int] = 0 else: snake_case_ : str = outputs.logits.numpy() snake_case_ : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) snake_case_ : Any = model_class.from_pretrained(_A ) snake_case_ : Any = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Dict = after_outputs['last_hidden_state'].numpy() snake_case_ : Dict = 0 else: snake_case_ : Any = after_outputs['logits'].numpy() snake_case_ : Optional[Any] = 0 snake_case_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) def UpperCAmelCase_ ( self : Any ) -> str: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : str = model_class(_A ) snake_case_ : int = self._prepare_for_class(_A , _A ) snake_case_ : str = model(_A , noise=_A ) snake_case_ : Dict = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_A ) snake_case_ : Any = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config snake_case_ : str = model_class.from_config(model.config ) snake_case_ : Union[str, Any] = new_model(_A ) # Build model new_model.set_weights(model.get_weights() ) snake_case_ : List[str] = new_model(_A , noise=_A ) self.assert_outputs_same(_A , _A ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @slow def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_A ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ : List[str] = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) snake_case_ : List[Any] = self.default_image_processor snake_case_ : Dict = prepare_img() snake_case_ : Optional[Any] = image_processor(images=_A , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case_ : int = ViTMAEConfig() snake_case_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass snake_case_ : Optional[Any] = model(**_A , noise=_A ) # verify the logits snake_case_ : Optional[int] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _A ) snake_case_ : Any = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
327
1
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE = TypeVar("""T""") _SCREAMING_SNAKE_CASE = TypeVar("""U""") class SCREAMING_SNAKE_CASE_ ( Generic[T, U] ): def __init__( self : str , _A : T | None , _A : U | None ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = key snake_case_ : Dict = val snake_case_ : DoubleLinkedListNode[T, U] | None = None snake_case_ : DoubleLinkedListNode[T, U] | None = None def __repr__( self : str ) -> str: """simple docstring""" return ( F"""Node: key: {self.key}, val: {self.val}, """ F"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class SCREAMING_SNAKE_CASE_ ( Generic[T, U] ): def __init__( self : Dict ) -> None: """simple docstring""" snake_case_ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(_A , _A ) snake_case_ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(_A , _A ) snake_case_ ,snake_case_ : List[Any] = self.rear, self.head def __repr__( self : Union[str, Any] ) -> str: """simple docstring""" snake_case_ : int = ['DoubleLinkedList'] snake_case_ : Dict = self.head while node.next is not None: rep.append(str(_A ) ) snake_case_ : int = node.next rep.append(str(self.rear ) ) return ",\n ".join(_A ) def UpperCAmelCase_ ( self : List[str] , _A : DoubleLinkedListNode[T, U] ) -> None: """simple docstring""" snake_case_ : List[str] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None snake_case_ : Any = node snake_case_ : int = previous snake_case_ : Optional[int] = node snake_case_ : List[str] = self.rear def UpperCAmelCase_ ( self : Any , _A : DoubleLinkedListNode[T, U] ) -> DoubleLinkedListNode[T, U] | None: """simple docstring""" if node.prev is None or node.next is None: return None snake_case_ : int = node.next snake_case_ : List[Any] = node.prev snake_case_ : List[Any] = None snake_case_ : Any = None return node class SCREAMING_SNAKE_CASE_ ( Generic[T, U] ): __magic_name__: dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : Tuple , _A : int ) -> List[Any]: """simple docstring""" snake_case_ : DoubleLinkedList[T, U] = DoubleLinkedList() snake_case_ : Optional[Any] = capacity snake_case_ : Optional[int] = 0 snake_case_ : str = 0 snake_case_ : Dict = 0 snake_case_ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self : Optional[Any] ) -> str: """simple docstring""" return ( F"""CacheInfo(hits={self.hits}, misses={self.miss}, """ F"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Any , _A : T ) -> bool: """simple docstring""" return key in self.cache def UpperCAmelCase_ ( self : List[str] , _A : T ) -> U | None: """simple docstring""" if key in self.cache: self.hits += 1 snake_case_ : DoubleLinkedListNode[T, U] = self.cache[key] snake_case_ : Any = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_A ) return node.val self.miss += 1 return None def UpperCAmelCase_ ( self : str , _A : T , _A : U ) -> None: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity snake_case_ : Tuple = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_A ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 snake_case_ : int = DoubleLinkedListNode(_A , _A ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value snake_case_ : Tuple = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list snake_case_ : str = value self.list.add(_A ) @classmethod def UpperCAmelCase_ ( cls : Dict , _A : int = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: """simple docstring""" def cache_decorator_inner(_A : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*_A : T ) -> U: if func not in cls.decorator_function_to_instance_map: snake_case_ : List[str] = LRUCache(_A ) snake_case_ : Optional[int] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: snake_case_ : List[Any] = func(*_A ) cls.decorator_function_to_instance_map[func].put(args[0] , _A ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_A , 'cache_info' , _A ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
327
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : list[list[int]] = [] snake_case_ : list[int] = [] snake_case_ : List[Any] = 0 snake_case_ : Union[str, Any] = sum(__a ) create_state_space_tree(__a , __a , __a , __a , __a , __a ) return result def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ): if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum: return if sum(__a ) == max_sum: result.append(__a ) return for index in range(__a , len(__a ) ): create_state_space_tree( __a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , ) _SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2] _SCREAMING_SNAKE_CASE = 9 _SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
327
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } snake_case_ : Any = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(_A ) , _A ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" snake_case_ : List[str] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_A ) , x.transpose() ) ) snake_case_ : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case_ : int = np.random.randn(3 , 4 ) snake_case_ : Union[str, Any] = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A ) , transpose(_A ).numpy() ) ) snake_case_ : List[Any] = np.random.randn(3 , 4 , 5 ) snake_case_ : Tuple = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , transpose(_A , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: """simple docstring""" snake_case_ : str = np.random.randn(3 , 4 ) snake_case_ : List[str] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A ) , transpose(_A ).numpy() ) ) snake_case_ : Tuple = np.random.randn(3 , 4 , 5 ) snake_case_ : Any = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , transpose(_A , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = np.random.randn(3 , 4 ) snake_case_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A ) , np.asarray(transpose(_A ) ) ) ) snake_case_ : Tuple = np.random.randn(3 , 4 , 5 ) snake_case_ : Optional[Any] = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , np.asarray(transpose(_A , axes=(1, 2, 0) ) ) ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" snake_case_ : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , np.reshape(_A , (4, 3) ) ) ) snake_case_ : Optional[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , np.reshape(_A , (12, 5) ) ) ) @require_torch def UpperCAmelCase_ ( self : int ) -> List[str]: """simple docstring""" snake_case_ : Tuple = np.random.randn(3 , 4 ) snake_case_ : List[Any] = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , reshape(_A , (4, 3) ).numpy() ) ) snake_case_ : int = np.random.randn(3 , 4 , 5 ) snake_case_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , reshape(_A , (12, 5) ).numpy() ) ) @require_tf def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = np.random.randn(3 , 4 ) snake_case_ : Any = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , reshape(_A , (4, 3) ).numpy() ) ) snake_case_ : Union[str, Any] = np.random.randn(3 , 4 , 5 ) snake_case_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , reshape(_A , (12, 5) ).numpy() ) ) @require_flax def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" snake_case_ : Any = np.random.randn(3 , 4 ) snake_case_ : List[str] = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , np.asarray(reshape(_A , (4, 3) ) ) ) ) snake_case_ : Optional[int] = np.random.randn(3 , 4 , 5 ) snake_case_ : int = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , np.asarray(reshape(_A , (12, 5) ) ) ) ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: """simple docstring""" snake_case_ : Any = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_A ) , np.squeeze(_A ) ) ) snake_case_ : Optional[int] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , np.squeeze(_A , axis=2 ) ) ) @require_torch def UpperCAmelCase_ ( self : int ) -> Optional[int]: """simple docstring""" snake_case_ : Union[str, Any] = np.random.randn(1 , 3 , 4 ) snake_case_ : Tuple = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A ) , squeeze(_A ).numpy() ) ) snake_case_ : Dict = np.random.randn(1 , 4 , 1 , 5 ) snake_case_ : int = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , squeeze(_A , axis=2 ).numpy() ) ) @require_tf def UpperCAmelCase_ ( self : int ) -> str: """simple docstring""" snake_case_ : Optional[int] = np.random.randn(1 , 3 , 4 ) snake_case_ : List[str] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A ) , squeeze(_A ).numpy() ) ) snake_case_ : List[str] = np.random.randn(1 , 4 , 1 , 5 ) snake_case_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , squeeze(_A , axis=2 ).numpy() ) ) @require_flax def UpperCAmelCase_ ( self : Optional[Any] ) -> str: """simple docstring""" snake_case_ : Optional[Any] = np.random.randn(1 , 3 , 4 ) snake_case_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A ) , np.asarray(squeeze(_A ) ) ) ) snake_case_ : List[Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case_ : Dict = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , np.asarray(squeeze(_A , axis=2 ) ) ) ) def UpperCAmelCase_ ( self : List[Any] ) -> int: """simple docstring""" snake_case_ : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , np.expand_dims(_A , axis=1 ) ) ) @require_torch def UpperCAmelCase_ ( self : int ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = np.random.randn(3 , 4 ) snake_case_ : Optional[Any] = torch.tensor(_A ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , expand_dims(_A , axis=1 ).numpy() ) ) @require_tf def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case_ : Dict = np.random.randn(3 , 4 ) snake_case_ : List[str] = tf.constant(_A ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , expand_dims(_A , axis=1 ).numpy() ) ) @require_flax def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = np.random.randn(3 , 4 ) snake_case_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , np.asarray(expand_dims(_A , axis=1 ) ) ) )
327
def SCREAMING_SNAKE_CASE__ ( __a , __a ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
327
1
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False, False, False @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: Optional[int] = None __magic_name__: bool = True __magic_name__: bool = True __magic_name__: Optional[str] = None # Automatically constructed __magic_name__: ClassVar[str] = "dict" __magic_name__: ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) __magic_name__: str = field(default="Audio" , init=snake_case_ , repr=snake_case_ ) def __call__( self : Dict ) -> Optional[Any]: """simple docstring""" return self.pa_type def UpperCAmelCase_ ( self : Dict , _A : Union[str, bytes, dict] ) -> dict: """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('To support encoding audio data, please install \'soundfile\'.' ) from err if isinstance(_A , _A ): return {"bytes": None, "path": value} elif isinstance(_A , _A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes snake_case_ : Tuple = BytesIO() sf.write(_A , value['array'] , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('pcm' ): # "PCM" only has raw audio bytes if value.get('sampling_rate' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object' ) if value.get('bytes' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) snake_case_ : Optional[Any] = np.frombuffer(value['bytes'] , dtype=np.intaa ).astype(np.floataa ) / 32767 else: snake_case_ : List[Any] = np.memmap(value['path'] , dtype='h' , mode='r' ).astype(np.floataa ) / 32767 snake_case_ : List[str] = BytesIO(bytes() ) sf.write(_A , _A , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def UpperCAmelCase_ ( self : Dict , _A : dict , _A : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: """simple docstring""" if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.' ) snake_case_ ,snake_case_ : Any = (value['path'], BytesIO(value['bytes'] )) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(F"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.' ) from err snake_case_ : str = xsplitext(_A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( 'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( 'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) if file is None: snake_case_ : str = token_per_repo_id or {} snake_case_ : str = path.split('::' )[-1] try: snake_case_ : Tuple = string_to_dict(_A , config.HUB_DATASETS_URL )['repo_id'] snake_case_ : Union[str, Any] = token_per_repo_id[repo_id] except (ValueError, KeyError): snake_case_ : Any = None with xopen(_A , 'rb' , use_auth_token=_A ) as f: snake_case_ ,snake_case_ : Union[str, Any] = sf.read(_A ) else: snake_case_ ,snake_case_ : Tuple = sf.read(_A ) snake_case_ : Any = array.T if self.mono: snake_case_ : List[str] = librosa.to_mono(_A ) if self.sampling_rate and self.sampling_rate != sampling_rate: snake_case_ : Union[str, Any] = librosa.resample(_A , orig_sr=_A , target_sr=self.sampling_rate ) snake_case_ : str = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCAmelCase_ ( self : Dict ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value if self.decode: raise ValueError('Cannot flatten a decoded Audio feature.' ) return { "bytes": Value('binary' ), "path": Value('string' ), } def UpperCAmelCase_ ( self : Optional[Any] , _A : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): snake_case_ : str = pa.array([None] * len(_A ) , type=pa.binary() ) snake_case_ : Optional[int] = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): snake_case_ : Optional[Any] = pa.array([None] * len(_A ) , type=pa.string() ) snake_case_ : str = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('array' ): snake_case_ : int = pa.array([Audio().encode_example(_A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: snake_case_ : Dict = storage.field('bytes' ) else: snake_case_ : List[Any] = pa.array([None] * len(_A ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: snake_case_ : Optional[Any] = storage.field('path' ) else: snake_case_ : str = pa.array([None] * len(_A ) , type=pa.string() ) snake_case_ : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) return array_cast(_A , self.pa_type ) def UpperCAmelCase_ ( self : Optional[Any] , _A : pa.StructArray ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_A : Tuple ): with xopen(_A , 'rb' ) as f: snake_case_ : List[Any] = f.read() return bytes_ snake_case_ : Tuple = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) snake_case_ : Dict = pa.array( [os.path.basename(_A ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) snake_case_ : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_A , self.pa_type )
327
from math import pi def SCREAMING_SNAKE_CASE__ ( __a , __a ): return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
327
1
from math import sqrt def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Optional[int] = 0 for i in range(1 , int(sqrt(__a ) + 1 ) ): if n % i == 0 and i != sqrt(__a ): total += i + n // i elif i == sqrt(__a ): total += i return total - n def SCREAMING_SNAKE_CASE__ ( __a = 1_00_00 ): snake_case_ : Union[str, Any] = sum( i for i in range(1 , __a ) if sum_of_divisors(sum_of_divisors(__a ) ) == i and sum_of_divisors(__a ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
327
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[Any] = ["pixel_values"] def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PIL.Image.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : str , ) -> None: """simple docstring""" super().__init__(**_A ) snake_case_ : Dict = size if size is not None else {'height': 256, 'width': 256} snake_case_ : Tuple = get_size_dict(_A ) snake_case_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} snake_case_ : int = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Union[str, Any] = do_resize snake_case_ : str = size snake_case_ : List[str] = resample snake_case_ : List[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : Tuple = do_rescale snake_case_ : Optional[Any] = rescale_factor snake_case_ : Any = do_normalize snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray: """simple docstring""" snake_case_ : Tuple = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( _A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray: """simple docstring""" snake_case_ : Optional[int] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> str: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : List[str] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : Union[str, Any]=None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ) -> PIL.Image.Image: """simple docstring""" snake_case_ : int = do_resize if do_resize is not None else self.do_resize snake_case_ : str = resample if resample is not None else self.resample snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Any = image_mean if image_mean is not None else self.image_mean snake_case_ : Dict = image_std if image_std is not None else self.image_std snake_case_ : int = size if size is not None else self.size snake_case_ : Optional[int] = get_size_dict(_A ) snake_case_ : int = crop_size if crop_size is not None else self.crop_size snake_case_ : Any = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Optional[Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case_ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: snake_case_ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: snake_case_ : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images] snake_case_ : Tuple = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
327
1
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE = """\ @inproceedings{snover-etal-2006-study, title = \"A Study of Translation Edit Rate with Targeted Human Annotation\", author = \"Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John\", booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\", month = aug # \" 8-12\", year = \"2006\", address = \"Cambridge, Massachusetts, USA\", publisher = \"Association for Machine Translation in the Americas\", url = \"https://aclanthology.org/2006.amta-papers.25\", pages = \"223--231\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ _SCREAMING_SNAKE_CASE = """\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. """ _SCREAMING_SNAKE_CASE = """ Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: 'score' (float): TER score (num_edits / sum_ref_lengths * 100) 'num_edits' (int): The cumulative number of edits 'ref_length' (float): The cumulative average reference length Examples: Example 1: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0} Example 2: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0} Example 3: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5} Example 4: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0} Example 5: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def UpperCAmelCase_ ( self : Tuple ) -> str: """simple docstring""" if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def UpperCAmelCase_ ( self : List[Any] , _A : Any , _A : List[Any] , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = False , ) -> Union[str, Any]: """simple docstring""" snake_case_ : int = len(references[0] ) if any(len(_A ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) snake_case_ : int = [[refs[i] for refs in references] for i in range(_A )] snake_case_ : str = TER( normalized=_A , no_punct=_A , asian_support=_A , case_sensitive=_A , ) snake_case_ : List[Any] = sb_ter.corpus_score(_A , _A ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
327
import sys _SCREAMING_SNAKE_CASE = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE__ ( __a = N ): snake_case_ : Optional[Any] = -sys.maxsize - 1 for i in range(len(__a ) - 12 ): snake_case_ : Optional[Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case_ : int = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
327
1
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , _A : Optional[Any] , _A : Dict=13 , _A : Union[str, Any]=30 , _A : Tuple=2 , _A : Union[str, Any]=3 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : str=32 , _A : int=2 , _A : List[str]=4 , _A : List[str]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=10 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=3 , _A : str=0.6 , _A : Union[str, Any]=None , ) -> Any: """simple docstring""" snake_case_ : Optional[int] = parent snake_case_ : Tuple = batch_size snake_case_ : List[Any] = image_size snake_case_ : List[str] = patch_size snake_case_ : List[str] = num_channels snake_case_ : Optional[Any] = is_training snake_case_ : Any = use_labels snake_case_ : Tuple = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Tuple = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[Any] = mask_ratio snake_case_ : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case_ : Optional[int] = (image_size // patch_size) ** 2 snake_case_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Union[str, Any] = None if self.use_labels: snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : int ) -> Optional[Any]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : Dict , _A : str ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = TFViTMAEModel(config=_A ) snake_case_ : str = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : Any , _A : List[Any] ) -> int: """simple docstring""" snake_case_ : Any = TFViTMAEForPreTraining(_A ) snake_case_ : Optional[Any] = model(_A , training=_A ) # expected sequence length = num_patches snake_case_ : List[str] = (self.image_size // self.patch_size) ** 2 snake_case_ : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case_ : str = 1 snake_case_ : Dict = TFViTMAEForPreTraining(_A ) snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : List[str] = model(_A , training=_A ) snake_case_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = self.prepare_config_and_inputs() ((snake_case_) ,(snake_case_) ,(snake_case_)) : Any = config_and_inputs snake_case_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __magic_name__: str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} __magic_name__: Dict = False __magic_name__: Dict = False __magic_name__: List[Any] = False __magic_name__: Dict = False def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" snake_case_ : List[Any] = TFViTMAEModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" snake_case_ ,snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: """simple docstring""" snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[str] = model_class(_A ) snake_case_ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Dict = [*signature.parameters.keys()] snake_case_ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Union[str, Any] = self._prepare_for_class(_A , _A ) snake_case_ : List[str] = model(_A , noise=_A ) snake_case_ : Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) ) snake_case_ : str = model(**_A , noise=_A ) snake_case_ : Union[str, Any] = outputs_dict[0].numpy() snake_case_ : Optional[Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Tuple = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_A : int ): snake_case_ : Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(_A ): snake_case_ : str = v.numpy() else: snake_case_ : Optional[Any] = np.array(_A ) return inputs_np_dict for model_class in self.all_model_classes: snake_case_ : int = model_class(_A ) snake_case_ : List[Any] = self._prepare_for_class(_A , _A ) snake_case_ : Any = prepare_numpy_arrays(_A ) snake_case_ : List[Any] = model(_A , noise=_A ) snake_case_ : List[Any] = model(**_A , noise=_A ) self.assert_outputs_same(_A , _A ) def UpperCAmelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> List[str]: """simple docstring""" np.random.seed(2 ) snake_case_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.constant(_A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case_ : Optional[Any] = tf_noise super().check_pt_tf_models(_A , _A , _A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_A ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(_A , _A ),) if isinstance(_A , _A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_A , '_keras_serializable' , _A ) } snake_case_ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.convert_to_tensor(_A ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: snake_case_ : Optional[Any] = main_layer_class(_A ) snake_case_ : List[str] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } snake_case_ : Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) ) snake_case_ : int = model(_A ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[Any] = os.path.join(_A , 'keras_model.h5' ) model.save(_A ) snake_case_ : str = tf.keras.models.load_model( _A , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_A , tf.keras.Model ) snake_case_ : List[str] = model(_A ) self.assert_outputs_same(_A , _A ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Optional[Any] = self._prepare_for_class(_A , _A ) snake_case_ : int = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Any = outputs.last_hidden_state.numpy() snake_case_ : Optional[int] = 0 else: snake_case_ : str = outputs.logits.numpy() snake_case_ : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) snake_case_ : Any = model_class.from_pretrained(_A ) snake_case_ : Any = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Dict = after_outputs['last_hidden_state'].numpy() snake_case_ : Dict = 0 else: snake_case_ : Any = after_outputs['logits'].numpy() snake_case_ : Optional[Any] = 0 snake_case_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) def UpperCAmelCase_ ( self : Any ) -> str: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : str = model_class(_A ) snake_case_ : int = self._prepare_for_class(_A , _A ) snake_case_ : str = model(_A , noise=_A ) snake_case_ : Dict = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_A ) snake_case_ : Any = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config snake_case_ : str = model_class.from_config(model.config ) snake_case_ : Union[str, Any] = new_model(_A ) # Build model new_model.set_weights(model.get_weights() ) snake_case_ : List[str] = new_model(_A , noise=_A ) self.assert_outputs_same(_A , _A ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @slow def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_A ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ : List[str] = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) snake_case_ : List[Any] = self.default_image_processor snake_case_ : Dict = prepare_img() snake_case_ : Optional[Any] = image_processor(images=_A , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case_ : int = ViTMAEConfig() snake_case_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass snake_case_ : Optional[Any] = model(**_A , noise=_A ) # verify the logits snake_case_ : Optional[int] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _A ) snake_case_ : Any = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
327
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __magic_name__: Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) __magic_name__: Optional[int] = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} ) __magic_name__: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} ) __magic_name__: bool = field( default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(__a , os.path.join(__a , f"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ ,snake_case_ ,snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ ,snake_case_ ,snake_case_ : List[str] = parser.parse_args_into_dataclasses() check_output_dir(__a ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , __a ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(__a , __a , __a ): assert hasattr(__a , __a ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(__a , __a , getattr(__a , __a ) ) snake_case_ : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=__a , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__a , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: snake_case_ : Any = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__a , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__a , __a ): snake_case_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang] else: snake_case_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__a ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) snake_case_ : List[Any] = SeqaSeqDataset # Get datasets snake_case_ : List[Any] = ( dataset_class( __a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) snake_case_ : List[str] = ( dataset_class( __a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) snake_case_ : List[Any] = ( dataset_class( __a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer snake_case_ : Any = ( build_compute_metrics_fn(data_args.task , __a ) if training_args.predict_with_generate else None ) snake_case_ : List[str] = SeqaSeqTrainer( model=__a , args=__a , data_args=__a , train_dataset=__a , eval_dataset=__a , data_collator=SeqaSeqDataCollator( __a , __a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__a , tokenizer=__a , ) snake_case_ : Optional[int] = {} # Training if training_args.do_train: logger.info('*** Train ***' ) snake_case_ : Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) snake_case_ : Tuple = train_result.metrics snake_case_ : List[str] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , __a , training_args.output_dir ) all_metrics.update(__a ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ : List[Any] = trainer.evaluate(metric_key_prefix='val' ) snake_case_ : str = data_args.n_val snake_case_ : Union[str, Any] = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.do_predict: logger.info('*** Predict ***' ) snake_case_ : Dict = trainer.predict(test_dataset=__a , metric_key_prefix='test' ) snake_case_ : Union[str, Any] = test_output.metrics snake_case_ : int = data_args.n_test if trainer.is_world_process_zero(): snake_case_ : List[str] = round(metrics['test_loss'] , 4 ) handle_metrics('test' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.predict_with_generate: snake_case_ : Any = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) snake_case_ : Any = lmap(str.strip , __a ) write_txt_file(__a , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(__a , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def SCREAMING_SNAKE_CASE__ ( __a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
327
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """spiece.model"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } _SCREAMING_SNAKE_CASE = { """albert-base-v1""": 5_12, """albert-large-v1""": 5_12, """albert-xlarge-v1""": 5_12, """albert-xxlarge-v1""": 5_12, """albert-base-v2""": 5_12, """albert-large-v2""": 5_12, """albert-xlarge-v2""": 5_12, """albert-xxlarge-v2""": 5_12, } _SCREAMING_SNAKE_CASE = """▁""" class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Union[str, Any] = VOCAB_FILES_NAMES __magic_name__: Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , _A : Optional[Any] , _A : Optional[int]=True , _A : Any=True , _A : Dict=False , _A : Tuple="[CLS]" , _A : Optional[Any]="[SEP]" , _A : Union[str, Any]="<unk>" , _A : Dict="[SEP]" , _A : List[str]="<pad>" , _A : List[Any]="[CLS]" , _A : Tuple="[MASK]" , _A : Optional[Dict[str, Any]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" snake_case_ : Optional[int] = ( AddedToken(_A , lstrip=_A , rstrip=_A , normalized=_A ) if isinstance(_A , _A ) else mask_token ) snake_case_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) snake_case_ : str = do_lower_case snake_case_ : Union[str, Any] = remove_space snake_case_ : List[str] = keep_accents snake_case_ : List[Any] = vocab_file snake_case_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return len(self.sp_model ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: """simple docstring""" snake_case_ : Union[str, Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ) -> int: """simple docstring""" snake_case_ : str = self.__dict__.copy() snake_case_ : List[str] = None return state def __setstate__( self : List[Any] , _A : Optional[Any] ) -> Union[str, Any]: """simple docstring""" snake_case_ : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case_ : Union[str, Any] = {} snake_case_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self : Optional[Any] , _A : Any ) -> Any: """simple docstring""" if self.remove_space: snake_case_ : int = ' '.join(inputs.strip().split() ) else: snake_case_ : Dict = inputs snake_case_ : List[str] = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: snake_case_ : int = unicodedata.normalize('NFKD' , _A ) snake_case_ : List[str] = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: snake_case_ : Union[str, Any] = outputs.lower() return outputs def UpperCAmelCase_ ( self : Union[str, Any] , _A : str ) -> List[str]: """simple docstring""" snake_case_ : Dict = self.preprocess_text(_A ) snake_case_ : int = self.sp_model.encode(_A , out_type=_A ) snake_case_ : Any = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): snake_case_ : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case_ : Union[str, Any] = cur_pieces[1:] else: snake_case_ : Dict = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def UpperCAmelCase_ ( self : Tuple , _A : Tuple ) -> Any: """simple docstring""" return self.sp_model.PieceToId(_A ) def UpperCAmelCase_ ( self : List[Any] , _A : Optional[Any] ) -> int: """simple docstring""" return self.sp_model.IdToPiece(_A ) def UpperCAmelCase_ ( self : Optional[Any] , _A : str ) -> Dict: """simple docstring""" snake_case_ : str = [] snake_case_ : List[str] = '' snake_case_ : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token snake_case_ : Dict = True snake_case_ : Optional[int] = [] else: current_sub_tokens.append(_A ) snake_case_ : Dict = False out_string += self.sp_model.decode(_A ) return out_string.strip() def UpperCAmelCase_ ( self : str , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : str = [self.sep_token_id] snake_case_ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Union[str, Any] , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1] def UpperCAmelCase_ ( self : Union[str, Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : Any = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : List[str] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ : str = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , 'wb' ) as fi: snake_case_ : Dict = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
327
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
327
1
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( __a , __a ): assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : List[Any] = tmp_path / 'cache' snake_case_ : List[str] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[Any] = ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Optional[Any] = tmp_path / 'cache' snake_case_ : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} snake_case_ : Dict = features.copy() if features else default_expected_features snake_case_ : Any = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : List[str] = tmp_path / 'cache' snake_case_ : int = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} snake_case_ : Any = ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): if issubclass(__a , __a ): snake_case_ : Union[str, Any] = parquet_path elif issubclass(__a , __a ): snake_case_ : Any = [parquet_path] snake_case_ : Optional[int] = tmp_path / 'cache' snake_case_ : int = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} snake_case_ : Dict = ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a=("train",) ): assert isinstance(__a , __a ) for split in splits: snake_case_ : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : str = tmp_path / 'cache' snake_case_ : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ : Optional[int] = ParquetDatasetReader( {'train': parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : str = tmp_path / 'cache' snake_case_ : List[str] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} snake_case_ : Tuple = features.copy() if features else default_expected_features snake_case_ : Optional[Any] = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ : str = ParquetDatasetReader({'train': parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): if split: snake_case_ : int = {split: parquet_path} else: snake_case_ : Optional[int] = 'train' snake_case_ : List[str] = {'train': parquet_path, 'test': parquet_path} snake_case_ : Dict = tmp_path / 'cache' snake_case_ : str = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} snake_case_ : List[Any] = ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Union[str, Any] = ParquetDatasetWriter(__a , tmp_path / 'foo.parquet' ) assert writer.write() > 0 snake_case_ : Dict = pq.ParquetFile(tmp_path / 'foo.parquet' ) snake_case_ : Tuple = pf.read() assert dataset.data.table == output_table def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : List[Any] = str(shared_datadir / 'test_image_rgb.jpg' ) snake_case_ : str = {'image': [image_path]} snake_case_ : Optional[Any] = Features({'image': Image()} ) snake_case_ : Optional[Any] = Dataset.from_dict(__a , features=__a ) snake_case_ : Any = ParquetDatasetWriter(__a , tmp_path / 'foo.parquet' ) assert writer.write() > 0 snake_case_ : Any = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features snake_case_ : str = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' , [ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def SCREAMING_SNAKE_CASE__ ( __a , __a ): assert get_writer_batch_size(__a ) == expected
327
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Dict ) -> List[Any]: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_A ) snake_case_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : List[Any] = tokenizer('This is me' , return_tensors='pt' ) snake_case_ : Any = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case_ : Optional[Any] = model.generate(**_A ) snake_case_ : int = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_A ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case_ : Optional[Any] = model_reloaded.generate(**_A ) self.assertTrue(torch.allclose(_A , _A ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : int = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : Dict = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_A ): model.save_pretrained(_A ) snake_case_ : Union[str, Any] = model.reverse_bettertransformer() model.save_pretrained(_A )
327
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Dict = "markuplm" def __init__( self : Optional[Any] , _A : List[Any]=30522 , _A : List[Any]=768 , _A : str=12 , _A : Union[str, Any]=12 , _A : Dict=3072 , _A : Union[str, Any]="gelu" , _A : List[Any]=0.1 , _A : str=0.1 , _A : Tuple=512 , _A : Union[str, Any]=2 , _A : Tuple=0.0_2 , _A : Dict=1E-12 , _A : Tuple=0 , _A : Tuple=0 , _A : Tuple=2 , _A : Union[str, Any]=256 , _A : Any=1024 , _A : Tuple=216 , _A : Optional[int]=1001 , _A : int=32 , _A : List[Any]=50 , _A : int="absolute" , _A : str=True , _A : List[str]=None , **_A : Optional[int] , ) -> Any: """simple docstring""" super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A , ) snake_case_ : List[str] = vocab_size snake_case_ : List[Any] = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : List[str] = num_attention_heads snake_case_ : Any = hidden_act snake_case_ : Union[str, Any] = intermediate_size snake_case_ : Dict = hidden_dropout_prob snake_case_ : List[str] = attention_probs_dropout_prob snake_case_ : Optional[int] = max_position_embeddings snake_case_ : str = type_vocab_size snake_case_ : int = initializer_range snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Any = position_embedding_type snake_case_ : int = use_cache snake_case_ : Union[str, Any] = classifier_dropout # additional properties snake_case_ : Dict = max_depth snake_case_ : Optional[int] = max_xpath_tag_unit_embeddings snake_case_ : Optional[Any] = max_xpath_subs_unit_embeddings snake_case_ : int = tag_pad_id snake_case_ : List[Any] = subs_pad_id snake_case_ : Optional[Any] = xpath_unit_hidden_size
327
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = params snake_case_ : int = np.array(_A ) snake_case_ : Optional[int] = np.array([len(_A ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Tuple , _A : Optional[int] ) -> str: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : List[str] ) -> str: """simple docstring""" return len(self.lengths ) def UpperCAmelCase_ ( self : Dict ) -> str: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: """simple docstring""" snake_case_ : Dict = self.params.max_model_input_size snake_case_ : Tuple = self.lengths > max_len logger.info(F"""Splitting {sum(_A )} too long sequences.""" ) def divide_chunks(_A : Union[str, Any] , _A : Dict ): return [l[i : i + n] for i in range(0 , len(_A ) , _A )] snake_case_ : Dict = [] snake_case_ : Union[str, Any] = [] if self.params.mlm: snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: snake_case_ : List[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: snake_case_ : Optional[int] = np.insert(_A , 0 , _A ) if sub_s[-1] != sep_id: snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A ) assert len(_A ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_A ) new_tok_ids.extend(_A ) new_lengths.extend([len(_A ) for l in sub_seqs] ) snake_case_ : Tuple = np.array(_A ) snake_case_ : int = np.array(_A ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ : Tuple = len(self ) snake_case_ : int = self.lengths > 11 snake_case_ : Dict = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : List[Any] = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = len(self ) snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) snake_case_ : Any = (unk_occs / self.lengths) < 0.5 snake_case_ : List[Any] = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : Tuple = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ : Any = [t[0] for t in batch] snake_case_ : int = [t[1] for t in batch] assert len(_A ) == len(_A ) # Max for paddings snake_case_ : str = max(_A ) # Pad token ids if self.params.mlm: snake_case_ : int = self.params.special_tok_ids['pad_token'] else: snake_case_ : Dict = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids] assert len(tk_ ) == len(_A ) assert all(len(_A ) == max_seq_len_ for t in tk_ ) snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs) return tk_t, lg_t
327
1
def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): snake_case_ : int = f"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 0: return False snake_case_ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
327
def SCREAMING_SNAKE_CASE__ ( __a , __a ): while b: snake_case_ ,snake_case_ : Any = b, a % b return a def SCREAMING_SNAKE_CASE__ ( __a , __a ): return a if b == 0 else euclidean_gcd_recursive(__a , a % b ) def SCREAMING_SNAKE_CASE__ ( ): print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
327
1
from collections import namedtuple import requests from lxml import html # type: ignore _SCREAMING_SNAKE_CASE = namedtuple("""covid_data""", """cases deaths recovered""") def SCREAMING_SNAKE_CASE__ ( __a = "https://www.worldometers.info/coronavirus/" ): snake_case_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) ) _SCREAMING_SNAKE_CASE = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
327
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE = get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : Dict = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Dict = os.path.join(__a , __a ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Dict = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Dict = os.path.join(__a , __a ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving model to {ckpt_dir}""" ) snake_case_ : int = {'model': state_dict} dist_cp.save_state_dict( state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Optional[Any] = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[Any] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Optional[Any] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Tuple = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Tuple = ( os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) snake_case_ : List[Any] = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , ) snake_case_ : Any = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ : str = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : Any = os.path.join(__a , __a ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__a , __a ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ : Union[str, Any] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : List[Any] = os.path.join(__a , __a ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: snake_case_ : str = ( os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) snake_case_ : Any = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , ) snake_case_ : Optional[int] = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a ) optimizer.load_state_dict(__a )
327
1
def SCREAMING_SNAKE_CASE__ ( __a = 1_00_00_00 ): snake_case_ : Any = 1 snake_case_ : List[str] = 1 snake_case_ : Any = {1: 1} for inputa in range(2 , __a ): snake_case_ : Tuple = 0 snake_case_ : Tuple = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: snake_case_ : Union[str, Any] = (3 * number) + 1 counter += 1 if inputa not in counters: snake_case_ : str = counter if counter > pre_counter: snake_case_ : List[Any] = inputa snake_case_ : Any = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
327
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _A : bool = True , _A : Tuple=7 , _A : Tuple=30 , _A : int=400 , _A : Tuple=3 , ) -> Optional[int]: """simple docstring""" snake_case_ : str = parent snake_case_ : str = do_resize snake_case_ : str = size if size is not None else {'shortest_edge': 288} snake_case_ : Any = size_divisor snake_case_ : Any = do_rescale snake_case_ : Union[str, Any] = rescale_factor snake_case_ : str = do_normalize snake_case_ : int = do_center_crop snake_case_ : str = image_mean snake_case_ : int = image_std snake_case_ : Any = do_pad snake_case_ : Optional[int] = batch_size snake_case_ : List[str] = num_channels snake_case_ : Any = min_resolution snake_case_ : str = max_resolution def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self : Dict , _A : str , _A : Union[str, Any]=False ) -> int: """simple docstring""" if not batched: snake_case_ : Optional[int] = self.size['shortest_edge'] snake_case_ : List[Any] = image_inputs[0] if isinstance(_A , Image.Image ): snake_case_ ,snake_case_ : Optional[Any] = image.size else: snake_case_ ,snake_case_ : str = image.shape[1], image.shape[2] snake_case_ : Dict = size / min(_A , _A ) if h < w: snake_case_ ,snake_case_ : str = size, scale * w else: snake_case_ ,snake_case_ : Tuple = scale * h, size snake_case_ : Dict = int((1333 / 800) * size ) if max(_A , _A ) > max_size: snake_case_ : Union[str, Any] = max_size / max(_A , _A ) snake_case_ : Any = newh * scale snake_case_ : Union[str, Any] = neww * scale snake_case_ ,snake_case_ : Any = int(newh + 0.5 ), int(neww + 0.5 ) snake_case_ ,snake_case_ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: snake_case_ : Optional[int] = [] for image in image_inputs: snake_case_ ,snake_case_ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : str = max(_A , key=lambda _A : item[0] )[0] snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'size_divisor' ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : List[str] = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Any = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : str = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
327
1
def SCREAMING_SNAKE_CASE__ ( __a , __a = False ): if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_31_70_44_06_46_79_88_73_85_96_19_81 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis snake_case_ : str = [ 20_47, 1_37_36_53, 25_32_60_01, 32_15_03_17_51, 2_15_23_02_89_87_47, 3_47_47_49_66_03_83, 3_41_55_00_71_72_83_21, 1, 3_82_51_23_05_65_46_41_30_51, 1, 1, 31_86_65_85_78_34_03_11_51_16_74_61, 3_31_70_44_06_46_79_88_73_85_96_19_81, ] snake_case_ : str = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(__a , 1 ): if n < _p: # then we have our last prime to check snake_case_ : Any = primes[:idx] break snake_case_ ,snake_case_ : List[str] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: snake_case_ : int = False for r in range(__a ): snake_case_ : int = pow(__a , d * 2**r , __a ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): snake_case_ : Optional[int] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def SCREAMING_SNAKE_CASE__ ( ): assert not miller_rabin(5_61 ) assert miller_rabin(5_63 ) # 2047 assert not miller_rabin(83_82_01 ) assert miller_rabin(83_82_07 ) # 1_373_653 assert not miller_rabin(17_31_60_01 ) assert miller_rabin(17_31_60_17 ) # 25_326_001 assert not miller_rabin(30_78_38_66_41 ) assert miller_rabin(30_78_38_66_53 ) # 3_215_031_751 assert not miller_rabin(1_71_30_45_57_48_01 ) assert miller_rabin(1_71_30_45_57_48_19 ) # 2_152_302_898_747 assert not miller_rabin(2_77_97_99_72_83_07 ) assert miller_rabin(2_77_97_99_72_83_27 ) # 3_474_749_660_383 assert not miller_rabin(1_13_85_00_23_90_94_41 ) assert miller_rabin(1_13_85_00_23_90_95_27 ) # 341_550_071_728_321 assert not miller_rabin(1_27_50_41_01_88_48_80_43_51 ) assert miller_rabin(1_27_50_41_01_88_48_80_43_91 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_96_66_46_44_58_50_77_87_79_18_67 ) assert miller_rabin(7_96_66_46_44_58_50_77_87_79_19_51 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(55_28_40_67_74_46_64_78_97_66_03_33 ) assert miller_rabin(55_28_40_67_74_46_64_78_97_66_03_59 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
327
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _SCREAMING_SNAKE_CASE = 50_00_00 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = os.path.split(__file__) _SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : int = dataset.map(**__a ) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : Dict = dataset.filter(**__a ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Tuple = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Dict = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) snake_case_ : List[Any] = generate_example_dataset( os.path.join(__a , 'dataset.arrow' ) , __a , num_examples=__a ) snake_case_ : str = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__a ) def tokenize(__a ): return tokenizer(examples['text'] ) snake_case_ : Any = map(__a ) snake_case_ : Tuple = map(__a , batched=__a ) snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='numpy' ): snake_case_ : Optional[int] = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='pandas' ): snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='torch' , columns='numbers' ): snake_case_ : int = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): snake_case_ : List[Any] = map(__a , function=lambda __a : None , batched=__a ) snake_case_ : int = map(__a , function=__a , batched=__a ) snake_case_ : Optional[Any] = filter(__a ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__a , 'wb' ) as f: f.write(json.dumps(__a ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
327
1
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: int = KandinskyVaaPipeline __magic_name__: Tuple = [ "image_embeds", "negative_image_embeds", ] __magic_name__: Tuple = ["image_embeds", "negative_image_embeds"] __magic_name__: Any = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __magic_name__: str = False @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return 32 @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: """simple docstring""" return 32 @property def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.time_input_dim @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return 100 @property def UpperCAmelCase_ ( self : Any ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) snake_case_ : Tuple = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } snake_case_ : Dict = UNetaDConditionModel(**_A ) return model @property def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" torch.manual_seed(0 ) snake_case_ : int = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase_ ( self : Optional[int] ) -> Any: """simple docstring""" snake_case_ : str = self.dummy_unet snake_case_ : List[Any] = self.dummy_movq snake_case_ : Tuple = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=_A , set_alpha_to_one=_A , steps_offset=1 , prediction_type='epsilon' , thresholding=_A , ) snake_case_ : Dict = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def UpperCAmelCase_ ( self : str , _A : Any , _A : Optional[int]=0 ) -> Any: """simple docstring""" snake_case_ : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A ) snake_case_ : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _A ) if str(_A ).startswith('mps' ): snake_case_ : Optional[int] = torch.manual_seed(_A ) else: snake_case_ : str = torch.Generator(device=_A ).manual_seed(_A ) snake_case_ : Any = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def UpperCAmelCase_ ( self : List[Any] ) -> int: """simple docstring""" snake_case_ : Union[str, Any] = 'cpu' snake_case_ : List[Any] = self.get_dummy_components() snake_case_ : Dict = self.pipeline_class(**_A ) snake_case_ : Any = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) snake_case_ : str = pipe(**self.get_dummy_inputs(_A ) ) snake_case_ : str = output.images snake_case_ : Any = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] snake_case_ : Dict = image[0, -3:, -3:, -1] snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ : str = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : List[str] ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: """simple docstring""" snake_case_ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy' ) snake_case_ : Dict = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) snake_case_ : List[Any] = KandinskyVaaPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) snake_case_ : List[Any] = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) snake_case_ : Union[str, Any] = 'red cat, 4k photo' snake_case_ : Optional[Any] = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case_ ,snake_case_ : Optional[int] = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='' , ).to_tuple() snake_case_ : List[str] = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case_ : List[str] = pipeline( image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=100 , output_type='np' , ) snake_case_ : str = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_A , _A )
327
from collections import namedtuple import requests from lxml import html # type: ignore _SCREAMING_SNAKE_CASE = namedtuple("""covid_data""", """cases deaths recovered""") def SCREAMING_SNAKE_CASE__ ( __a = "https://www.worldometers.info/coronavirus/" ): snake_case_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) ) _SCREAMING_SNAKE_CASE = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
327
1
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _SCREAMING_SNAKE_CASE = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str __magic_name__: Optional[str] = None __magic_name__: Optional[Union[str, int]] = None __magic_name__: Optional[Union[str, int]] = None __magic_name__: Optional[Union[str, int]] = None def UpperCAmelCase_ ( self : List[Any] ) -> str: """simple docstring""" snake_case_ ,snake_case_ ,snake_case_ : List[str] = _str_to_version_tuple(self.version_str ) def __repr__( self : Any ) -> List[str]: """simple docstring""" return F"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def UpperCAmelCase_ ( self : Dict ) -> Any: """simple docstring""" return self.major, self.minor, self.patch def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] ) -> Any: """simple docstring""" if isinstance(_A , _A ): return Version(_A ) elif isinstance(_A , _A ): return other raise TypeError(F"""{other} (type {type(_A )}) cannot be compared to version.""" ) def __eq__( self : Any , _A : Dict ) -> str: """simple docstring""" try: snake_case_ : Dict = self._validate_operand(_A ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : List[str] , _A : Optional[int] ) -> List[str]: """simple docstring""" snake_case_ : str = self._validate_operand(_A ) return self.tuple < other.tuple def __hash__( self : List[Any] ) -> List[Any]: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def UpperCAmelCase_ ( cls : Any , _A : Tuple ) -> List[str]: """simple docstring""" snake_case_ : Any = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def UpperCAmelCase_ ( self : Tuple ) -> str: """simple docstring""" return self.version_str def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : List[Any] = _VERSION_REG.match(__a ) if not res: raise ValueError(f"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(__a ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def SCREAMING_SNAKE_CASE__ ( __a ): return ".".join(str(__a ) for v in version_tuple )
327
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": 5_12, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: List[Any] = VOCAB_FILES_NAMES __magic_name__: List[str] = PRETRAINED_VOCAB_FILES_MAP __magic_name__: List[str] = PRETRAINED_INIT_CONFIGURATION __magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__: Union[str, Any] = LxmertTokenizer def __init__( self : List[str] , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=True , _A : Dict="[UNK]" , _A : Optional[int]="[SEP]" , _A : Dict="[PAD]" , _A : Union[str, Any]="[CLS]" , _A : str="[MASK]" , _A : Tuple=True , _A : Dict=None , **_A : List[Any] , ) -> Optional[int]: """simple docstring""" super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _A ) != do_lower_case or normalizer_state.get('strip_accents' , _A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars ): snake_case_ : Tuple = getattr(_A , normalizer_state.pop('type' ) ) snake_case_ : Union[str, Any] = do_lower_case snake_case_ : int = strip_accents snake_case_ : Optional[Any] = tokenize_chinese_chars snake_case_ : List[Any] = normalizer_class(**_A ) snake_case_ : Tuple = do_lower_case def UpperCAmelCase_ ( self : Dict , _A : Any , _A : List[Any]=None ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : str = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
327
1
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Optional[Any] , *_A : str , _A : Optional[int]=None , _A : Any=None , **_A : Union[str, Any] ) -> Any: """simple docstring""" super().__init__(*_A , **_A ) snake_case_ : List[str] = eval_examples snake_case_ : List[Any] = post_process_function def UpperCAmelCase_ ( self : Union[str, Any] , _A : Union[str, Any]=None , _A : Optional[int]=None , _A : List[str]=None , _A : str = "eval" ) -> str: """simple docstring""" snake_case_ : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset snake_case_ : int = self.get_eval_dataloader(_A ) snake_case_ : Optional[int] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. snake_case_ : Union[str, Any] = self.compute_metrics snake_case_ : Union[str, Any] = None snake_case_ : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop snake_case_ : str = time.time() try: snake_case_ : int = eval_loop( _A , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , metric_key_prefix=_A , ) finally: snake_case_ : Optional[int] = compute_metrics snake_case_ : Optional[int] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _A , _A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default snake_case_ : List[str] = self.post_process_function(_A , _A , output.predictions ) snake_case_ : Any = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): snake_case_ : int = metrics.pop(_A ) metrics.update(output.metrics ) else: snake_case_ : Optional[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_A ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) snake_case_ : List[str] = self.callback_handler.on_evaluate(self.args , self.state , self.control , _A ) return metrics def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] , _A : int , _A : int=None , _A : str = "test" ) -> List[str]: """simple docstring""" snake_case_ : Optional[int] = self.get_test_dataloader(_A ) # Temporarily disable metric computation, we will do it in the loop here. snake_case_ : Optional[Any] = self.compute_metrics snake_case_ : Dict = None snake_case_ : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop snake_case_ : Tuple = time.time() try: snake_case_ : Optional[Any] = eval_loop( _A , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , metric_key_prefix=_A , ) finally: snake_case_ : Optional[int] = compute_metrics snake_case_ : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _A , _A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output snake_case_ : Dict = self.post_process_function(_A , _A , output.predictions , 'predict' ) snake_case_ : Optional[Any] = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): snake_case_ : List[str] = metrics.pop(_A ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_A )
327
def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): snake_case_ : int = f"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 0: return False snake_case_ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
327
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Union[str, Any] = 3_84 snake_case_ : List[Any] = 7 if "tiny" in model_name: snake_case_ : Union[str, Any] = 96 snake_case_ : Dict = (2, 2, 6, 2) snake_case_ : int = (3, 6, 12, 24) elif "small" in model_name: snake_case_ : List[Any] = 96 snake_case_ : Optional[int] = (2, 2, 18, 2) snake_case_ : List[Any] = (3, 6, 12, 24) elif "base" in model_name: snake_case_ : str = 1_28 snake_case_ : str = (2, 2, 18, 2) snake_case_ : Any = (4, 8, 16, 32) snake_case_ : Optional[int] = 12 snake_case_ : str = 5_12 elif "large" in model_name: snake_case_ : Optional[int] = 1_92 snake_case_ : Dict = (2, 2, 18, 2) snake_case_ : str = (6, 12, 24, 48) snake_case_ : Optional[int] = 12 snake_case_ : List[str] = 7_68 # set label information snake_case_ : Tuple = 1_50 snake_case_ : str = 'huggingface/label-files' snake_case_ : str = 'ade20k-id2label.json' snake_case_ : Optional[int] = json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) snake_case_ : Any = {int(__a ): v for k, v in idalabel.items()} snake_case_ : Union[str, Any] = {v: k for k, v in idalabel.items()} snake_case_ : List[Any] = SwinConfig( embed_dim=__a , depths=__a , num_heads=__a , window_size=__a , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) snake_case_ : Any = UperNetConfig( backbone_config=__a , auxiliary_in_channels=__a , num_labels=__a , idalabel=__a , labelaid=__a , ) return config def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Dict = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.stages.{i}.downsample.reduction.weight""", f"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.weight""", f"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.bias""", f"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : int = dct.pop(__a ) snake_case_ : Optional[Any] = val def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : str = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case_ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case_ : int = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) snake_case_ : Union[str, Any] = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case_ : Optional[int] = in_proj_weight[:dim, :] snake_case_ : Tuple = in_proj_bias[: dim] snake_case_ : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] snake_case_ : List[Any] = in_proj_bias[ dim : dim * 2 ] snake_case_ : List[str] = in_proj_weight[ -dim :, : ] snake_case_ : Optional[Any] = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ ,snake_case_ : Optional[int] = x.shape snake_case_ : List[Any] = x.reshape(__a , 4 , in_channel // 4 ) snake_case_ : Union[str, Any] = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(__a , __a ) return x def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ ,snake_case_ : List[Any] = x.shape snake_case_ : Tuple = x.reshape(__a , in_channel // 4 , 4 ) snake_case_ : Any = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(__a , __a ) return x def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Optional[int] = x.shape[0] snake_case_ : Optional[int] = x.reshape(4 , in_channel // 4 ) snake_case_ : Any = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(__a ) return x def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Optional[int] = x.shape[0] snake_case_ : str = x.reshape(in_channel // 4 , 4 ) snake_case_ : str = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(__a ) return x def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Optional[Any] = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } snake_case_ : Optional[Any] = model_name_to_url[model_name] snake_case_ : List[Any] = torch.hub.load_state_dict_from_url(__a , map_location='cpu' , file_name=__a )[ 'state_dict' ] for name, param in state_dict.items(): print(__a , param.shape ) snake_case_ : Optional[Any] = get_upernet_config(__a ) snake_case_ : Optional[Any] = UperNetForSemanticSegmentation(__a ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): snake_case_ : Tuple = state_dict.pop(__a ) if "bn" in key: snake_case_ : List[str] = key.replace('bn' , 'batch_norm' ) snake_case_ : Union[str, Any] = val # rename keys snake_case_ : List[Any] = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_q_k_v(__a , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: snake_case_ : List[str] = reverse_correct_unfold_reduction_order(__a ) if "norm" in key: snake_case_ : Optional[int] = reverse_correct_unfold_norm_order(__a ) model.load_state_dict(__a ) # verify on image snake_case_ : Any = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' snake_case_ : List[Any] = Image.open(requests.get(__a , stream=__a ).raw ).convert('RGB' ) snake_case_ : Optional[int] = SegformerImageProcessor() snake_case_ : Dict = processor(__a , return_tensors='pt' ).pixel_values with torch.no_grad(): snake_case_ : Optional[Any] = model(__a ) snake_case_ : Dict = outputs.logits print(logits.shape ) print('First values of logits:' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": snake_case_ : Optional[int] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": snake_case_ : Any = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": snake_case_ : Optional[Any] = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": snake_case_ : Tuple = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __a , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__a ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-swin-tiny""", type=str, choices=[F'''upernet-swin-{size}''' for size in ["""tiny""", """small""", """base""", """large"""]], help="""Name of the Swin + UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
327
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: UNetaDModel __magic_name__: KarrasVeScheduler def __init__( self : str , _A : UNetaDModel , _A : KarrasVeScheduler ) -> Optional[Any]: """simple docstring""" super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self : Optional[Any] , _A : int = 1 , _A : int = 50 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[str] = "pil" , _A : bool = True , **_A : Optional[Any] , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" snake_case_ : int = self.unet.config.sample_size snake_case_ : int = (batch_size, 3, img_size, img_size) snake_case_ : Optional[Any] = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) snake_case_ : Any = randn_tensor(_A , generator=_A , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper snake_case_ : int = self.scheduler.schedule[t] snake_case_ : Union[str, Any] = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat snake_case_ ,snake_case_ : Optional[Any] = self.scheduler.add_noise_to_input(_A , _A , generator=_A ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. snake_case_ : str = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev snake_case_ : Tuple = self.scheduler.step(_A , _A , _A , _A ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. snake_case_ : str = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample snake_case_ : Dict = self.scheduler.step_correct( _A , _A , _A , _A , step_output.prev_sample , step_output['derivative'] , ) snake_case_ : Optional[int] = step_output.prev_sample snake_case_ : Optional[int] = (sample / 2 + 0.5).clamp(0 , 1 ) snake_case_ : int = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ : List[str] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
327
from typing import Dict from .base import GenericTensor, Pipeline class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def UpperCAmelCase_ ( self : str , _A : Optional[Any]=None , _A : List[str]=None , _A : Optional[Any]=None , **_A : List[str] ) -> Any: """simple docstring""" if tokenize_kwargs is None: snake_case_ : Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) snake_case_ : int = truncation snake_case_ : Optional[int] = tokenize_kwargs snake_case_ : Dict = {} if return_tensors is not None: snake_case_ : Union[str, Any] = return_tensors return preprocess_params, {}, postprocess_params def UpperCAmelCase_ ( self : Optional[int] , _A : int , **_A : Any ) -> Dict[str, GenericTensor]: """simple docstring""" snake_case_ : Dict = self.framework snake_case_ : Any = self.tokenizer(_A , return_tensors=_A , **_A ) return model_inputs def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] ) -> int: """simple docstring""" snake_case_ : Tuple = self.model(**_A ) return model_outputs def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str=False ) -> Any: """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> List[str]: """simple docstring""" return super().__call__(*_A , **_A )
327
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __magic_name__: str = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) __magic_name__: ClassVar[Features] = Features({"question": Value("string" ), "context": Value("string" )} ) __magic_name__: ClassVar[Features] = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) __magic_name__: str = "question" __magic_name__: str = "context" __magic_name__: str = "answers" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
327
from itertools import permutations def SCREAMING_SNAKE_CASE__ ( __a ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False snake_case_ : Any = [7, 11, 13, 17] for i, test in enumerate(__a ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE__ ( __a = 10 ): return sum( int(''.join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(F'''{solution() = }''')
327
1
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Optional[Any] , *_A : Optional[Any] , _A : Dict=None , _A : Dict=None , _A : int=None , **_A : Union[str, Any] ) -> List[str]: """simple docstring""" super().__init__(*_A , **_A ) snake_case_ : Tuple = eval_examples snake_case_ : Optional[int] = post_process_function snake_case_ : int = quant_trainer_args snake_case_ : Optional[Any] = 128 # default number of calibration samples def UpperCAmelCase_ ( self : int , _A : int=None ) -> str: """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError('Trainer: calibration requires an calib_dataset.' ) snake_case_ : int = calib_dataset if calib_dataset is not None else self.calib_dataset snake_case_ : Optional[Any] = self._remove_unused_columns(_A , description='Calibration' ) return DataLoader( _A , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=_A , ) def UpperCAmelCase_ ( self : List[str] , _A : int=None ) -> Any: """simple docstring""" snake_case_ : List[str] = self.train_dataset if calib_dataset is None else calib_dataset snake_case_ : int = self.get_calib_dataloader(_A ) snake_case_ : str = self.model quant_trainer.configure_model(_A , self.quant_trainer_args , calib=_A ) model.eval() quant_trainer.enable_calibration(_A ) logger.info('***** Running calibration *****' ) logger.info(F""" Num examples = {self.calib_num}""" ) logger.info(F""" Batch size = {calib_dataloader.batch_size}""" ) for step, inputs in enumerate(_A ): # Prediction step snake_case_ ,snake_case_ ,snake_case_ : List[str] = self.prediction_step(_A , _A , prediction_loss_only=_A ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(_A , self.quant_trainer_args ) snake_case_ : List[Any] = model def UpperCAmelCase_ ( self : List[str] , _A : Tuple=None , _A : int=None , _A : str=None , _A : str = "eval" ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset snake_case_ : Union[str, Any] = self.get_eval_dataloader(_A ) snake_case_ : List[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. snake_case_ : int = self.compute_metrics snake_case_ : str = None snake_case_ : Dict = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case_ : List[Any] = eval_loop( _A , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , ) finally: snake_case_ : str = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: snake_case_ : Dict = self.post_process_function(_A , _A , output.predictions ) snake_case_ : List[Any] = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): snake_case_ : Optional[int] = metrics.pop(_A ) self.log(_A ) else: snake_case_ : int = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) snake_case_ : Union[str, Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , _A ) return metrics def UpperCAmelCase_ ( self : Dict , _A : int , _A : List[str] , _A : List[str]=None , _A : str = "test" ) -> Optional[Any]: """simple docstring""" snake_case_ : str = self.get_test_dataloader(_A ) # Temporarily disable metric computation, we will do it in the loop here. snake_case_ : List[str] = self.compute_metrics snake_case_ : Optional[Any] = None snake_case_ : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case_ : int = eval_loop( _A , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , ) finally: snake_case_ : List[str] = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output snake_case_ : Optional[int] = self.post_process_function(_A , _A , output.predictions , 'predict' ) snake_case_ : str = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): snake_case_ : int = metrics.pop(_A ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_A ) def UpperCAmelCase_ ( self : Tuple , _A : str="./" ) -> List[str]: """simple docstring""" snake_case_ : Tuple = self.eval_dataset snake_case_ : Optional[int] = self.get_eval_dataloader(_A ) snake_case_ : Any = next(iter(_A ) ) # saving device - to make it consistent snake_case_ : Tuple = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) # convert to tuple snake_case_ : Union[str, Any] = tuple(v.to(_A ) for k, v in batch.items() ) logger.info('Converting model to be onnx compatible' ) from pytorch_quantization.nn import TensorQuantizer snake_case_ : Any = True snake_case_ : str = self.model.to(_A ) model.eval() model.float() snake_case_ : str = model.module if hasattr(_A , 'module' ) else model quant_trainer.configure_model(_A , self.quant_trainer_args ) snake_case_ : List[Any] = os.path.join(_A , 'model.onnx' ) logger.info(F"""exporting model to {output_model_file}""" ) snake_case_ : Optional[Any] = {0: 'batch_size', 1: 'seq_len'} torch.onnx.export( _A , _A , _A , export_params=_A , opset_version=13 , do_constant_folding=_A , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={ 'input_ids': axes, 'attention_mask': axes, 'token_type_ids': axes, 'output_start_logits': axes, 'output_end_logits': axes, } , verbose=_A , ) logger.info('onnx export finished' )
327
from __future__ import annotations from collections import namedtuple def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Any = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
327
1
def SCREAMING_SNAKE_CASE__ ( __a , __a ): _validate_point(__a ) _validate_point(__a ) if len(__a ) != len(__a ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(__a , __a ) ) ) def SCREAMING_SNAKE_CASE__ ( __a ): if point: if isinstance(__a , __a ): for item in point: if not isinstance(__a , (int, float) ): snake_case_ : str = ( 'Expected a list of numbers as input, found ' f"""{type(__a ).__name__}""" ) raise TypeError(__a ) else: snake_case_ : Any = f"""Expected a list of numbers as input, found {type(__a ).__name__}""" raise TypeError(__a ) else: raise ValueError('Missing an input' ) def SCREAMING_SNAKE_CASE__ ( __a , __a ): _validate_point(__a ) _validate_point(__a ) if len(__a ) != len(__a ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(__a , __a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
327
import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _SCREAMING_SNAKE_CASE = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _SCREAMING_SNAKE_CASE = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : int , _A : Tuple , _A : Tuple , _A : str=None , _A : Dict=False , _A : Tuple=False , _A : str=False , ) -> Tuple: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case_ : List[Any] = np.array([re.sub(_A , '' , _A ) for x in predictions] ) snake_case_ : Optional[Any] = np.array([re.sub(_A , '' , _A ) for x in references] ) else: snake_case_ : Dict = np.asarray(_A ) snake_case_ : Tuple = np.asarray(_A ) if ignore_case: snake_case_ : List[str] = np.char.lower(_A ) snake_case_ : Any = np.char.lower(_A ) if ignore_punctuation: snake_case_ : int = string.punctuation.maketrans('' , '' , string.punctuation ) snake_case_ : Tuple = np.char.translate(_A , table=_A ) snake_case_ : str = np.char.translate(_A , table=_A ) if ignore_numbers: snake_case_ : Optional[int] = string.digits.maketrans('' , '' , string.digits ) snake_case_ : str = np.char.translate(_A , table=_A ) snake_case_ : Union[str, Any] = np.char.translate(_A , table=_A ) snake_case_ : int = predictions == references return {"exact_match": np.mean(_A ) * 100}
327
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __a , __a ): print(f"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(__a ): print(f"""{i}\t\t{d}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): for j in range(__a ): snake_case_ ,snake_case_ ,snake_case_ : List[Any] = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: return True return False def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a ): snake_case_ : Union[str, Any] = [float('inf' )] * vertex_count snake_case_ : str = 0.0 for _ in range(vertex_count - 1 ): for j in range(__a ): snake_case_ ,snake_case_ ,snake_case_ : Tuple = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: snake_case_ : Union[str, Any] = distance[u] + w snake_case_ : List[str] = check_negative_cycle(__a , __a , __a ) if negative_cycle_exists: raise Exception('Negative cycle found' ) return distance if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = int(input("""Enter number of vertices: """).strip()) _SCREAMING_SNAKE_CASE = int(input("""Enter number of edges: """).strip()) _SCREAMING_SNAKE_CASE = [{} for _ in range(E)] for i in range(E): print("""Edge """, i + 1) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( int(x) for x in input("""Enter source, destination, weight: """).strip().split(""" """) ) _SCREAMING_SNAKE_CASE = {"""src""": src, """dst""": dest, """weight""": weight} _SCREAMING_SNAKE_CASE = int(input("""\nEnter shortest path source:""").strip()) _SCREAMING_SNAKE_CASE = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
327
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , _A : Optional[Any] , _A : Dict=13 , _A : Union[str, Any]=30 , _A : Tuple=2 , _A : Union[str, Any]=3 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : str=32 , _A : int=2 , _A : List[str]=4 , _A : List[str]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=10 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=3 , _A : str=0.6 , _A : Union[str, Any]=None , ) -> Any: """simple docstring""" snake_case_ : Optional[int] = parent snake_case_ : Tuple = batch_size snake_case_ : List[Any] = image_size snake_case_ : List[str] = patch_size snake_case_ : List[str] = num_channels snake_case_ : Optional[Any] = is_training snake_case_ : Any = use_labels snake_case_ : Tuple = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Tuple = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[Any] = mask_ratio snake_case_ : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case_ : Optional[int] = (image_size // patch_size) ** 2 snake_case_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Union[str, Any] = None if self.use_labels: snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : int ) -> Optional[Any]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : Dict , _A : str ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = TFViTMAEModel(config=_A ) snake_case_ : str = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : Any , _A : List[Any] ) -> int: """simple docstring""" snake_case_ : Any = TFViTMAEForPreTraining(_A ) snake_case_ : Optional[Any] = model(_A , training=_A ) # expected sequence length = num_patches snake_case_ : List[str] = (self.image_size // self.patch_size) ** 2 snake_case_ : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case_ : str = 1 snake_case_ : Dict = TFViTMAEForPreTraining(_A ) snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : List[str] = model(_A , training=_A ) snake_case_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = self.prepare_config_and_inputs() ((snake_case_) ,(snake_case_) ,(snake_case_)) : Any = config_and_inputs snake_case_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __magic_name__: str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} __magic_name__: Dict = False __magic_name__: Dict = False __magic_name__: List[Any] = False __magic_name__: Dict = False def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" snake_case_ : List[Any] = TFViTMAEModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" snake_case_ ,snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: """simple docstring""" snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[str] = model_class(_A ) snake_case_ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Dict = [*signature.parameters.keys()] snake_case_ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Union[str, Any] = self._prepare_for_class(_A , _A ) snake_case_ : List[str] = model(_A , noise=_A ) snake_case_ : Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) ) snake_case_ : str = model(**_A , noise=_A ) snake_case_ : Union[str, Any] = outputs_dict[0].numpy() snake_case_ : Optional[Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Tuple = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_A : int ): snake_case_ : Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(_A ): snake_case_ : str = v.numpy() else: snake_case_ : Optional[Any] = np.array(_A ) return inputs_np_dict for model_class in self.all_model_classes: snake_case_ : int = model_class(_A ) snake_case_ : List[Any] = self._prepare_for_class(_A , _A ) snake_case_ : Any = prepare_numpy_arrays(_A ) snake_case_ : List[Any] = model(_A , noise=_A ) snake_case_ : List[Any] = model(**_A , noise=_A ) self.assert_outputs_same(_A , _A ) def UpperCAmelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> List[str]: """simple docstring""" np.random.seed(2 ) snake_case_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.constant(_A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case_ : Optional[Any] = tf_noise super().check_pt_tf_models(_A , _A , _A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_A ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(_A , _A ),) if isinstance(_A , _A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_A , '_keras_serializable' , _A ) } snake_case_ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.convert_to_tensor(_A ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: snake_case_ : Optional[Any] = main_layer_class(_A ) snake_case_ : List[str] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } snake_case_ : Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) ) snake_case_ : int = model(_A ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[Any] = os.path.join(_A , 'keras_model.h5' ) model.save(_A ) snake_case_ : str = tf.keras.models.load_model( _A , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_A , tf.keras.Model ) snake_case_ : List[str] = model(_A ) self.assert_outputs_same(_A , _A ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Optional[Any] = self._prepare_for_class(_A , _A ) snake_case_ : int = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Any = outputs.last_hidden_state.numpy() snake_case_ : Optional[int] = 0 else: snake_case_ : str = outputs.logits.numpy() snake_case_ : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) snake_case_ : Any = model_class.from_pretrained(_A ) snake_case_ : Any = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Dict = after_outputs['last_hidden_state'].numpy() snake_case_ : Dict = 0 else: snake_case_ : Any = after_outputs['logits'].numpy() snake_case_ : Optional[Any] = 0 snake_case_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) def UpperCAmelCase_ ( self : Any ) -> str: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : str = model_class(_A ) snake_case_ : int = self._prepare_for_class(_A , _A ) snake_case_ : str = model(_A , noise=_A ) snake_case_ : Dict = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_A ) snake_case_ : Any = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config snake_case_ : str = model_class.from_config(model.config ) snake_case_ : Union[str, Any] = new_model(_A ) # Build model new_model.set_weights(model.get_weights() ) snake_case_ : List[str] = new_model(_A , noise=_A ) self.assert_outputs_same(_A , _A ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @slow def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_A ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ : List[str] = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) snake_case_ : List[Any] = self.default_image_processor snake_case_ : Dict = prepare_img() snake_case_ : Optional[Any] = image_processor(images=_A , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case_ : int = ViTMAEConfig() snake_case_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass snake_case_ : Optional[Any] = model(**_A , noise=_A ) # verify the logits snake_case_ : Optional[int] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _A ) snake_case_ : Any = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
327
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: UNetaDModel __magic_name__: ScoreSdeVeScheduler def __init__( self : List[str] , _A : UNetaDModel , _A : ScoreSdeVeScheduler ) -> List[str]: """simple docstring""" super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self : Optional[int] , _A : int = 1 , _A : int = 2000 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[str] = "pil" , _A : bool = True , **_A : Tuple , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" snake_case_ : List[str] = self.unet.config.sample_size snake_case_ : Optional[int] = (batch_size, 3, img_size, img_size) snake_case_ : Optional[Any] = self.unet snake_case_ : Optional[Any] = randn_tensor(_A , generator=_A ) * self.scheduler.init_noise_sigma snake_case_ : List[str] = sample.to(self.device ) self.scheduler.set_timesteps(_A ) self.scheduler.set_sigmas(_A ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): snake_case_ : Union[str, Any] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): snake_case_ : Any = self.unet(_A , _A ).sample snake_case_ : str = self.scheduler.step_correct(_A , _A , generator=_A ).prev_sample # prediction step snake_case_ : Optional[int] = model(_A , _A ).sample snake_case_ : Optional[Any] = self.scheduler.step_pred(_A , _A , _A , generator=_A ) snake_case_ ,snake_case_ : int = output.prev_sample, output.prev_sample_mean snake_case_ : Tuple = sample_mean.clamp(0 , 1 ) snake_case_ : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ : Optional[Any] = self.numpy_to_pil(_A ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_A )
327
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : list[list[int]] = [] snake_case_ : list[int] = [] snake_case_ : List[Any] = 0 snake_case_ : Union[str, Any] = sum(__a ) create_state_space_tree(__a , __a , __a , __a , __a , __a ) return result def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ): if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum: return if sum(__a ) == max_sum: result.append(__a ) return for index in range(__a , len(__a ) ): create_state_space_tree( __a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , ) _SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2] _SCREAMING_SNAKE_CASE = 9 _SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
327
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: str = "efficientformer" def __init__( self : List[Any] , _A : List[int] = [3, 2, 6, 4] , _A : List[int] = [48, 96, 224, 448] , _A : List[bool] = [True, True, True, True] , _A : int = 448 , _A : int = 32 , _A : int = 4 , _A : int = 7 , _A : int = 5 , _A : int = 8 , _A : int = 4 , _A : float = 0.0 , _A : int = 16 , _A : int = 3 , _A : int = 3 , _A : int = 3 , _A : int = 2 , _A : int = 1 , _A : float = 0.0 , _A : int = 1 , _A : bool = True , _A : bool = True , _A : float = 1E-5 , _A : str = "gelu" , _A : float = 0.0_2 , _A : float = 1E-12 , _A : int = 224 , _A : float = 1E-05 , **_A : Optional[Any] , ) -> None: """simple docstring""" super().__init__(**_A ) snake_case_ : Dict = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Tuple = hidden_sizes snake_case_ : Dict = num_hidden_layers snake_case_ : Any = num_attention_heads snake_case_ : Optional[Any] = initializer_range snake_case_ : Optional[Any] = layer_norm_eps snake_case_ : List[Any] = patch_size snake_case_ : int = num_channels snake_case_ : str = depths snake_case_ : Union[str, Any] = mlp_expansion_ratio snake_case_ : str = downsamples snake_case_ : Any = dim snake_case_ : int = key_dim snake_case_ : Any = attention_ratio snake_case_ : Union[str, Any] = resolution snake_case_ : Union[str, Any] = pool_size snake_case_ : Union[str, Any] = downsample_patch_size snake_case_ : Union[str, Any] = downsample_stride snake_case_ : str = downsample_pad snake_case_ : Optional[Any] = drop_path_rate snake_case_ : Any = num_metaad_blocks snake_case_ : Tuple = distillation snake_case_ : List[Any] = use_layer_scale snake_case_ : str = layer_scale_init_value snake_case_ : List[Any] = image_size snake_case_ : Any = batch_norm_eps
327
def SCREAMING_SNAKE_CASE__ ( __a , __a ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
327
1
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Any = AutoConfig.from_pretrained(__a ) snake_case_ : Dict = FlaxAutoModelForSeqaSeqLM.from_config(config=__a ) snake_case_ : List[Any] = checkpoints.load_tax_checkpoint(__a ) snake_case_ : int = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": snake_case_ : int = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": snake_case_ : str = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : List[str] = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].' ) # Encoder for layer_index in range(config.num_layers ): snake_case_ : Optional[Any] = f"""layers_{str(__a )}""" # Self-Attention snake_case_ : int = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] snake_case_ : Union[str, Any] = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] snake_case_ : str = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] snake_case_ : Any = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : Union[str, Any] = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization snake_case_ : List[str] = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: snake_case_ : List[str] = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] snake_case_ : str = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: snake_case_ : Dict = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] snake_case_ : Any = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization snake_case_ : List[str] = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning snake_case_ : str = flax_model.params['encoder']['block'][str(__a )]['layer'] snake_case_ : List[str] = tax_attention_key snake_case_ : List[Any] = tax_attention_out snake_case_ : Optional[Any] = tax_attention_query snake_case_ : int = tax_attention_value snake_case_ : Any = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : Optional[Any] = tax_global_layer_norm if split_mlp_wi: snake_case_ : Tuple = tax_mlp_wi_a snake_case_ : Dict = tax_mlp_wi_a else: snake_case_ : Optional[Any] = tax_mlp_wi snake_case_ : int = tax_mlp_wo snake_case_ : int = tax_mlp_layer_norm snake_case_ : Optional[Any] = flax_model_encoder_layer_block # Only for layer 0: snake_case_ : str = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T snake_case_ : Union[str, Any] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": snake_case_ : Union[str, Any] = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T snake_case_ : Union[str, Any] = tax_encoder_global_rel_embedding # Assigning snake_case_ : List[str] = tax_model['target']['encoder']['encoder_norm']['scale'] snake_case_ : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): snake_case_ : str = f"""layers_{str(__a )}""" # Self-Attention snake_case_ : str = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] snake_case_ : Optional[int] = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] snake_case_ : Any = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] snake_case_ : List[str] = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization snake_case_ : Any = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention snake_case_ : int = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] snake_case_ : List[Any] = tax_enc_dec_attention_module['key']['kernel'] snake_case_ : str = tax_enc_dec_attention_module['out']['kernel'] snake_case_ : Tuple = tax_enc_dec_attention_module['query']['kernel'] snake_case_ : Dict = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization snake_case_ : int = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: snake_case_ : Optional[Any] = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] snake_case_ : Optional[int] = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: snake_case_ : str = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] snake_case_ : List[str] = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization snake_case_ : List[str] = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning snake_case_ : List[str] = flax_model.params['decoder']['block'][str(__a )]['layer'] snake_case_ : Dict = tax_attention_key snake_case_ : List[str] = tax_attention_out snake_case_ : Union[str, Any] = tax_attention_query snake_case_ : List[str] = tax_attention_value snake_case_ : str = tax_pre_attention_layer_norm snake_case_ : List[str] = tax_enc_dec_attention_key snake_case_ : Tuple = tax_enc_dec_attention_out snake_case_ : Optional[int] = tax_enc_dec_attention_query snake_case_ : Union[str, Any] = tax_enc_dec_attention_value snake_case_ : Optional[int] = tax_cross_layer_norm if split_mlp_wi: snake_case_ : Union[str, Any] = tax_mlp_wi_a snake_case_ : List[str] = tax_mlp_wi_a else: snake_case_ : Dict = tax_mlp_wi snake_case_ : Any = tax_mlp_wo snake_case_ : Dict = txa_mlp_layer_norm snake_case_ : List[Any] = flax_model_decoder_layer_block # Decoder Normalization snake_case_ : Dict = tax_model['target']['decoder']['decoder_norm']['scale'] snake_case_ : List[str] = txa_decoder_norm # Only for layer 0: snake_case_ : str = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T snake_case_ : Any = tax_decoder_rel_embedding # Token Embeddings snake_case_ : Dict = tax_model['target']['token_embedder']['embedding'] snake_case_ : int = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: snake_case_ : Tuple = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(__a ) print('T5X Model was sucessfully converted!' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path the T5X checkpoint.""" ) parser.add_argument("""--config_name""", default=None, type=str, required=True, help="""Config name of LongT5/T5 model.""") parser.add_argument( """--flax_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output FLAX model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
327
from math import pi def SCREAMING_SNAKE_CASE__ ( __a , __a ): return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
327
1
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" snake_case_ : List[Any] = 'laion/clap-htsat-unfused' snake_case_ : int = tempfile.mkdtemp() def UpperCAmelCase_ ( self : Union[str, Any] , **_A : str ) -> int: """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint , **_A ) def UpperCAmelCase_ ( self : List[str] , **_A : List[str] ) -> List[str]: """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint , **_A ) def UpperCAmelCase_ ( self : Tuple ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: """simple docstring""" snake_case_ : Tuple = self.get_tokenizer() snake_case_ : Optional[Any] = self.get_feature_extractor() snake_case_ : str = ClapProcessor(tokenizer=_A , feature_extractor=_A ) processor.save_pretrained(self.tmpdirname ) snake_case_ : Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: """simple docstring""" snake_case_ : int = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ : Union[str, Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) snake_case_ : Dict = self.get_feature_extractor(do_normalize=_A , padding_value=1.0 ) snake_case_ : int = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" snake_case_ : Any = self.get_feature_extractor() snake_case_ : List[Any] = self.get_tokenizer() snake_case_ : List[Any] = ClapProcessor(tokenizer=_A , feature_extractor=_A ) snake_case_ : Dict = floats_list((3, 1000) ) snake_case_ : List[Any] = feature_extractor(_A , return_tensors='np' ) snake_case_ : Optional[Any] = processor(audios=_A , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase_ ( self : Dict ) -> str: """simple docstring""" snake_case_ : Any = self.get_feature_extractor() snake_case_ : List[str] = self.get_tokenizer() snake_case_ : Optional[int] = ClapProcessor(tokenizer=_A , feature_extractor=_A ) snake_case_ : Tuple = 'This is a test string' snake_case_ : Optional[Any] = processor(text=_A ) snake_case_ : Optional[Any] = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase_ ( self : int ) -> int: """simple docstring""" snake_case_ : List[str] = self.get_feature_extractor() snake_case_ : str = self.get_tokenizer() snake_case_ : Any = ClapProcessor(tokenizer=_A , feature_extractor=_A ) snake_case_ : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ : Optional[Any] = processor.batch_decode(_A ) snake_case_ : Dict = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A ) def UpperCAmelCase_ ( self : Any ) -> Any: """simple docstring""" snake_case_ : Tuple = self.get_feature_extractor() snake_case_ : Tuple = self.get_tokenizer() snake_case_ : List[str] = ClapProcessor(tokenizer=_A , feature_extractor=_A ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
327
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[Any] = ["pixel_values"] def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PIL.Image.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : str , ) -> None: """simple docstring""" super().__init__(**_A ) snake_case_ : Dict = size if size is not None else {'height': 256, 'width': 256} snake_case_ : Tuple = get_size_dict(_A ) snake_case_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} snake_case_ : int = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Union[str, Any] = do_resize snake_case_ : str = size snake_case_ : List[str] = resample snake_case_ : List[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : Tuple = do_rescale snake_case_ : Optional[Any] = rescale_factor snake_case_ : Any = do_normalize snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray: """simple docstring""" snake_case_ : Tuple = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( _A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray: """simple docstring""" snake_case_ : Optional[int] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> str: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : List[str] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : Union[str, Any]=None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ) -> PIL.Image.Image: """simple docstring""" snake_case_ : int = do_resize if do_resize is not None else self.do_resize snake_case_ : str = resample if resample is not None else self.resample snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Any = image_mean if image_mean is not None else self.image_mean snake_case_ : Dict = image_std if image_std is not None else self.image_std snake_case_ : int = size if size is not None else self.size snake_case_ : Optional[int] = get_size_dict(_A ) snake_case_ : int = crop_size if crop_size is not None else self.crop_size snake_case_ : Any = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Optional[Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case_ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: snake_case_ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: snake_case_ : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images] snake_case_ : Tuple = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
327
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): __magic_name__: Union[str, Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __magic_name__: int = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def UpperCAmelCase_ ( self : List[str] , _A : Any , _A : List[str] , _A : Dict ) -> List[str]: """simple docstring""" snake_case_ : Union[str, Any] = TextaTextGenerationPipeline(model=_A , tokenizer=_A ) return generator, ["Something to write", "Something else"] def UpperCAmelCase_ ( self : Any , _A : Any , _A : Dict ) -> Optional[int]: """simple docstring""" snake_case_ : List[Any] = generator('Something there' ) self.assertEqual(_A , [{'generated_text': ANY(_A )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) snake_case_ : int = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{'generated_text': ANY(_A )}, {'generated_text': ANY(_A )}], [{'generated_text': ANY(_A )}, {'generated_text': ANY(_A )}], ] , ) snake_case_ : Optional[Any] = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{'generated_text': ANY(_A )}, {'generated_text': ANY(_A )}], [{'generated_text': ANY(_A )}, {'generated_text': ANY(_A )}], ] , ) with self.assertRaises(_A ): generator(4 ) @require_torch def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : str = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility snake_case_ : List[Any] = generator('Something there' , do_sample=_A ) self.assertEqual(_A , [{'generated_text': ''}] ) snake_case_ : Optional[Any] = 3 snake_case_ : Any = generator( 'Something there' , num_return_sequences=_A , num_beams=_A , ) snake_case_ : int = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(_A , _A ) snake_case_ : Dict = generator('This is a test' , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) snake_case_ : Union[str, Any] = generator.model.config.eos_token_id snake_case_ : Union[str, Any] = '<pad>' snake_case_ : str = generator( ['This is a test', 'This is a second test'] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def UpperCAmelCase_ ( self : int ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility snake_case_ : Optional[Any] = generator('Something there' , do_sample=_A ) self.assertEqual(_A , [{'generated_text': ''}] )
327
import sys _SCREAMING_SNAKE_CASE = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE__ ( __a = N ): snake_case_ : Optional[Any] = -sys.maxsize - 1 for i in range(len(__a ) - 12 ): snake_case_ : Optional[Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case_ : int = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
327
1
from __future__ import annotations class SCREAMING_SNAKE_CASE_ : def __init__( self : int , _A : int ) -> None: """simple docstring""" snake_case_ : Optional[int] = data snake_case_ : Node | None = None snake_case_ : Node | None = None def SCREAMING_SNAKE_CASE__ ( __a ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def SCREAMING_SNAKE_CASE__ ( __a ): return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def SCREAMING_SNAKE_CASE__ ( __a ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def SCREAMING_SNAKE_CASE__ ( ): # Main function for testing. snake_case_ : str = Node(1 ) snake_case_ : Dict = Node(2 ) snake_case_ : str = Node(3 ) snake_case_ : Any = Node(4 ) snake_case_ : List[Any] = Node(5 ) snake_case_ : Union[str, Any] = Node(6 ) snake_case_ : Tuple = Node(7 ) snake_case_ : int = Node(8 ) snake_case_ : Any = Node(9 ) print(is_full_binary_tree(__a ) ) print(depth_of_tree(__a ) ) print('Tree is: ' ) display(__a ) if __name__ == "__main__": main()
327
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __magic_name__: Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) __magic_name__: Optional[int] = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} ) __magic_name__: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} ) __magic_name__: bool = field( default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(__a , os.path.join(__a , f"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ ,snake_case_ ,snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ ,snake_case_ ,snake_case_ : List[str] = parser.parse_args_into_dataclasses() check_output_dir(__a ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , __a ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(__a , __a , __a ): assert hasattr(__a , __a ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(__a , __a , getattr(__a , __a ) ) snake_case_ : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=__a , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__a , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: snake_case_ : Any = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__a , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__a , __a ): snake_case_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang] else: snake_case_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__a ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) snake_case_ : List[Any] = SeqaSeqDataset # Get datasets snake_case_ : List[Any] = ( dataset_class( __a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) snake_case_ : List[str] = ( dataset_class( __a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) snake_case_ : List[Any] = ( dataset_class( __a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer snake_case_ : Any = ( build_compute_metrics_fn(data_args.task , __a ) if training_args.predict_with_generate else None ) snake_case_ : List[str] = SeqaSeqTrainer( model=__a , args=__a , data_args=__a , train_dataset=__a , eval_dataset=__a , data_collator=SeqaSeqDataCollator( __a , __a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__a , tokenizer=__a , ) snake_case_ : Optional[int] = {} # Training if training_args.do_train: logger.info('*** Train ***' ) snake_case_ : Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) snake_case_ : Tuple = train_result.metrics snake_case_ : List[str] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , __a , training_args.output_dir ) all_metrics.update(__a ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ : List[Any] = trainer.evaluate(metric_key_prefix='val' ) snake_case_ : str = data_args.n_val snake_case_ : Union[str, Any] = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.do_predict: logger.info('*** Predict ***' ) snake_case_ : Dict = trainer.predict(test_dataset=__a , metric_key_prefix='test' ) snake_case_ : Union[str, Any] = test_output.metrics snake_case_ : int = data_args.n_test if trainer.is_world_process_zero(): snake_case_ : List[str] = round(metrics['test_loss'] , 4 ) handle_metrics('test' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.predict_with_generate: snake_case_ : Any = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) snake_case_ : Any = lmap(str.strip , __a ) write_txt_file(__a , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(__a , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def SCREAMING_SNAKE_CASE__ ( __a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
327
1
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : Union[str, Any] , _A : Dict , _A : int=13 , _A : Dict=30 , _A : Any=2 , _A : Optional[Any]=3 , _A : Optional[int]=True , _A : Dict=True , _A : Dict=32 , _A : Dict=5 , _A : List[str]=4 , _A : Optional[Any]=37 , _A : Tuple="gelu" , _A : List[str]=0.1 , _A : str=0.1 , _A : List[str]=10 , _A : Dict=0.0_2 , _A : str=None , ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[int] = parent snake_case_ : Dict = batch_size snake_case_ : int = image_size snake_case_ : List[Any] = patch_size snake_case_ : Tuple = num_channels snake_case_ : Union[str, Any] = is_training snake_case_ : Any = use_labels snake_case_ : Union[str, Any] = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Tuple = intermediate_size snake_case_ : str = hidden_act snake_case_ : Optional[int] = hidden_dropout_prob snake_case_ : List[str] = attention_probs_dropout_prob snake_case_ : Any = type_sequence_label_size snake_case_ : int = initializer_range snake_case_ : Optional[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case_ : List[str] = (image_size // patch_size) ** 2 snake_case_ : int = num_patches + 1 def UpperCAmelCase_ ( self : Dict ) -> List[Any]: """simple docstring""" snake_case_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Dict = None if self.use_labels: snake_case_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : List[str] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : str ) -> List[Any]: """simple docstring""" return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self : List[Any] , _A : List[Any] , _A : Tuple , _A : Tuple ) -> Optional[Any]: """simple docstring""" snake_case_ : int = ViTMSNModel(config=_A ) model.to(_A ) model.eval() snake_case_ : List[str] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Optional[Any] , _A : Any , _A : Optional[int] , _A : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case_ : Tuple = self.type_sequence_label_size snake_case_ : Any = ViTMSNForImageClassification(_A ) model.to(_A ) model.eval() snake_case_ : List[str] = model(_A , labels=_A ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case_ : Optional[int] = 1 snake_case_ : Any = ViTMSNForImageClassification(_A ) model.to(_A ) model.eval() snake_case_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : List[str] = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self : int ) -> str: """simple docstring""" snake_case_ : str = self.prepare_config_and_inputs() snake_case_ ,snake_case_ ,snake_case_ : Optional[Any] = config_and_inputs snake_case_ : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: Dict = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __magic_name__: Tuple = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) __magic_name__: Dict = False __magic_name__: Any = False __magic_name__: Optional[Any] = False __magic_name__: Union[str, Any] = False def UpperCAmelCase_ ( self : int ) -> Optional[int]: """simple docstring""" snake_case_ : str = ViTMSNModelTester(self ) snake_case_ : Any = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Union[str, Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: """simple docstring""" snake_case_ ,snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : int = model_class(_A ) snake_case_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Optional[Any] = [*signature.parameters.keys()] snake_case_ : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def UpperCAmelCase_ ( self : int ) -> Optional[int]: """simple docstring""" snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: """simple docstring""" snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Any = ViTMSNModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: """simple docstring""" torch.manual_seed(2 ) snake_case_ : List[Any] = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(_A ) snake_case_ : List[str] = self.default_image_processor snake_case_ : List[str] = prepare_img() snake_case_ : Optional[int] = image_processor(images=_A , return_tensors='pt' ).to(_A ) # forward pass with torch.no_grad(): snake_case_ : List[Any] = model(**_A ) # verify the logits snake_case_ : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _A ) snake_case_ : int = torch.tensor([-0.0_8_0_3, -0.4_4_5_4, -0.2_3_7_5] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) )
327
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
327
1
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE_ ( metaclass=snake_case_ ): __magic_name__: Optional[Any] = ["note_seq"] def __init__( self : Optional[Any] , *_A : List[Any] , **_A : Optional[Any] ) -> List[Any]: """simple docstring""" requires_backends(self , ['note_seq'] ) @classmethod def UpperCAmelCase_ ( cls : Dict , *_A : str , **_A : int ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['note_seq'] ) @classmethod def UpperCAmelCase_ ( cls : Any , *_A : Optional[Any] , **_A : List[Any] ) -> List[Any]: """simple docstring""" requires_backends(cls , ['note_seq'] )
327
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Dict ) -> List[Any]: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_A ) snake_case_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : List[Any] = tokenizer('This is me' , return_tensors='pt' ) snake_case_ : Any = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case_ : Optional[Any] = model.generate(**_A ) snake_case_ : int = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_A ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case_ : Optional[Any] = model_reloaded.generate(**_A ) self.assertTrue(torch.allclose(_A , _A ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : int = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : Dict = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_A ): model.save_pretrained(_A ) snake_case_ : Union[str, Any] = model.reverse_bettertransformer() model.save_pretrained(_A )
327
1
def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): raise TypeError('only integers accepted as input' ) else: snake_case_ : Any = str(abs(__a ) ) snake_case_ : List[Any] = [list(__a ) for char in range(len(__a ) )] for index in range(len(__a ) ): num_transpositions[index].pop(__a ) return max( int(''.join(list(__a ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
327
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = params snake_case_ : int = np.array(_A ) snake_case_ : Optional[int] = np.array([len(_A ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Tuple , _A : Optional[int] ) -> str: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : List[str] ) -> str: """simple docstring""" return len(self.lengths ) def UpperCAmelCase_ ( self : Dict ) -> str: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: """simple docstring""" snake_case_ : Dict = self.params.max_model_input_size snake_case_ : Tuple = self.lengths > max_len logger.info(F"""Splitting {sum(_A )} too long sequences.""" ) def divide_chunks(_A : Union[str, Any] , _A : Dict ): return [l[i : i + n] for i in range(0 , len(_A ) , _A )] snake_case_ : Dict = [] snake_case_ : Union[str, Any] = [] if self.params.mlm: snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: snake_case_ : List[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: snake_case_ : Optional[int] = np.insert(_A , 0 , _A ) if sub_s[-1] != sep_id: snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A ) assert len(_A ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_A ) new_tok_ids.extend(_A ) new_lengths.extend([len(_A ) for l in sub_seqs] ) snake_case_ : Tuple = np.array(_A ) snake_case_ : int = np.array(_A ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ : Tuple = len(self ) snake_case_ : int = self.lengths > 11 snake_case_ : Dict = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : List[Any] = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = len(self ) snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) snake_case_ : Any = (unk_occs / self.lengths) < 0.5 snake_case_ : List[Any] = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : Tuple = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ : Any = [t[0] for t in batch] snake_case_ : int = [t[1] for t in batch] assert len(_A ) == len(_A ) # Max for paddings snake_case_ : str = max(_A ) # Pad token ids if self.params.mlm: snake_case_ : int = self.params.special_tok_ids['pad_token'] else: snake_case_ : Dict = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids] assert len(tk_ ) == len(_A ) assert all(len(_A ) == max_seq_len_ for t in tk_ ) snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs) return tk_t, lg_t
327
1
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE = get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : Dict = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Dict = os.path.join(__a , __a ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Dict = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Dict = os.path.join(__a , __a ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving model to {ckpt_dir}""" ) snake_case_ : int = {'model': state_dict} dist_cp.save_state_dict( state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Optional[Any] = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[Any] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Optional[Any] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Tuple = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Tuple = ( os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) snake_case_ : List[Any] = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , ) snake_case_ : Any = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ : str = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : Any = os.path.join(__a , __a ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__a , __a ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ : Union[str, Any] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : List[Any] = os.path.join(__a , __a ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: snake_case_ : str = ( os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) snake_case_ : Any = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , ) snake_case_ : Optional[int] = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a ) optimizer.load_state_dict(__a )
327
def SCREAMING_SNAKE_CASE__ ( __a , __a ): while b: snake_case_ ,snake_case_ : Any = b, a % b return a def SCREAMING_SNAKE_CASE__ ( __a , __a ): return a if b == 0 else euclidean_gcd_recursive(__a , a % b ) def SCREAMING_SNAKE_CASE__ ( ): print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
327
1
import math def SCREAMING_SNAKE_CASE__ ( __a , __a ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(__a ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _SCREAMING_SNAKE_CASE = """Enter the base and the power separated by a comma: """ _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = map(int, input(prompt).split(""",""")) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = map(int, input(prompt).split(""",""")) # We find the log of each number, using the function res(), which takes two # arguments. _SCREAMING_SNAKE_CASE = res(xa, ya) _SCREAMING_SNAKE_CASE = res(xa, ya) # We check for the largest number if resa > resa: print("""Largest number is""", xa, """^""", ya) elif resa > resa: print("""Largest number is""", xa, """^""", ya) else: print("""Both are equal""")
327
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE = get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : Dict = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Dict = os.path.join(__a , __a ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Dict = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Dict = os.path.join(__a , __a ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving model to {ckpt_dir}""" ) snake_case_ : int = {'model': state_dict} dist_cp.save_state_dict( state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Optional[Any] = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[Any] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Optional[Any] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Tuple = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Tuple = ( os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) snake_case_ : List[Any] = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , ) snake_case_ : Any = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ : str = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : Any = os.path.join(__a , __a ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__a , __a ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ : Union[str, Any] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : List[Any] = os.path.join(__a , __a ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: snake_case_ : str = ( os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) snake_case_ : Any = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , ) snake_case_ : Optional[int] = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a ) optimizer.load_state_dict(__a )
327
1
from math import pi def SCREAMING_SNAKE_CASE__ ( __a , __a ): return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
327
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _A : bool = True , _A : Tuple=7 , _A : Tuple=30 , _A : int=400 , _A : Tuple=3 , ) -> Optional[int]: """simple docstring""" snake_case_ : str = parent snake_case_ : str = do_resize snake_case_ : str = size if size is not None else {'shortest_edge': 288} snake_case_ : Any = size_divisor snake_case_ : Any = do_rescale snake_case_ : Union[str, Any] = rescale_factor snake_case_ : str = do_normalize snake_case_ : int = do_center_crop snake_case_ : str = image_mean snake_case_ : int = image_std snake_case_ : Any = do_pad snake_case_ : Optional[int] = batch_size snake_case_ : List[str] = num_channels snake_case_ : Any = min_resolution snake_case_ : str = max_resolution def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self : Dict , _A : str , _A : Union[str, Any]=False ) -> int: """simple docstring""" if not batched: snake_case_ : Optional[int] = self.size['shortest_edge'] snake_case_ : List[Any] = image_inputs[0] if isinstance(_A , Image.Image ): snake_case_ ,snake_case_ : Optional[Any] = image.size else: snake_case_ ,snake_case_ : str = image.shape[1], image.shape[2] snake_case_ : Dict = size / min(_A , _A ) if h < w: snake_case_ ,snake_case_ : str = size, scale * w else: snake_case_ ,snake_case_ : Tuple = scale * h, size snake_case_ : Dict = int((1333 / 800) * size ) if max(_A , _A ) > max_size: snake_case_ : Union[str, Any] = max_size / max(_A , _A ) snake_case_ : Any = newh * scale snake_case_ : Union[str, Any] = neww * scale snake_case_ ,snake_case_ : Any = int(newh + 0.5 ), int(neww + 0.5 ) snake_case_ ,snake_case_ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: snake_case_ : Optional[int] = [] for image in image_inputs: snake_case_ ,snake_case_ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : str = max(_A , key=lambda _A : item[0] )[0] snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'size_divisor' ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : List[str] = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Any = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : str = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
327
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __a , __a = None , __a = None ): if start is None: snake_case_ : List[str] = 0 if end is None: snake_case_ : str = len(__a ) - 1 if start >= end: return snake_case_ : str = (start + end) // 2 slowsort(__a , __a , __a ) slowsort(__a , mid + 1 , __a ) if sequence[end] < sequence[mid]: snake_case_ ,snake_case_ : str = sequence[mid], sequence[end] slowsort(__a , __a , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
327
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _SCREAMING_SNAKE_CASE = 50_00_00 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = os.path.split(__file__) _SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : int = dataset.map(**__a ) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : Dict = dataset.filter(**__a ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Tuple = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Dict = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) snake_case_ : List[Any] = generate_example_dataset( os.path.join(__a , 'dataset.arrow' ) , __a , num_examples=__a ) snake_case_ : str = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__a ) def tokenize(__a ): return tokenizer(examples['text'] ) snake_case_ : Any = map(__a ) snake_case_ : Tuple = map(__a , batched=__a ) snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='numpy' ): snake_case_ : Optional[int] = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='pandas' ): snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='torch' , columns='numbers' ): snake_case_ : int = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): snake_case_ : List[Any] = map(__a , function=lambda __a : None , batched=__a ) snake_case_ : int = map(__a , function=__a , batched=__a ) snake_case_ : Optional[Any] = filter(__a ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__a , 'wb' ) as f: f.write(json.dumps(__a ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
327
1
import requests def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Dict = {'Content-Type': 'application/json'} snake_case_ : int = requests.post(__a , json={'text': message_body} , headers=__a ) if response.status_code != 2_00: snake_case_ : List[str] = ( 'Request to slack returned an error ' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__a ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
327
from collections import namedtuple import requests from lxml import html # type: ignore _SCREAMING_SNAKE_CASE = namedtuple("""covid_data""", """cases deaths recovered""") def SCREAMING_SNAKE_CASE__ ( __a = "https://www.worldometers.info/coronavirus/" ): snake_case_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) ) _SCREAMING_SNAKE_CASE = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
327
1
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: int = CanineTokenizer __magic_name__: Any = False def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().setUp() snake_case_ : int = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase_ ( self : str ) -> List[Any]: """simple docstring""" return CanineTokenizer.from_pretrained('google/canine-s' ) def UpperCAmelCase_ ( self : int , **_A : str ) -> CanineTokenizer: """simple docstring""" snake_case_ : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) snake_case_ : List[Any] = 1024 return tokenizer @require_torch def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case_ : Any = self.canine_tokenizer snake_case_ : List[str] = ['Life is like a box of chocolates.', 'You never know what you\'re gonna get.'] # fmt: off snake_case_ : List[str] = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: on snake_case_ : Optional[int] = tokenizer(_A , padding=_A , return_tensors='pt' ) self.assertIsInstance(_A , _A ) snake_case_ : List[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" snake_case_ : int = self.canine_tokenizer snake_case_ : int = ['Once there was a man.', 'He wrote a test in HuggingFace Tranformers.'] snake_case_ : int = tokenizer(_A , padding=_A , return_tensors='pt' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('input_ids' , _A ) self.assertIn('attention_mask' , _A ) self.assertIn('token_type_ids' , _A ) @require_torch def UpperCAmelCase_ ( self : List[str] ) -> int: """simple docstring""" snake_case_ : str = self.canine_tokenizer snake_case_ : Union[str, Any] = [ 'What\'s the weater?', 'It\'s about 25 degrees.', ] snake_case_ : str = tokenizer( text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test snake_case_ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case_ : Optional[Any] = tempfile.mkdtemp() snake_case_ : int = ' He is very happy, UNwant\u00E9d,running' snake_case_ : Any = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) snake_case_ : Dict = tokenizer.__class__.from_pretrained(_A ) snake_case_ : int = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) snake_case_ : List[str] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case_ : Tuple = tempfile.mkdtemp() snake_case_ : Any = ' He is very happy, UNwant\u00E9d,running' snake_case_ : int = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: snake_case_ : Union[str, Any] = chr(0Xe0_07 ) additional_special_tokens.append(_A ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) snake_case_ : int = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) snake_case_ : Dict = tokenizer.__class__.from_pretrained(_A ) snake_case_ : Dict = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn(_A , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) snake_case_ : Union[str, Any] = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" snake_case_ : Optional[int] = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case_ ,snake_case_ : int = self.get_clean_sequence(_A ) # a special token for Canine can be defined as follows: snake_case_ : Optional[int] = 0Xe0_05 snake_case_ : List[str] = chr(_A ) tokenizer.add_special_tokens({'cls_token': special_token} ) snake_case_ : Union[str, Any] = tokenizer.encode(_A , add_special_tokens=_A ) self.assertEqual(len(_A ) , 1 ) snake_case_ : Tuple = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_A ) snake_case_ : List[Any] = tokenizer.encode(_A , add_special_tokens=_A ) snake_case_ : Optional[Any] = tokenizer.encode(_A , add_special_tokens=_A ) snake_case_ : int = tokenizer.encode(_A , add_special_tokens=_A ) self.assertEqual(_A , input_encoded + special_token_id ) snake_case_ : int = tokenizer.decode(_A , skip_special_tokens=_A ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: """simple docstring""" snake_case_ : int = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case_ : Optional[int] = chr(0Xe0_05 ) snake_case_ : Union[str, Any] = chr(0Xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_A ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'additional_special_tokens': [SPECIAL_TOKEN_2]} ) snake_case_ : int = tokenizer.tokenize(_A ) snake_case_ : str = tokenizer.tokenize(_A ) self.assertEqual(len(_A ) , 1 ) self.assertEqual(len(_A ) , 1 ) self.assertEqual(token_a[0] , _A ) self.assertEqual(token_a[0] , _A ) @require_tokenizers def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[int] = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # a special token for Canine can be defined as follows: snake_case_ : List[str] = 0Xe0_06 snake_case_ : int = chr(_A ) snake_case_ : List[str] = AddedToken(_A , lstrip=_A ) tokenizer.add_special_tokens({'additional_special_tokens': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_A ) tokenizer.from_pretrained(_A ) def UpperCAmelCase_ ( self : str ) -> str: """simple docstring""" snake_case_ : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: snake_case_ : str = json.load(_A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: snake_case_ : Optional[int] = json.load(_A ) # a special token for Canine can be defined as follows: snake_case_ : List[Any] = 0Xe0_06 snake_case_ : Tuple = chr(_A ) snake_case_ : Optional[int] = [new_token_a] snake_case_ : Tuple = [new_token_a] with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case_ : Optional[Any] = tokenizer_class.from_pretrained(_A , extra_ids=0 ) self.assertIn(_A , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) snake_case_ : Optional[int] = 0Xe0_07 snake_case_ : Union[str, Any] = chr(_A ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case_ : Union[str, Any] = [AddedToken(_A , lstrip=_A )] snake_case_ : List[str] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , extra_ids=0 ) self.assertIn(_A , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[int] = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case_ : Optional[Any] = 'hello world' if self.space_between_special_tokens: snake_case_ : Any = '[CLS] hello world [SEP]' else: snake_case_ : int = input snake_case_ : Any = tokenizer.encode(_A , add_special_tokens=_A ) snake_case_ : Dict = tokenizer.decode(_A , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_A , [output, output.lower()] ) def UpperCAmelCase_ ( self : str ) -> str: """simple docstring""" snake_case_ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case_ : Dict = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] snake_case_ : Dict = 'a' snake_case_ : Tuple = ord(_A ) for attr in attributes_list: setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , attr + '_id' , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + '_id' ) , _A ) setattr(_A , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [] ) snake_case_ : Optional[Any] = 0Xe0_06 snake_case_ : Union[str, Any] = chr(_A ) setattr(_A , 'additional_special_tokens_ids' , [additional_special_token_id] ) self.assertListEqual(getattr(_A , 'additional_special_tokens' ) , [additional_special_token] ) self.assertListEqual(getattr(_A , 'additional_special_tokens_ids' ) , [additional_special_token_id] ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: """simple docstring""" pass def UpperCAmelCase_ ( self : Optional[Any] ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self : List[str] ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self : int ) -> List[Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase_ ( self : int ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self : Any ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" pass
327
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": 5_12, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: List[Any] = VOCAB_FILES_NAMES __magic_name__: List[str] = PRETRAINED_VOCAB_FILES_MAP __magic_name__: List[str] = PRETRAINED_INIT_CONFIGURATION __magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__: Union[str, Any] = LxmertTokenizer def __init__( self : List[str] , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=True , _A : Dict="[UNK]" , _A : Optional[int]="[SEP]" , _A : Dict="[PAD]" , _A : Union[str, Any]="[CLS]" , _A : str="[MASK]" , _A : Tuple=True , _A : Dict=None , **_A : List[Any] , ) -> Optional[int]: """simple docstring""" super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _A ) != do_lower_case or normalizer_state.get('strip_accents' , _A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars ): snake_case_ : Tuple = getattr(_A , normalizer_state.pop('type' ) ) snake_case_ : Union[str, Any] = do_lower_case snake_case_ : int = strip_accents snake_case_ : Optional[Any] = tokenize_chinese_chars snake_case_ : List[Any] = normalizer_class(**_A ) snake_case_ : Tuple = do_lower_case def UpperCAmelCase_ ( self : Dict , _A : Any , _A : List[Any]=None ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : str = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
327
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class SCREAMING_SNAKE_CASE_ : def __init__( self : Dict , _A : List[Any] , _A : Optional[Any]=13 , _A : int=7 , _A : Any=True , _A : Optional[int]=True , _A : Tuple=True , _A : Union[str, Any]=True , _A : Optional[int]=99 , _A : int=32 , _A : List[Any]=5 , _A : Any=4 , _A : Optional[Any]=4 , _A : Dict="gelu" , _A : str=0.0 , _A : Union[str, Any]=0.1 , _A : Dict=True , _A : Optional[Any]=512 , _A : Dict=16 , _A : Optional[int]=2 , _A : Union[str, Any]=0.0_2 , _A : List[Any]=3 , _A : str=4 , _A : Tuple=None , ) -> Optional[int]: """simple docstring""" snake_case_ : Tuple = parent snake_case_ : Tuple = batch_size snake_case_ : str = seq_length snake_case_ : List[Any] = is_training snake_case_ : str = use_input_mask snake_case_ : Tuple = use_token_type_ids snake_case_ : Any = use_labels snake_case_ : Tuple = vocab_size snake_case_ : int = hidden_size snake_case_ : Optional[int] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Tuple = intermediate_multiple_size snake_case_ : Tuple = hidden_act snake_case_ : Optional[Any] = hidden_dropout snake_case_ : Optional[Any] = attention_dropout snake_case_ : Union[str, Any] = weight_tying snake_case_ : List[str] = max_position_embeddings snake_case_ : Dict = type_vocab_size snake_case_ : List[Any] = type_sequence_label_size snake_case_ : List[Any] = initializer_range snake_case_ : Optional[Any] = num_labels snake_case_ : Union[str, Any] = num_choices snake_case_ : List[str] = scope def UpperCAmelCase_ ( self : int ) -> Optional[int]: """simple docstring""" snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Optional[Any] = None if self.use_input_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[Any] = None if self.use_labels: snake_case_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : Dict = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: """simple docstring""" snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ : Optional[int] = self.prepare_config_and_inputs() snake_case_ : int = True return config, input_ids, input_mask, token_labels def UpperCAmelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ) -> Union[str, Any]: """simple docstring""" snake_case_ : Any = GPTNeoXJapaneseModel(config=_A ) model.to(_A ) model.eval() snake_case_ : List[Any] = model(_A , attention_mask=_A ) snake_case_ : Any = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Any , _A : Any , _A : Dict , _A : Optional[Any] ) -> List[str]: """simple docstring""" snake_case_ : List[str] = True snake_case_ : Any = GPTNeoXJapaneseModel(_A ) model.to(_A ) model.eval() snake_case_ : Union[str, Any] = model(_A , attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : int , _A : Union[str, Any] , _A : List[str] , _A : Any , _A : Optional[Any] ) -> int: """simple docstring""" snake_case_ : Union[str, Any] = GPTNeoXJapaneseForCausalLM(config=_A ) model.to(_A ) model.eval() snake_case_ : Any = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : Optional[Any] , _A : Any , _A : Optional[int] , _A : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ : List[str] = True snake_case_ : List[Any] = GPTNeoXJapaneseForCausalLM(config=_A ) model.to(_A ) model.eval() # first forward pass snake_case_ : Union[str, Any] = model(_A , attention_mask=_A , use_cache=_A ) snake_case_ : List[str] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case_ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case_ : Optional[int] = model(_A , attention_mask=_A , output_hidden_states=_A ) snake_case_ : Any = output_from_no_past['hidden_states'][0] snake_case_ : Dict = model( _A , attention_mask=_A , past_key_values=_A , output_hidden_states=_A , )['hidden_states'][0] # select random slice snake_case_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1E-3 ) ) def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: """simple docstring""" snake_case_ : Optional[Any] = self.prepare_config_and_inputs() snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ : int = config_and_inputs snake_case_ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: Union[str, Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () __magic_name__: List[Any] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () __magic_name__: Union[str, Any] = ( {"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) __magic_name__: Tuple = False __magic_name__: str = False __magic_name__: List[Any] = False __magic_name__: Optional[Any] = False def UpperCAmelCase_ ( self : int ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = GPTNeoXJapaneseModelTester(self ) snake_case_ : Union[str, Any] = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Any ) -> Dict: """simple docstring""" snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_A , _A , _A ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_A , _A , _A ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case_ : str = None self.model_tester.create_and_check_model_as_decoder(_A , _A , _A ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: """simple docstring""" snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_A , _A , _A ) def UpperCAmelCase_ ( self : Any ) -> Dict: """simple docstring""" snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_A ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" snake_case_ : List[str] = 'abeja/gpt-neox-japanese-2.7b' snake_case_ : Dict = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、'] snake_case_ : Dict = [ 'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。', '100年後に必要とされる会社は、「人」が中心の会社です。', 'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。', '国境の長いトンネルを抜けると、そこは雪国だった。', '美味しい日本食といえば、やっぱりお寿司ですよね。', ] snake_case_ : Optional[int] = GPTNeoXJapaneseTokenizer.from_pretrained(_A ) snake_case_ : Tuple = GPTNeoXJapaneseForCausalLM.from_pretrained(_A ) snake_case_ : Optional[int] = [] for prompt in prompts: snake_case_ : Tuple = tokenizer(_A , return_tensors='pt' ).input_ids snake_case_ : Any = model.generate(_A , max_length=50 ) snake_case_ : Dict = tokenizer.batch_decode(_A , skip_special_tokens=_A ) predicted_outputs += generated_string self.assertListEqual(_A , _A )
327
def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): snake_case_ : int = f"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 0: return False snake_case_ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
327
1
from math import ceil, sqrt def SCREAMING_SNAKE_CASE__ ( __a = 1_00_00_00 ): snake_case_ : Union[str, Any] = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: snake_case_ : Any = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: snake_case_ : Optional[Any] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'''{solution() = }''')
327
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
1
import numpy as np def SCREAMING_SNAKE_CASE__ ( __a ): return 1 / (1 + np.exp(-vector )) def SCREAMING_SNAKE_CASE__ ( __a ): return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
327
from typing import Dict from .base import GenericTensor, Pipeline class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def UpperCAmelCase_ ( self : str , _A : Optional[Any]=None , _A : List[str]=None , _A : Optional[Any]=None , **_A : List[str] ) -> Any: """simple docstring""" if tokenize_kwargs is None: snake_case_ : Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) snake_case_ : int = truncation snake_case_ : Optional[int] = tokenize_kwargs snake_case_ : Dict = {} if return_tensors is not None: snake_case_ : Union[str, Any] = return_tensors return preprocess_params, {}, postprocess_params def UpperCAmelCase_ ( self : Optional[int] , _A : int , **_A : Any ) -> Dict[str, GenericTensor]: """simple docstring""" snake_case_ : Dict = self.framework snake_case_ : Any = self.tokenizer(_A , return_tensors=_A , **_A ) return model_inputs def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] ) -> int: """simple docstring""" snake_case_ : Tuple = self.model(**_A ) return model_outputs def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str=False ) -> Any: """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> List[str]: """simple docstring""" return super().__call__(*_A , **_A )
327
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
from itertools import permutations def SCREAMING_SNAKE_CASE__ ( __a ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False snake_case_ : Any = [7, 11, 13, 17] for i, test in enumerate(__a ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE__ ( __a = 10 ): return sum( int(''.join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(F'''{solution() = }''')
327
1
import os def SCREAMING_SNAKE_CASE__ ( ): with open(os.path.dirname(__a ) + '/grid.txt' ) as f: snake_case_ : int = [] # noqa: E741 for _ in range(20 ): l.append([int(__a ) for x in f.readline().split()] ) snake_case_ : Dict = 0 # right for i in range(20 ): for j in range(17 ): snake_case_ : int = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case_ : int = temp # down for i in range(17 ): for j in range(20 ): snake_case_ : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case_ : Dict = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case_ : Optional[Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case_ : List[Any] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): snake_case_ : Optional[int] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case_ : Union[str, Any] = temp return maximum if __name__ == "__main__": print(solution())
327
from __future__ import annotations from collections import namedtuple def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Any = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
327
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _SCREAMING_SNAKE_CASE = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _SCREAMING_SNAKE_CASE = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : int , _A : Tuple , _A : Tuple , _A : str=None , _A : Dict=False , _A : Tuple=False , _A : str=False , ) -> Tuple: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case_ : List[Any] = np.array([re.sub(_A , '' , _A ) for x in predictions] ) snake_case_ : Optional[Any] = np.array([re.sub(_A , '' , _A ) for x in references] ) else: snake_case_ : Dict = np.asarray(_A ) snake_case_ : Tuple = np.asarray(_A ) if ignore_case: snake_case_ : List[str] = np.char.lower(_A ) snake_case_ : Any = np.char.lower(_A ) if ignore_punctuation: snake_case_ : int = string.punctuation.maketrans('' , '' , string.punctuation ) snake_case_ : Tuple = np.char.translate(_A , table=_A ) snake_case_ : str = np.char.translate(_A , table=_A ) if ignore_numbers: snake_case_ : Optional[int] = string.digits.maketrans('' , '' , string.digits ) snake_case_ : str = np.char.translate(_A , table=_A ) snake_case_ : Union[str, Any] = np.char.translate(_A , table=_A ) snake_case_ : int = predictions == references return {"exact_match": np.mean(_A ) * 100}
327
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , ): snake_case_ : Optional[Any] = len(__a ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__a ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __a , __a , ) def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : list[list[str]] = [] depth_first_search([] , [] , [] , __a , __a ) # Print all the boards for board in boards: for column in board: print(__a ) print('' ) print(len(__a ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
327
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , _A : Optional[Any] , _A : Dict=13 , _A : Union[str, Any]=30 , _A : Tuple=2 , _A : Union[str, Any]=3 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : str=32 , _A : int=2 , _A : List[str]=4 , _A : List[str]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=10 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=3 , _A : str=0.6 , _A : Union[str, Any]=None , ) -> Any: """simple docstring""" snake_case_ : Optional[int] = parent snake_case_ : Tuple = batch_size snake_case_ : List[Any] = image_size snake_case_ : List[str] = patch_size snake_case_ : List[str] = num_channels snake_case_ : Optional[Any] = is_training snake_case_ : Any = use_labels snake_case_ : Tuple = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Tuple = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[Any] = mask_ratio snake_case_ : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case_ : Optional[int] = (image_size // patch_size) ** 2 snake_case_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Union[str, Any] = None if self.use_labels: snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : int ) -> Optional[Any]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : Dict , _A : str ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = TFViTMAEModel(config=_A ) snake_case_ : str = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : Any , _A : List[Any] ) -> int: """simple docstring""" snake_case_ : Any = TFViTMAEForPreTraining(_A ) snake_case_ : Optional[Any] = model(_A , training=_A ) # expected sequence length = num_patches snake_case_ : List[str] = (self.image_size // self.patch_size) ** 2 snake_case_ : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case_ : str = 1 snake_case_ : Dict = TFViTMAEForPreTraining(_A ) snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : List[str] = model(_A , training=_A ) snake_case_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = self.prepare_config_and_inputs() ((snake_case_) ,(snake_case_) ,(snake_case_)) : Any = config_and_inputs snake_case_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __magic_name__: str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} __magic_name__: Dict = False __magic_name__: Dict = False __magic_name__: List[Any] = False __magic_name__: Dict = False def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" snake_case_ : List[Any] = TFViTMAEModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" snake_case_ ,snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: """simple docstring""" snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[str] = model_class(_A ) snake_case_ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Dict = [*signature.parameters.keys()] snake_case_ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Union[str, Any] = self._prepare_for_class(_A , _A ) snake_case_ : List[str] = model(_A , noise=_A ) snake_case_ : Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) ) snake_case_ : str = model(**_A , noise=_A ) snake_case_ : Union[str, Any] = outputs_dict[0].numpy() snake_case_ : Optional[Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Tuple = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_A : int ): snake_case_ : Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(_A ): snake_case_ : str = v.numpy() else: snake_case_ : Optional[Any] = np.array(_A ) return inputs_np_dict for model_class in self.all_model_classes: snake_case_ : int = model_class(_A ) snake_case_ : List[Any] = self._prepare_for_class(_A , _A ) snake_case_ : Any = prepare_numpy_arrays(_A ) snake_case_ : List[Any] = model(_A , noise=_A ) snake_case_ : List[Any] = model(**_A , noise=_A ) self.assert_outputs_same(_A , _A ) def UpperCAmelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> List[str]: """simple docstring""" np.random.seed(2 ) snake_case_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.constant(_A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case_ : Optional[Any] = tf_noise super().check_pt_tf_models(_A , _A , _A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_A ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(_A , _A ),) if isinstance(_A , _A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_A , '_keras_serializable' , _A ) } snake_case_ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.convert_to_tensor(_A ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: snake_case_ : Optional[Any] = main_layer_class(_A ) snake_case_ : List[str] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } snake_case_ : Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) ) snake_case_ : int = model(_A ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[Any] = os.path.join(_A , 'keras_model.h5' ) model.save(_A ) snake_case_ : str = tf.keras.models.load_model( _A , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_A , tf.keras.Model ) snake_case_ : List[str] = model(_A ) self.assert_outputs_same(_A , _A ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Optional[Any] = self._prepare_for_class(_A , _A ) snake_case_ : int = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Any = outputs.last_hidden_state.numpy() snake_case_ : Optional[int] = 0 else: snake_case_ : str = outputs.logits.numpy() snake_case_ : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) snake_case_ : Any = model_class.from_pretrained(_A ) snake_case_ : Any = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Dict = after_outputs['last_hidden_state'].numpy() snake_case_ : Dict = 0 else: snake_case_ : Any = after_outputs['logits'].numpy() snake_case_ : Optional[Any] = 0 snake_case_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) def UpperCAmelCase_ ( self : Any ) -> str: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : str = model_class(_A ) snake_case_ : int = self._prepare_for_class(_A , _A ) snake_case_ : str = model(_A , noise=_A ) snake_case_ : Dict = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_A ) snake_case_ : Any = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config snake_case_ : str = model_class.from_config(model.config ) snake_case_ : Union[str, Any] = new_model(_A ) # Build model new_model.set_weights(model.get_weights() ) snake_case_ : List[str] = new_model(_A , noise=_A ) self.assert_outputs_same(_A , _A ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @slow def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_A ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ : List[str] = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) snake_case_ : List[Any] = self.default_image_processor snake_case_ : Dict = prepare_img() snake_case_ : Optional[Any] = image_processor(images=_A , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case_ : int = ViTMAEConfig() snake_case_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass snake_case_ : Optional[Any] = model(**_A , noise=_A ) # verify the logits snake_case_ : Optional[int] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _A ) snake_case_ : Any = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
327
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _SCREAMING_SNAKE_CASE = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def SCREAMING_SNAKE_CASE__ ( __a , __a ): inspect_dataset(__a , __a ) snake_case_ : Union[str, Any] = path + '.py' assert script_name in os.listdir(__a ) assert "__pycache__" not in os.listdir(__a ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def SCREAMING_SNAKE_CASE__ ( __a , __a ): inspect_metric(__a , __a ) snake_case_ : Any = path + '.py' assert script_name in os.listdir(__a ) assert "__pycache__" not in os.listdir(__a ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Union[str, Any] = get_dataset_config_info(__a , config_name=__a ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): with pytest.raises(__a ): get_dataset_config_info(__a , config_name=__a ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Dict = get_dataset_config_names(__a ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : int = get_dataset_infos(__a ) assert list(infos.keys() ) == expected_configs snake_case_ : Union[str, Any] = expected_configs[0] assert expected_config in infos snake_case_ : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Any = get_dataset_infos(__a ) assert expected_config in infos snake_case_ : List[Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): with pytest.raises(__a ): get_dataset_split_names(__a , config_name=__a )
327
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : list[list[int]] = [] snake_case_ : list[int] = [] snake_case_ : List[Any] = 0 snake_case_ : Union[str, Any] = sum(__a ) create_state_space_tree(__a , __a , __a , __a , __a , __a ) return result def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ): if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum: return if sum(__a ) == max_sum: result.append(__a ) return for index in range(__a , len(__a ) ): create_state_space_tree( __a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , ) _SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2] _SCREAMING_SNAKE_CASE = 9 _SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
327
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
327
def SCREAMING_SNAKE_CASE__ ( __a , __a ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
327
1
def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : str = 0 # if input_string is "aba" than new_input_string become "a|b|a" snake_case_ : List[str] = '' snake_case_ : List[str] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring snake_case_ ,snake_case_ : Any = 0, 0 # length[i] shows the length of palindromic substring with center i snake_case_ : List[str] = [1 for i in range(len(__a ) )] # for each character in new_string find corresponding palindromic string snake_case_ : Union[str, Any] = 0 for j in range(len(__a ) ): snake_case_ : List[str] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 snake_case_ : List[Any] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: snake_case_ : Any = j - k + 1 # noqa: E741 snake_case_ : Tuple = j + k - 1 # update max_length and start position if max_length < length[j]: snake_case_ : Tuple = length[j] snake_case_ : Optional[Any] = j # create that string snake_case_ : int = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
327
from math import pi def SCREAMING_SNAKE_CASE__ ( __a , __a ): return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
327
1
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Dict = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__a , __a ) def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ ,snake_case_ : Optional[int] = emb.weight.shape snake_case_ : Tuple = nn.Linear(__a , __a , bias=__a ) snake_case_ : Tuple = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : str = torch.load(__a , map_location='cpu' ) snake_case_ : Optional[int] = mam_aaa['args'] or mam_aaa['cfg']['model'] snake_case_ : int = mam_aaa['model'] remove_ignore_keys_(__a ) snake_case_ : Optional[Any] = state_dict['encoder.embed_tokens.weight'].shape[0] snake_case_ : List[str] = MaMaaaConfig( vocab_size=__a , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) snake_case_ : str = state_dict['decoder.embed_tokens.weight'] snake_case_ : Dict = MaMaaaForConditionalGeneration(__a ) model.model.load_state_dict(__a , strict=__a ) snake_case_ : Optional[Any] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
327
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[Any] = ["pixel_values"] def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PIL.Image.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : str , ) -> None: """simple docstring""" super().__init__(**_A ) snake_case_ : Dict = size if size is not None else {'height': 256, 'width': 256} snake_case_ : Tuple = get_size_dict(_A ) snake_case_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} snake_case_ : int = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Union[str, Any] = do_resize snake_case_ : str = size snake_case_ : List[str] = resample snake_case_ : List[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : Tuple = do_rescale snake_case_ : Optional[Any] = rescale_factor snake_case_ : Any = do_normalize snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray: """simple docstring""" snake_case_ : Tuple = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( _A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray: """simple docstring""" snake_case_ : Optional[int] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> str: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : List[str] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : Union[str, Any]=None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ) -> PIL.Image.Image: """simple docstring""" snake_case_ : int = do_resize if do_resize is not None else self.do_resize snake_case_ : str = resample if resample is not None else self.resample snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Any = image_mean if image_mean is not None else self.image_mean snake_case_ : Dict = image_std if image_std is not None else self.image_std snake_case_ : int = size if size is not None else self.size snake_case_ : Optional[int] = get_size_dict(_A ) snake_case_ : int = crop_size if crop_size is not None else self.crop_size snake_case_ : Any = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Optional[Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case_ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: snake_case_ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: snake_case_ : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images] snake_case_ : Tuple = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
327
1
import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _SCREAMING_SNAKE_CASE = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _SCREAMING_SNAKE_CASE = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : int , _A : Tuple , _A : Tuple , _A : str=None , _A : Dict=False , _A : Tuple=False , _A : str=False , ) -> Tuple: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case_ : List[Any] = np.array([re.sub(_A , '' , _A ) for x in predictions] ) snake_case_ : Optional[Any] = np.array([re.sub(_A , '' , _A ) for x in references] ) else: snake_case_ : Dict = np.asarray(_A ) snake_case_ : Tuple = np.asarray(_A ) if ignore_case: snake_case_ : List[str] = np.char.lower(_A ) snake_case_ : Any = np.char.lower(_A ) if ignore_punctuation: snake_case_ : int = string.punctuation.maketrans('' , '' , string.punctuation ) snake_case_ : Tuple = np.char.translate(_A , table=_A ) snake_case_ : str = np.char.translate(_A , table=_A ) if ignore_numbers: snake_case_ : Optional[int] = string.digits.maketrans('' , '' , string.digits ) snake_case_ : str = np.char.translate(_A , table=_A ) snake_case_ : Union[str, Any] = np.char.translate(_A , table=_A ) snake_case_ : int = predictions == references return {"exact_match": np.mean(_A ) * 100}
327
import sys _SCREAMING_SNAKE_CASE = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE__ ( __a = N ): snake_case_ : Optional[Any] = -sys.maxsize - 1 for i in range(len(__a ) - 12 ): snake_case_ : Optional[Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case_ : int = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
327
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Any = UniSpeechSatForSequenceClassification.from_pretrained(__a , config=__a ) snake_case_ : Tuple = downstream_dict['projector.weight'] snake_case_ : Dict = downstream_dict['projector.bias'] snake_case_ : Optional[int] = downstream_dict['model.post_net.linear.weight'] snake_case_ : Any = downstream_dict['model.post_net.linear.bias'] return model def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Union[str, Any] = UniSpeechSatForAudioFrameClassification.from_pretrained(__a , config=__a ) snake_case_ : List[Any] = downstream_dict['model.linear.weight'] snake_case_ : str = downstream_dict['model.linear.bias'] return model def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Union[str, Any] = UniSpeechSatForXVector.from_pretrained(__a , config=__a ) snake_case_ : Union[str, Any] = downstream_dict['connector.weight'] snake_case_ : Optional[Any] = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): snake_case_ : int = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] snake_case_ : Any = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] snake_case_ : List[str] = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] snake_case_ : List[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] snake_case_ : Any = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] snake_case_ : Any = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] snake_case_ : int = downstream_dict['objective.W'] return model @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a ): snake_case_ : Dict = torch.load(__a , map_location='cpu' ) snake_case_ : Any = checkpoint['Downstream'] snake_case_ : List[Any] = UniSpeechSatConfig.from_pretrained(__a ) snake_case_ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained( __a , return_attention_mask=__a , do_normalize=__a ) snake_case_ : List[str] = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): snake_case_ : List[Any] = convert_classification(__a , __a , __a ) elif arch.endswith('ForAudioFrameClassification' ): snake_case_ : List[str] = convert_diarization(__a , __a , __a ) elif arch.endswith('ForXVector' ): snake_case_ : Tuple = convert_xvector(__a , __a , __a ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: snake_case_ : Tuple = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(__a ) hf_model.save_pretrained(__a ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
327
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __magic_name__: Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) __magic_name__: Optional[int] = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} ) __magic_name__: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} ) __magic_name__: bool = field( default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(__a , os.path.join(__a , f"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ ,snake_case_ ,snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ ,snake_case_ ,snake_case_ : List[str] = parser.parse_args_into_dataclasses() check_output_dir(__a ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , __a ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(__a , __a , __a ): assert hasattr(__a , __a ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(__a , __a , getattr(__a , __a ) ) snake_case_ : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=__a , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__a , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: snake_case_ : Any = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__a , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__a , __a ): snake_case_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang] else: snake_case_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__a ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) snake_case_ : List[Any] = SeqaSeqDataset # Get datasets snake_case_ : List[Any] = ( dataset_class( __a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) snake_case_ : List[str] = ( dataset_class( __a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) snake_case_ : List[Any] = ( dataset_class( __a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer snake_case_ : Any = ( build_compute_metrics_fn(data_args.task , __a ) if training_args.predict_with_generate else None ) snake_case_ : List[str] = SeqaSeqTrainer( model=__a , args=__a , data_args=__a , train_dataset=__a , eval_dataset=__a , data_collator=SeqaSeqDataCollator( __a , __a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__a , tokenizer=__a , ) snake_case_ : Optional[int] = {} # Training if training_args.do_train: logger.info('*** Train ***' ) snake_case_ : Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) snake_case_ : Tuple = train_result.metrics snake_case_ : List[str] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , __a , training_args.output_dir ) all_metrics.update(__a ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ : List[Any] = trainer.evaluate(metric_key_prefix='val' ) snake_case_ : str = data_args.n_val snake_case_ : Union[str, Any] = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.do_predict: logger.info('*** Predict ***' ) snake_case_ : Dict = trainer.predict(test_dataset=__a , metric_key_prefix='test' ) snake_case_ : Union[str, Any] = test_output.metrics snake_case_ : int = data_args.n_test if trainer.is_world_process_zero(): snake_case_ : List[str] = round(metrics['test_loss'] , 4 ) handle_metrics('test' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.predict_with_generate: snake_case_ : Any = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) snake_case_ : Any = lmap(str.strip , __a ) write_txt_file(__a , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(__a , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def SCREAMING_SNAKE_CASE__ ( __a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
327
1
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Optional[Any] = [] for line in lines: snake_case_ : List[Any] = re.sub(r'#.*' , '' , __a ) # remove comments if line: filtered_lines.append(__a ) snake_case_ : str = '\n'.join(__a ) # Make a hash from all this code snake_case_ : Optional[Any] = full_str.encode('utf-8' ) return shaaaa(__a ).hexdigest() # get importable module names and hash for caching _SCREAMING_SNAKE_CASE = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _SCREAMING_SNAKE_CASE = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _SCREAMING_SNAKE_CASE = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name _SCREAMING_SNAKE_CASE = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
327
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
327
1
def SCREAMING_SNAKE_CASE__ ( __a , __a ): while b: snake_case_ ,snake_case_ : Any = b, a % b return a def SCREAMING_SNAKE_CASE__ ( __a , __a ): return a if b == 0 else euclidean_gcd_recursive(__a , a % b ) def SCREAMING_SNAKE_CASE__ ( ): print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
327
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Dict ) -> List[Any]: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_A ) snake_case_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : List[Any] = tokenizer('This is me' , return_tensors='pt' ) snake_case_ : Any = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case_ : Optional[Any] = model.generate(**_A ) snake_case_ : int = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_A ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case_ : Optional[Any] = model_reloaded.generate(**_A ) self.assertTrue(torch.allclose(_A , _A ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : int = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : Dict = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_A ): model.save_pretrained(_A ) snake_case_ : Union[str, Any] = model.reverse_bettertransformer() model.save_pretrained(_A )
327
1
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): return round(float(moles / volume ) * nfactor ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): return round(float((moles * 0.0821 * temperature) / (volume) ) ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
327
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = params snake_case_ : int = np.array(_A ) snake_case_ : Optional[int] = np.array([len(_A ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Tuple , _A : Optional[int] ) -> str: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : List[str] ) -> str: """simple docstring""" return len(self.lengths ) def UpperCAmelCase_ ( self : Dict ) -> str: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: """simple docstring""" snake_case_ : Dict = self.params.max_model_input_size snake_case_ : Tuple = self.lengths > max_len logger.info(F"""Splitting {sum(_A )} too long sequences.""" ) def divide_chunks(_A : Union[str, Any] , _A : Dict ): return [l[i : i + n] for i in range(0 , len(_A ) , _A )] snake_case_ : Dict = [] snake_case_ : Union[str, Any] = [] if self.params.mlm: snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: snake_case_ : List[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: snake_case_ : Optional[int] = np.insert(_A , 0 , _A ) if sub_s[-1] != sep_id: snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A ) assert len(_A ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_A ) new_tok_ids.extend(_A ) new_lengths.extend([len(_A ) for l in sub_seqs] ) snake_case_ : Tuple = np.array(_A ) snake_case_ : int = np.array(_A ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ : Tuple = len(self ) snake_case_ : int = self.lengths > 11 snake_case_ : Dict = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : List[Any] = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = len(self ) snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) snake_case_ : Any = (unk_occs / self.lengths) < 0.5 snake_case_ : List[Any] = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : Tuple = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ : Any = [t[0] for t in batch] snake_case_ : int = [t[1] for t in batch] assert len(_A ) == len(_A ) # Max for paddings snake_case_ : str = max(_A ) # Pad token ids if self.params.mlm: snake_case_ : int = self.params.special_tok_ids['pad_token'] else: snake_case_ : Dict = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids] assert len(tk_ ) == len(_A ) assert all(len(_A ) == max_seq_len_ for t in tk_ ) snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs) return tk_t, lg_t
327
1
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Tuple , _A : pyspark.sql.DataFrame , _A : Optional[NamedSplit] = None , _A : Optional[Features] = None , _A : bool = True , _A : str = None , _A : bool = False , _A : str = None , _A : bool = True , _A : str = "arrow" , **_A : Tuple , ) -> List[str]: """simple docstring""" super().__init__( split=_A , features=_A , cache_dir=_A , keep_in_memory=_A , streaming=_A , **_A , ) snake_case_ : int = load_from_cache_file snake_case_ : List[str] = file_format snake_case_ : int = Spark( df=_A , features=_A , cache_dir=_A , working_dir=_A , **_A , ) def UpperCAmelCase_ ( self : List[Any] ) -> str: """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) snake_case_ : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_A , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
327
def SCREAMING_SNAKE_CASE__ ( __a , __a ): while b: snake_case_ ,snake_case_ : Any = b, a % b return a def SCREAMING_SNAKE_CASE__ ( __a , __a ): return a if b == 0 else euclidean_gcd_recursive(__a , a % b ) def SCREAMING_SNAKE_CASE__ ( ): print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
327
1
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Dict ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights snake_case_ : str = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_A , cache_dir=_A ) snake_case_ : List[Any] = [t[-1] for t in os.walk(os.path.join(_A , os.listdir(_A )[0] , 'snapshots' ) )] snake_case_ : int = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ ,snake_case_ : Dict = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_A ) snake_case_ : Union[str, Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) snake_case_ : Optional[int] = jax.random.PRNGKey(0 ) snake_case_ : int = 4 snake_case_ : Any = jax.device_count() snake_case_ : List[Any] = num_samples * [prompt] snake_case_ : str = pipeline.prepare_inputs(_A ) # shard inputs and rng snake_case_ : Optional[int] = replicate(_A ) snake_case_ : List[Any] = jax.random.split(_A , _A ) snake_case_ : Optional[int] = shard(_A ) snake_case_ : str = pipeline(_A , _A , _A , _A , jit=_A ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1E-3 assert np.abs(np.abs(_A , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5E-1 snake_case_ : int = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_A ) == num_samples def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: """simple docstring""" snake_case_ ,snake_case_ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_A ) snake_case_ : Optional[int] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) snake_case_ : Optional[int] = jax.random.PRNGKey(0 ) snake_case_ : int = 50 snake_case_ : List[str] = jax.device_count() snake_case_ : str = num_samples * [prompt] snake_case_ : Optional[int] = pipeline.prepare_inputs(_A ) # shard inputs and rng snake_case_ : List[Any] = replicate(_A ) snake_case_ : Optional[int] = jax.random.split(_A , _A ) snake_case_ : int = shard(_A ) snake_case_ : Dict = pipeline(_A , _A , _A , _A , jit=_A ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1E-3 assert np.abs((np.abs(_A , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5E-1 def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case_ ,snake_case_ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_A ) snake_case_ : int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) snake_case_ : Any = jax.random.PRNGKey(0 ) snake_case_ : Union[str, Any] = 50 snake_case_ : Dict = jax.device_count() snake_case_ : List[str] = num_samples * [prompt] snake_case_ : int = pipeline.prepare_inputs(_A ) # shard inputs and rng snake_case_ : Optional[int] = replicate(_A ) snake_case_ : Tuple = jax.random.split(_A , _A ) snake_case_ : List[Any] = shard(_A ) snake_case_ : str = pipeline(_A , _A , _A , _A , jit=_A ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1E-3 assert np.abs((np.abs(_A , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5E-1 def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ ,snake_case_ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) snake_case_ : str = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) snake_case_ : List[str] = jax.random.PRNGKey(0 ) snake_case_ : List[Any] = 50 snake_case_ : Any = jax.device_count() snake_case_ : Union[str, Any] = num_samples * [prompt] snake_case_ : Dict = pipeline.prepare_inputs(_A ) # shard inputs and rng snake_case_ : Optional[Any] = replicate(_A ) snake_case_ : str = jax.random.split(_A , _A ) snake_case_ : Union[str, Any] = shard(_A ) snake_case_ : List[Any] = pipeline(_A , _A , _A , _A , jit=_A ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1E-3 assert np.abs((np.abs(_A , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5E-1 def UpperCAmelCase_ ( self : str ) -> str: """simple docstring""" snake_case_ : Optional[Any] = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_A , steps_offset=1 , ) snake_case_ ,snake_case_ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_A , safety_checker=_A , ) snake_case_ : List[Any] = scheduler.create_state() snake_case_ : Optional[int] = scheduler_state snake_case_ : Union[str, Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) snake_case_ : Union[str, Any] = jax.random.PRNGKey(0 ) snake_case_ : Optional[int] = 50 snake_case_ : int = jax.device_count() snake_case_ : List[Any] = num_samples * [prompt] snake_case_ : str = pipeline.prepare_inputs(_A ) # shard inputs and rng snake_case_ : int = replicate(_A ) snake_case_ : Dict = jax.random.split(_A , _A ) snake_case_ : Optional[int] = shard(_A ) snake_case_ : Dict = pipeline(_A , _A , _A , _A , jit=_A ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1E-3 assert np.abs((np.abs(_A , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5E-1 def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case_ : List[str] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) snake_case_ : Dict = jax.device_count() snake_case_ : Optional[Any] = num_samples * [prompt] snake_case_ : List[str] = jax.random.split(jax.random.PRNGKey(0 ) , _A ) snake_case_ ,snake_case_ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_A , ) snake_case_ : Any = replicate(_A ) snake_case_ : Optional[Any] = pipeline.prepare_inputs(_A ) snake_case_ : int = shard(_A ) snake_case_ : List[Any] = pipeline(_A , _A , _A , jit=_A ).images assert images.shape == (num_samples, 1, 512, 512, 3) snake_case_ : Optional[Any] = images[2, 0, 256, 10:17, 1] # With memory efficient attention snake_case_ ,snake_case_ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_A , use_memory_efficient_attention=_A , ) snake_case_ : str = replicate(_A ) snake_case_ : Tuple = pipeline.prepare_inputs(_A ) snake_case_ : Union[str, Any] = shard(_A ) snake_case_ : Union[str, Any] = pipeline(_A , _A , _A , jit=_A ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) snake_case_ : Optional[int] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
327
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE = get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : Dict = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Dict = os.path.join(__a , __a ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Dict = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Dict = os.path.join(__a , __a ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving model to {ckpt_dir}""" ) snake_case_ : int = {'model': state_dict} dist_cp.save_state_dict( state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Optional[Any] = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[Any] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Optional[Any] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Tuple = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Tuple = ( os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) snake_case_ : List[Any] = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , ) snake_case_ : Any = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ : str = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : Any = os.path.join(__a , __a ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__a , __a ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ : Union[str, Any] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : List[Any] = os.path.join(__a , __a ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: snake_case_ : str = ( os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) snake_case_ : Any = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , ) snake_case_ : Optional[int] = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a ) optimizer.load_state_dict(__a )
327
1
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: List[str] = "" __magic_name__: Optional[Any] = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self : List[Any] , _A : Optional[DatasetInfo] = None , _A : Optional[str] = None , **_A : List[str] , ) -> int: """simple docstring""" super().__init__(self , **_A ) snake_case_ : Tuple = repo_info snake_case_ : Optional[int] = token snake_case_ : str = None def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" if self.dir_cache is None: snake_case_ : str = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes snake_case_ : Optional[int] = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_A ): {'name': str(_A ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str = "rb" , **_A : Union[str, Any] , ) -> List[str]: """simple docstring""" if not isinstance(self.repo_info , _A ): raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) snake_case_ : Optional[int] = hf_hub_url(self.repo_info.id , _A , revision=self.repo_info.sha ) return fsspec.open( _A , mode=_A , headers=get_authentication_headers_for_url(_A , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def UpperCAmelCase_ ( self : Optional[int] , _A : str , **_A : int ) -> List[Any]: """simple docstring""" self._get_dirs() snake_case_ : Optional[Any] = self._strip_protocol(_A ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_A ) def UpperCAmelCase_ ( self : Tuple , _A : Tuple , _A : str=False , **_A : List[Any] ) -> List[str]: """simple docstring""" self._get_dirs() snake_case_ : List[Any] = PurePosixPath(path.strip('/' ) ) snake_case_ : Optional[int] = {} for p, f in self.dir_cache.items(): snake_case_ : Optional[int] = PurePosixPath(p.strip('/' ) ) snake_case_ : str = p.parent if root == path: snake_case_ : List[str] = f snake_case_ : List[Any] = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
327
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _A : bool = True , _A : Tuple=7 , _A : Tuple=30 , _A : int=400 , _A : Tuple=3 , ) -> Optional[int]: """simple docstring""" snake_case_ : str = parent snake_case_ : str = do_resize snake_case_ : str = size if size is not None else {'shortest_edge': 288} snake_case_ : Any = size_divisor snake_case_ : Any = do_rescale snake_case_ : Union[str, Any] = rescale_factor snake_case_ : str = do_normalize snake_case_ : int = do_center_crop snake_case_ : str = image_mean snake_case_ : int = image_std snake_case_ : Any = do_pad snake_case_ : Optional[int] = batch_size snake_case_ : List[str] = num_channels snake_case_ : Any = min_resolution snake_case_ : str = max_resolution def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self : Dict , _A : str , _A : Union[str, Any]=False ) -> int: """simple docstring""" if not batched: snake_case_ : Optional[int] = self.size['shortest_edge'] snake_case_ : List[Any] = image_inputs[0] if isinstance(_A , Image.Image ): snake_case_ ,snake_case_ : Optional[Any] = image.size else: snake_case_ ,snake_case_ : str = image.shape[1], image.shape[2] snake_case_ : Dict = size / min(_A , _A ) if h < w: snake_case_ ,snake_case_ : str = size, scale * w else: snake_case_ ,snake_case_ : Tuple = scale * h, size snake_case_ : Dict = int((1333 / 800) * size ) if max(_A , _A ) > max_size: snake_case_ : Union[str, Any] = max_size / max(_A , _A ) snake_case_ : Any = newh * scale snake_case_ : Union[str, Any] = neww * scale snake_case_ ,snake_case_ : Any = int(newh + 0.5 ), int(neww + 0.5 ) snake_case_ ,snake_case_ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: snake_case_ : Optional[int] = [] for image in image_inputs: snake_case_ ,snake_case_ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : str = max(_A , key=lambda _A : item[0] )[0] snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'size_divisor' ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : List[str] = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Any = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : str = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
327
1
def SCREAMING_SNAKE_CASE__ ( __a ): if not grid or not grid[0]: raise TypeError('The grid does not contain the appropriate information' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] snake_case_ : List[Any] = grid[0] for row_n in range(1 , len(__a ) ): snake_case_ : List[Any] = grid[row_n] snake_case_ : Optional[int] = fill_row(__a , __a ) snake_case_ : List[str] = grid[row_n] return grid[-1][-1] def SCREAMING_SNAKE_CASE__ ( __a , __a ): current_row[0] += row_above[0] for cell_n in range(1 , len(__a ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
327
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _SCREAMING_SNAKE_CASE = 50_00_00 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = os.path.split(__file__) _SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : int = dataset.map(**__a ) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : Dict = dataset.filter(**__a ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Tuple = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Dict = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) snake_case_ : List[Any] = generate_example_dataset( os.path.join(__a , 'dataset.arrow' ) , __a , num_examples=__a ) snake_case_ : str = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__a ) def tokenize(__a ): return tokenizer(examples['text'] ) snake_case_ : Any = map(__a ) snake_case_ : Tuple = map(__a , batched=__a ) snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='numpy' ): snake_case_ : Optional[int] = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='pandas' ): snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='torch' , columns='numbers' ): snake_case_ : int = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): snake_case_ : List[Any] = map(__a , function=lambda __a : None , batched=__a ) snake_case_ : int = map(__a , function=__a , batched=__a ) snake_case_ : Optional[Any] = filter(__a ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__a , 'wb' ) as f: f.write(json.dumps(__a ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
327
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _SCREAMING_SNAKE_CASE = """pt""" elif is_tf_available(): _SCREAMING_SNAKE_CASE = """tf""" else: _SCREAMING_SNAKE_CASE = """jax""" class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: List[Any] = PerceiverTokenizer __magic_name__: List[str] = False def UpperCAmelCase_ ( self : List[Any] ) -> Any: """simple docstring""" super().setUp() snake_case_ : Optional[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase_ ( self : int ) -> int: """simple docstring""" return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def UpperCAmelCase_ ( self : Union[str, Any] , **_A : List[Any] ) -> PerceiverTokenizer: """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase_ ( self : List[str] , _A : Any , _A : List[str]=False , _A : Tuple=20 , _A : Dict=5 ) -> Tuple[str, list]: """simple docstring""" snake_case_ : List[str] = [] for i in range(len(_A ) ): try: snake_case_ : List[str] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case_ : Optional[int] = list(filter(lambda _A : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _A ) ) snake_case_ : Dict = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: snake_case_ : Union[str, Any] = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: snake_case_ : Dict = toks + toks # toks_str = [t[1] for t in toks] snake_case_ : List[Any] = [t[0] for t in toks] # Ensure consistency snake_case_ : str = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: snake_case_ : Tuple = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: snake_case_ : Union[str, Any] = ' ' + output_txt snake_case_ : Optional[int] = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = self.perceiver_tokenizer snake_case_ : Optional[Any] = 'Unicode €.' snake_case_ : Any = tokenizer(_A ) snake_case_ : List[str] = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _A ) # decoding snake_case_ : List[Any] = tokenizer.decode(_A ) self.assertEqual(_A , '[CLS]Unicode €.[SEP]' ) snake_case_ : Optional[int] = tokenizer('e è é ê ë' ) snake_case_ : Optional[int] = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _A ) # decoding snake_case_ : Dict = tokenizer.decode(_A ) self.assertEqual(_A , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: """simple docstring""" snake_case_ : Union[str, Any] = self.perceiver_tokenizer snake_case_ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off snake_case_ : Optional[int] = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on snake_case_ : List[str] = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": snake_case_ : Optional[int] = list(batch.input_ids.numpy()[0] ) else: snake_case_ : Union[str, Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" snake_case_ : List[Any] = self.perceiver_tokenizer snake_case_ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case_ : Union[str, Any] = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _A ) self.assertIn('attention_mask' , _A ) self.assertNotIn('decoder_input_ids' , _A ) self.assertNotIn('decoder_attention_mask' , _A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" snake_case_ : Any = self.perceiver_tokenizer snake_case_ : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] snake_case_ : Optional[Any] = tokenizer( text_target=_A , max_length=32 , padding='max_length' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def UpperCAmelCase_ ( self : Any ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test snake_case_ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case_ : List[Any] = tempfile.mkdtemp() snake_case_ : Dict = ' He is very happy, UNwant\u00E9d,running' snake_case_ : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) snake_case_ : Optional[Any] = tokenizer.__class__.from_pretrained(_A ) snake_case_ : Tuple = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) snake_case_ : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case_ : Union[str, Any] = tempfile.mkdtemp() snake_case_ : int = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) snake_case_ : Tuple = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) snake_case_ : Tuple = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) snake_case_ : Tuple = tokenizer.__class__.from_pretrained(_A ) snake_case_ : Union[str, Any] = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) snake_case_ : Any = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" snake_case_ : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: snake_case_ : Dict = json.load(_A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: snake_case_ : List[str] = json.load(_A ) snake_case_ : Optional[Any] = [F"""<extra_id_{i}>""" for i in range(125 )] snake_case_ : Dict = added_tokens_extra_ids + [ 'an_additional_special_token' ] snake_case_ : str = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_A , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case_ : Optional[Any] = tokenizer_class.from_pretrained( _A , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case_ : Optional[Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_A )] snake_case_ : int = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def UpperCAmelCase_ ( self : Dict ) -> Tuple: """simple docstring""" snake_case_ : Union[str, Any] = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : List[Any] ) -> int: """simple docstring""" pass def UpperCAmelCase_ ( self : Dict ) -> List[Any]: """simple docstring""" snake_case_ : Tuple = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case_ : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] snake_case_ : List[str] = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A )
327
from collections import namedtuple import requests from lxml import html # type: ignore _SCREAMING_SNAKE_CASE = namedtuple("""covid_data""", """cases deaths recovered""") def SCREAMING_SNAKE_CASE__ ( __a = "https://www.worldometers.info/coronavirus/" ): snake_case_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) ) _SCREAMING_SNAKE_CASE = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
327
1
_SCREAMING_SNAKE_CASE = { """a""": """AAAAA""", """b""": """AAAAB""", """c""": """AAABA""", """d""": """AAABB""", """e""": """AABAA""", """f""": """AABAB""", """g""": """AABBA""", """h""": """AABBB""", """i""": """ABAAA""", """j""": """BBBAA""", """k""": """ABAAB""", """l""": """ABABA""", """m""": """ABABB""", """n""": """ABBAA""", """o""": """ABBAB""", """p""": """ABBBA""", """q""": """ABBBB""", """r""": """BAAAA""", """s""": """BAAAB""", """t""": """BAABA""", """u""": """BAABB""", """v""": """BBBAB""", """w""": """BABAA""", """x""": """BABAB""", """y""": """BABBA""", """z""": """BABBB""", """ """: """ """, } _SCREAMING_SNAKE_CASE = {value: key for key, value in encode_dict.items()} def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : List[str] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def SCREAMING_SNAKE_CASE__ ( __a ): if set(__a ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) snake_case_ : List[Any] = '' for word in coded.split(): while len(__a ) != 0: decoded += decode_dict[word[:5]] snake_case_ : str = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
327
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": 5_12, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: List[Any] = VOCAB_FILES_NAMES __magic_name__: List[str] = PRETRAINED_VOCAB_FILES_MAP __magic_name__: List[str] = PRETRAINED_INIT_CONFIGURATION __magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__: Union[str, Any] = LxmertTokenizer def __init__( self : List[str] , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=True , _A : Dict="[UNK]" , _A : Optional[int]="[SEP]" , _A : Dict="[PAD]" , _A : Union[str, Any]="[CLS]" , _A : str="[MASK]" , _A : Tuple=True , _A : Dict=None , **_A : List[Any] , ) -> Optional[int]: """simple docstring""" super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _A ) != do_lower_case or normalizer_state.get('strip_accents' , _A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars ): snake_case_ : Tuple = getattr(_A , normalizer_state.pop('type' ) ) snake_case_ : Union[str, Any] = do_lower_case snake_case_ : int = strip_accents snake_case_ : Optional[Any] = tokenize_chinese_chars snake_case_ : List[Any] = normalizer_class(**_A ) snake_case_ : Tuple = do_lower_case def UpperCAmelCase_ ( self : Dict , _A : Any , _A : List[Any]=None ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : str = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
327
1
def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Union[str, Any] = 1 for i in range(1 , num + 1 ): fact *= i return fact def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : int = 0 while number > 0: snake_case_ : Union[str, Any] = number % 10 sum_of_digits += last_digit snake_case_ : int = number // 10 # Removing the last_digit from the given number return sum_of_digits def SCREAMING_SNAKE_CASE__ ( __a = 1_00 ): snake_case_ : Tuple = factorial(__a ) snake_case_ : Union[str, Any] = split_and_add(__a ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
327
def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): snake_case_ : int = f"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 0: return False snake_case_ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
327
1
import random from .binary_exp_mod import bin_exp_mod def SCREAMING_SNAKE_CASE__ ( __a , __a=10_00 ): if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd snake_case_ : List[Any] = n - 1 snake_case_ : str = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) snake_case_ : List[str] = 0 while count < prec: snake_case_ : int = random.randint(2 , n - 1 ) snake_case_ : Optional[int] = bin_exp_mod(__a , __a , __a ) if b != 1: snake_case_ : str = True for _ in range(__a ): if b == n - 1: snake_case_ : Tuple = False break snake_case_ : Tuple = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _SCREAMING_SNAKE_CASE = abs(int(input("""Enter bound : """).strip())) print("""Here's the list of primes:""") print(""", """.join(str(i) for i in range(n + 1) if is_prime_big(i)))
327
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
1
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : str = None if token is not None: snake_case_ : Optional[int] = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} snake_case_ : Dict = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" snake_case_ : str = requests.get(__a , headers=__a ).json() snake_case_ : str = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) snake_case_ : Optional[Any] = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(__a ): snake_case_ : List[Any] = requests.get(url + f"""&page={i + 2}""" , headers=__a ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : List[Any] = None if token is not None: snake_case_ : List[str] = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} snake_case_ : Optional[int] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" snake_case_ : Dict = requests.get(__a , headers=__a ).json() snake_case_ : str = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) snake_case_ : Optional[Any] = math.ceil((result['total_count'] - 1_00) / 1_00 ) for i in range(__a ): snake_case_ : Any = requests.get(url + f"""&page={i + 2}""" , headers=__a ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a ): snake_case_ : Any = None if token is not None: snake_case_ : Tuple = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} snake_case_ : Union[str, Any] = requests.get(__a , headers=__a , allow_redirects=__a ) snake_case_ : str = result.headers['Location'] snake_case_ : Union[str, Any] = requests.get(__a , allow_redirects=__a ) snake_case_ : int = os.path.join(__a , f"""{artifact_name}.zip""" ) with open(__a , 'wb' ) as fp: fp.write(response.content ) def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Optional[Any] = [] snake_case_ : str = [] snake_case_ : List[Any] = None with zipfile.ZipFile(__a ) as z: for filename in z.namelist(): if not os.path.isdir(__a ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__a ) as f: for line in f: snake_case_ : str = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs snake_case_ : Optional[Any] = line[: line.index(': ' )] snake_case_ : Optional[int] = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed snake_case_ : str = line[len('FAILED ' ) :] failed_tests.append(__a ) elif filename == "job_name.txt": snake_case_ : int = line if len(__a ) != len(__a ): raise ValueError( f"""`errors` and `failed_tests` should have the same number of elements. Got {len(__a )} for `errors` """ f"""and {len(__a )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" ' problem.' ) snake_case_ : Optional[int] = None if job_name and job_links: snake_case_ : Union[str, Any] = job_links.get(__a , __a ) # A list with elements of the form (line of error, error, failed test) snake_case_ : int = [x + [y] + [job_link] for x, y in zip(__a , __a )] return result def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : List[str] = [] snake_case_ : Any = [os.path.join(__a , __a ) for p in os.listdir(__a ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(__a , job_links=__a ) ) return errors def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : Optional[Any] = Counter() counter.update([x[1] for x in logs] ) snake_case_ : Union[str, Any] = counter.most_common() snake_case_ : List[Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: snake_case_ : str = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} snake_case_ : List[str] = dict(sorted(r.items() , key=lambda __a : item[1]["count"] , reverse=__a ) ) return r def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Optional[Any] = test.split('::' )[0] if test.startswith('tests/models/' ): snake_case_ : Any = test.split('/' )[2] else: snake_case_ : Optional[Any] = None return test def SCREAMING_SNAKE_CASE__ ( __a , __a=None ): snake_case_ : int = [(x[0], x[1], get_model(x[2] )) for x in logs] snake_case_ : List[Any] = [x for x in logs if x[2] is not None] snake_case_ : List[Any] = {x[2] for x in logs} snake_case_ : Tuple = {} for test in tests: snake_case_ : Dict = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) snake_case_ : Optional[Any] = counter.most_common() snake_case_ : Optional[Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} snake_case_ : Tuple = sum(error_counts.values() ) if n_errors > 0: snake_case_ : int = {'count': n_errors, 'errors': error_counts} snake_case_ : Dict = dict(sorted(r.items() , key=lambda __a : item[1]["count"] , reverse=__a ) ) return r def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Tuple = '| no. | error | status |' snake_case_ : str = '|-:|:-|:-|' snake_case_ : Any = [header, sep] for error in reduced_by_error: snake_case_ : List[Any] = reduced_by_error[error]['count'] snake_case_ : str = f"""| {count} | {error[:1_00]} | |""" lines.append(__a ) return "\n".join(__a ) def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : str = '| model | no. of errors | major error | count |' snake_case_ : Any = '|-:|-:|-:|-:|' snake_case_ : Optional[int] = [header, sep] for model in reduced_by_model: snake_case_ : Tuple = reduced_by_model[model]['count'] snake_case_ ,snake_case_ : Optional[int] = list(reduced_by_model[model]['errors'].items() )[0] snake_case_ : int = f"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(__a ) return "\n".join(__a ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") _SCREAMING_SNAKE_CASE = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _SCREAMING_SNAKE_CASE = get_job_links(args.workflow_run_id, token=args.token) _SCREAMING_SNAKE_CASE = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _SCREAMING_SNAKE_CASE = k.find(""" / """) _SCREAMING_SNAKE_CASE = k[index + len(""" / """) :] _SCREAMING_SNAKE_CASE = v with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _SCREAMING_SNAKE_CASE = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _SCREAMING_SNAKE_CASE = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _SCREAMING_SNAKE_CASE = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _SCREAMING_SNAKE_CASE = reduce_by_error(errors) _SCREAMING_SNAKE_CASE = reduce_by_model(errors) _SCREAMING_SNAKE_CASE = make_github_table(reduced_by_error) _SCREAMING_SNAKE_CASE = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa) with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa)
327
from typing import Dict from .base import GenericTensor, Pipeline class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def UpperCAmelCase_ ( self : str , _A : Optional[Any]=None , _A : List[str]=None , _A : Optional[Any]=None , **_A : List[str] ) -> Any: """simple docstring""" if tokenize_kwargs is None: snake_case_ : Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) snake_case_ : int = truncation snake_case_ : Optional[int] = tokenize_kwargs snake_case_ : Dict = {} if return_tensors is not None: snake_case_ : Union[str, Any] = return_tensors return preprocess_params, {}, postprocess_params def UpperCAmelCase_ ( self : Optional[int] , _A : int , **_A : Any ) -> Dict[str, GenericTensor]: """simple docstring""" snake_case_ : Dict = self.framework snake_case_ : Any = self.tokenizer(_A , return_tensors=_A , **_A ) return model_inputs def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] ) -> int: """simple docstring""" snake_case_ : Tuple = self.model(**_A ) return model_outputs def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str=False ) -> Any: """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> List[str]: """simple docstring""" return super().__call__(*_A , **_A )
327
1
_SCREAMING_SNAKE_CASE = """Alexander Joslin""" import operator as op from .stack import Stack def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : List[Any] = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} snake_case_ : Stack[int] = Stack() snake_case_ : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__a ) ) elif i in operators: # RULE 2 operator_stack.push(__a ) elif i == ")": # RULE 4 snake_case_ : Tuple = operator_stack.peek() operator_stack.pop() snake_case_ : Union[str, Any] = operand_stack.peek() operand_stack.pop() snake_case_ : List[str] = operand_stack.peek() operand_stack.pop() snake_case_ : Optional[int] = operators[opr](__a , __a ) operand_stack.push(__a ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
327
from itertools import permutations def SCREAMING_SNAKE_CASE__ ( __a ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False snake_case_ : Any = [7, 11, 13, 17] for i, test in enumerate(__a ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE__ ( __a = 10 ): return sum( int(''.join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(F'''{solution() = }''')
327
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: str = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True} ) __magic_name__: ClassVar[Features] = Features({"text": Value("string" )} ) __magic_name__: ClassVar[Features] = Features({} ) __magic_name__: str = "text" @property def UpperCAmelCase_ ( self : Any ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
327
from __future__ import annotations from collections import namedtuple def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Any = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
327
1
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
327
import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _SCREAMING_SNAKE_CASE = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _SCREAMING_SNAKE_CASE = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : int , _A : Tuple , _A : Tuple , _A : str=None , _A : Dict=False , _A : Tuple=False , _A : str=False , ) -> Tuple: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case_ : List[Any] = np.array([re.sub(_A , '' , _A ) for x in predictions] ) snake_case_ : Optional[Any] = np.array([re.sub(_A , '' , _A ) for x in references] ) else: snake_case_ : Dict = np.asarray(_A ) snake_case_ : Tuple = np.asarray(_A ) if ignore_case: snake_case_ : List[str] = np.char.lower(_A ) snake_case_ : Any = np.char.lower(_A ) if ignore_punctuation: snake_case_ : int = string.punctuation.maketrans('' , '' , string.punctuation ) snake_case_ : Tuple = np.char.translate(_A , table=_A ) snake_case_ : str = np.char.translate(_A , table=_A ) if ignore_numbers: snake_case_ : Optional[int] = string.digits.maketrans('' , '' , string.digits ) snake_case_ : str = np.char.translate(_A , table=_A ) snake_case_ : Union[str, Any] = np.char.translate(_A , table=_A ) snake_case_ : int = predictions == references return {"exact_match": np.mean(_A ) * 100}
327
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( __a , __a=False ): snake_case_ : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""module.blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""module.blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""module.blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""module.blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""module.blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""module.blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""module.blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case_ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( __a , __a , __a=False ): for i in range(config.num_hidden_layers ): if base_model: snake_case_ : List[str] = '' else: snake_case_ : Tuple = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ : Any = state_dict.pop(f"""module.blocks.{i}.attn.qkv.weight""" ) snake_case_ : List[Any] = state_dict.pop(f"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case_ : List[str] = in_proj_weight[ : config.hidden_size, : ] snake_case_ : Dict = in_proj_bias[: config.hidden_size] snake_case_ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ : int = in_proj_weight[ -config.hidden_size :, : ] snake_case_ : List[Any] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : str = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__a , __a ) def SCREAMING_SNAKE_CASE__ ( __a ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. snake_case_ : List[Any] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(__a , __a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Tuple = dct.pop(__a ) snake_case_ : Dict = val def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Optional[int] = ViTMSNConfig() snake_case_ : Union[str, Any] = 10_00 snake_case_ : int = 'datasets/huggingface/label-files' snake_case_ : Tuple = 'imagenet-1k-id2label.json' snake_case_ : int = json.load(open(hf_hub_download(__a , __a ) , 'r' ) ) snake_case_ : int = {int(__a ): v for k, v in idalabel.items()} snake_case_ : List[Any] = idalabel snake_case_ : Any = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: snake_case_ : Optional[int] = 3_84 snake_case_ : Dict = 15_36 snake_case_ : Optional[Any] = 6 elif "l16" in checkpoint_url: snake_case_ : Dict = 10_24 snake_case_ : Optional[int] = 40_96 snake_case_ : Union[str, Any] = 24 snake_case_ : int = 16 snake_case_ : Dict = 0.1 elif "b4" in checkpoint_url: snake_case_ : str = 4 elif "l7" in checkpoint_url: snake_case_ : str = 7 snake_case_ : Tuple = 10_24 snake_case_ : Optional[int] = 40_96 snake_case_ : Any = 24 snake_case_ : Tuple = 16 snake_case_ : str = 0.1 snake_case_ : Tuple = ViTMSNModel(__a ) snake_case_ : Any = torch.hub.load_state_dict_from_url(__a , map_location='cpu' )['target_encoder'] snake_case_ : int = ViTImageProcessor(size=config.image_size ) remove_projection_head(__a ) snake_case_ : Dict = create_rename_keys(__a , base_model=__a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_q_k_v(__a , __a , base_model=__a ) model.load_state_dict(__a ) model.eval() snake_case_ : str = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ : int = Image.open(requests.get(__a , stream=__a ).raw ) snake_case_ : Union[str, Any] = ViTImageProcessor( size=config.image_size , image_mean=__a , image_std=__a ) snake_case_ : List[Any] = image_processor(images=__a , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) snake_case_ : Dict = model(**__a ) snake_case_ : List[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: snake_case_ : Tuple = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: snake_case_ : Optional[int] = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: snake_case_ : str = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: snake_case_ : Optional[Any] = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: snake_case_ : str = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __a , atol=1E-4 ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
327
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , _A : Optional[Any] , _A : Dict=13 , _A : Union[str, Any]=30 , _A : Tuple=2 , _A : Union[str, Any]=3 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : str=32 , _A : int=2 , _A : List[str]=4 , _A : List[str]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=10 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=3 , _A : str=0.6 , _A : Union[str, Any]=None , ) -> Any: """simple docstring""" snake_case_ : Optional[int] = parent snake_case_ : Tuple = batch_size snake_case_ : List[Any] = image_size snake_case_ : List[str] = patch_size snake_case_ : List[str] = num_channels snake_case_ : Optional[Any] = is_training snake_case_ : Any = use_labels snake_case_ : Tuple = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Tuple = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[Any] = mask_ratio snake_case_ : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case_ : Optional[int] = (image_size // patch_size) ** 2 snake_case_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Union[str, Any] = None if self.use_labels: snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : int ) -> Optional[Any]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : Dict , _A : str ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = TFViTMAEModel(config=_A ) snake_case_ : str = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : Any , _A : List[Any] ) -> int: """simple docstring""" snake_case_ : Any = TFViTMAEForPreTraining(_A ) snake_case_ : Optional[Any] = model(_A , training=_A ) # expected sequence length = num_patches snake_case_ : List[str] = (self.image_size // self.patch_size) ** 2 snake_case_ : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case_ : str = 1 snake_case_ : Dict = TFViTMAEForPreTraining(_A ) snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : List[str] = model(_A , training=_A ) snake_case_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = self.prepare_config_and_inputs() ((snake_case_) ,(snake_case_) ,(snake_case_)) : Any = config_and_inputs snake_case_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __magic_name__: str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} __magic_name__: Dict = False __magic_name__: Dict = False __magic_name__: List[Any] = False __magic_name__: Dict = False def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" snake_case_ : List[Any] = TFViTMAEModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" snake_case_ ,snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: """simple docstring""" snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[str] = model_class(_A ) snake_case_ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Dict = [*signature.parameters.keys()] snake_case_ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Union[str, Any] = self._prepare_for_class(_A , _A ) snake_case_ : List[str] = model(_A , noise=_A ) snake_case_ : Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) ) snake_case_ : str = model(**_A , noise=_A ) snake_case_ : Union[str, Any] = outputs_dict[0].numpy() snake_case_ : Optional[Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Tuple = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_A : int ): snake_case_ : Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(_A ): snake_case_ : str = v.numpy() else: snake_case_ : Optional[Any] = np.array(_A ) return inputs_np_dict for model_class in self.all_model_classes: snake_case_ : int = model_class(_A ) snake_case_ : List[Any] = self._prepare_for_class(_A , _A ) snake_case_ : Any = prepare_numpy_arrays(_A ) snake_case_ : List[Any] = model(_A , noise=_A ) snake_case_ : List[Any] = model(**_A , noise=_A ) self.assert_outputs_same(_A , _A ) def UpperCAmelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> List[str]: """simple docstring""" np.random.seed(2 ) snake_case_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.constant(_A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case_ : Optional[Any] = tf_noise super().check_pt_tf_models(_A , _A , _A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_A ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(_A , _A ),) if isinstance(_A , _A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_A , '_keras_serializable' , _A ) } snake_case_ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.convert_to_tensor(_A ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: snake_case_ : Optional[Any] = main_layer_class(_A ) snake_case_ : List[str] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } snake_case_ : Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) ) snake_case_ : int = model(_A ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[Any] = os.path.join(_A , 'keras_model.h5' ) model.save(_A ) snake_case_ : str = tf.keras.models.load_model( _A , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_A , tf.keras.Model ) snake_case_ : List[str] = model(_A ) self.assert_outputs_same(_A , _A ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Optional[Any] = self._prepare_for_class(_A , _A ) snake_case_ : int = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Any = outputs.last_hidden_state.numpy() snake_case_ : Optional[int] = 0 else: snake_case_ : str = outputs.logits.numpy() snake_case_ : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) snake_case_ : Any = model_class.from_pretrained(_A ) snake_case_ : Any = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Dict = after_outputs['last_hidden_state'].numpy() snake_case_ : Dict = 0 else: snake_case_ : Any = after_outputs['logits'].numpy() snake_case_ : Optional[Any] = 0 snake_case_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) def UpperCAmelCase_ ( self : Any ) -> str: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : str = model_class(_A ) snake_case_ : int = self._prepare_for_class(_A , _A ) snake_case_ : str = model(_A , noise=_A ) snake_case_ : Dict = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_A ) snake_case_ : Any = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config snake_case_ : str = model_class.from_config(model.config ) snake_case_ : Union[str, Any] = new_model(_A ) # Build model new_model.set_weights(model.get_weights() ) snake_case_ : List[str] = new_model(_A , noise=_A ) self.assert_outputs_same(_A , _A ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @slow def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_A ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ : List[str] = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) snake_case_ : List[Any] = self.default_image_processor snake_case_ : Dict = prepare_img() snake_case_ : Optional[Any] = image_processor(images=_A , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case_ : int = ViTMAEConfig() snake_case_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass snake_case_ : Optional[Any] = model(**_A , noise=_A ) # verify the logits snake_case_ : Optional[int] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _A ) snake_case_ : Any = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
327
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : list[list[int]] = [] snake_case_ : list[int] = [] snake_case_ : List[Any] = 0 snake_case_ : Union[str, Any] = sum(__a ) create_state_space_tree(__a , __a , __a , __a , __a , __a ) return result def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ): if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum: return if sum(__a ) == max_sum: result.append(__a ) return for index in range(__a , len(__a ) ): create_state_space_tree( __a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , ) _SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2] _SCREAMING_SNAKE_CASE = 9 _SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
327
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } _SCREAMING_SNAKE_CASE = { """gpt-neox-20b""": 20_48, } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[Any] = VOCAB_FILES_NAMES __magic_name__: Dict = PRETRAINED_VOCAB_FILES_MAP __magic_name__: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__: Optional[Any] = ["input_ids", "attention_mask"] def __init__( self : Any , _A : int=None , _A : Union[str, Any]=None , _A : List[Any]=None , _A : Any="<|endoftext|>" , _A : Optional[int]="<|endoftext|>" , _A : Optional[Any]="<|endoftext|>" , _A : List[Any]=False , **_A : Optional[int] , ) -> str: """simple docstring""" super().__init__( _A , _A , tokenizer_file=_A , unk_token=_A , bos_token=_A , eos_token=_A , add_prefix_space=_A , **_A , ) snake_case_ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _A ) != add_prefix_space: snake_case_ : int = getattr(_A , pre_tok_state.pop('type' ) ) snake_case_ : Union[str, Any] = add_prefix_space snake_case_ : Union[str, Any] = pre_tok_class(**_A ) snake_case_ : Union[str, Any] = add_prefix_space def UpperCAmelCase_ ( self : List[str] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ : Tuple = self._tokenizer.model.save(_A , name=_A ) return tuple(_A ) def UpperCAmelCase_ ( self : Dict , _A : "Conversation" ) -> List[int]: """simple docstring""" snake_case_ : Tuple = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_A , add_special_tokens=_A ) + [self.eos_token_id] ) if len(_A ) > self.model_max_length: snake_case_ : Tuple = input_ids[-self.model_max_length :] return input_ids
327
def SCREAMING_SNAKE_CASE__ ( __a , __a ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
327
1
from __future__ import annotations class SCREAMING_SNAKE_CASE_ : def __init__( self : Dict , _A : int = 0 ) -> str: """simple docstring""" snake_case_ : Union[str, Any] = key def UpperCAmelCase_ ( self : Tuple , _A : str , _A : int ) -> list[str]: """simple docstring""" assert isinstance(_A , _A ) and isinstance(_A , _A ) snake_case_ : Dict = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_A ) ^ key ) for ch in content] def UpperCAmelCase_ ( self : List[str] , _A : str , _A : int ) -> list[str]: """simple docstring""" assert isinstance(_A , _A ) and isinstance(_A , _A ) snake_case_ : int = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_A ) ^ key ) for ch in content] def UpperCAmelCase_ ( self : Dict , _A : str , _A : int = 0 ) -> str: """simple docstring""" assert isinstance(_A , _A ) and isinstance(_A , _A ) snake_case_ : Any = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned snake_case_ : List[str] = '' for ch in content: ans += chr(ord(_A ) ^ key ) return ans def UpperCAmelCase_ ( self : List[str] , _A : str , _A : int = 0 ) -> str: """simple docstring""" assert isinstance(_A , _A ) and isinstance(_A , _A ) snake_case_ : int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned snake_case_ : Dict = '' for ch in content: ans += chr(ord(_A ) ^ key ) return ans def UpperCAmelCase_ ( self : Tuple , _A : str , _A : int = 0 ) -> bool: """simple docstring""" assert isinstance(_A , _A ) and isinstance(_A , _A ) try: with open(_A ) as fin, open('encrypt.out' , 'w+' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_A , _A ) ) except OSError: return False return True def UpperCAmelCase_ ( self : Any , _A : str , _A : int ) -> bool: """simple docstring""" assert isinstance(_A , _A ) and isinstance(_A , _A ) try: with open(_A ) as fin, open('decrypt.out' , 'w+' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_A , _A ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
327
from math import pi def SCREAMING_SNAKE_CASE__ ( __a , __a ): return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
327
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: List[str] = CTRLTokenizer __magic_name__: List[str] = False __magic_name__: int = False def UpperCAmelCase_ ( self : List[str] ) -> Dict: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ : Any = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] snake_case_ : str = dict(zip(_A , range(len(_A ) ) ) ) snake_case_ : Optional[Any] = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] snake_case_ : Optional[Any] = {'unk_token': '<unk>'} snake_case_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_A ) ) def UpperCAmelCase_ ( self : Tuple , **_A : Any ) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase_ ( self : Optional[Any] , _A : Any ) -> Dict: """simple docstring""" snake_case_ : Optional[int] = 'adapt react readapt apt' snake_case_ : Dict = 'adapt react readapt apt' return input_text, output_text def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case_ : Any = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case_ : Union[str, Any] = 'adapt react readapt apt' snake_case_ : int = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() snake_case_ : Dict = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) snake_case_ : Union[str, Any] = tokens + [tokenizer.unk_token] snake_case_ : str = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A )
327
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[Any] = ["pixel_values"] def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PIL.Image.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : str , ) -> None: """simple docstring""" super().__init__(**_A ) snake_case_ : Dict = size if size is not None else {'height': 256, 'width': 256} snake_case_ : Tuple = get_size_dict(_A ) snake_case_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} snake_case_ : int = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Union[str, Any] = do_resize snake_case_ : str = size snake_case_ : List[str] = resample snake_case_ : List[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : Tuple = do_rescale snake_case_ : Optional[Any] = rescale_factor snake_case_ : Any = do_normalize snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray: """simple docstring""" snake_case_ : Tuple = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( _A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray: """simple docstring""" snake_case_ : Optional[int] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> str: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : List[str] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : Union[str, Any]=None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ) -> PIL.Image.Image: """simple docstring""" snake_case_ : int = do_resize if do_resize is not None else self.do_resize snake_case_ : str = resample if resample is not None else self.resample snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Any = image_mean if image_mean is not None else self.image_mean snake_case_ : Dict = image_std if image_std is not None else self.image_std snake_case_ : int = size if size is not None else self.size snake_case_ : Optional[int] = get_size_dict(_A ) snake_case_ : int = crop_size if crop_size is not None else self.crop_size snake_case_ : Any = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Optional[Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case_ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: snake_case_ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: snake_case_ : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images] snake_case_ : Tuple = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
327
1
import random def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Dict = a[left_index] snake_case_ : int = left_index + 1 for j in range(left_index + 1 , __a ): if a[j] < pivot: snake_case_ ,snake_case_ : Any = a[i], a[j] i += 1 snake_case_ ,snake_case_ : List[Any] = a[i - 1], a[left_index] return i - 1 def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): if left < right: snake_case_ : Any = random.randint(__a , right - 1 ) snake_case_ ,snake_case_ : Tuple = ( a[left], a[pivot], ) # switches the pivot with the left most bound snake_case_ : Dict = partition(__a , __a , __a ) quick_sort_random( __a , __a , __a ) # recursive quicksort to the left of the pivot point quick_sort_random( __a , pivot_index + 1 , __a ) # recursive quicksort to the right of the pivot point def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : List[Any] = input('Enter numbers separated by a comma:\n' ).strip() snake_case_ : Tuple = [int(__a ) for item in user_input.split(',' )] quick_sort_random(__a , 0 , len(__a ) ) print(__a ) if __name__ == "__main__": main()
327
import sys _SCREAMING_SNAKE_CASE = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE__ ( __a = N ): snake_case_ : Optional[Any] = -sys.maxsize - 1 for i in range(len(__a ) - 12 ): snake_case_ : Optional[Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case_ : int = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
327
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """facebook/timesformer""": """https://huggingface.co/facebook/timesformer/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Any = "timesformer" def __init__( self : List[str] , _A : Dict=224 , _A : Dict=16 , _A : Dict=3 , _A : List[str]=8 , _A : Optional[int]=768 , _A : Tuple=12 , _A : str=12 , _A : Union[str, Any]=3072 , _A : Tuple="gelu" , _A : Tuple=0.0 , _A : Optional[int]=0.0 , _A : int=0.0_2 , _A : Union[str, Any]=1E-6 , _A : List[Any]=True , _A : Union[str, Any]="divided_space_time" , _A : List[Any]=0 , **_A : Optional[Any] , ) -> int: """simple docstring""" super().__init__(**_A ) snake_case_ : Optional[Any] = image_size snake_case_ : Union[str, Any] = patch_size snake_case_ : int = num_channels snake_case_ : Any = num_frames snake_case_ : int = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : Dict = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[Any] = initializer_range snake_case_ : Optional[Any] = layer_norm_eps snake_case_ : int = qkv_bias snake_case_ : str = attention_type snake_case_ : Tuple = drop_path_rate
327
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __magic_name__: Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) __magic_name__: Optional[int] = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} ) __magic_name__: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} ) __magic_name__: bool = field( default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(__a , os.path.join(__a , f"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ ,snake_case_ ,snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ ,snake_case_ ,snake_case_ : List[str] = parser.parse_args_into_dataclasses() check_output_dir(__a ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , __a ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(__a , __a , __a ): assert hasattr(__a , __a ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(__a , __a , getattr(__a , __a ) ) snake_case_ : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=__a , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__a , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: snake_case_ : Any = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__a , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__a , __a ): snake_case_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang] else: snake_case_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__a ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) snake_case_ : List[Any] = SeqaSeqDataset # Get datasets snake_case_ : List[Any] = ( dataset_class( __a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) snake_case_ : List[str] = ( dataset_class( __a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) snake_case_ : List[Any] = ( dataset_class( __a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer snake_case_ : Any = ( build_compute_metrics_fn(data_args.task , __a ) if training_args.predict_with_generate else None ) snake_case_ : List[str] = SeqaSeqTrainer( model=__a , args=__a , data_args=__a , train_dataset=__a , eval_dataset=__a , data_collator=SeqaSeqDataCollator( __a , __a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__a , tokenizer=__a , ) snake_case_ : Optional[int] = {} # Training if training_args.do_train: logger.info('*** Train ***' ) snake_case_ : Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) snake_case_ : Tuple = train_result.metrics snake_case_ : List[str] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , __a , training_args.output_dir ) all_metrics.update(__a ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ : List[Any] = trainer.evaluate(metric_key_prefix='val' ) snake_case_ : str = data_args.n_val snake_case_ : Union[str, Any] = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.do_predict: logger.info('*** Predict ***' ) snake_case_ : Dict = trainer.predict(test_dataset=__a , metric_key_prefix='test' ) snake_case_ : Union[str, Any] = test_output.metrics snake_case_ : int = data_args.n_test if trainer.is_world_process_zero(): snake_case_ : List[str] = round(metrics['test_loss'] , 4 ) handle_metrics('test' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.predict_with_generate: snake_case_ : Any = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) snake_case_ : Any = lmap(str.strip , __a ) write_txt_file(__a , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(__a , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def SCREAMING_SNAKE_CASE__ ( __a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
327
1
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge _SCREAMING_SNAKE_CASE = [ """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the""" """ final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe""" """ depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.""", """The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal""" """ accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's""" """ founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the""" """ body.""", """Amnesty International releases its annual report on the death penalty. The report catalogs the use of""" """ state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the""" """ world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital""" """ punishment.""", ] _SCREAMING_SNAKE_CASE = [ """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""" """ Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz""" """ had informed his Lufthansa training school of an episode of severe depression, airline says .""", """Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .""" """ Israel and the United States opposed the move, which could open the door to war crimes investigations against""" """ Israelis .""", """Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to""" """ death . Organization claims that governments around the world are using the threat of terrorism to advance""" """ executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death""" """ sentences up by 28% .""", ] def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[int] = calculate_rouge(__a , __a , bootstrap_aggregation=__a , rouge_keys=['rouge2', 'rougeL'] ) assert isinstance(__a , __a ) snake_case_ : Optional[Any] = calculate_rouge(__a , __a , bootstrap_aggregation=__a , rouge_keys=['rouge2'] ) assert ( pd.DataFrame(no_aggregation['rouge2'] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['rouge2'] ).fmeasure.mean() ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : List[str] = 'rougeLsum' snake_case_ : Tuple = calculate_rouge(__a , __a , newline_sep=__a , rouge_keys=[k] )[k] snake_case_ : Any = calculate_rouge(__a , __a , newline_sep=__a , rouge_keys=[k] )[k] assert score > score_no_sep def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : str = ['rouge1', 'rouge2', 'rougeL'] snake_case_ : List[Any] = calculate_rouge(__a , __a , newline_sep=__a , rouge_keys=__a ) snake_case_ : List[Any] = calculate_rouge(__a , __a , newline_sep=__a , rouge_keys=__a ) assert score_sep == score_no_sep def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : str = [ 'Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.', 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .', ] snake_case_ : Any = [ 'Margot Frank, died in 1945, a month earlier than previously thought.', 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of' ' the final seconds on board Flight 9525.', ] assert calculate_rouge(__a , __a , newline_sep=__a ) == calculate_rouge(__a , __a , newline_sep=__a ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = [ '" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ' ] snake_case_ : Optional[Any] = [ ' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .' ] snake_case_ : List[str] = calculate_rouge(__a , __a , rouge_keys=['rougeLsum'] , newline_sep=__a )['rougeLsum'] snake_case_ : Union[str, Any] = calculate_rouge(__a , __a , rouge_keys=['rougeLsum'] )['rougeLsum'] assert new_score > prev_score def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Union[str, Any] = Path('examples/seq2seq/test_data/wmt_en_ro' ) snake_case_ : Any = calculate_rouge_path(data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) ) assert isinstance(__a , __a ) snake_case_ : Any = calculate_rouge_path( data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) , bootstrap_aggregation=__a ) assert isinstance(__a , __a )
327
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
327
1