code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import math_equivalence # From: git+https://github.com/hendrycks/math.git
import datasets
SCREAMING_SNAKE_CASE_: Optional[Any] ='\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n'
SCREAMING_SNAKE_CASE_: Union[str, Any] ='\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n'
SCREAMING_SNAKE_CASE_: List[Any] =r'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n'
@datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __A ( datasets.Metric ):
def _lowercase (self : Optional[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" ),
"references": datasets.Value("string" ),
} ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , )
def _lowercase (self : Tuple , __a : Optional[int] , __a : List[Any] ):
UpperCAmelCase_ = 0.0
for i, j in zip(__a , __a ):
n_correct += 1.0 if math_equivalence.is_equiv(__a , __a ) else 0.0
UpperCAmelCase_ = n_correct / len(__a )
return {
"accuracy": accuracy,
}
| 1 |
from __future__ import annotations
from collections import namedtuple
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ):
snake_case_ : Any = namedtuple('result' , 'name value' )
if (voltage, current, power).count(0 ) != 1:
raise ValueError('Only one argument must be 0' )
elif power < 0:
raise ValueError(
'Power cannot be negative in any electrical/electronics system' )
elif voltage == 0:
return result('voltage' , power / current )
elif current == 0:
return result('current' , power / voltage )
elif power == 0:
return result('power' , float(round(abs(voltage * current ) , 2 ) ) )
else:
raise ValueError('Exactly one argument must be 0' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
'''simple docstring'''
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
lowerCamelCase : Union[str, Any] = '.'
if __name__ == "__main__":
lowerCamelCase : Dict = os.path.join(REPO_PATH, 'utils/documentation_tests.txt')
lowerCamelCase : Union[str, Any] = []
lowerCamelCase : Optional[Any] = []
with open(doctest_file_path) as fp:
for line in fp:
lowerCamelCase : Union[str, Any] = line.strip()
lowerCamelCase : str = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
lowerCamelCase : List[Any] = '\n'.join(non_existent_paths)
raise ValueError(f"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""")
if all_paths != sorted(all_paths):
raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
| 2 |
import re
import string
import numpy as np
import datasets
_SCREAMING_SNAKE_CASE = """
Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.
"""
_SCREAMING_SNAKE_CASE = """
Args:
predictions: List of predicted texts.
references: List of reference texts.
regexes_to_ignore: List, defaults to None. Regex expressions of characters to
ignore when calculating the exact matches. Note: these regexes are removed
from the input data before the changes based on the options below (e.g. ignore_case,
ignore_punctuation, ignore_numbers) are applied.
ignore_case: Boolean, defaults to False. If true, turns everything
to lowercase so that capitalization differences are ignored.
ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
Returns:
exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.
Examples:
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results[\"exact_match\"], 1))
25.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results[\"exact_match\"], 1))
50.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results[\"exact_match\"], 1))
75.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)
>>> print(round(results[\"exact_match\"], 1))
100.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]
>>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results[\"exact_match\"], 1))
33.3
"""
_SCREAMING_SNAKE_CASE = """
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE_ ( datasets.Metric ):
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , reference_urls=[] , )
def UpperCAmelCase_ ( self : int , _A : Tuple , _A : Tuple , _A : str=None , _A : Dict=False , _A : Tuple=False , _A : str=False , ) -> Tuple:
"""simple docstring"""
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
snake_case_ : List[Any] = np.array([re.sub(_A , '' , _A ) for x in predictions] )
snake_case_ : Optional[Any] = np.array([re.sub(_A , '' , _A ) for x in references] )
else:
snake_case_ : Dict = np.asarray(_A )
snake_case_ : Tuple = np.asarray(_A )
if ignore_case:
snake_case_ : List[str] = np.char.lower(_A )
snake_case_ : Any = np.char.lower(_A )
if ignore_punctuation:
snake_case_ : int = string.punctuation.maketrans('' , '' , string.punctuation )
snake_case_ : Tuple = np.char.translate(_A , table=_A )
snake_case_ : str = np.char.translate(_A , table=_A )
if ignore_numbers:
snake_case_ : Optional[int] = string.digits.maketrans('' , '' , string.digits )
snake_case_ : str = np.char.translate(_A , table=_A )
snake_case_ : Union[str, Any] = np.char.translate(_A , table=_A )
snake_case_ : int = predictions == references
return {"exact_match": np.mean(_A ) * 100}
| 327 | 0 |
'''simple docstring'''
from __future__ import annotations
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
if len(snake_case__ ) < k or k < 0:
raise ValueError('''Invalid Input''' )
A : Any = sum(array[:k] )
for i in range(len(snake_case__ ) - k ):
A : Union[str, Any] = current_sum - array[i] + array[i + k]
A : List[Any] = max(snake_case__ , snake_case__ )
return max_sum
if __name__ == "__main__":
from doctest import testmod
from random import randint
testmod()
lowercase : int = [randint(-10_00, 10_00) for i in range(1_00)]
lowercase : List[str] = randint(0, 1_10)
print(f'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
| 3 |
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class SCREAMING_SNAKE_CASE_ :
def __init__( self : List[Any] , _A : Optional[Any] , _A : Dict=13 , _A : Union[str, Any]=30 , _A : Tuple=2 , _A : Union[str, Any]=3 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : str=32 , _A : int=2 , _A : List[str]=4 , _A : List[str]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=10 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=3 , _A : str=0.6 , _A : Union[str, Any]=None , ) -> Any:
"""simple docstring"""
snake_case_ : Optional[int] = parent
snake_case_ : Tuple = batch_size
snake_case_ : List[Any] = image_size
snake_case_ : List[str] = patch_size
snake_case_ : List[str] = num_channels
snake_case_ : Optional[Any] = is_training
snake_case_ : Any = use_labels
snake_case_ : Tuple = hidden_size
snake_case_ : Union[str, Any] = num_hidden_layers
snake_case_ : List[Any] = num_attention_heads
snake_case_ : Optional[Any] = intermediate_size
snake_case_ : List[Any] = hidden_act
snake_case_ : Union[str, Any] = hidden_dropout_prob
snake_case_ : Any = attention_probs_dropout_prob
snake_case_ : Tuple = type_sequence_label_size
snake_case_ : List[str] = initializer_range
snake_case_ : Optional[Any] = mask_ratio
snake_case_ : Any = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
snake_case_ : Optional[int] = (image_size // patch_size) ** 2
snake_case_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ : Union[str, Any] = None
if self.use_labels:
snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase_ ( self : int ) -> Optional[Any]:
"""simple docstring"""
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : Dict , _A : str ) -> Dict:
"""simple docstring"""
snake_case_ : Union[str, Any] = TFViTMAEModel(config=_A )
snake_case_ : str = model(_A , training=_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : Any , _A : List[Any] ) -> int:
"""simple docstring"""
snake_case_ : Any = TFViTMAEForPreTraining(_A )
snake_case_ : Optional[Any] = model(_A , training=_A )
# expected sequence length = num_patches
snake_case_ : List[str] = (self.image_size // self.patch_size) ** 2
snake_case_ : Optional[Any] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
snake_case_ : str = 1
snake_case_ : Dict = TFViTMAEForPreTraining(_A )
snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case_ : List[str] = model(_A , training=_A )
snake_case_ : Optional[Any] = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
snake_case_ : List[Any] = self.prepare_config_and_inputs()
((snake_case_) ,(snake_case_) ,(snake_case_)) : Any = config_and_inputs
snake_case_ : Optional[Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ):
__magic_name__: List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
__magic_name__: str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {}
__magic_name__: Dict = False
__magic_name__: Dict = False
__magic_name__: List[Any] = False
__magic_name__: Dict = False
def UpperCAmelCase_ ( self : Any ) -> List[Any]:
"""simple docstring"""
snake_case_ : List[Any] = TFViTMAEModelTester(self )
snake_case_ : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 )
def UpperCAmelCase_ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='ViTMAE does not use inputs_embeds' )
def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ ,snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : List[Any] = model_class(_A )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
snake_case_ : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) )
def UpperCAmelCase_ ( self : List[str] ) -> Dict:
"""simple docstring"""
snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : List[str] = model_class(_A )
snake_case_ : Any = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ : Dict = [*signature.parameters.keys()]
snake_case_ : Dict = ['pixel_values']
self.assertListEqual(arg_names[:1] , _A )
def UpperCAmelCase_ ( self : Dict ) -> List[str]:
"""simple docstring"""
snake_case_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def UpperCAmelCase_ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
snake_case_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_A )
def UpperCAmelCase_ ( self : Tuple ) -> Dict:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
snake_case_ : Optional[Any] = model_class(_A )
snake_case_ : Union[str, Any] = self._prepare_for_class(_A , _A )
snake_case_ : List[str] = model(_A , noise=_A )
snake_case_ : Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) )
snake_case_ : str = model(**_A , noise=_A )
snake_case_ : Union[str, Any] = outputs_dict[0].numpy()
snake_case_ : Optional[Any] = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 )
def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Tuple = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(_A : int ):
snake_case_ : Any = {}
for k, v in inputs_dict.items():
if tf.is_tensor(_A ):
snake_case_ : str = v.numpy()
else:
snake_case_ : Optional[Any] = np.array(_A )
return inputs_np_dict
for model_class in self.all_model_classes:
snake_case_ : int = model_class(_A )
snake_case_ : List[Any] = self._prepare_for_class(_A , _A )
snake_case_ : Any = prepare_numpy_arrays(_A )
snake_case_ : List[Any] = model(_A , noise=_A )
snake_case_ : List[Any] = model(**_A , noise=_A )
self.assert_outputs_same(_A , _A )
def UpperCAmelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> List[str]:
"""simple docstring"""
np.random.seed(2 )
snake_case_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
snake_case_ : Optional[int] = tf.constant(_A )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
snake_case_ : Optional[Any] = tf_noise
super().check_pt_tf_models(_A , _A , _A )
def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : int = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(_A )
if module_member_name.endswith('MainLayer' )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )]
for module_member in (getattr(_A , _A ),)
if isinstance(_A , _A )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(_A , '_keras_serializable' , _A )
}
snake_case_ : List[Any] = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
snake_case_ : Optional[int] = tf.convert_to_tensor(_A )
inputs_dict.update({'noise': noise} )
for main_layer_class in tf_main_layer_classes:
snake_case_ : Optional[Any] = main_layer_class(_A )
snake_case_ : List[str] = {
name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
snake_case_ : Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) )
snake_case_ : int = model(_A )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : List[Any] = os.path.join(_A , 'keras_model.h5' )
model.save(_A )
snake_case_ : str = tf.keras.models.load_model(
_A , custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(_A , tf.keras.Model )
snake_case_ : List[str] = model(_A )
self.assert_outputs_same(_A , _A )
@slow
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : int = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
snake_case_ : Optional[Any] = model_class(_A )
snake_case_ : Optional[Any] = self._prepare_for_class(_A , _A )
snake_case_ : int = model(_A , noise=_A )
if model_class.__name__ == "TFViTMAEModel":
snake_case_ : Any = outputs.last_hidden_state.numpy()
snake_case_ : Optional[int] = 0
else:
snake_case_ : str = outputs.logits.numpy()
snake_case_ : Optional[Any] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A , saved_model=_A )
snake_case_ : Any = model_class.from_pretrained(_A )
snake_case_ : Any = model(_A , noise=_A )
if model_class.__name__ == "TFViTMAEModel":
snake_case_ : Dict = after_outputs['last_hidden_state'].numpy()
snake_case_ : Dict = 0
else:
snake_case_ : Any = after_outputs['logits'].numpy()
snake_case_ : Optional[Any] = 0
snake_case_ : Any = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_A , 1E-5 )
def UpperCAmelCase_ ( self : Any ) -> str:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
snake_case_ : str = model_class(_A )
snake_case_ : int = self._prepare_for_class(_A , _A )
snake_case_ : str = model(_A , noise=_A )
snake_case_ : Dict = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(_A )
snake_case_ : Any = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
snake_case_ : str = model_class.from_config(model.config )
snake_case_ : Union[str, Any] = new_model(_A ) # Build model
new_model.set_weights(model.get_weights() )
snake_case_ : List[str] = new_model(_A , noise=_A )
self.assert_outputs_same(_A , _A )
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' )
def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
pass
@unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' )
def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
pass
@slow
def UpperCAmelCase_ ( self : Tuple ) -> Tuple:
"""simple docstring"""
snake_case_ : Optional[Any] = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' )
self.assertIsNotNone(_A )
def SCREAMING_SNAKE_CASE__ ( ):
snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
@cached_property
def UpperCAmelCase_ ( self : str ) -> Dict:
"""simple docstring"""
return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None
@slow
def UpperCAmelCase_ ( self : str ) -> Dict:
"""simple docstring"""
np.random.seed(2 )
snake_case_ : List[str] = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' )
snake_case_ : List[Any] = self.default_image_processor
snake_case_ : Dict = prepare_img()
snake_case_ : Optional[Any] = image_processor(images=_A , return_tensors='tf' )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
snake_case_ : int = ViTMAEConfig()
snake_case_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
snake_case_ : List[Any] = np.random.uniform(size=(1, num_patches) )
# forward pass
snake_case_ : Optional[Any] = model(**_A , noise=_A )
# verify the logits
snake_case_ : Optional[int] = tf.convert_to_tensor([1, 196, 768] )
self.assertEqual(outputs.logits.shape , _A )
snake_case_ : Any = tf.convert_to_tensor(
[[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
| 327 | 0 |
'''simple docstring'''
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
class UpperCAmelCase_ :
def __init__( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict=1_3 , UpperCAmelCase__ : str=7 , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : int=1_9 , UpperCAmelCase__ : str=3_2 , UpperCAmelCase__ : Dict=5 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : Dict=3_7 , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : int=5_1_2 , UpperCAmelCase__ : int=1_6 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : Optional[int]=None , ) -> Union[str, Any]:
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCAmelCase ( self : List[Any] ) -> int:
lowerCAmelCase = EsmConfig(
vocab_size=3_3 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=UpperCAmelCase__ , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , )
return config
def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] ) -> Tuple:
lowerCAmelCase = EsmForProteinFolding(config=UpperCAmelCase__ ).float()
model.to(UpperCAmelCase__ )
model.eval()
lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )
lowerCAmelCase = model(UpperCAmelCase__ )
lowerCAmelCase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 1_4, 3) )
self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) )
def __UpperCAmelCase ( self : Dict ) -> Any:
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ):
lowerCamelCase : str = False
lowerCamelCase : Union[str, Any] = (EsmForProteinFolding,) if is_torch_available() else ()
lowerCamelCase : Union[str, Any] = ()
lowerCamelCase : List[Any] = {} if is_torch_available() else {}
lowerCamelCase : Optional[Any] = False
def __UpperCAmelCase ( self : Optional[Any] ) -> int:
lowerCAmelCase = EsmFoldModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 )
def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self : Optional[Any] ) -> Any:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
@unittest.skip('Does not support attention outputs' )
def __UpperCAmelCase ( self : Any ) -> Dict:
pass
@unittest.skip
def __UpperCAmelCase ( self : List[Any] ) -> Tuple:
pass
@unittest.skip('Esm does not support embedding resizing' )
def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
pass
@unittest.skip('Esm does not support embedding resizing' )
def __UpperCAmelCase ( self : Tuple ) -> List[str]:
pass
@unittest.skip('ESMFold does not support passing input embeds!' )
def __UpperCAmelCase ( self : int ) -> Union[str, Any]:
pass
@unittest.skip('ESMFold does not support head pruning.' )
def __UpperCAmelCase ( self : Dict ) -> str:
pass
@unittest.skip('ESMFold does not support head pruning.' )
def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
pass
@unittest.skip('ESMFold does not support head pruning.' )
def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]:
pass
@unittest.skip('ESMFold does not support head pruning.' )
def __UpperCAmelCase ( self : Optional[int] ) -> List[str]:
pass
@unittest.skip('ESMFold does not support head pruning.' )
def __UpperCAmelCase ( self : List[str] ) -> Optional[int]:
pass
@unittest.skip('ESMFold does not output hidden states in the normal way.' )
def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]:
pass
@unittest.skip('ESMfold does not output hidden states in the normal way.' )
def __UpperCAmelCase ( self : Any ) -> str:
pass
@unittest.skip('ESMFold only has one output format.' )
def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]:
pass
@unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' )
def __UpperCAmelCase ( self : str ) -> Tuple:
pass
@unittest.skip('ESMFold does not support input chunking.' )
def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
pass
@unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' )
def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
pass
@unittest.skip('ESMFold doesn\'t support torchscript compilation.' )
def __UpperCAmelCase ( self : Tuple ) -> List[Any]:
pass
@unittest.skip('ESMFold doesn\'t support torchscript compilation.' )
def __UpperCAmelCase ( self : Any ) -> Tuple:
pass
@unittest.skip('ESMFold doesn\'t support torchscript compilation.' )
def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
pass
@unittest.skip('ESMFold doesn\'t support data parallel.' )
def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
pass
@require_torch
class UpperCAmelCase_ ( __lowercase ):
@slow
def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]:
lowerCAmelCase = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float()
model.eval()
lowerCAmelCase = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] )
lowerCAmelCase = model(UpperCAmelCase__ )['positions']
lowerCAmelCase = torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa )
self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , UpperCAmelCase__ , atol=1E-4 ) )
| 4 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
snake_case_ : list[list[int]] = []
snake_case_ : list[int] = []
snake_case_ : List[Any] = 0
snake_case_ : Union[str, Any] = sum(__a )
create_state_space_tree(__a , __a , __a , __a , __a , __a )
return result
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ):
if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum:
return
if sum(__a ) == max_sum:
result.append(__a )
return
for index in range(__a , len(__a ) ):
create_state_space_tree(
__a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , )
_SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2]
_SCREAMING_SNAKE_CASE = 9
_SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 327 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mobilebert import MobileBertTokenizer
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
UpperCAmelCase__ = {
'''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''},
'''tokenizer_file''': {
'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json'''
},
}
UpperCAmelCase__ = {'''mobilebert-uncased''': 512}
UpperCAmelCase__ = {}
class lowerCamelCase__ ( lowerCAmelCase):
SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ = PRETRAINED_INIT_CONFIGURATION
SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE__ = MobileBertTokenizer
def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase="[UNK]" , UpperCAmelCase="[SEP]" , UpperCAmelCase="[PAD]" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ) -> Any:
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
_lowercase =json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , UpperCAmelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , UpperCAmelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , UpperCAmelCase ) != tokenize_chinese_chars
):
_lowercase =getattr(UpperCAmelCase , normalizer_state.pop('''type''' ) )
_lowercase =do_lower_case
_lowercase =strip_accents
_lowercase =tokenize_chinese_chars
_lowercase =normalizer_class(**UpperCAmelCase )
_lowercase =do_lower_case
def __A (self , UpperCAmelCase , UpperCAmelCase=None ) -> Any:
_lowercase =[self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
_lowercase =[self.sep_token_id]
_lowercase =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A (self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]:
_lowercase =self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 5 |
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
if density <= 0:
raise ValueError('Impossible fluid density' )
if bulk_modulus <= 0:
raise ValueError('Impossible bulk modulus' )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
import unittest
import numpy as np
def __lowerCAmelCase ( a__ , a__ , a__ , a__ = None , ) -> np.ndarray:
__a = np.shape(a__ )
__a = np.shape(a__ )
__a = np.shape(a__ )
if shape_a[0] != shape_b[0]:
__a = (
'''Expected the same number of rows for A and B. '''
F"""Instead found A of size {shape_a} and B of size {shape_b}"""
)
raise ValueError(a__ )
if shape_b[1] != shape_c[1]:
__a = (
'''Expected the same number of columns for B and C. '''
F"""Instead found B of size {shape_b} and C of size {shape_c}"""
)
raise ValueError(a__ )
__a = pseudo_inv
if a_inv is None:
try:
__a = np.linalg.inv(a__ )
except np.linalg.LinAlgError:
raise ValueError(
'''Input matrix A is not invertible. Cannot compute Schur complement.''' )
return mat_c - mat_b.T @ a_inv @ mat_b
class __A( unittest.TestCase ):
def SCREAMING_SNAKE_CASE_ ( self ) -> None:
'''simple docstring'''
__a = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
__a = np.array([[0, 3], [3, 0], [2, 3]] )
__a = np.array([[2, 1], [6, 3]] )
__a = schur_complement(_snake_case , _snake_case , _snake_case )
__a = np.block([[a, b], [b.T, c]] )
__a = np.linalg.det(_snake_case )
__a = np.linalg.det(_snake_case )
__a = np.linalg.det(_snake_case )
self.assertAlmostEqual(_snake_case , det_a * det_s )
def SCREAMING_SNAKE_CASE_ ( self ) -> None:
'''simple docstring'''
__a = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
__a = np.array([[0, 3], [3, 0], [2, 3]] )
__a = np.array([[2, 1], [6, 3]] )
with self.assertRaises(_snake_case ):
schur_complement(_snake_case , _snake_case , _snake_case )
def SCREAMING_SNAKE_CASE_ ( self ) -> None:
'''simple docstring'''
__a = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
__a = np.array([[0, 3], [3, 0], [2, 3]] )
__a = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(_snake_case ):
schur_complement(_snake_case , _snake_case , _snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main() | 6 |
from math import pi
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
return 2 * pi * radius * (angle / 3_60)
if __name__ == "__main__":
print(arc_length(90, 10))
| 327 | 0 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json",
"microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json",
"microsoft/deberta-v2-xlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json"
),
"microsoft/deberta-v2-xxlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json"
),
}
class A ( _UpperCAmelCase ):
"""simple docstring"""
lowerCamelCase = 'deberta-v2'
def __init__( self : int,lowercase_ : List[str]=1_2_8_1_0_0,lowercase_ : Union[str, Any]=1_5_3_6,lowercase_ : Any=2_4,lowercase_ : Optional[int]=2_4,lowercase_ : Tuple=6_1_4_4,lowercase_ : Dict="gelu",lowercase_ : str=0.1,lowercase_ : List[Any]=0.1,lowercase_ : int=5_1_2,lowercase_ : Any=0,lowercase_ : Optional[int]=0.02,lowercase_ : List[str]=1E-7,lowercase_ : int=False,lowercase_ : int=-1,lowercase_ : str=0,lowercase_ : Tuple=True,lowercase_ : Dict=None,lowercase_ : int=0,lowercase_ : Tuple="gelu",**lowercase_ : List[Any],)-> Union[str, Any]:
'''simple docstring'''
super().__init__(**lowercase_ )
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = type_vocab_size
A__ = initializer_range
A__ = relative_attention
A__ = max_relative_positions
A__ = pad_token_id
A__ = position_biased_input
# Backwards compatibility
if type(lowercase_ ) == str:
A__ = [x.strip() for x in pos_att_type.lower().split('|' )]
A__ = pos_att_type
A__ = vocab_size
A__ = layer_norm_eps
A__ = kwargs.get('pooler_hidden_size',lowercase_ )
A__ = pooler_dropout
A__ = pooler_hidden_act
class A ( _UpperCAmelCase ):
"""simple docstring"""
@property
def snake_case__ ( self : int )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
A__ = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
A__ = {0: 'batch', 1: 'sequence'}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def snake_case__ ( self : List[Any] )-> int:
'''simple docstring'''
return 1_2
def snake_case__ ( self : Dict,lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional["TensorType"] = None,lowercase_ : int = 3,lowercase_ : int = 4_0,lowercase_ : int = 4_0,lowercase_ : "PreTrainedTokenizerBase" = None,)-> Mapping[str, Any]:
'''simple docstring'''
A__ = super().generate_dummy_inputs(preprocessor=lowercase_,framework=lowercase_ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 7 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
__magic_name__: Optional[Any] = ["pixel_values"]
def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PIL.Image.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : str , ) -> None:
"""simple docstring"""
super().__init__(**_A )
snake_case_ : Dict = size if size is not None else {'height': 256, 'width': 256}
snake_case_ : Tuple = get_size_dict(_A )
snake_case_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224}
snake_case_ : int = get_size_dict(_A , param_name='crop_size' )
snake_case_ : Union[str, Any] = do_resize
snake_case_ : str = size
snake_case_ : List[str] = resample
snake_case_ : List[Any] = do_center_crop
snake_case_ : Dict = crop_size
snake_case_ : Tuple = do_rescale
snake_case_ : Optional[Any] = rescale_factor
snake_case_ : Any = do_normalize
snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
snake_case_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCAmelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray:
"""simple docstring"""
snake_case_ : Tuple = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return resize(
_A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray:
"""simple docstring"""
snake_case_ : Optional[int] = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A )
def UpperCAmelCase_ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> str:
"""simple docstring"""
return rescale(_A , scale=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray:
"""simple docstring"""
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self : List[str] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : Union[str, Any]=None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ) -> PIL.Image.Image:
"""simple docstring"""
snake_case_ : int = do_resize if do_resize is not None else self.do_resize
snake_case_ : str = resample if resample is not None else self.resample
snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop
snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale
snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor
snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize
snake_case_ : Any = image_mean if image_mean is not None else self.image_mean
snake_case_ : Dict = image_std if image_std is not None else self.image_std
snake_case_ : int = size if size is not None else self.size
snake_case_ : Optional[int] = get_size_dict(_A )
snake_case_ : int = crop_size if crop_size is not None else self.crop_size
snake_case_ : Any = get_size_dict(_A , param_name='crop_size' )
snake_case_ : Optional[Any] = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
snake_case_ : Optional[Any] = [to_numpy_array(_A ) for image in images]
if do_resize:
snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images]
if do_center_crop:
snake_case_ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images]
if do_rescale:
snake_case_ : Optional[int] = [self.rescale(image=_A , scale=_A ) for image in images]
if do_normalize:
snake_case_ : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images]
snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images]
snake_case_ : Tuple = {'pixel_values': images}
return BatchFeature(data=_A , tensor_type=_A )
| 327 | 0 |
import math
from collections.abc import Callable
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = xa
snake_case_ = xa
while True:
if x_n == x_na or function(SCREAMING_SNAKE_CASE__ ) == function(SCREAMING_SNAKE_CASE__ ):
raise ZeroDivisionError('''float division by zero, could not find root''' )
snake_case_ = x_na - (
function(SCREAMING_SNAKE_CASE__ ) / ((function(SCREAMING_SNAKE_CASE__ ) - function(SCREAMING_SNAKE_CASE__ )) / (x_na - x_n))
)
if abs(x_na - x_na ) < 10**-5:
return x_na
snake_case_ = x_na
snake_case_ = x_na
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
return math.pow(SCREAMING_SNAKE_CASE__ , 3 ) - (2 * x) - 5
if __name__ == "__main__":
print(intersection(f, 3, 3.5)) | 8 |
import sys
_SCREAMING_SNAKE_CASE = (
"""73167176531330624919225119674426574742355349194934"""
"""96983520312774506326239578318016984801869478851843"""
"""85861560789112949495459501737958331952853208805511"""
"""12540698747158523863050715693290963295227443043557"""
"""66896648950445244523161731856403098711121722383113"""
"""62229893423380308135336276614282806444486645238749"""
"""30358907296290491560440772390713810515859307960866"""
"""70172427121883998797908792274921901699720888093776"""
"""65727333001053367881220235421809751254540594752243"""
"""52584907711670556013604839586446706324415722155397"""
"""53697817977846174064955149290862569321978468622482"""
"""83972241375657056057490261407972968652414535100474"""
"""82166370484403199890008895243450658541227588666881"""
"""16427171479924442928230863465674813919123162824586"""
"""17866458359124566529476545682848912883142607690042"""
"""24219022671055626321111109370544217506941658960408"""
"""07198403850962455444362981230987879927244284909188"""
"""84580156166097919133875499200524063689912560717606"""
"""05886116467109405077541002256983155200055935729725"""
"""71636269561882670428252483600823257530420752963450"""
)
def SCREAMING_SNAKE_CASE__ ( __a = N ):
snake_case_ : Optional[Any] = -sys.maxsize - 1
for i in range(len(__a ) - 12 ):
snake_case_ : Optional[Any] = 1
for j in range(13 ):
product *= int(n[i + j] )
if product > largest_product:
snake_case_ : int = product
return largest_product
if __name__ == "__main__":
print(F'''{solution() = }''')
| 327 | 0 |
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
__lowerCAmelCase : Dict =logging.get_logger(__name__)
class _lowercase ( A__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Union[str, Any] = ['''audio_values''', '''audio_mask''']
def __init__( self :Optional[Any] , lowerCAmelCase__ :str=2_048 , lowerCAmelCase__ :str=1 , lowerCAmelCase__ :List[Any]=[16, 16] , lowerCAmelCase__ :List[str]=128 , lowerCAmelCase__ :Dict=44_100 , lowerCAmelCase__ :Tuple=86 , lowerCAmelCase__ :List[str]=2_048 , lowerCAmelCase__ :Union[str, Any]=0.0 , **lowerCAmelCase__ :int , ) -> str:
super().__init__(
feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ , )
__SCREAMING_SNAKE_CASE : Union[str, Any] = spectrogram_length
__SCREAMING_SNAKE_CASE : Dict = num_channels
__SCREAMING_SNAKE_CASE : List[Any] = patch_size
__SCREAMING_SNAKE_CASE : Optional[int] = feature_size // self.patch_size[1]
__SCREAMING_SNAKE_CASE : Optional[Any] = n_fft
__SCREAMING_SNAKE_CASE : int = sampling_rate // hop_length_to_sampling_rate
__SCREAMING_SNAKE_CASE : Optional[int] = sampling_rate
__SCREAMING_SNAKE_CASE : Tuple = padding_value
__SCREAMING_SNAKE_CASE : Dict = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase__ , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=lowerCAmelCase__ , norm='''slaney''' , mel_scale='''slaney''' , ).T
def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :np.array ) -> np.ndarray:
__SCREAMING_SNAKE_CASE : Union[str, Any] = spectrogram(
lowerCAmelCase__ , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , )
__SCREAMING_SNAKE_CASE : Tuple = log_spec[:, :-1]
__SCREAMING_SNAKE_CASE : Tuple = log_spec - 20.0
__SCREAMING_SNAKE_CASE : List[str] = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0
return log_spec
def __call__( self :Dict , lowerCAmelCase__ :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase__ :Optional[Union[str, TensorType]] = None , lowerCAmelCase__ :Optional[bool] = True , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , **lowerCAmelCase__ :Union[str, Any] , ) -> BatchFeature:
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'''This feature extractor is set to support sampling rate'''
f''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled'''
f''' with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
__SCREAMING_SNAKE_CASE : Any = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' )
__SCREAMING_SNAKE_CASE : str = is_batched_numpy or (
isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
__SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ):
__SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(lowerCAmelCase__ , dtype=np.floataa )
elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
__SCREAMING_SNAKE_CASE : Optional[Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
__SCREAMING_SNAKE_CASE : str = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
__SCREAMING_SNAKE_CASE : Optional[Any] = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] , lowerCAmelCase__ ):
__SCREAMING_SNAKE_CASE : Optional[Any] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
__SCREAMING_SNAKE_CASE : Tuple = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
__SCREAMING_SNAKE_CASE : Dict = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
__SCREAMING_SNAKE_CASE : Optional[int] = np.array(lowerCAmelCase__ ).astype(np.floataa )
# convert into correct format for padding
__SCREAMING_SNAKE_CASE : Optional[int] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
__SCREAMING_SNAKE_CASE : List[str] = np.ones([len(lowerCAmelCase__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
__SCREAMING_SNAKE_CASE : Union[str, Any] = padded_audio_features * self.padding_value
for i in range(len(lowerCAmelCase__ ) ):
__SCREAMING_SNAKE_CASE : Dict = audio_features[i]
__SCREAMING_SNAKE_CASE : str = feature
# return as BatchFeature
if return_attention_mask:
__SCREAMING_SNAKE_CASE : Dict = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask}
else:
__SCREAMING_SNAKE_CASE : List[str] = {'''audio_values''': padded_audio_features}
__SCREAMING_SNAKE_CASE : Any = BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
return encoded_inputs
| 9 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
_SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ :
__magic_name__: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
__magic_name__: Optional[str] = field(
default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
__magic_name__: Optional[str] = field(
default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
__magic_name__: Optional[str] = field(
default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} )
__magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} )
@dataclass
class SCREAMING_SNAKE_CASE_ :
__magic_name__: str = field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} )
__magic_name__: Optional[str] = field(
default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , )
__magic_name__: Optional[int] = field(
default=1024 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__magic_name__: Optional[int] = field(
default=128 , metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__magic_name__: Optional[int] = field(
default=142 , metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. "
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
} , )
__magic_name__: Optional[int] = field(
default=142 , metadata={
"help": (
"The maximum total sequence length for test target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} )
__magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} )
__magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} )
__magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} )
__magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} )
__magic_name__: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} )
__magic_name__: bool = field(
default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ):
logger.info(f"""***** {split} metrics *****""" )
for key in sorted(metrics.keys() ):
logger.info(f""" {key} = {metrics[key]}""" )
save_json(__a , os.path.join(__a , f"""{split}_results.json""" ) )
def SCREAMING_SNAKE_CASE__ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
snake_case_ ,snake_case_ ,snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
snake_case_ ,snake_case_ ,snake_case_ : List[str] = parser.parse_args_into_dataclasses()
check_output_dir(__a )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('Training/evaluation parameters %s' , __a )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case_ : Tuple = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(__a , __a , __a ):
assert hasattr(__a , __a ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute"""
setattr(__a , __a , getattr(__a , __a ) )
snake_case_ : Tuple = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=__a , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(__a , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
snake_case_ : Any = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(__a , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(__a , __a ):
snake_case_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
snake_case_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(__a )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
snake_case_ : List[Any] = SeqaSeqDataset
# Get datasets
snake_case_ : List[Any] = (
dataset_class(
__a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_train
else None
)
snake_case_ : List[str] = (
dataset_class(
__a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
snake_case_ : List[Any] = (
dataset_class(
__a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
snake_case_ : Any = (
build_compute_metrics_fn(data_args.task , __a ) if training_args.predict_with_generate else None
)
snake_case_ : List[str] = SeqaSeqTrainer(
model=__a , args=__a , data_args=__a , train_dataset=__a , eval_dataset=__a , data_collator=SeqaSeqDataCollator(
__a , __a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__a , tokenizer=__a , )
snake_case_ : Optional[int] = {}
# Training
if training_args.do_train:
logger.info('*** Train ***' )
snake_case_ : Any = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
snake_case_ : Tuple = train_result.metrics
snake_case_ : List[str] = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('train' , __a , training_args.output_dir )
all_metrics.update(__a )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
snake_case_ : List[Any] = trainer.evaluate(metric_key_prefix='val' )
snake_case_ : str = data_args.n_val
snake_case_ : Union[str, Any] = round(metrics['val_loss'] , 4 )
if trainer.is_world_process_zero():
handle_metrics('val' , __a , training_args.output_dir )
all_metrics.update(__a )
if training_args.do_predict:
logger.info('*** Predict ***' )
snake_case_ : Dict = trainer.predict(test_dataset=__a , metric_key_prefix='test' )
snake_case_ : Union[str, Any] = test_output.metrics
snake_case_ : int = data_args.n_test
if trainer.is_world_process_zero():
snake_case_ : List[str] = round(metrics['test_loss'] , 4 )
handle_metrics('test' , __a , training_args.output_dir )
all_metrics.update(__a )
if training_args.predict_with_generate:
snake_case_ : Any = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=__a , clean_up_tokenization_spaces=__a )
snake_case_ : Any = lmap(str.strip , __a )
write_txt_file(__a , os.path.join(training_args.output_dir , 'test_generations.txt' ) )
if trainer.is_world_process_zero():
save_json(__a , os.path.join(training_args.output_dir , 'all_results.json' ) )
return all_metrics
def SCREAMING_SNAKE_CASE__ ( __a ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 327 | 0 |
from __future__ import annotations
__A = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> tuple[list[list[int]], list[list[int]]]:
"""simple docstring"""
lowerCamelCase__: List[str] =[
[0 for col in range(len(grid[0] ) )] for row in range(len(__a ) )
] # the reference grid
lowerCamelCase__: Optional[int] =1
lowerCamelCase__: int =[
[0 for col in range(len(grid[0] ) )] for row in range(len(__a ) )
] # the action grid
lowerCamelCase__: Dict =init[0]
lowerCamelCase__: Dict =init[1]
lowerCamelCase__: List[str] =0
lowerCamelCase__: int =g + heuristic[x][y] # cost from starting cell to destination cell
lowerCamelCase__: Optional[int] =[[f, g, x, y]]
lowerCamelCase__: Tuple =False # flag that is set when search is complete
lowerCamelCase__: Union[str, Any] =False # flag set if we can't find expand
while not found and not resign:
if len(__a ) == 0:
raise ValueError("Algorithm is unable to find solution" )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
lowerCamelCase__: int =cell.pop()
lowerCamelCase__: List[str] =next_cell[2]
lowerCamelCase__: List[Any] =next_cell[3]
lowerCamelCase__: Dict =next_cell[1]
if x == goal[0] and y == goal[1]:
lowerCamelCase__: Union[str, Any] =True
else:
for i in range(len(__a ) ): # to try out different valid actions
lowerCamelCase__: Any =x + DIRECTIONS[i][0]
lowerCamelCase__: List[Any] =y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(__a ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
lowerCamelCase__: Optional[int] =g + cost
lowerCamelCase__: Optional[int] =ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
lowerCamelCase__: int =1
lowerCamelCase__: Any =i
lowerCamelCase__: Tuple =[]
lowerCamelCase__: Any =goal[0]
lowerCamelCase__: Union[str, Any] =goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
lowerCamelCase__: Any =x - DIRECTIONS[action[x][y]][0]
lowerCamelCase__: int =y - DIRECTIONS[action[x][y]][1]
lowerCamelCase__: Any =xa
lowerCamelCase__: int =ya
invpath.append([x, y] )
lowerCamelCase__: str =[]
for i in range(len(__a ) ):
path.append(invpath[len(__a ) - 1 - i] )
return path, action
if __name__ == "__main__":
__A = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
__A = [0, 0]
# all coordinates are given in format [y,x]
__A = [len(grid) - 1, len(grid[0]) - 1]
__A = 1
# the cost map which pushes the path closer to the goal
__A = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
__A = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
__A = 99
__A , __A = search(grid, init, goal, cost, heuristic)
print("ACTION MAP")
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 10 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_SCREAMING_SNAKE_CASE = {
"""configuration_poolformer""": [
"""POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""PoolFormerConfig""",
"""PoolFormerOnnxConfig""",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""]
_SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"""POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PoolFormerForImageClassification""",
"""PoolFormerModel""",
"""PoolFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 327 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase__ = {
'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig']
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['ConvNextFeatureExtractor']
lowerCAmelCase__ = ['ConvNextImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvNextForImageClassification',
'ConvNextModel',
'ConvNextPreTrainedModel',
'ConvNextBackbone',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'TFConvNextForImageClassification',
'TFConvNextModel',
'TFConvNextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 11 |
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def UpperCAmelCase_ ( self : Dict ) -> List[Any]:
"""simple docstring"""
snake_case_ : Any = 'hf-internal-testing/tiny-random-t5'
snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_A )
snake_case_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A )
snake_case_ : List[Any] = tokenizer('This is me' , return_tensors='pt' )
snake_case_ : Any = model.to_bettertransformer()
self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
snake_case_ : Optional[Any] = model.generate(**_A )
snake_case_ : int = model.reverse_bettertransformer()
self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A )
snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_A )
self.assertFalse(
any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
snake_case_ : Optional[Any] = model_reloaded.generate(**_A )
self.assertTrue(torch.allclose(_A , _A ) )
def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
snake_case_ : Any = 'hf-internal-testing/tiny-random-t5'
snake_case_ : int = AutoModelForSeqaSeqLM.from_pretrained(_A )
snake_case_ : Dict = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(_A ):
model.save_pretrained(_A )
snake_case_ : Union[str, Any] = model.reverse_bettertransformer()
model.save_pretrained(_A )
| 327 | 0 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowerCamelCase__( __lowerCamelCase):
def __init__( self: Dict , *UpperCamelCase_: Any , UpperCamelCase_: int=None , UpperCamelCase_: List[str]=None , **UpperCamelCase_: str ):
super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
__lowerCamelCase = eval_examples
__lowerCamelCase = post_process_function
def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Dataset] = None , UpperCamelCase_: List[str]=None , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "eval" , **UpperCamelCase_: int , ):
__lowerCamelCase = gen_kwargs.copy()
__lowerCamelCase = (
gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length
)
__lowerCamelCase = (
gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams
)
__lowerCamelCase = gen_kwargs
__lowerCamelCase = self.eval_dataset if eval_dataset is None else eval_dataset
__lowerCamelCase = self.get_eval_dataloader(UpperCamelCase_ )
__lowerCamelCase = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
__lowerCamelCase = self.compute_metrics
__lowerCamelCase = None
__lowerCamelCase = time.time()
__lowerCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__lowerCamelCase = eval_loop(
UpperCamelCase_ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , )
finally:
__lowerCamelCase = compute_metrics
__lowerCamelCase = self.args.eval_batch_size * self.args.world_size
if F'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
__lowerCamelCase = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
__lowerCamelCase = self.compute_metrics(UpperCamelCase_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'{metric_key_prefix}_' ):
__lowerCamelCase = metrics.pop(UpperCamelCase_ )
metrics.update(output.metrics )
else:
__lowerCamelCase = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(UpperCamelCase_ )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
__lowerCamelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ )
return metrics
def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[Any]=None , UpperCamelCase_: str = "test" , **UpperCamelCase_: Dict ):
__lowerCamelCase = gen_kwargs.copy()
__lowerCamelCase = self.get_test_dataloader(UpperCamelCase_ )
# Temporarily disable metric computation, we will do it in the loop here.
__lowerCamelCase = self.compute_metrics
__lowerCamelCase = None
__lowerCamelCase = time.time()
__lowerCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__lowerCamelCase = eval_loop(
UpperCamelCase_ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , metric_key_prefix=UpperCamelCase_ , )
finally:
__lowerCamelCase = compute_metrics
__lowerCamelCase = self.args.eval_batch_size * self.args.world_size
if F'{metric_key_prefix}_jit_compilation_time' in output.metrics:
start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time']
output.metrics.update(
speed_metrics(
UpperCamelCase_ , UpperCamelCase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
__lowerCamelCase = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , """predict""" )
__lowerCamelCase = self.compute_metrics(UpperCamelCase_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'{metric_key_prefix}_' ):
__lowerCamelCase = metrics.pop(UpperCamelCase_ )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ )
| 12 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ : str = params
snake_case_ : int = np.array(_A )
snake_case_ : Optional[int] = np.array([len(_A ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self : Tuple , _A : Optional[int] ) -> str:
"""simple docstring"""
return (self.token_ids[index], self.lengths[index])
def __len__( self : List[str] ) -> str:
"""simple docstring"""
return len(self.lengths )
def UpperCAmelCase_ ( self : Dict ) -> str:
"""simple docstring"""
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def UpperCAmelCase_ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
snake_case_ : Dict = self.params.max_model_input_size
snake_case_ : Tuple = self.lengths > max_len
logger.info(F"""Splitting {sum(_A )} too long sequences.""" )
def divide_chunks(_A : Union[str, Any] , _A : Dict ):
return [l[i : i + n] for i in range(0 , len(_A ) , _A )]
snake_case_ : Dict = []
snake_case_ : Union[str, Any] = []
if self.params.mlm:
snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token']
else:
snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token']
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
snake_case_ : List[Any] = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
snake_case_ : Optional[int] = np.insert(_A , 0 , _A )
if sub_s[-1] != sep_id:
snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A )
assert len(_A ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(_A )
new_tok_ids.extend(_A )
new_lengths.extend([len(_A ) for l in sub_seqs] )
snake_case_ : Tuple = np.array(_A )
snake_case_ : int = np.array(_A )
def UpperCAmelCase_ ( self : List[str] ) -> List[str]:
"""simple docstring"""
snake_case_ : Tuple = len(self )
snake_case_ : int = self.lengths > 11
snake_case_ : Dict = self.token_ids[indices]
snake_case_ : int = self.lengths[indices]
snake_case_ : List[Any] = len(self )
logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
if "unk_token" not in self.params.special_tok_ids:
return
else:
snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token']
snake_case_ : Dict = len(self )
snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
snake_case_ : Any = (unk_occs / self.lengths) < 0.5
snake_case_ : List[Any] = self.token_ids[indices]
snake_case_ : int = self.lengths[indices]
snake_case_ : Tuple = len(self )
logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
if not self.params.is_master:
return
logger.info(F"""{len(self )} sequences""" )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
snake_case_ : Any = [t[0] for t in batch]
snake_case_ : int = [t[1] for t in batch]
assert len(_A ) == len(_A )
# Max for paddings
snake_case_ : str = max(_A )
# Pad token ids
if self.params.mlm:
snake_case_ : int = self.params.special_tok_ids['pad_token']
else:
snake_case_ : Dict = self.params.special_tok_ids['unk_token']
snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids]
assert len(tk_ ) == len(_A )
assert all(len(_A ) == max_seq_len_ for t in tk_ )
snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_)
snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs)
return tk_t, lg_t
| 327 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
lowerCAmelCase : str = {
"""configuration_speecht5""": [
"""SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""",
"""SpeechT5Config""",
"""SpeechT5HifiGanConfig""",
],
"""feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""],
"""processing_speecht5""": ["""SpeechT5Processor"""],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[int] = ["""SpeechT5Tokenizer"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : int = [
"""SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""SpeechT5ForSpeechToText""",
"""SpeechT5ForSpeechToSpeech""",
"""SpeechT5ForTextToSpeech""",
"""SpeechT5Model""",
"""SpeechT5PreTrainedModel""",
"""SpeechT5HifiGan""",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 13 |
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
while b:
snake_case_ ,snake_case_ : Any = b, a % b
return a
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
return a if b == 0 else euclidean_gcd_recursive(__a , a % b )
def SCREAMING_SNAKE_CASE__ ( ):
print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" )
print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" )
print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" )
print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" )
print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" )
print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" )
print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" )
print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" )
if __name__ == "__main__":
main()
| 327 | 0 |
from __future__ import annotations
_lowerCamelCase : Union[str, Any] = 10
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]:
"""simple docstring"""
A__ = 1
A__ = max(lowercase_ )
while placement <= max_digit:
# declare and initialize empty buckets
A__ = [[] for _ in range(lowercase_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
A__ = int((i / placement) % RADIX )
buckets[tmp].append(lowercase_ )
# put each buckets' contents into list_of_ints
A__ = 0
for b in range(lowercase_ ):
for i in buckets[b]:
A__ = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 14 |
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version(""">=""", FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
_SCREAMING_SNAKE_CASE = get_logger(__name__)
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ):
os.makedirs(__a , exist_ok=__a )
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
snake_case_ : Dict = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin"""
snake_case_ : Dict = os.path.join(__a , __a )
if accelerator.process_index == 0:
logger.info(f"""Saving model to {output_model_file}""" )
torch.save(__a , __a )
logger.info(f"""Model saved to {output_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
snake_case_ : Dict = (
f"""{MODEL_NAME}_rank{accelerator.process_index}.bin"""
if model_index == 0
else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"""
)
snake_case_ : Dict = os.path.join(__a , __a )
logger.info(f"""Saving model to {output_model_file}""" )
torch.save(__a , __a )
logger.info(f"""Model saved to {output_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" )
os.makedirs(__a , exist_ok=__a )
logger.info(f"""Saving model to {ckpt_dir}""" )
snake_case_ : int = {'model': state_dict}
dist_cp.save_state_dict(
state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , )
logger.info(f"""Model saved to {ckpt_dir}""" )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(__a ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
'Set the `sync_module_states` flag to `True` so that model states are synced across processes when '
'initializing FSDP object' )
return
snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin"""
snake_case_ : Optional[Any] = os.path.join(__a , __a )
logger.info(f"""Loading model from {input_model_file}""" )
snake_case_ : Optional[Any] = torch.load(__a )
logger.info(f"""Model loaded from {input_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
snake_case_ : Optional[Any] = (
f"""{MODEL_NAME}_rank{accelerator.process_index}.bin"""
if model_index == 0
else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"""
)
snake_case_ : Tuple = os.path.join(__a , __a )
logger.info(f"""Loading model from {input_model_file}""" )
snake_case_ : Optional[int] = torch.load(__a )
logger.info(f"""Model loaded from {input_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
snake_case_ : Tuple = (
os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" )
if f"""{MODEL_NAME}""" not in input_dir
else input_dir
)
logger.info(f"""Loading model from {ckpt_dir}""" )
snake_case_ : List[Any] = {'model': model.state_dict()}
dist_cp.load_state_dict(
state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , )
snake_case_ : Any = state_dict['model']
logger.info(f"""Model loaded from {ckpt_dir}""" )
model.load_state_dict(__a )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ):
os.makedirs(__a , exist_ok=__a )
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
snake_case_ : str = (
f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin"""
)
snake_case_ : Any = os.path.join(__a , __a )
logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" )
torch.save(__a , __a )
logger.info(f"""Optimizer state saved in {output_optimizer_file}""" )
else:
snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" )
os.makedirs(__a , exist_ok=__a )
logger.info(f"""Saving Optimizer state to {ckpt_dir}""" )
dist_cp.save_state_dict(
state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , )
logger.info(f"""Optimizer state saved in {ckpt_dir}""" )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
snake_case_ : Optional[Any] = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
snake_case_ : Union[str, Any] = (
f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin"""
)
snake_case_ : List[Any] = os.path.join(__a , __a )
logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" )
snake_case_ : Optional[int] = torch.load(__a )
logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" )
else:
snake_case_ : str = (
os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" )
if f"""{OPTIMIZER_NAME}""" not in input_dir
else input_dir
)
logger.info(f"""Loading Optimizer from {ckpt_dir}""" )
snake_case_ : Any = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , )
snake_case_ : Optional[int] = optim_state['optimizer']
logger.info(f"""Optimizer loaded from {ckpt_dir}""" )
snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a )
optimizer.load_state_dict(__a )
| 327 | 0 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
__A = SwinvaConfig()
__A = swinva_name.split("_" )
__A = name_split[1]
if "to" in name_split[3]:
__A = int(name_split[3][-3:] )
else:
__A = int(name_split[3] )
if "to" in name_split[2]:
__A = int(name_split[2][-2:] )
else:
__A = int(name_split[2][6:] )
if model_size == "tiny":
__A = 9_6
__A = (2, 2, 6, 2)
__A = (3, 6, 1_2, 2_4)
elif model_size == "small":
__A = 9_6
__A = (2, 2, 1_8, 2)
__A = (3, 6, 1_2, 2_4)
elif model_size == "base":
__A = 1_2_8
__A = (2, 2, 1_8, 2)
__A = (4, 8, 1_6, 3_2)
else:
__A = 1_9_2
__A = (2, 2, 1_8, 2)
__A = (6, 1_2, 2_4, 4_8)
if "to" in swinva_name:
__A = (1_2, 1_2, 1_2, 6)
if ("22k" in swinva_name) and ("to" not in swinva_name):
__A = 2_1_8_4_1
__A = "huggingface/label-files"
__A = "imagenet-22k-id2label.json"
__A = json.load(open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) )
__A = {int(a_ ): v for k, v in idalabel.items()}
__A = idalabel
__A = {v: k for k, v in idalabel.items()}
else:
__A = 1_0_0_0
__A = "huggingface/label-files"
__A = "imagenet-1k-id2label.json"
__A = json.load(open(hf_hub_download(a_ , a_ , repo_type="dataset" ) , "r" ) )
__A = {int(a_ ): v for k, v in idalabel.items()}
__A = idalabel
__A = {v: k for k, v in idalabel.items()}
__A = img_size
__A = num_classes
__A = embed_dim
__A = depths
__A = num_heads
__A = window_size
return config
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
if "patch_embed.proj" in name:
__A = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
if "patch_embed.norm" in name:
__A = name.replace("patch_embed.norm" , "embeddings.norm" )
if "layers" in name:
__A = "encoder." + name
if "attn.proj" in name:
__A = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
__A = name.replace("attn" , "attention.self" )
if "norm1" in name:
__A = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
__A = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
__A = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
__A = name.replace("mlp.fc2" , "output.dense" )
if "q_bias" in name:
__A = name.replace("q_bias" , "query.bias" )
if "k_bias" in name:
__A = name.replace("k_bias" , "key.bias" )
if "v_bias" in name:
__A = name.replace("v_bias" , "value.bias" )
if "cpb_mlp" in name:
__A = name.replace("cpb_mlp" , "continuous_position_bias_mlp" )
if name == "norm.weight":
__A = "layernorm.weight"
if name == "norm.bias":
__A = "layernorm.bias"
if "head" in name:
__A = name.replace("head" , "classifier" )
else:
__A = "swinv2." + name
return name
def UpperCAmelCase ( a_ , a_ ) -> List[str]:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
__A = orig_state_dict.pop(a_ )
if "mask" in key:
continue
elif "qkv" in key:
__A = key.split("." )
__A = int(key_split[1] )
__A = int(key_split[3] )
__A = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
__A = val[:dim, :]
__A = val[dim : dim * 2, :]
__A = val[-dim:, :]
else:
__A = val[:dim]
__A = val[
dim : dim * 2
]
__A = val[-dim:]
else:
__A = val
return orig_state_dict
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
__A = timm.create_model(a_ , pretrained=a_ )
timm_model.eval()
__A = get_swinva_config(a_ )
__A = SwinvaForImageClassification(a_ )
model.eval()
__A = convert_state_dict(timm_model.state_dict() , a_ )
model.load_state_dict(a_ )
__A = "http://images.cocodataset.org/val2017/000000039769.jpg"
__A = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) )
__A = Image.open(requests.get(a_ , stream=a_ ).raw )
__A = image_processor(images=a_ , return_tensors="pt" )
__A = timm_model(inputs["pixel_values"] )
__A = model(**a_ ).logits
assert torch.allclose(a_ , a_ , atol=1E-3 )
print(F'''Saving model {swinva_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(a_ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(a_ )
model.push_to_hub(
repo_path_or_name=Path(a_ , a_ ) , organization="nandwalritik" , commit_message="Add model" , )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--swinv2_name',
default='swinv2_tiny_patch4_window8_256',
type=str,
help='Name of the Swinv2 timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
SCREAMING_SNAKE_CASE :List[Any] = parser.parse_args()
convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
| 15 |
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def __init__( self : List[str] , _A : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _A : bool = True , _A : Tuple=7 , _A : Tuple=30 , _A : int=400 , _A : Tuple=3 , ) -> Optional[int]:
"""simple docstring"""
snake_case_ : str = parent
snake_case_ : str = do_resize
snake_case_ : str = size if size is not None else {'shortest_edge': 288}
snake_case_ : Any = size_divisor
snake_case_ : Any = do_rescale
snake_case_ : Union[str, Any] = rescale_factor
snake_case_ : str = do_normalize
snake_case_ : int = do_center_crop
snake_case_ : str = image_mean
snake_case_ : int = image_std
snake_case_ : Any = do_pad
snake_case_ : Optional[int] = batch_size
snake_case_ : List[str] = num_channels
snake_case_ : Any = min_resolution
snake_case_ : str = max_resolution
def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def UpperCAmelCase_ ( self : Dict , _A : str , _A : Union[str, Any]=False ) -> int:
"""simple docstring"""
if not batched:
snake_case_ : Optional[int] = self.size['shortest_edge']
snake_case_ : List[Any] = image_inputs[0]
if isinstance(_A , Image.Image ):
snake_case_ ,snake_case_ : Optional[Any] = image.size
else:
snake_case_ ,snake_case_ : str = image.shape[1], image.shape[2]
snake_case_ : Dict = size / min(_A , _A )
if h < w:
snake_case_ ,snake_case_ : str = size, scale * w
else:
snake_case_ ,snake_case_ : Tuple = scale * h, size
snake_case_ : Dict = int((1333 / 800) * size )
if max(_A , _A ) > max_size:
snake_case_ : Union[str, Any] = max_size / max(_A , _A )
snake_case_ : Any = newh * scale
snake_case_ : Union[str, Any] = neww * scale
snake_case_ ,snake_case_ : Any = int(newh + 0.5 ), int(neww + 0.5 )
snake_case_ ,snake_case_ : int = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
snake_case_ : Optional[int] = []
for image in image_inputs:
snake_case_ ,snake_case_ : Optional[int] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case_ : str = max(_A , key=lambda _A : item[0] )[0]
snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ):
__magic_name__: List[Any] = BridgeTowerImageProcessor if is_vision_available() else None
def UpperCAmelCase_ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
snake_case_ : int = BridgeTowerImageProcessingTester(self )
@property
def UpperCAmelCase_ ( self : int ) -> Any:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , 'image_mean' ) )
self.assertTrue(hasattr(_A , 'image_std' ) )
self.assertTrue(hasattr(_A , 'do_normalize' ) )
self.assertTrue(hasattr(_A , 'do_resize' ) )
self.assertTrue(hasattr(_A , 'size' ) )
self.assertTrue(hasattr(_A , 'size_divisor' ) )
def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
pass
def UpperCAmelCase_ ( self : Tuple ) -> Tuple:
"""simple docstring"""
snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A , Image.Image )
# Test not batched input
snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : List[str] = image_processing(_A , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
snake_case_ : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A , np.ndarray )
# Test not batched input
snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : Any = image_processing(_A , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase_ ( self : Dict ) -> List[str]:
"""simple docstring"""
snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
# Test not batched input
snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : str = image_processing(_A , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 327 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = '▁'
lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'}
lowerCAmelCase_ = {
'vocab_file': {
'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model',
}
}
lowerCAmelCase_ = {
'facebook/xglm-564M': 2_048,
}
class __A ( A_ ):
'''simple docstring'''
lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES
lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase : int = ["input_ids", "attention_mask"]
def __init__( self : int ,_snake_case : Dict ,_snake_case : Dict="<s>" ,_snake_case : Dict="</s>" ,_snake_case : str="</s>" ,_snake_case : Optional[Any]="<s>" ,_snake_case : Optional[Any]="<unk>" ,_snake_case : Optional[int]="<pad>" ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : str ,) -> None:
"""simple docstring"""
lowercase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
lowercase__ : Any = 7
lowercase__ : Optional[int] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )]
lowercase__ : Dict = kwargs.get('''additional_special_tokens''' ,[] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,cls_token=_snake_case ,pad_token=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,)
lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_snake_case ) )
lowercase__ : str = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
lowercase__ : Optional[int] = 1
# Mimic fairseq token-to-id alignment for the first 4 token
lowercase__ : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
lowercase__ : List[str] = len(self.sp_model )
lowercase__ : Tuple = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(_snake_case )
lowercase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : int ) -> Optional[int]:
"""simple docstring"""
lowercase__ : List[Any] = self.__dict__.copy()
lowercase__ : Optional[int] = None
lowercase__ : Any = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : Dict ,_snake_case : List[str] ) -> Any:
"""simple docstring"""
lowercase__ : int = d
# for backward compatibility
if not hasattr(self ,'''sp_model_kwargs''' ):
lowercase__ : Dict = {}
lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
lowercase__ : Optional[Any] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case )
if token_ids_a is None:
return [1] + ([0] * len(_snake_case ))
return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case ))
def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
lowercase__ : List[Any] = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def UpperCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Union[str, Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(_snake_case ,out_type=_snake_case )
def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ) -> List[Any]:
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowercase__ : Tuple = self.sp_model.PieceToId(_snake_case )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def UpperCAmelCase ( self : Any ,_snake_case : List[str] ) -> Any:
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : Optional[Any] = ''''''.join(_snake_case ).replace(_snake_case ,''' ''' ).strip()
return out_string
def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_snake_case ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowercase__ : Any = os.path.join(
_snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,_snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(_snake_case ,'''wb''' ) as fi:
lowercase__ : Dict = self.sp_model.serialized_model_proto()
fi.write(_snake_case )
return (out_vocab_file,)
| 16 |
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
_SCREAMING_SNAKE_CASE = 50_00_00
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = os.path.split(__file__)
_SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json"""))
@get_duration
def SCREAMING_SNAKE_CASE__ ( __a , **__a ):
snake_case_ : int = dataset.map(**__a )
@get_duration
def SCREAMING_SNAKE_CASE__ ( __a , **__a ):
snake_case_ : Dict = dataset.filter(**__a )
def SCREAMING_SNAKE_CASE__ ( ):
snake_case_ : Tuple = {'num examples': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ : Dict = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} )
snake_case_ : List[Any] = generate_example_dataset(
os.path.join(__a , 'dataset.arrow' ) , __a , num_examples=__a )
snake_case_ : str = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__a )
def tokenize(__a ):
return tokenizer(examples['text'] )
snake_case_ : Any = map(__a )
snake_case_ : Tuple = map(__a , batched=__a )
snake_case_ : str = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='numpy' ):
snake_case_ : Optional[int] = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='pandas' ):
snake_case_ : str = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='torch' , columns='numbers' ):
snake_case_ : int = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='tensorflow' , columns='numbers' ):
snake_case_ : List[Any] = map(__a , function=lambda __a : None , batched=__a )
snake_case_ : int = map(__a , function=__a , batched=__a )
snake_case_ : Optional[Any] = filter(__a )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(__a , 'wb' ) as f:
f.write(json.dumps(__a ).encode('utf-8' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 327 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_a = {
'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'],
'tokenization_luke': ['LukeTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST',
'LukeForEntityClassification',
'LukeForEntityPairClassification',
'LukeForEntitySpanClassification',
'LukeForMultipleChoice',
'LukeForQuestionAnswering',
'LukeForSequenceClassification',
'LukeForTokenClassification',
'LukeForMaskedLM',
'LukeModel',
'LukePreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig
from .tokenization_luke import LukeTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_luke import (
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
LukeForEntityClassification,
LukeForEntityPairClassification,
LukeForEntitySpanClassification,
LukeForMaskedLM,
LukeForMultipleChoice,
LukeForQuestionAnswering,
LukeForSequenceClassification,
LukeForTokenClassification,
LukeModel,
LukePreTrainedModel,
)
else:
import sys
_a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 17 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
_SCREAMING_SNAKE_CASE = namedtuple("""covid_data""", """cases deaths recovered""")
def SCREAMING_SNAKE_CASE__ ( __a = "https://www.worldometers.info/coronavirus/" ):
snake_case_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) )
_SCREAMING_SNAKE_CASE = """Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}"""
print(fmt.format(*covid_stats()))
| 327 | 0 |
class a__ :
def __init__( self : List[str],_A : list ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = set_counts
SCREAMING_SNAKE_CASE_ : List[Any] = max(_A )
SCREAMING_SNAKE_CASE_ : str = len(_A )
SCREAMING_SNAKE_CASE_ : List[str] = [1] * num_sets
SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(range(_A ) )
def __UpperCamelCase ( self : Union[str, Any],_A : int,_A : int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_parent(_A )
SCREAMING_SNAKE_CASE_ : Dict = self.get_parent(_A )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
SCREAMING_SNAKE_CASE_ : List[str] = 0
SCREAMING_SNAKE_CASE_ : Union[str, Any] = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
SCREAMING_SNAKE_CASE_ : str = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
SCREAMING_SNAKE_CASE_ : Tuple = 0
SCREAMING_SNAKE_CASE_ : str = src_parent
SCREAMING_SNAKE_CASE_ : Dict = self.set_counts[src_parent]
SCREAMING_SNAKE_CASE_ : Optional[Any] = max(self.max_set,_A )
return True
def __UpperCamelCase ( self : Any,_A : int ):
"""simple docstring"""
if self.parents[disj_set] == disj_set:
return disj_set
SCREAMING_SNAKE_CASE_ : str = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 18 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_lxmert import LxmertTokenizer
_SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_SCREAMING_SNAKE_CASE = {
"""vocab_file""": {
"""unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""",
},
"""tokenizer_file""": {
"""unc-nlp/lxmert-base-uncased""": (
"""https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json"""
),
},
}
_SCREAMING_SNAKE_CASE = {
"""unc-nlp/lxmert-base-uncased""": 5_12,
}
_SCREAMING_SNAKE_CASE = {
"""unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True},
}
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
__magic_name__: List[Any] = VOCAB_FILES_NAMES
__magic_name__: List[str] = PRETRAINED_VOCAB_FILES_MAP
__magic_name__: List[str] = PRETRAINED_INIT_CONFIGURATION
__magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__: Union[str, Any] = LxmertTokenizer
def __init__( self : List[str] , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=True , _A : Dict="[UNK]" , _A : Optional[int]="[SEP]" , _A : Dict="[PAD]" , _A : Union[str, Any]="[CLS]" , _A : str="[MASK]" , _A : Tuple=True , _A : Dict=None , **_A : List[Any] , ) -> Optional[int]:
"""simple docstring"""
super().__init__(
_A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , )
snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _A ) != do_lower_case
or normalizer_state.get('strip_accents' , _A ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars
):
snake_case_ : Tuple = getattr(_A , normalizer_state.pop('type' ) )
snake_case_ : Union[str, Any] = do_lower_case
snake_case_ : int = strip_accents
snake_case_ : Optional[Any] = tokenize_chinese_chars
snake_case_ : List[Any] = normalizer_class(**_A )
snake_case_ : Tuple = do_lower_case
def UpperCAmelCase_ ( self : Dict , _A : Any , _A : List[Any]=None ) -> Dict:
"""simple docstring"""
snake_case_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase_ ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
snake_case_ : str = [self.sep_token_id]
snake_case_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A )
return tuple(_A )
| 327 | 0 |
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
__A =TypeVar('''T''')
def lowerCamelCase_ ( lowerCamelCase__ ):
return (position - 1) // 2
def lowerCamelCase_ ( lowerCamelCase__ ):
return (2 * position) + 1
def lowerCamelCase_ ( lowerCamelCase__ ):
return (2 * position) + 2
class _SCREAMING_SNAKE_CASE ( Generic[T] ):
def __init__( self ) -> None:
lowerCamelCase_ = []
lowerCamelCase_ = {}
lowerCamelCase_ = 0
def __len__( self ) -> int:
return self.elements
def __repr__( self ) -> str:
return str(self.heap )
def SCREAMING_SNAKE_CASE_( self ) -> bool:
# Check if the priority queue is empty
return self.elements == 0
def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> None:
# Add an element with given priority to the queue
self.heap.append((elem, weight) )
lowerCamelCase_ = self.elements
self.elements += 1
self._bubble_up(lowercase )
def SCREAMING_SNAKE_CASE_( self ) -> T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
lowerCamelCase_ , lowerCamelCase_ = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
lowerCamelCase_ , lowerCamelCase_ = self.heap[0]
self._bubble_down(lowercase )
return elem
def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> None:
# Update the weight of the given key
lowerCamelCase_ = self.position_map[elem]
lowerCamelCase_ = (elem, weight)
if position > 0:
lowerCamelCase_ = get_parent_position(lowercase )
lowerCamelCase_ , lowerCamelCase_ = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(lowercase )
else:
self._bubble_down(lowercase )
else:
self._bubble_down(lowercase )
def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
lowerCamelCase_ = self.position_map[elem]
if curr_pos == 0:
return None
lowerCamelCase_ = get_parent_position(lowercase )
lowerCamelCase_ , lowerCamelCase_ = self.heap[curr_pos]
lowerCamelCase_ , lowerCamelCase_ = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(lowercase , lowercase )
return self._bubble_up(lowercase )
return None
def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
lowerCamelCase_ = self.position_map[elem]
lowerCamelCase_ , lowerCamelCase_ = self.heap[curr_pos]
lowerCamelCase_ = get_child_left_position(lowercase )
lowerCamelCase_ = get_child_right_position(lowercase )
if child_left_position < self.elements and child_right_position < self.elements:
lowerCamelCase_ , lowerCamelCase_ = self.heap[child_left_position]
lowerCamelCase_ , lowerCamelCase_ = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(lowercase , lowercase )
return self._bubble_down(lowercase )
if child_left_position < self.elements:
lowerCamelCase_ , lowerCamelCase_ = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(lowercase , lowercase )
return self._bubble_down(lowercase )
else:
return None
if child_right_position < self.elements:
lowerCamelCase_ , lowerCamelCase_ = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(lowercase , lowercase )
return self._bubble_down(lowercase )
return None
def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> None:
# Swap the nodes at the given positions
lowerCamelCase_ = self.heap[nodea_pos][0]
lowerCamelCase_ = self.heap[nodea_pos][0]
lowerCamelCase_ , lowerCamelCase_ = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
lowerCamelCase_ = nodea_pos
lowerCamelCase_ = nodea_pos
class _SCREAMING_SNAKE_CASE ( Generic[T] ):
def __init__( self ) -> None:
lowerCamelCase_ = {}
lowerCamelCase_ = 0
def __repr__( self ) -> str:
return str(self.connections )
def __len__( self ) -> int:
return self.nodes
def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
lowerCamelCase_ = {}
self.nodes += 1
def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> None:
# Add an edge between 2 nodes in the graph
self.add_node(lowercase )
self.add_node(lowercase )
lowerCamelCase_ = weight
lowerCamelCase_ = weight
def lowerCamelCase_ ( lowerCamelCase__ , ):
lowerCamelCase_ = {node: maxsize for node in graph.connections}
lowerCamelCase_ = {node: None for node in graph.connections}
lowerCamelCase_ = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(lowerCamelCase__ , lowerCamelCase__ )
if priority_queue.is_empty():
return dist, parent
# initialization
lowerCamelCase_ = priority_queue.extract_min()
lowerCamelCase_ = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
lowerCamelCase_ = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(lowerCamelCase__ , dist[neighbour] )
lowerCamelCase_ = node
# running prim's algorithm
while not priority_queue.is_empty():
lowerCamelCase_ = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
lowerCamelCase_ = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(lowerCamelCase__ , dist[neighbour] )
lowerCamelCase_ = node
return dist, parent
| 19 |
def SCREAMING_SNAKE_CASE__ ( __a ):
if not isinstance(__a , __a ):
snake_case_ : int = f"""Input value of [number={number}] must be an integer"""
raise TypeError(__a )
if number < 0:
return False
snake_case_ : Dict = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]:
if index == r:
for j in range(SCREAMING_SNAKE_CASE__ ):
print(data[j] , end=""" """ )
print(""" """ )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
lowercase : Tuple = arr[i]
combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 , SCREAMING_SNAKE_CASE__ , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]:
# A temporary array to store all combination one by one
lowercase : Optional[int] = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , 0 )
if __name__ == "__main__":
# Driver code to check the function above
lowercase : int = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 20 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_SCREAMING_SNAKE_CASE = {
"""configuration_autoformer""": [
"""AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AutoformerConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"""AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AutoformerForPrediction""",
"""AutoformerModel""",
"""AutoformerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 327 | 0 |
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]:
_lowercase : Optional[Any] = [1]
for i in range(2 , lowerCamelCase_ ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
_lowercase : int = []
_lowercase : Union[str, Any] = list(range(lowerCamelCase_ ) )
# Find permutation
while factorials:
_lowercase : Dict = factorials.pop()
_lowercase , _lowercase : Any = divmod(lowerCamelCase_ , lowerCamelCase_ )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 |
from typing import Dict
from .base import GenericTensor, Pipeline
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
def UpperCAmelCase_ ( self : str , _A : Optional[Any]=None , _A : List[str]=None , _A : Optional[Any]=None , **_A : List[str] ) -> Any:
"""simple docstring"""
if tokenize_kwargs is None:
snake_case_ : Optional[Any] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
snake_case_ : int = truncation
snake_case_ : Optional[int] = tokenize_kwargs
snake_case_ : Dict = {}
if return_tensors is not None:
snake_case_ : Union[str, Any] = return_tensors
return preprocess_params, {}, postprocess_params
def UpperCAmelCase_ ( self : Optional[int] , _A : int , **_A : Any ) -> Dict[str, GenericTensor]:
"""simple docstring"""
snake_case_ : Dict = self.framework
snake_case_ : Any = self.tokenizer(_A , return_tensors=_A , **_A )
return model_inputs
def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] ) -> int:
"""simple docstring"""
snake_case_ : Tuple = self.model(**_A )
return model_outputs
def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str=False ) -> Any:
"""simple docstring"""
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> List[str]:
"""simple docstring"""
return super().__call__(*_A , **_A )
| 327 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE :int = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''}
class A_ ( lowerCAmelCase_ ):
_lowerCamelCase : str = """openai-gpt"""
_lowerCamelCase : Union[str, Any] = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Optional[Any] , snake_case_ : Optional[Any]=4_0_4_7_8 , snake_case_ : int=5_1_2 , snake_case_ : Optional[Any]=7_6_8 , snake_case_ : Any=1_2 , snake_case_ : str=1_2 , snake_case_ : Optional[Any]="gelu" , snake_case_ : Optional[Any]=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : str=0.1 , snake_case_ : Optional[Any]=1e-5 , snake_case_ : int=0.0_2 , snake_case_ : Optional[int]="cls_index" , snake_case_ : Union[str, Any]=True , snake_case_ : Any=None , snake_case_ : Optional[int]=True , snake_case_ : List[Any]=0.1 , **snake_case_ : List[Any] , ):
_UpperCAmelCase = vocab_size
_UpperCAmelCase = n_positions
_UpperCAmelCase = n_embd
_UpperCAmelCase = n_layer
_UpperCAmelCase = n_head
_UpperCAmelCase = afn
_UpperCAmelCase = resid_pdrop
_UpperCAmelCase = embd_pdrop
_UpperCAmelCase = attn_pdrop
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = initializer_range
_UpperCAmelCase = summary_type
_UpperCAmelCase = summary_use_proj
_UpperCAmelCase = summary_activation
_UpperCAmelCase = summary_first_dropout
_UpperCAmelCase = summary_proj_to_labels
super().__init__(**snake_case_ )
| 22 |
from itertools import permutations
def SCREAMING_SNAKE_CASE__ ( __a ):
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
snake_case_ : Any = [7, 11, 13, 17]
for i, test in enumerate(__a ):
if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def SCREAMING_SNAKE_CASE__ ( __a = 10 ):
return sum(
int(''.join(map(__a , __a ) ) )
for num in permutations(range(__a ) )
if is_substring_divisible(__a ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 327 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__: Optional[int] = logging.get_logger(__name__)
UpperCamelCase__: str = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"}
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = """ctrl"""
lowerCamelCase__ = ["""past_key_values"""]
lowerCamelCase__ = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : str , __snake_case : Optional[int]=246534 , __snake_case : Any=256 , __snake_case : Optional[Any]=1280 , __snake_case : List[Any]=8192 , __snake_case : Tuple=48 , __snake_case : Union[str, Any]=16 , __snake_case : Optional[int]=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Optional[int]=1E-6 , __snake_case : Any=0.02 , __snake_case : Optional[Any]=True , **__snake_case : Dict , ) -> Optional[int]:
UpperCAmelCase : Dict = vocab_size
UpperCAmelCase : Optional[int] = n_positions
UpperCAmelCase : str = n_embd
UpperCAmelCase : Any = n_layer
UpperCAmelCase : Tuple = n_head
UpperCAmelCase : int = dff
UpperCAmelCase : Any = resid_pdrop
UpperCAmelCase : Any = embd_pdrop
UpperCAmelCase : Tuple = layer_norm_epsilon
UpperCAmelCase : int = initializer_range
UpperCAmelCase : Any = use_cache
super().__init__(**__snake_case )
| 23 |
from __future__ import annotations
from collections import namedtuple
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ):
snake_case_ : Any = namedtuple('result' , 'name value' )
if (voltage, current, power).count(0 ) != 1:
raise ValueError('Only one argument must be 0' )
elif power < 0:
raise ValueError(
'Power cannot be negative in any electrical/electronics system' )
elif voltage == 0:
return result('voltage' , power / current )
elif current == 0:
return result('current' , power / voltage )
elif power == 0:
return result('power' , float(round(abs(voltage * current ) , 2 ) ) )
else:
raise ValueError('Exactly one argument must be 0' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
snake_case_ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
snake_case_ = [0, 25, 50]
snake_case_ = [25, 50, 75]
snake_case_ = fuzz.membership.trimf(X, abca)
snake_case_ = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
snake_case_ = np.ones(75)
snake_case_ = np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
snake_case_ = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
snake_case_ = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
snake_case_ = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
snake_case_ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
snake_case_ = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
snake_case_ = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
snake_case_ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
snake_case_ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title('Young')
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title('Middle aged')
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title('union')
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title('intersection')
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title('complement_a')
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title('difference a/b')
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title('alg_sum')
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title('alg_product')
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title('bdd_sum')
plt.grid(True)
plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title('bdd_difference')
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 24 |
import re
import string
import numpy as np
import datasets
_SCREAMING_SNAKE_CASE = """
Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.
"""
_SCREAMING_SNAKE_CASE = """
Args:
predictions: List of predicted texts.
references: List of reference texts.
regexes_to_ignore: List, defaults to None. Regex expressions of characters to
ignore when calculating the exact matches. Note: these regexes are removed
from the input data before the changes based on the options below (e.g. ignore_case,
ignore_punctuation, ignore_numbers) are applied.
ignore_case: Boolean, defaults to False. If true, turns everything
to lowercase so that capitalization differences are ignored.
ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
Returns:
exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.
Examples:
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results[\"exact_match\"], 1))
25.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results[\"exact_match\"], 1))
50.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results[\"exact_match\"], 1))
75.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)
>>> print(round(results[\"exact_match\"], 1))
100.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]
>>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results[\"exact_match\"], 1))
33.3
"""
_SCREAMING_SNAKE_CASE = """
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE_ ( datasets.Metric ):
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , reference_urls=[] , )
def UpperCAmelCase_ ( self : int , _A : Tuple , _A : Tuple , _A : str=None , _A : Dict=False , _A : Tuple=False , _A : str=False , ) -> Tuple:
"""simple docstring"""
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
snake_case_ : List[Any] = np.array([re.sub(_A , '' , _A ) for x in predictions] )
snake_case_ : Optional[Any] = np.array([re.sub(_A , '' , _A ) for x in references] )
else:
snake_case_ : Dict = np.asarray(_A )
snake_case_ : Tuple = np.asarray(_A )
if ignore_case:
snake_case_ : List[str] = np.char.lower(_A )
snake_case_ : Any = np.char.lower(_A )
if ignore_punctuation:
snake_case_ : int = string.punctuation.maketrans('' , '' , string.punctuation )
snake_case_ : Tuple = np.char.translate(_A , table=_A )
snake_case_ : str = np.char.translate(_A , table=_A )
if ignore_numbers:
snake_case_ : Optional[int] = string.digits.maketrans('' , '' , string.digits )
snake_case_ : str = np.char.translate(_A , table=_A )
snake_case_ : Union[str, Any] = np.char.translate(_A , table=_A )
snake_case_ : int = predictions == references
return {"exact_match": np.mean(_A ) * 100}
| 327 | 0 |
"""simple docstring"""
import random
import timeit
from functools import wraps
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_pyanvml_available, is_tf_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_tf_available():
import tensorflow as tf
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_pyanvml_available():
import pyanvml.pyanvml as nvml
UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__)
def lowercase_ ( _snake_case ,_snake_case ):
def run_func(_snake_case ):
@wraps(_snake_case )
def run_in_eager_mode(*_snake_case ,**_snake_case ):
return func(*_snake_case ,**_snake_case )
@wraps(_snake_case )
@tf.function(experimental_compile=_snake_case )
def run_in_graph_mode(*_snake_case ,**_snake_case ):
return func(*_snake_case ,**_snake_case )
if do_eager_mode is True:
if use_xla is not False:
raise ValueError(
"""Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" )
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def lowercase_ ( _snake_case ,_snake_case ,_snake_case ):
SCREAMING_SNAKE_CASE__ : Dict = random.Random()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [rng.randint(0 ,vocab_size - 1 ) for i in range(batch_size * sequence_length )]
return tf.constant(_snake_case ,shape=(batch_size, sequence_length) ,dtype=tf.intaa )
class lowerCAmelCase_ (a__ ):
"""simple docstring"""
__UpperCamelCase : TensorFlowBenchmarkArguments
__UpperCamelCase : PretrainedConfig
__UpperCamelCase : str = "TensorFlow"
@property
def __magic_name__ (self ) -> Union[str, Any]:
"""simple docstring"""
return tf.__version__
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
SCREAMING_SNAKE_CASE__ : Dict = self._prepare_inference_func(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._measure_speed(_inference )
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = self._prepare_train_func(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._measure_speed(_train )
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> [Memory, Optional[MemorySummary]]:
"""simple docstring"""
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Tuple = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
SCREAMING_SNAKE_CASE__ : Dict = self._prepare_inference_func(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._measure_memory(_inference )
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> [Memory, Optional[MemorySummary]]:
"""simple docstring"""
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Optional[int] = self.args.strategy
if strategy is None:
raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" )
SCREAMING_SNAKE_CASE__ : List[str] = self._prepare_train_func(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return self._measure_memory(_train )
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Callable[[], None]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.config_dict[model_name]
if self.args.fpaa:
raise NotImplementedError("""Mixed precision is currently not supported.""" )
SCREAMING_SNAKE_CASE__ : Optional[int] = (
hasattr(SCREAMING_SNAKE_CASE__ , """architectures""" )
and isinstance(config.architectures , SCREAMING_SNAKE_CASE__ )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
SCREAMING_SNAKE_CASE__ : Any = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model
SCREAMING_SNAKE_CASE__ : Union[str, Any] = __import__("""transformers""" , fromlist=[model_class] )
SCREAMING_SNAKE_CASE__ : Any = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : List[str] = model_cls(SCREAMING_SNAKE_CASE__ )
except ImportError:
raise ImportError(
F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to'''
""" set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" )
else:
SCREAMING_SNAKE_CASE__ : str = TF_MODEL_MAPPING[config.__class__](SCREAMING_SNAKE_CASE__ )
# encoder-decoder has vocab size saved differently
SCREAMING_SNAKE_CASE__ : int = config.vocab_size if hasattr(SCREAMING_SNAKE_CASE__ , """vocab_size""" ) else config.encoder.vocab_size
SCREAMING_SNAKE_CASE__ : List[str] = random_input_ids(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_forward():
return model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_forward():
return model(SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Any = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Callable[[], None]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" )
if self.args.fpaa:
raise NotImplementedError("""Mixed precision is currently not supported.""" )
SCREAMING_SNAKE_CASE__ : List[str] = (
hasattr(SCREAMING_SNAKE_CASE__ , """architectures""" )
and isinstance(config.architectures , SCREAMING_SNAKE_CASE__ )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
SCREAMING_SNAKE_CASE__ : Any = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model
SCREAMING_SNAKE_CASE__ : List[str] = __import__("""transformers""" , fromlist=[model_class] )
SCREAMING_SNAKE_CASE__ : Tuple = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : str = model_cls(SCREAMING_SNAKE_CASE__ )
except ImportError:
raise ImportError(
F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to'''
""" set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" )
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](SCREAMING_SNAKE_CASE__ )
# encoder-decoder has vocab size saved differently
SCREAMING_SNAKE_CASE__ : List[Any] = config.vocab_size if hasattr(SCREAMING_SNAKE_CASE__ , """vocab_size""" ) else config.encoder.vocab_size
SCREAMING_SNAKE_CASE__ : int = random_input_ids(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_train():
SCREAMING_SNAKE_CASE__ : Optional[int] = model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ )[0]
SCREAMING_SNAKE_CASE__ : Any = tf.gradients(SCREAMING_SNAKE_CASE__ , model.trainable_variables )
return gradients
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_train():
SCREAMING_SNAKE_CASE__ : Dict = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , training=SCREAMING_SNAKE_CASE__ )[0]
SCREAMING_SNAKE_CASE__ : Any = tf.gradients(SCREAMING_SNAKE_CASE__ , model.trainable_variables )
return gradients
SCREAMING_SNAKE_CASE__ : Any = encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> float:
"""simple docstring"""
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" )
timeit.repeat(SCREAMING_SNAKE_CASE__ , repeat=1 , number=5 )
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
SCREAMING_SNAKE_CASE__ : Optional[int] = timeit.repeat(
SCREAMING_SNAKE_CASE__ , repeat=self.args.repeat , number=10 , )
return min(SCREAMING_SNAKE_CASE__ ) / 10.0
except ResourceExhaustedError as e:
self.print_fn(F'''Doesn\'t fit on GPU. {e}''' )
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> [Memory, MemorySummary]:
"""simple docstring"""
logger.info(
"""Note that TensorFlow allocates more memory than """
"""it might need to speed up computation. """
"""The memory reported here corresponds to the memory """
"""reported by `nvidia-smi`, which can vary depending """
"""on total available memory on the GPU that is used.""" )
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
"""`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory"""
""" consumption line by line.""" )
SCREAMING_SNAKE_CASE__ : Optional[int] = start_memory_tracing("""transformers""" )
if self.args.is_tpu:
# tpu
raise NotImplementedError(
"""Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking"""
""" with `args.memory=False`""" )
elif self.args.is_gpu:
# gpu
if not is_pyanvml_available():
logger.warning(
"""py3nvml not installed, we won't log GPU memory usage. """
"""Install py3nvml (pip install py3nvml) to log information about GPU.""" )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """N/A"""
else:
logger.info(
"""Measuring total GPU usage on GPU device. Make sure to not have additional processes"""
""" running on the same GPU.""" )
# init nvml
nvml.nvmlInit()
func()
SCREAMING_SNAKE_CASE__ : List[Any] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = nvml.nvmlDeviceGetMemoryInfo(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Optional[int] = meminfo.used
SCREAMING_SNAKE_CASE__ : str = Memory(SCREAMING_SNAKE_CASE__ )
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
"""When enabling line by line tracing, the max peak memory for CPU is inaccurate in"""
""" TensorFlow.""" )
SCREAMING_SNAKE_CASE__ : Any = None
else:
SCREAMING_SNAKE_CASE__ : List[Any] = measure_peak_memory_cpu(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = Memory(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else memory_bytes
if self.args.trace_memory_line_by_line:
SCREAMING_SNAKE_CASE__ : List[Any] = stop_memory_tracing(SCREAMING_SNAKE_CASE__ )
if memory is None:
SCREAMING_SNAKE_CASE__ : Optional[int] = summary.total
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(F'''Doesn\'t fit on GPU. {e}''' )
return "N/A", None
| 25 |
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class SCREAMING_SNAKE_CASE_ :
def __init__( self : List[Any] , _A : Optional[Any] , _A : Dict=13 , _A : Union[str, Any]=30 , _A : Tuple=2 , _A : Union[str, Any]=3 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : str=32 , _A : int=2 , _A : List[str]=4 , _A : List[str]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=10 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=3 , _A : str=0.6 , _A : Union[str, Any]=None , ) -> Any:
"""simple docstring"""
snake_case_ : Optional[int] = parent
snake_case_ : Tuple = batch_size
snake_case_ : List[Any] = image_size
snake_case_ : List[str] = patch_size
snake_case_ : List[str] = num_channels
snake_case_ : Optional[Any] = is_training
snake_case_ : Any = use_labels
snake_case_ : Tuple = hidden_size
snake_case_ : Union[str, Any] = num_hidden_layers
snake_case_ : List[Any] = num_attention_heads
snake_case_ : Optional[Any] = intermediate_size
snake_case_ : List[Any] = hidden_act
snake_case_ : Union[str, Any] = hidden_dropout_prob
snake_case_ : Any = attention_probs_dropout_prob
snake_case_ : Tuple = type_sequence_label_size
snake_case_ : List[str] = initializer_range
snake_case_ : Optional[Any] = mask_ratio
snake_case_ : Any = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
snake_case_ : Optional[int] = (image_size // patch_size) ** 2
snake_case_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ : Union[str, Any] = None
if self.use_labels:
snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase_ ( self : int ) -> Optional[Any]:
"""simple docstring"""
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : Dict , _A : str ) -> Dict:
"""simple docstring"""
snake_case_ : Union[str, Any] = TFViTMAEModel(config=_A )
snake_case_ : str = model(_A , training=_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : Any , _A : List[Any] ) -> int:
"""simple docstring"""
snake_case_ : Any = TFViTMAEForPreTraining(_A )
snake_case_ : Optional[Any] = model(_A , training=_A )
# expected sequence length = num_patches
snake_case_ : List[str] = (self.image_size // self.patch_size) ** 2
snake_case_ : Optional[Any] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
snake_case_ : str = 1
snake_case_ : Dict = TFViTMAEForPreTraining(_A )
snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case_ : List[str] = model(_A , training=_A )
snake_case_ : Optional[Any] = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
snake_case_ : List[Any] = self.prepare_config_and_inputs()
((snake_case_) ,(snake_case_) ,(snake_case_)) : Any = config_and_inputs
snake_case_ : Optional[Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ):
__magic_name__: List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
__magic_name__: str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {}
__magic_name__: Dict = False
__magic_name__: Dict = False
__magic_name__: List[Any] = False
__magic_name__: Dict = False
def UpperCAmelCase_ ( self : Any ) -> List[Any]:
"""simple docstring"""
snake_case_ : List[Any] = TFViTMAEModelTester(self )
snake_case_ : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 )
def UpperCAmelCase_ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='ViTMAE does not use inputs_embeds' )
def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ ,snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : List[Any] = model_class(_A )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
snake_case_ : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) )
def UpperCAmelCase_ ( self : List[str] ) -> Dict:
"""simple docstring"""
snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : List[str] = model_class(_A )
snake_case_ : Any = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ : Dict = [*signature.parameters.keys()]
snake_case_ : Dict = ['pixel_values']
self.assertListEqual(arg_names[:1] , _A )
def UpperCAmelCase_ ( self : Dict ) -> List[str]:
"""simple docstring"""
snake_case_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def UpperCAmelCase_ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
snake_case_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_A )
def UpperCAmelCase_ ( self : Tuple ) -> Dict:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
snake_case_ : Optional[Any] = model_class(_A )
snake_case_ : Union[str, Any] = self._prepare_for_class(_A , _A )
snake_case_ : List[str] = model(_A , noise=_A )
snake_case_ : Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) )
snake_case_ : str = model(**_A , noise=_A )
snake_case_ : Union[str, Any] = outputs_dict[0].numpy()
snake_case_ : Optional[Any] = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 )
def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Tuple = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(_A : int ):
snake_case_ : Any = {}
for k, v in inputs_dict.items():
if tf.is_tensor(_A ):
snake_case_ : str = v.numpy()
else:
snake_case_ : Optional[Any] = np.array(_A )
return inputs_np_dict
for model_class in self.all_model_classes:
snake_case_ : int = model_class(_A )
snake_case_ : List[Any] = self._prepare_for_class(_A , _A )
snake_case_ : Any = prepare_numpy_arrays(_A )
snake_case_ : List[Any] = model(_A , noise=_A )
snake_case_ : List[Any] = model(**_A , noise=_A )
self.assert_outputs_same(_A , _A )
def UpperCAmelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> List[str]:
"""simple docstring"""
np.random.seed(2 )
snake_case_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
snake_case_ : Optional[int] = tf.constant(_A )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
snake_case_ : Optional[Any] = tf_noise
super().check_pt_tf_models(_A , _A , _A )
def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : int = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(_A )
if module_member_name.endswith('MainLayer' )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )]
for module_member in (getattr(_A , _A ),)
if isinstance(_A , _A )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(_A , '_keras_serializable' , _A )
}
snake_case_ : List[Any] = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
snake_case_ : Optional[int] = tf.convert_to_tensor(_A )
inputs_dict.update({'noise': noise} )
for main_layer_class in tf_main_layer_classes:
snake_case_ : Optional[Any] = main_layer_class(_A )
snake_case_ : List[str] = {
name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
snake_case_ : Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) )
snake_case_ : int = model(_A )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : List[Any] = os.path.join(_A , 'keras_model.h5' )
model.save(_A )
snake_case_ : str = tf.keras.models.load_model(
_A , custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(_A , tf.keras.Model )
snake_case_ : List[str] = model(_A )
self.assert_outputs_same(_A , _A )
@slow
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : int = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
snake_case_ : Optional[Any] = model_class(_A )
snake_case_ : Optional[Any] = self._prepare_for_class(_A , _A )
snake_case_ : int = model(_A , noise=_A )
if model_class.__name__ == "TFViTMAEModel":
snake_case_ : Any = outputs.last_hidden_state.numpy()
snake_case_ : Optional[int] = 0
else:
snake_case_ : str = outputs.logits.numpy()
snake_case_ : Optional[Any] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A , saved_model=_A )
snake_case_ : Any = model_class.from_pretrained(_A )
snake_case_ : Any = model(_A , noise=_A )
if model_class.__name__ == "TFViTMAEModel":
snake_case_ : Dict = after_outputs['last_hidden_state'].numpy()
snake_case_ : Dict = 0
else:
snake_case_ : Any = after_outputs['logits'].numpy()
snake_case_ : Optional[Any] = 0
snake_case_ : Any = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_A , 1E-5 )
def UpperCAmelCase_ ( self : Any ) -> str:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
snake_case_ : str = model_class(_A )
snake_case_ : int = self._prepare_for_class(_A , _A )
snake_case_ : str = model(_A , noise=_A )
snake_case_ : Dict = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(_A )
snake_case_ : Any = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
snake_case_ : str = model_class.from_config(model.config )
snake_case_ : Union[str, Any] = new_model(_A ) # Build model
new_model.set_weights(model.get_weights() )
snake_case_ : List[str] = new_model(_A , noise=_A )
self.assert_outputs_same(_A , _A )
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' )
def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
pass
@unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' )
def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
pass
@slow
def UpperCAmelCase_ ( self : Tuple ) -> Tuple:
"""simple docstring"""
snake_case_ : Optional[Any] = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' )
self.assertIsNotNone(_A )
def SCREAMING_SNAKE_CASE__ ( ):
snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
@cached_property
def UpperCAmelCase_ ( self : str ) -> Dict:
"""simple docstring"""
return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None
@slow
def UpperCAmelCase_ ( self : str ) -> Dict:
"""simple docstring"""
np.random.seed(2 )
snake_case_ : List[str] = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' )
snake_case_ : List[Any] = self.default_image_processor
snake_case_ : Dict = prepare_img()
snake_case_ : Optional[Any] = image_processor(images=_A , return_tensors='tf' )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
snake_case_ : int = ViTMAEConfig()
snake_case_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
snake_case_ : List[Any] = np.random.uniform(size=(1, num_patches) )
# forward pass
snake_case_ : Optional[Any] = model(**_A , noise=_A )
# verify the logits
snake_case_ : Optional[int] = tf.convert_to_tensor([1, 196, 768] )
self.assertEqual(outputs.logits.shape , _A )
snake_case_ : Any = tf.convert_to_tensor(
[[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
| 327 | 0 |
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
# 1. Validate that path exists between current and next vertices
if graph[path[curr_ind - 1]][next_ver] == 0:
return False
# 2. Validate that next vertex is not already in path
return not any(vertex == next_ver for vertex in path )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
# Base Case
if curr_ind == len(snake_case_ ):
# return whether path exists between current and starting vertices
return graph[path[curr_ind - 1]][path[0]] == 1
# Recursive Step
for next_ver in range(0,len(snake_case_ ) ):
if valid_connection(snake_case_,snake_case_,snake_case_,snake_case_ ):
# Insert current vertex into path as next transition
_A : Dict = next_ver
# Validate created path
if util_hamilton_cycle(snake_case_,snake_case_,curr_ind + 1 ):
return True
# Backtrack
_A : Any = -1
return False
def lowerCAmelCase_ ( snake_case_,snake_case_ = 0 ):
_A : int = [-1] * (len(snake_case_ ) + 1)
# initialize start and end of path with starting index
_A : Dict = start_index
# evaluate and if we find answer return path either return empty array
return path if util_hamilton_cycle(snake_case_,snake_case_,1 ) else []
| 26 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
snake_case_ : list[list[int]] = []
snake_case_ : list[int] = []
snake_case_ : List[Any] = 0
snake_case_ : Union[str, Any] = sum(__a )
create_state_space_tree(__a , __a , __a , __a , __a , __a )
return result
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ):
if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum:
return
if sum(__a ) == max_sum:
result.append(__a )
return
for index in range(__a , len(__a ) ):
create_state_space_tree(
__a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , )
_SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2]
_SCREAMING_SNAKE_CASE = 9
_SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 327 | 0 |
'''simple docstring'''
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def lowerCamelCase ():
__a , __a : Union[str, Any] = 9, 14 # noqa: F841
__a : Optional[Any] = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
__a : Dict = defaultdict(_SCREAMING_SNAKE_CASE )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
__a : Union[str, Any] = mst(_SCREAMING_SNAKE_CASE )
__a : List[Any] = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
__a : Optional[Any] = tuple(answer[:2] )
__a : Any = tuple(edge[::-1] )
assert edge in result or reverse in result
| 27 |
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
if density <= 0:
raise ValueError('Impossible fluid density' )
if bulk_modulus <= 0:
raise ValueError('Impossible bulk modulus' )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
'''simple docstring'''
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , )
@pytest.mark.usefixtures("""sm_env""" )
@parameterized_class(
[
{
"""framework""": """pytorch""",
"""script""": """run_glue_model_parallelism.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
{
"""framework""": """pytorch""",
"""script""": """run_glue.py""",
"""model_name_or_path""": """roberta-large""",
"""instance_type""": """ml.p3dn.24xlarge""",
"""results""": {"""train_runtime""": 1_600, """eval_accuracy""": 0.3, """eval_loss""": 1.2},
},
] )
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
"""simple docstring"""
def A ( self : str ):
"""simple docstring"""
if self.framework == "pytorch":
subprocess.run(
f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='utf-8' , check=UpperCamelCase__ , )
assert hasattr(self , 'env' )
def A ( self : Optional[Any] , UpperCamelCase__ : Any ):
"""simple docstring"""
UpperCamelCase = {
'enabled': True,
'processes_per_host': 8,
}
UpperCamelCase = {
'enabled': True,
'parameters': {
'microbatches': 4,
'placement_strategy': 'spread',
'pipeline': 'interleaved',
'optimize': 'speed',
'partitions': 4,
'ddp': True,
},
}
UpperCamelCase = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options}
UpperCamelCase = 'trainer' if self.script == 'run_glue.py' else 'smtrainer'
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=UpperCamelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCamelCase__ , hyperparameters={
**self.env.hyperparameters,
'model_name_or_path': self.model_name_or_path,
'max_steps': 5_0_0,
} , metric_definitions=self.env.metric_definitions , distribution=UpperCamelCase__ , py_version='py36' , )
def A ( self : Optional[int] , UpperCamelCase__ : int ):
"""simple docstring"""
TrainingJobAnalytics(UpperCamelCase__ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def A ( self : List[str] , UpperCamelCase__ : Tuple ):
"""simple docstring"""
UpperCamelCase = self.create_estimator(UpperCamelCase__ )
# run training
estimator.fit()
# result dataframe
UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] )
UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
UpperCamelCase = (
Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 9_9_9_9_9_9 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy )
assert all(t <= self.results['eval_loss'] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f"""{estimator.latest_training_job.name}.json""" , 'w' ) as outfile:
json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , UpperCamelCase__ )
| 28 |
from math import pi
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
return 2 * pi * radius * (angle / 3_60)
if __name__ == "__main__":
print(arc_length(90, 10))
| 327 | 0 |
import os
# Precomputes a list of the 100 first triangular numbers
__UpperCAmelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)]
def lowercase__ ( ):
'''simple docstring'''
UpperCAmelCase_ : Any = os.path.dirname(os.path.realpath(__snake_case ) )
UpperCAmelCase_ : Optional[Any] = os.path.join(__snake_case , 'words.txt' )
UpperCAmelCase_ : Union[str, Any] = ''
with open(__snake_case ) as f:
UpperCAmelCase_ : List[Any] = f.readline()
UpperCAmelCase_ : Optional[int] = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )]
UpperCAmelCase_ : Optional[int] = [
word
for word in [sum(ord(__snake_case ) - 64 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(__snake_case )
if __name__ == "__main__":
print(solution())
| 29 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
__magic_name__: Optional[Any] = ["pixel_values"]
def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PIL.Image.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : str , ) -> None:
"""simple docstring"""
super().__init__(**_A )
snake_case_ : Dict = size if size is not None else {'height': 256, 'width': 256}
snake_case_ : Tuple = get_size_dict(_A )
snake_case_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224}
snake_case_ : int = get_size_dict(_A , param_name='crop_size' )
snake_case_ : Union[str, Any] = do_resize
snake_case_ : str = size
snake_case_ : List[str] = resample
snake_case_ : List[Any] = do_center_crop
snake_case_ : Dict = crop_size
snake_case_ : Tuple = do_rescale
snake_case_ : Optional[Any] = rescale_factor
snake_case_ : Any = do_normalize
snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
snake_case_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCAmelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray:
"""simple docstring"""
snake_case_ : Tuple = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return resize(
_A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray:
"""simple docstring"""
snake_case_ : Optional[int] = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A )
def UpperCAmelCase_ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> str:
"""simple docstring"""
return rescale(_A , scale=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray:
"""simple docstring"""
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self : List[str] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : Union[str, Any]=None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ) -> PIL.Image.Image:
"""simple docstring"""
snake_case_ : int = do_resize if do_resize is not None else self.do_resize
snake_case_ : str = resample if resample is not None else self.resample
snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop
snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale
snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor
snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize
snake_case_ : Any = image_mean if image_mean is not None else self.image_mean
snake_case_ : Dict = image_std if image_std is not None else self.image_std
snake_case_ : int = size if size is not None else self.size
snake_case_ : Optional[int] = get_size_dict(_A )
snake_case_ : int = crop_size if crop_size is not None else self.crop_size
snake_case_ : Any = get_size_dict(_A , param_name='crop_size' )
snake_case_ : Optional[Any] = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
snake_case_ : Optional[Any] = [to_numpy_array(_A ) for image in images]
if do_resize:
snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images]
if do_center_crop:
snake_case_ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images]
if do_rescale:
snake_case_ : Optional[int] = [self.rescale(image=_A , scale=_A ) for image in images]
if do_normalize:
snake_case_ : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images]
snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images]
snake_case_ : Tuple = {'pixel_values': images}
return BatchFeature(data=_A , tensor_type=_A )
| 327 | 0 |
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
__a = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class lowercase__( UpperCAmelCase ):
"""simple docstring"""
a :bool = field(default=UpperCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} )
a :bool = field(
default=UpperCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} )
a :Optional[int] = field(
default=UpperCAmelCase , metadata={
'help': (
'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default '
'to the `max_length` value of the model configuration.'
)
} , )
a :Optional[int] = field(
default=UpperCAmelCase , metadata={
'help': (
'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default '
'to the `num_beams` value of the model configuration.'
)
} , )
a :Optional[Union[str, Path, GenerationConfig]] = field(
default=UpperCAmelCase , metadata={
'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.'
} , )
def _lowercase ( self : Dict ) -> List[Any]:
lowercase_ = super().to_dict()
for k, v in d.items():
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
lowercase_ = v.to_dict()
return d
| 30 |
import sys
_SCREAMING_SNAKE_CASE = (
"""73167176531330624919225119674426574742355349194934"""
"""96983520312774506326239578318016984801869478851843"""
"""85861560789112949495459501737958331952853208805511"""
"""12540698747158523863050715693290963295227443043557"""
"""66896648950445244523161731856403098711121722383113"""
"""62229893423380308135336276614282806444486645238749"""
"""30358907296290491560440772390713810515859307960866"""
"""70172427121883998797908792274921901699720888093776"""
"""65727333001053367881220235421809751254540594752243"""
"""52584907711670556013604839586446706324415722155397"""
"""53697817977846174064955149290862569321978468622482"""
"""83972241375657056057490261407972968652414535100474"""
"""82166370484403199890008895243450658541227588666881"""
"""16427171479924442928230863465674813919123162824586"""
"""17866458359124566529476545682848912883142607690042"""
"""24219022671055626321111109370544217506941658960408"""
"""07198403850962455444362981230987879927244284909188"""
"""84580156166097919133875499200524063689912560717606"""
"""05886116467109405077541002256983155200055935729725"""
"""71636269561882670428252483600823257530420752963450"""
)
def SCREAMING_SNAKE_CASE__ ( __a = N ):
snake_case_ : Optional[Any] = -sys.maxsize - 1
for i in range(len(__a ) - 12 ):
snake_case_ : Optional[Any] = 1
for j in range(13 ):
product *= int(n[i + j] )
if product > largest_product:
snake_case_ : int = product
return largest_product
if __name__ == "__main__":
print(F'''{solution() = }''')
| 327 | 0 |
'''simple docstring'''
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger()
@dataclass
class lowerCamelCase_ :
'''simple docstring'''
__UpperCamelCase: nn.Module
__UpperCamelCase: List[nn.Module] = field(default_factory=snake_case__ )
__UpperCamelCase: list = field(default_factory=snake_case__ )
def _A ( self : List[str] , A : Optional[int] , A : Tensor , A : Tensor ):
_UpperCAmelCase : Union[str, Any] = len(list(m.modules() ) ) == 1 or isinstance(A , nn.Convad ) or isinstance(A , nn.BatchNormad )
if has_not_submodules:
self.traced.append(A )
def __call__( self : Any , A : Tensor ):
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(A )
[x.remove() for x in self.handles]
return self
@property
def _A ( self : List[Any] ):
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda A : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class lowerCamelCase_ :
'''simple docstring'''
__UpperCamelCase: nn.Module
__UpperCamelCase: nn.Module
__UpperCamelCase: int = 0
__UpperCamelCase: List = field(default_factory=snake_case__ )
__UpperCamelCase: List = field(default_factory=snake_case__ )
def __call__( self : Optional[Any] , A : Tensor ):
_UpperCAmelCase : Optional[Any] = Tracker(self.dest )(A ).parametrized
_UpperCAmelCase : List[Any] = Tracker(self.src )(A ).parametrized
_UpperCAmelCase : str = list(filter(lambda A : type(A ) not in self.src_skip , A ) )
_UpperCAmelCase : int = list(filter(lambda A : type(A ) not in self.dest_skip , A ) )
if len(A ) != len(A ):
raise Exception(
F"""Numbers of operations are different. Source module has {len(A )} operations while"""
F""" destination module has {len(A )}.""" )
for dest_m, src_m in zip(A , A ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(F"""Transfered from={src_m} to={dest_m}""" )
def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : ResNetConfig , _UpperCAmelCase : Path , _UpperCAmelCase : bool = True ) -> str:
"""simple docstring"""
print(F"""Converting {name}...""" )
with torch.no_grad():
_UpperCAmelCase : Any = timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ).eval()
_UpperCAmelCase : Union[str, Any] = ResNetForImageClassification(_UpperCAmelCase ).eval()
_UpperCAmelCase : Optional[int] = ModuleTransfer(src=_UpperCAmelCase , dest=_UpperCAmelCase )
_UpperCAmelCase : List[Any] = torch.randn((1, 3, 224, 224) )
module_transfer(_UpperCAmelCase )
assert torch.allclose(from_model(_UpperCAmelCase ) , our_model(_UpperCAmelCase ).logits ), "The model logits don't match the original one."
_UpperCAmelCase : Tuple = F"""resnet{'-'.join(name.split('resnet' ) )}"""
print(_UpperCAmelCase )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=_UpperCAmelCase , )
# we can use the convnext one
_UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=_UpperCAmelCase , )
print(F"""Pushed {checkpoint_name}""" )
def UpperCamelCase_ ( _UpperCAmelCase : Path , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = True ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Dict = "imagenet-1k-id2label.json"
_UpperCAmelCase : Optional[int] = 1_000
_UpperCAmelCase : Optional[int] = (1, num_labels)
_UpperCAmelCase : Union[str, Any] = "huggingface/label-files"
_UpperCAmelCase : int = num_labels
_UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) )
_UpperCAmelCase : Optional[int] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()}
_UpperCAmelCase : str = idalabel
_UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
_UpperCAmelCase : Union[str, Any] = partial(_UpperCAmelCase , num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase )
_UpperCAmelCase : Optional[int] = {
"resnet18": ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ),
"resnet26": ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ),
"resnet34": ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ),
"resnet50": ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ),
"resnet101": ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ),
"resnet152": ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ),
}
if model_name:
convert_weight_and_push(_UpperCAmelCase , names_to_config[model_name] , _UpperCAmelCase , _UpperCAmelCase )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return config, expected_shape
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default=None,
type=str,
help=(
"""The name of the model you wish to convert, it must be one of the supported resnet* architecture,"""
""" currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=Path,
required=True,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""",
default=True,
type=bool,
required=False,
help="""If True, push model and image processor to the hub.""",
)
__SCREAMING_SNAKE_CASE : Tuple = parser.parse_args()
__SCREAMING_SNAKE_CASE : Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 31 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
_SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ :
__magic_name__: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
__magic_name__: Optional[str] = field(
default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
__magic_name__: Optional[str] = field(
default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
__magic_name__: Optional[str] = field(
default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} )
__magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} )
@dataclass
class SCREAMING_SNAKE_CASE_ :
__magic_name__: str = field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} )
__magic_name__: Optional[str] = field(
default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , )
__magic_name__: Optional[int] = field(
default=1024 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__magic_name__: Optional[int] = field(
default=128 , metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__magic_name__: Optional[int] = field(
default=142 , metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. "
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
} , )
__magic_name__: Optional[int] = field(
default=142 , metadata={
"help": (
"The maximum total sequence length for test target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} )
__magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} )
__magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} )
__magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} )
__magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} )
__magic_name__: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} )
__magic_name__: bool = field(
default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ):
logger.info(f"""***** {split} metrics *****""" )
for key in sorted(metrics.keys() ):
logger.info(f""" {key} = {metrics[key]}""" )
save_json(__a , os.path.join(__a , f"""{split}_results.json""" ) )
def SCREAMING_SNAKE_CASE__ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
snake_case_ ,snake_case_ ,snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
snake_case_ ,snake_case_ ,snake_case_ : List[str] = parser.parse_args_into_dataclasses()
check_output_dir(__a )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('Training/evaluation parameters %s' , __a )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case_ : Tuple = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(__a , __a , __a ):
assert hasattr(__a , __a ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute"""
setattr(__a , __a , getattr(__a , __a ) )
snake_case_ : Tuple = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=__a , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(__a , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
snake_case_ : Any = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(__a , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(__a , __a ):
snake_case_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
snake_case_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(__a )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
snake_case_ : List[Any] = SeqaSeqDataset
# Get datasets
snake_case_ : List[Any] = (
dataset_class(
__a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_train
else None
)
snake_case_ : List[str] = (
dataset_class(
__a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
snake_case_ : List[Any] = (
dataset_class(
__a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
snake_case_ : Any = (
build_compute_metrics_fn(data_args.task , __a ) if training_args.predict_with_generate else None
)
snake_case_ : List[str] = SeqaSeqTrainer(
model=__a , args=__a , data_args=__a , train_dataset=__a , eval_dataset=__a , data_collator=SeqaSeqDataCollator(
__a , __a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__a , tokenizer=__a , )
snake_case_ : Optional[int] = {}
# Training
if training_args.do_train:
logger.info('*** Train ***' )
snake_case_ : Any = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
snake_case_ : Tuple = train_result.metrics
snake_case_ : List[str] = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('train' , __a , training_args.output_dir )
all_metrics.update(__a )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
snake_case_ : List[Any] = trainer.evaluate(metric_key_prefix='val' )
snake_case_ : str = data_args.n_val
snake_case_ : Union[str, Any] = round(metrics['val_loss'] , 4 )
if trainer.is_world_process_zero():
handle_metrics('val' , __a , training_args.output_dir )
all_metrics.update(__a )
if training_args.do_predict:
logger.info('*** Predict ***' )
snake_case_ : Dict = trainer.predict(test_dataset=__a , metric_key_prefix='test' )
snake_case_ : Union[str, Any] = test_output.metrics
snake_case_ : int = data_args.n_test
if trainer.is_world_process_zero():
snake_case_ : List[str] = round(metrics['test_loss'] , 4 )
handle_metrics('test' , __a , training_args.output_dir )
all_metrics.update(__a )
if training_args.predict_with_generate:
snake_case_ : Any = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=__a , clean_up_tokenization_spaces=__a )
snake_case_ : Any = lmap(str.strip , __a )
write_txt_file(__a , os.path.join(training_args.output_dir , 'test_generations.txt' ) )
if trainer.is_world_process_zero():
save_json(__a , os.path.join(training_args.output_dir , 'all_results.json' ) )
return all_metrics
def SCREAMING_SNAKE_CASE__ ( __a ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 327 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase_ : str = logging.get_logger(__name__)
UpperCAmelCase_ : Any = {
'microsoft/beit-base-patch16-224-pt22k': (
'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json'
),
# See all BEiT models at https://huggingface.co/models?filter=beit
}
class SCREAMING_SNAKE_CASE__ ( lowercase__ ):
snake_case__ : Tuple = '''beit'''
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Any=8_1_9_2 , SCREAMING_SNAKE_CASE__ : Tuple=7_6_8 , SCREAMING_SNAKE_CASE__ : Any=1_2 , SCREAMING_SNAKE_CASE__ : str=1_2 , SCREAMING_SNAKE_CASE__ : Any=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[int]=1E-12 , SCREAMING_SNAKE_CASE__ : Any=2_2_4 , SCREAMING_SNAKE_CASE__ : List[Any]=1_6 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=[3, 5, 7, 1_1] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[1, 2, 3, 6] , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Any=0.4 , SCREAMING_SNAKE_CASE__ : Any=2_5_6 , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : List[Any]=2_5_5 , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> str:
super().__init__(**SCREAMING_SNAKE_CASE__ )
a_ : Union[str, Any] = vocab_size
a_ : str = hidden_size
a_ : int = num_hidden_layers
a_ : Any = num_attention_heads
a_ : Any = intermediate_size
a_ : Optional[Any] = hidden_act
a_ : str = hidden_dropout_prob
a_ : List[Any] = attention_probs_dropout_prob
a_ : Optional[Any] = initializer_range
a_ : Any = layer_norm_eps
a_ : Dict = image_size
a_ : List[str] = patch_size
a_ : Optional[int] = num_channels
a_ : str = use_mask_token
a_ : Optional[int] = use_absolute_position_embeddings
a_ : Union[str, Any] = use_relative_position_bias
a_ : Optional[Any] = use_shared_relative_position_bias
a_ : Optional[int] = layer_scale_init_value
a_ : str = drop_path_rate
a_ : Tuple = use_mean_pooling
# decode head attributes (semantic segmentation)
a_ : str = out_indices
a_ : List[str] = pool_scales
# auxiliary head attributes (semantic segmentation)
a_ : Optional[int] = use_auxiliary_head
a_ : Optional[Any] = auxiliary_loss_weight
a_ : List[str] = auxiliary_channels
a_ : List[str] = auxiliary_num_convs
a_ : Dict = auxiliary_concat_input
a_ : str = semantic_loss_ignore_index
class SCREAMING_SNAKE_CASE__ ( lowercase__ ):
snake_case__ : Dict = version.parse('''1.11''' )
@property
def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> float:
return 1E-4
| 32 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_SCREAMING_SNAKE_CASE = {
"""configuration_poolformer""": [
"""POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""PoolFormerConfig""",
"""PoolFormerOnnxConfig""",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""]
_SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"""POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PoolFormerForImageClassification""",
"""PoolFormerModel""",
"""PoolFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 327 | 0 |
"""simple docstring"""
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version('''>=''', FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
__A : Dict = get_logger(__name__)
def lowercase ( __snake_case : Any , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str=0 ):
os.makedirs(__snake_case , exist_ok=__snake_case )
with FSDP.state_dict_type(
__snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
lowercase_ : str = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
lowercase_ : Any = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin'''
lowercase_ : str = os.path.join(__snake_case , __snake_case )
if accelerator.process_index == 0:
logger.info(F'''Saving model to {output_model_file}''' )
torch.save(__snake_case , __snake_case )
logger.info(F'''Model saved to {output_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
lowercase_ : str = (
F'''{MODEL_NAME}_rank{accelerator.process_index}.bin'''
if model_index == 0
else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'''
)
lowercase_ : int = os.path.join(__snake_case , __snake_case )
logger.info(F'''Saving model to {output_model_file}''' )
torch.save(__snake_case , __snake_case )
logger.info(F'''Model saved to {output_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
lowercase_ : int = os.path.join(__snake_case , F'''{MODEL_NAME}_{model_index}''' )
os.makedirs(__snake_case , exist_ok=__snake_case )
logger.info(F'''Saving model to {ckpt_dir}''' )
lowercase_ : Dict = {'''model''': state_dict}
dist_cp.save_state_dict(
state_dict=__snake_case , storage_writer=dist_cp.FileSystemWriter(__snake_case ) , planner=DefaultSavePlanner() , )
logger.info(F'''Model saved to {ckpt_dir}''' )
def lowercase ( __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Tuple=0 ):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(__snake_case ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
'''Set the `sync_module_states` flag to `True` so that model states are synced across processes when '''
'''initializing FSDP object''' )
return
lowercase_ : int = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin'''
lowercase_ : Dict = os.path.join(__snake_case , __snake_case )
logger.info(F'''Loading model from {input_model_file}''' )
lowercase_ : Any = torch.load(__snake_case )
logger.info(F'''Model loaded from {input_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
lowercase_ : Union[str, Any] = (
F'''{MODEL_NAME}_rank{accelerator.process_index}.bin'''
if model_index == 0
else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'''
)
lowercase_ : Any = os.path.join(__snake_case , __snake_case )
logger.info(F'''Loading model from {input_model_file}''' )
lowercase_ : int = torch.load(__snake_case )
logger.info(F'''Model loaded from {input_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
lowercase_ : Union[str, Any] = (
os.path.join(__snake_case , F'''{MODEL_NAME}_{model_index}''' )
if F'''{MODEL_NAME}''' not in input_dir
else input_dir
)
logger.info(F'''Loading model from {ckpt_dir}''' )
lowercase_ : List[Any] = {'''model''': model.state_dict()}
dist_cp.load_state_dict(
state_dict=__snake_case , storage_reader=dist_cp.FileSystemReader(__snake_case ) , planner=DefaultLoadPlanner() , )
lowercase_ : Optional[Any] = state_dict['''model''']
logger.info(F'''Model loaded from {ckpt_dir}''' )
model.load_state_dict(__snake_case )
def lowercase ( __snake_case : Any , __snake_case : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Tuple=0 ):
os.makedirs(__snake_case , exist_ok=__snake_case )
with FSDP.state_dict_type(
__snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
lowercase_ : Tuple = FSDP.optim_state_dict(__snake_case , __snake_case )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
lowercase_ : Any = (
F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin'''
)
lowercase_ : Optional[Any] = os.path.join(__snake_case , __snake_case )
logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' )
torch.save(__snake_case , __snake_case )
logger.info(F'''Optimizer state saved in {output_optimizer_file}''' )
else:
lowercase_ : List[Any] = os.path.join(__snake_case , F'''{OPTIMIZER_NAME}_{optimizer_index}''' )
os.makedirs(__snake_case , exist_ok=__snake_case )
logger.info(F'''Saving Optimizer state to {ckpt_dir}''' )
dist_cp.save_state_dict(
state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(__snake_case ) , planner=DefaultSavePlanner() , )
logger.info(F'''Optimizer state saved in {ckpt_dir}''' )
def lowercase ( __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[int]=0 ):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
lowercase_ : int = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
lowercase_ : List[str] = (
F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin'''
)
lowercase_ : List[Any] = os.path.join(__snake_case , __snake_case )
logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' )
lowercase_ : str = torch.load(__snake_case )
logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' )
else:
lowercase_ : Union[str, Any] = (
os.path.join(__snake_case , F'''{OPTIMIZER_NAME}_{optimizer_index}''' )
if F'''{OPTIMIZER_NAME}''' not in input_dir
else input_dir
)
logger.info(F'''Loading Optimizer from {ckpt_dir}''' )
lowercase_ : Tuple = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(__snake_case ) , )
lowercase_ : Optional[int] = optim_state['''optimizer''']
logger.info(F'''Optimizer loaded from {ckpt_dir}''' )
lowercase_ : Optional[int] = FSDP.optim_state_dict_to_load(__snake_case , __snake_case , __snake_case )
optimizer.load_state_dict(__snake_case )
| 33 |
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def UpperCAmelCase_ ( self : Dict ) -> List[Any]:
"""simple docstring"""
snake_case_ : Any = 'hf-internal-testing/tiny-random-t5'
snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_A )
snake_case_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A )
snake_case_ : List[Any] = tokenizer('This is me' , return_tensors='pt' )
snake_case_ : Any = model.to_bettertransformer()
self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
snake_case_ : Optional[Any] = model.generate(**_A )
snake_case_ : int = model.reverse_bettertransformer()
self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A )
snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_A )
self.assertFalse(
any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
snake_case_ : Optional[Any] = model_reloaded.generate(**_A )
self.assertTrue(torch.allclose(_A , _A ) )
def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
snake_case_ : Any = 'hf-internal-testing/tiny-random-t5'
snake_case_ : int = AutoModelForSeqaSeqLM.from_pretrained(_A )
snake_case_ : Dict = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(_A ):
model.save_pretrained(_A )
snake_case_ : Union[str, Any] = model.reverse_bettertransformer()
model.save_pretrained(_A )
| 327 | 0 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class _a ( __a , unittest.TestCase ):
__a : Dict = CTRLTokenizer
__a : Optional[Any] = False
__a : Any = False
def A ( self : Union[str, Any] ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>''']
UpperCAmelCase = dict(zip(lowercase , range(len(lowercase ) ) ) )
UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', '''''']
UpperCAmelCase = {'''unk_token''': '''<unk>'''}
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowercase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(lowercase ) )
def A ( self : Union[str, Any] , **lowercase : int ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CTRLTokenizer.from_pretrained(self.tmpdirname , **lowercase )
def A ( self : str , lowercase : Dict ):
'''simple docstring'''
UpperCAmelCase = '''adapt react readapt apt'''
UpperCAmelCase = '''adapt react readapt apt'''
return input_text, output_text
def A ( self : str ):
'''simple docstring'''
UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase = '''adapt react readapt apt'''
UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split()
UpperCAmelCase = tokenizer.tokenize(lowercase )
self.assertListEqual(lowercase , lowercase )
UpperCAmelCase = tokens + [tokenizer.unk_token]
UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase )
| 34 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ : str = params
snake_case_ : int = np.array(_A )
snake_case_ : Optional[int] = np.array([len(_A ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self : Tuple , _A : Optional[int] ) -> str:
"""simple docstring"""
return (self.token_ids[index], self.lengths[index])
def __len__( self : List[str] ) -> str:
"""simple docstring"""
return len(self.lengths )
def UpperCAmelCase_ ( self : Dict ) -> str:
"""simple docstring"""
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def UpperCAmelCase_ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
snake_case_ : Dict = self.params.max_model_input_size
snake_case_ : Tuple = self.lengths > max_len
logger.info(F"""Splitting {sum(_A )} too long sequences.""" )
def divide_chunks(_A : Union[str, Any] , _A : Dict ):
return [l[i : i + n] for i in range(0 , len(_A ) , _A )]
snake_case_ : Dict = []
snake_case_ : Union[str, Any] = []
if self.params.mlm:
snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token']
else:
snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token']
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
snake_case_ : List[Any] = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
snake_case_ : Optional[int] = np.insert(_A , 0 , _A )
if sub_s[-1] != sep_id:
snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A )
assert len(_A ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(_A )
new_tok_ids.extend(_A )
new_lengths.extend([len(_A ) for l in sub_seqs] )
snake_case_ : Tuple = np.array(_A )
snake_case_ : int = np.array(_A )
def UpperCAmelCase_ ( self : List[str] ) -> List[str]:
"""simple docstring"""
snake_case_ : Tuple = len(self )
snake_case_ : int = self.lengths > 11
snake_case_ : Dict = self.token_ids[indices]
snake_case_ : int = self.lengths[indices]
snake_case_ : List[Any] = len(self )
logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
if "unk_token" not in self.params.special_tok_ids:
return
else:
snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token']
snake_case_ : Dict = len(self )
snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
snake_case_ : Any = (unk_occs / self.lengths) < 0.5
snake_case_ : List[Any] = self.token_ids[indices]
snake_case_ : int = self.lengths[indices]
snake_case_ : Tuple = len(self )
logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
if not self.params.is_master:
return
logger.info(F"""{len(self )} sequences""" )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
snake_case_ : Any = [t[0] for t in batch]
snake_case_ : int = [t[1] for t in batch]
assert len(_A ) == len(_A )
# Max for paddings
snake_case_ : str = max(_A )
# Pad token ids
if self.params.mlm:
snake_case_ : int = self.params.special_tok_ids['pad_token']
else:
snake_case_ : Dict = self.params.special_tok_ids['unk_token']
snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids]
assert len(tk_ ) == len(_A )
assert all(len(_A ) == max_seq_len_ for t in tk_ )
snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_)
snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs)
return tk_t, lg_t
| 327 | 0 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def __snake_case( _lowerCAmelCase ) -> Optional[int]:
snake_case__ : Tuple = OrderedDict()
for key, value in state_dict.items():
if key.startswith("""module.encoder""" ):
snake_case__ : str = key.replace("""module.encoder""" , """glpn.encoder""" )
if key.startswith("""module.decoder""" ):
snake_case__ : Optional[int] = key.replace("""module.decoder""" , """decoder.stages""" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
snake_case__ : int = key[key.find("""patch_embed""" ) + len("""patch_embed""" )]
snake_case__ : Any = key.replace(f"patch_embed{idx}" , f"patch_embeddings.{int(_lowerCAmelCase )-1}" )
if "norm" in key:
snake_case__ : Union[str, Any] = key.replace("""norm""" , """layer_norm""" )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
snake_case__ : int = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )]
snake_case__ : str = key.replace(f"layer_norm{idx}" , f"layer_norm.{int(_lowerCAmelCase )-1}" )
if "layer_norm1" in key:
snake_case__ : str = key.replace("""layer_norm1""" , """layer_norm_1""" )
if "layer_norm2" in key:
snake_case__ : Optional[int] = key.replace("""layer_norm2""" , """layer_norm_2""" )
if "block" in key:
# replace for example block1 by block.0
snake_case__ : Dict = key[key.find("""block""" ) + len("""block""" )]
snake_case__ : Any = key.replace(f"block{idx}" , f"block.{int(_lowerCAmelCase )-1}" )
if "attn.q" in key:
snake_case__ : str = key.replace("""attn.q""" , """attention.self.query""" )
if "attn.proj" in key:
snake_case__ : Optional[Any] = key.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in key:
snake_case__ : Tuple = key.replace("""attn""" , """attention.self""" )
if "fc1" in key:
snake_case__ : List[Any] = key.replace("""fc1""" , """dense1""" )
if "fc2" in key:
snake_case__ : List[str] = key.replace("""fc2""" , """dense2""" )
if "linear_pred" in key:
snake_case__ : Dict = key.replace("""linear_pred""" , """classifier""" )
if "linear_fuse" in key:
snake_case__ : Union[str, Any] = key.replace("""linear_fuse.conv""" , """linear_fuse""" )
snake_case__ : Tuple = key.replace("""linear_fuse.bn""" , """batch_norm""" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
snake_case__ : Optional[int] = key[key.find("""linear_c""" ) + len("""linear_c""" )]
snake_case__ : str = key.replace(f"linear_c{idx}" , f"linear_c.{int(_lowerCAmelCase )-1}" )
if "bot_conv" in key:
snake_case__ : Dict = key.replace("""bot_conv""" , """0.convolution""" )
if "skip_conv1" in key:
snake_case__ : Union[str, Any] = key.replace("""skip_conv1""" , """1.convolution""" )
if "skip_conv2" in key:
snake_case__ : Tuple = key.replace("""skip_conv2""" , """2.convolution""" )
if "fusion1" in key:
snake_case__ : Any = key.replace("""fusion1""" , """1.fusion""" )
if "fusion2" in key:
snake_case__ : List[str] = key.replace("""fusion2""" , """2.fusion""" )
if "fusion3" in key:
snake_case__ : Optional[int] = key.replace("""fusion3""" , """3.fusion""" )
if "fusion" in key and "conv" in key:
snake_case__ : Tuple = key.replace("""conv""" , """convolutional_layer""" )
if key.startswith("""module.last_layer_depth""" ):
snake_case__ : Dict = key.replace("""module.last_layer_depth""" , """head.head""" )
snake_case__ : List[str] = value
return new_state_dict
def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple:
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
snake_case__ : Tuple = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.weight" )
snake_case__ : List[Any] = state_dict.pop(f"glpn.encoder.block.{i}.{j}.attention.self.kv.bias" )
# next, add keys and values (in that order) to the state dict
snake_case__ : str = kv_weight[
: config.hidden_sizes[i], :
]
snake_case__ : List[str] = kv_bias[: config.hidden_sizes[i]]
snake_case__ : Union[str, Any] = kv_weight[
config.hidden_sizes[i] :, :
]
snake_case__ : List[str] = kv_bias[config.hidden_sizes[i] :]
def __snake_case( ) -> Optional[Any]:
snake_case__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg"""
snake_case__ : Dict = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw )
return image
@torch.no_grad()
def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=None ) -> Optional[int]:
snake_case__ : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
snake_case__ : Optional[Any] = GLPNImageProcessor()
# prepare image
snake_case__ : Optional[int] = prepare_img()
snake_case__ : Optional[Any] = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).pixel_values
logger.info("""Converting model...""" )
# load original state dict
snake_case__ : List[Any] = torch.load(_lowerCAmelCase , map_location=torch.device("""cpu""" ) )
# rename keys
snake_case__ : str = rename_keys(_lowerCAmelCase )
# key and value matrices need special treatment
read_in_k_v(_lowerCAmelCase , _lowerCAmelCase )
# create HuggingFace model and load state dict
snake_case__ : int = GLPNForDepthEstimation(_lowerCAmelCase )
model.load_state_dict(_lowerCAmelCase )
model.eval()
# forward pass
snake_case__ : int = model(_lowerCAmelCase )
snake_case__ : List[str] = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
snake_case__ : Dict = torch.tensor(
[[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] )
elif "kitti" in model_name:
snake_case__ : Optional[int] = torch.tensor(
[[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] )
else:
raise ValueError(f"Unknown model name: {model_name}" )
snake_case__ : List[str] = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3] , _lowerCAmelCase , atol=1e-4 )
print("""Looks ok!""" )
# finally, push to hub if required
if push_to_hub:
logger.info("""Pushing model and image processor to the hub...""" )
model.push_to_hub(
repo_path_or_name=Path(_lowerCAmelCase , _lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=_lowerCAmelCase , )
image_processor.push_to_hub(
repo_path_or_name=Path(_lowerCAmelCase , _lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=_lowerCAmelCase , )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path",
default=None,
type=str,
help="Path to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub."
)
parser.add_argument(
"--model_name",
default="glpn-kitti",
type=str,
help="Name of the model in case you're pushing to the hub.",
)
__a = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 35 |
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
while b:
snake_case_ ,snake_case_ : Any = b, a % b
return a
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
return a if b == 0 else euclidean_gcd_recursive(__a , a % b )
def SCREAMING_SNAKE_CASE__ ( ):
print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" )
print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" )
print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" )
print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" )
print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" )
print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" )
print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" )
print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" )
if __name__ == "__main__":
main()
| 327 | 0 |
from math import pow
def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ):
'''simple docstring'''
if current_sum == needed_sum:
# If the sum of the powers is equal to needed_sum, then we have a solution.
solutions_count += 1
return current_sum, solutions_count
_lowerCAmelCase : Any = int(pow(_lowerCamelCase , _lowerCamelCase ) )
if current_sum + i_to_n <= needed_sum:
# If the sum of the powers is less than needed_sum, then continue adding powers.
current_sum += i_to_n
_lowerCAmelCase , _lowerCAmelCase : Any = backtrack(
_lowerCamelCase , _lowerCamelCase , current_number + 1 , _lowerCamelCase , _lowerCamelCase )
current_sum -= i_to_n
if i_to_n < needed_sum:
# If the power of i is less than needed_sum, then try with the next power.
_lowerCAmelCase , _lowerCAmelCase : List[Any] = backtrack(
_lowerCamelCase , _lowerCamelCase , current_number + 1 , _lowerCamelCase , _lowerCamelCase )
return current_sum, solutions_count
def A ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
if not (1 <= needed_sum <= 1_000 and 2 <= power <= 10):
raise ValueError(
"Invalid input\n"
"needed_sum must be between 1 and 1000, power between 2 and 10." )
return backtrack(_lowerCamelCase , _lowerCamelCase , 1 , 0 , 0 )[1] # Return the solutions_count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 36 |
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version(""">=""", FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
_SCREAMING_SNAKE_CASE = get_logger(__name__)
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ):
os.makedirs(__a , exist_ok=__a )
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
snake_case_ : Dict = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin"""
snake_case_ : Dict = os.path.join(__a , __a )
if accelerator.process_index == 0:
logger.info(f"""Saving model to {output_model_file}""" )
torch.save(__a , __a )
logger.info(f"""Model saved to {output_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
snake_case_ : Dict = (
f"""{MODEL_NAME}_rank{accelerator.process_index}.bin"""
if model_index == 0
else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"""
)
snake_case_ : Dict = os.path.join(__a , __a )
logger.info(f"""Saving model to {output_model_file}""" )
torch.save(__a , __a )
logger.info(f"""Model saved to {output_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" )
os.makedirs(__a , exist_ok=__a )
logger.info(f"""Saving model to {ckpt_dir}""" )
snake_case_ : int = {'model': state_dict}
dist_cp.save_state_dict(
state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , )
logger.info(f"""Model saved to {ckpt_dir}""" )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(__a ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
'Set the `sync_module_states` flag to `True` so that model states are synced across processes when '
'initializing FSDP object' )
return
snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin"""
snake_case_ : Optional[Any] = os.path.join(__a , __a )
logger.info(f"""Loading model from {input_model_file}""" )
snake_case_ : Optional[Any] = torch.load(__a )
logger.info(f"""Model loaded from {input_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
snake_case_ : Optional[Any] = (
f"""{MODEL_NAME}_rank{accelerator.process_index}.bin"""
if model_index == 0
else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"""
)
snake_case_ : Tuple = os.path.join(__a , __a )
logger.info(f"""Loading model from {input_model_file}""" )
snake_case_ : Optional[int] = torch.load(__a )
logger.info(f"""Model loaded from {input_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
snake_case_ : Tuple = (
os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" )
if f"""{MODEL_NAME}""" not in input_dir
else input_dir
)
logger.info(f"""Loading model from {ckpt_dir}""" )
snake_case_ : List[Any] = {'model': model.state_dict()}
dist_cp.load_state_dict(
state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , )
snake_case_ : Any = state_dict['model']
logger.info(f"""Model loaded from {ckpt_dir}""" )
model.load_state_dict(__a )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ):
os.makedirs(__a , exist_ok=__a )
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
snake_case_ : str = (
f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin"""
)
snake_case_ : Any = os.path.join(__a , __a )
logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" )
torch.save(__a , __a )
logger.info(f"""Optimizer state saved in {output_optimizer_file}""" )
else:
snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" )
os.makedirs(__a , exist_ok=__a )
logger.info(f"""Saving Optimizer state to {ckpt_dir}""" )
dist_cp.save_state_dict(
state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , )
logger.info(f"""Optimizer state saved in {ckpt_dir}""" )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
snake_case_ : Optional[Any] = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
snake_case_ : Union[str, Any] = (
f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin"""
)
snake_case_ : List[Any] = os.path.join(__a , __a )
logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" )
snake_case_ : Optional[int] = torch.load(__a )
logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" )
else:
snake_case_ : str = (
os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" )
if f"""{OPTIMIZER_NAME}""" not in input_dir
else input_dir
)
logger.info(f"""Loading Optimizer from {ckpt_dir}""" )
snake_case_ : Any = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , )
snake_case_ : Optional[int] = optim_state['optimizer']
logger.info(f"""Optimizer loaded from {ckpt_dir}""" )
snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a )
optimizer.load_state_dict(__a )
| 327 | 0 |
'''simple docstring'''
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
_lowerCAmelCase = TypeVar('''T''')
def _SCREAMING_SNAKE_CASE ( UpperCamelCase ):
"""simple docstring"""
return (position - 1) // 2
def _SCREAMING_SNAKE_CASE ( UpperCamelCase ):
"""simple docstring"""
return (2 * position) + 1
def _SCREAMING_SNAKE_CASE ( UpperCamelCase ):
"""simple docstring"""
return (2 * position) + 2
class lowerCAmelCase_( Generic[T] ):
'''simple docstring'''
def __init__( self ) -> None:
lowerCAmelCase__ : list[tuple[T, int]] = []
lowerCAmelCase__ : dict[T, int] = {}
lowerCAmelCase__ : int = 0
def __len__( self ) -> int:
return self.elements
def __repr__( self ) -> str:
return str(self.heap )
def UpperCAmelCase_ ( self ) -> bool:
# Check if the priority queue is empty
return self.elements == 0
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> None:
# Add an element with given priority to the queue
self.heap.append((elem, weight) )
lowerCAmelCase__ : str = self.elements
self.elements += 1
self._bubble_up(__UpperCAmelCase )
def UpperCAmelCase_ ( self ) -> T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 ,self.elements - 1 )
lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
lowerCAmelCase__ , lowerCAmelCase__ : str = self.heap[0]
self._bubble_down(__UpperCAmelCase )
return elem
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> None:
# Update the weight of the given key
lowerCAmelCase__ : int = self.position_map[elem]
lowerCAmelCase__ : List[Any] = (elem, weight)
if position > 0:
lowerCAmelCase__ : Dict = get_parent_position(__UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(__UpperCAmelCase )
else:
self._bubble_down(__UpperCAmelCase )
else:
self._bubble_down(__UpperCAmelCase )
def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
lowerCAmelCase__ : List[str] = self.position_map[elem]
if curr_pos == 0:
return None
lowerCAmelCase__ : int = get_parent_position(__UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ : Any = self.heap[curr_pos]
lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(__UpperCAmelCase ,__UpperCAmelCase )
return self._bubble_up(__UpperCAmelCase )
return None
def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
lowerCAmelCase__ : List[Any] = self.position_map[elem]
lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.heap[curr_pos]
lowerCAmelCase__ : str = get_child_left_position(__UpperCAmelCase )
lowerCAmelCase__ : Union[str, Any] = get_child_right_position(__UpperCAmelCase )
if child_left_position < self.elements and child_right_position < self.elements:
lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.heap[child_left_position]
lowerCAmelCase__ , lowerCAmelCase__ : Any = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(__UpperCAmelCase ,__UpperCAmelCase )
return self._bubble_down(__UpperCAmelCase )
if child_left_position < self.elements:
lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(__UpperCAmelCase ,__UpperCAmelCase )
return self._bubble_down(__UpperCAmelCase )
else:
return None
if child_right_position < self.elements:
lowerCAmelCase__ , lowerCAmelCase__ : Any = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(__UpperCAmelCase ,__UpperCAmelCase )
return self._bubble_down(__UpperCAmelCase )
return None
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> None:
# Swap the nodes at the given positions
lowerCAmelCase__ : str = self.heap[nodea_pos][0]
lowerCAmelCase__ : Dict = self.heap[nodea_pos][0]
lowerCAmelCase__ , lowerCAmelCase__ : Tuple = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
lowerCAmelCase__ : int = nodea_pos
lowerCAmelCase__ : int = nodea_pos
class lowerCAmelCase_( Generic[T] ):
'''simple docstring'''
def __init__( self ) -> None:
lowerCAmelCase__ : dict[T, dict[T, int]] = {}
lowerCAmelCase__ : int = 0
def __repr__( self ) -> str:
return str(self.connections )
def __len__( self ) -> int:
return self.nodes
def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
lowerCAmelCase__ : Optional[int] = {}
self.nodes += 1
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> None:
# Add an edge between 2 nodes in the graph
self.add_node(__UpperCAmelCase )
self.add_node(__UpperCAmelCase )
lowerCAmelCase__ : Any = weight
lowerCAmelCase__ : Tuple = weight
def _SCREAMING_SNAKE_CASE ( UpperCamelCase , ):
"""simple docstring"""
lowerCAmelCase__ : dict[T, int] = {node: maxsize for node in graph.connections}
lowerCAmelCase__ : dict[T, T | None] = {node: None for node in graph.connections}
lowerCAmelCase__ : MinPriorityQueue[T] = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(UpperCamelCase , UpperCamelCase )
if priority_queue.is_empty():
return dist, parent
# initialization
lowerCAmelCase__ : List[Any] = priority_queue.extract_min()
lowerCAmelCase__ : str = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
lowerCAmelCase__ : Any = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(UpperCamelCase , dist[neighbour] )
lowerCAmelCase__ : List[str] = node
# running prim's algorithm
while not priority_queue.is_empty():
lowerCAmelCase__ : Any = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
lowerCAmelCase__ : Optional[int] = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(UpperCamelCase , dist[neighbour] )
lowerCAmelCase__ : Optional[int] = node
return dist, parent
| 37 |
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def __init__( self : List[str] , _A : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _A : bool = True , _A : Tuple=7 , _A : Tuple=30 , _A : int=400 , _A : Tuple=3 , ) -> Optional[int]:
"""simple docstring"""
snake_case_ : str = parent
snake_case_ : str = do_resize
snake_case_ : str = size if size is not None else {'shortest_edge': 288}
snake_case_ : Any = size_divisor
snake_case_ : Any = do_rescale
snake_case_ : Union[str, Any] = rescale_factor
snake_case_ : str = do_normalize
snake_case_ : int = do_center_crop
snake_case_ : str = image_mean
snake_case_ : int = image_std
snake_case_ : Any = do_pad
snake_case_ : Optional[int] = batch_size
snake_case_ : List[str] = num_channels
snake_case_ : Any = min_resolution
snake_case_ : str = max_resolution
def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def UpperCAmelCase_ ( self : Dict , _A : str , _A : Union[str, Any]=False ) -> int:
"""simple docstring"""
if not batched:
snake_case_ : Optional[int] = self.size['shortest_edge']
snake_case_ : List[Any] = image_inputs[0]
if isinstance(_A , Image.Image ):
snake_case_ ,snake_case_ : Optional[Any] = image.size
else:
snake_case_ ,snake_case_ : str = image.shape[1], image.shape[2]
snake_case_ : Dict = size / min(_A , _A )
if h < w:
snake_case_ ,snake_case_ : str = size, scale * w
else:
snake_case_ ,snake_case_ : Tuple = scale * h, size
snake_case_ : Dict = int((1333 / 800) * size )
if max(_A , _A ) > max_size:
snake_case_ : Union[str, Any] = max_size / max(_A , _A )
snake_case_ : Any = newh * scale
snake_case_ : Union[str, Any] = neww * scale
snake_case_ ,snake_case_ : Any = int(newh + 0.5 ), int(neww + 0.5 )
snake_case_ ,snake_case_ : int = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
snake_case_ : Optional[int] = []
for image in image_inputs:
snake_case_ ,snake_case_ : Optional[int] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case_ : str = max(_A , key=lambda _A : item[0] )[0]
snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ):
__magic_name__: List[Any] = BridgeTowerImageProcessor if is_vision_available() else None
def UpperCAmelCase_ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
snake_case_ : int = BridgeTowerImageProcessingTester(self )
@property
def UpperCAmelCase_ ( self : int ) -> Any:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , 'image_mean' ) )
self.assertTrue(hasattr(_A , 'image_std' ) )
self.assertTrue(hasattr(_A , 'do_normalize' ) )
self.assertTrue(hasattr(_A , 'do_resize' ) )
self.assertTrue(hasattr(_A , 'size' ) )
self.assertTrue(hasattr(_A , 'size_divisor' ) )
def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
pass
def UpperCAmelCase_ ( self : Tuple ) -> Tuple:
"""simple docstring"""
snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A , Image.Image )
# Test not batched input
snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : List[str] = image_processing(_A , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
snake_case_ : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A , np.ndarray )
# Test not batched input
snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : Any = image_processing(_A , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase_ ( self : Dict ) -> List[str]:
"""simple docstring"""
snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
# Test not batched input
snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : str = image_processing(_A , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 327 | 0 |
import argparse
import collections
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Dict="attention" ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase :Any = params[f"""{prefix}/layers_{i}/{layer_name}/key/kernel"""]
UpperCamelCase :str = params[f"""{prefix}/layers_{i}/{layer_name}/out/kernel"""]
UpperCamelCase :Optional[int] = params[f"""{prefix}/layers_{i}/{layer_name}/query/kernel"""]
UpperCamelCase :Optional[Any] = params[f"""{prefix}/layers_{i}/{layer_name}/value/kernel"""]
return k, o, q, v
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : int=False ) -> Dict:
"""simple docstring"""
if split_mlp_wi:
UpperCamelCase :List[str] = params[f"""{prefix}/layers_{i}/mlp/wi_0/kernel"""]
UpperCamelCase :Tuple = params[f"""{prefix}/layers_{i}/mlp/wi_1/kernel"""]
UpperCamelCase :Optional[Any] = (wi_a, wi_a)
else:
UpperCamelCase :Union[str, Any] = params[f"""{prefix}/layers_{i}/mlp/wi/kernel"""]
UpperCamelCase :str = params[f"""{prefix}/layers_{i}/mlp/wo/kernel"""]
return wi, wo
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[Any] ) -> int:
"""simple docstring"""
return params[f"""{prefix}/layers_{i}/{layer_name}/scale"""]
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : dict , *, __magic_name__ : int , __magic_name__ : bool ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase :str = traverse_util.flatten_dict(variables["""target"""] )
UpperCamelCase :Optional[int] = {"""/""".join(__magic_name__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
UpperCamelCase :List[str] = """encoder/layers_0/mlp/wi_0/kernel""" in old
print("""Split MLP:""" , __magic_name__ )
UpperCamelCase :Tuple = collections.OrderedDict()
# Shared embeddings.
UpperCamelCase :str = old["""token_embedder/embedding"""]
# Encoder.
for i in range(__magic_name__ ):
# Block i, layer 0 (Self Attention).
UpperCamelCase :int = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """encoder""" , """pre_attention_layer_norm""" )
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Optional[Any] = tax_attention_lookup(__magic_name__ , __magic_name__ , """encoder""" , """attention""" )
UpperCamelCase :List[str] = layer_norm
UpperCamelCase :Tuple = k.T
UpperCamelCase :List[Any] = o.T
UpperCamelCase :Tuple = q.T
UpperCamelCase :List[Any] = v.T
# Block i, layer 1 (MLP).
UpperCamelCase :str = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """encoder""" , """pre_mlp_layer_norm""" )
UpperCamelCase , UpperCamelCase :int = tax_mlp_lookup(__magic_name__ , __magic_name__ , """encoder""" , __magic_name__ )
UpperCamelCase :Optional[int] = layer_norm
if split_mlp_wi:
UpperCamelCase :Optional[Any] = wi[0].T
UpperCamelCase :Optional[Any] = wi[1].T
else:
UpperCamelCase :List[str] = wi.T
UpperCamelCase :Any = wo.T
UpperCamelCase :Union[str, Any] = old[
"""encoder/relpos_bias/rel_embedding"""
].T
UpperCamelCase :Union[str, Any] = old["""encoder/encoder_norm/scale"""]
if not is_encoder_only:
# Decoder.
for i in range(__magic_name__ ):
# Block i, layer 0 (Self Attention).
UpperCamelCase :str = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """decoder""" , """pre_self_attention_layer_norm""" )
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Any = tax_attention_lookup(__magic_name__ , __magic_name__ , """decoder""" , """self_attention""" )
UpperCamelCase :int = layer_norm
UpperCamelCase :List[str] = k.T
UpperCamelCase :Optional[int] = o.T
UpperCamelCase :Tuple = q.T
UpperCamelCase :Union[str, Any] = v.T
# Block i, layer 1 (Cross Attention).
UpperCamelCase :Tuple = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """decoder""" , """pre_cross_attention_layer_norm""" )
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Optional[int] = tax_attention_lookup(__magic_name__ , __magic_name__ , """decoder""" , """encoder_decoder_attention""" )
UpperCamelCase :Tuple = layer_norm
UpperCamelCase :List[Any] = k.T
UpperCamelCase :Dict = o.T
UpperCamelCase :str = q.T
UpperCamelCase :Optional[Any] = v.T
# Block i, layer 2 (MLP).
UpperCamelCase :Tuple = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """decoder""" , """pre_mlp_layer_norm""" )
UpperCamelCase , UpperCamelCase :Optional[Any] = tax_mlp_lookup(__magic_name__ , __magic_name__ , """decoder""" , __magic_name__ )
UpperCamelCase :int = layer_norm
if split_mlp_wi:
UpperCamelCase :Dict = wi[0].T
UpperCamelCase :Union[str, Any] = wi[1].T
else:
UpperCamelCase :Tuple = wi.T
UpperCamelCase :str = wo.T
UpperCamelCase :Union[str, Any] = old["""decoder/decoder_norm/scale"""]
UpperCamelCase :str = old[
"""decoder/relpos_bias/rel_embedding"""
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
UpperCamelCase :Union[str, Any] = old["""decoder/logits_dense/kernel"""].T
return new
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str , __magic_name__ : bool ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase :Optional[Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
UpperCamelCase :Optional[int] = state_dict["""shared.weight"""]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
UpperCamelCase :Dict = state_dict["""shared.weight"""]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("""Using shared word embeddings as lm_head.""" )
UpperCamelCase :List[Any] = state_dict["""shared.weight"""]
return state_dict
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] ) -> int:
"""simple docstring"""
UpperCamelCase :List[str] = checkpoints.load_tax_checkpoint(__magic_name__ )
UpperCamelCase :Tuple = convert_tax_to_pytorch(__magic_name__ , num_layers=config.num_layers , is_encoder_only=__magic_name__ )
UpperCamelCase :int = make_state_dict(__magic_name__ , __magic_name__ )
model.load_state_dict(__magic_name__ , strict=__magic_name__ )
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : bool = False ) -> Tuple:
"""simple docstring"""
UpperCamelCase :List[str] = TaConfig.from_json_file(__magic_name__ )
print(f"""Building PyTorch model from configuration: {config}""" )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
UpperCamelCase :Any = TaEncoderModel(__magic_name__ )
else:
UpperCamelCase :str = TaForConditionalGeneration(__magic_name__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(__magic_name__ )
# Verify that we can load the checkpoint.
model.from_pretrained(__magic_name__ )
print("""Done""" )
if __name__ == "__main__":
UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''')
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False
)
UpperCAmelCase_ : Tuple = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
)
| 38 |
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
_SCREAMING_SNAKE_CASE = 50_00_00
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = os.path.split(__file__)
_SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json"""))
@get_duration
def SCREAMING_SNAKE_CASE__ ( __a , **__a ):
snake_case_ : int = dataset.map(**__a )
@get_duration
def SCREAMING_SNAKE_CASE__ ( __a , **__a ):
snake_case_ : Dict = dataset.filter(**__a )
def SCREAMING_SNAKE_CASE__ ( ):
snake_case_ : Tuple = {'num examples': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ : Dict = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} )
snake_case_ : List[Any] = generate_example_dataset(
os.path.join(__a , 'dataset.arrow' ) , __a , num_examples=__a )
snake_case_ : str = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__a )
def tokenize(__a ):
return tokenizer(examples['text'] )
snake_case_ : Any = map(__a )
snake_case_ : Tuple = map(__a , batched=__a )
snake_case_ : str = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='numpy' ):
snake_case_ : Optional[int] = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='pandas' ):
snake_case_ : str = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='torch' , columns='numbers' ):
snake_case_ : int = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='tensorflow' , columns='numbers' ):
snake_case_ : List[Any] = map(__a , function=lambda __a : None , batched=__a )
snake_case_ : int = map(__a , function=__a , batched=__a )
snake_case_ : Optional[Any] = filter(__a )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(__a , 'wb' ) as f:
f.write(json.dumps(__a ).encode('utf-8' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 327 | 0 |
from queue import PriorityQueue
from typing import Any
import numpy as np
def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , )-> float | int:
"""simple docstring"""
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
_UpperCAmelCase = cst_fwd.get(__lowerCAmelCase , np.inf )
_UpperCAmelCase = cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
_UpperCAmelCase = new_cost_f
_UpperCAmelCase = v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
_UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> int:
"""simple docstring"""
_UpperCAmelCase = -1
_UpperCAmelCase = set()
_UpperCAmelCase = set()
_UpperCAmelCase = {source: 0}
_UpperCAmelCase = {destination: 0}
_UpperCAmelCase = {source: None}
_UpperCAmelCase = {destination: None}
_UpperCAmelCase = PriorityQueue()
_UpperCAmelCase = PriorityQueue()
_UpperCAmelCase = np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
_UpperCAmelCase , _UpperCAmelCase = queue_forward.get()
visited_forward.add(__lowerCAmelCase )
_UpperCAmelCase , _UpperCAmelCase = queue_backward.get()
visited_backward.add(__lowerCAmelCase )
_UpperCAmelCase = pass_and_relaxation(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , )
_UpperCAmelCase = pass_and_relaxation(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , )
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
_UpperCAmelCase = shortest_distance
return shortest_path_distance
_a = {
'''B''': [['''C''', 1]],
'''C''': [['''D''', 1]],
'''D''': [['''F''', 1]],
'''E''': [['''B''', 1], ['''G''', 2]],
'''F''': [],
'''G''': [['''F''', 1]],
}
_a = {
'''B''': [['''E''', 1]],
'''C''': [['''B''', 1]],
'''D''': [['''C''', 1]],
'''F''': [['''D''', 1], ['''G''', 1]],
'''E''': [[None, np.inf]],
'''G''': [['''E''', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 39 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
_SCREAMING_SNAKE_CASE = namedtuple("""covid_data""", """cases deaths recovered""")
def SCREAMING_SNAKE_CASE__ ( __a = "https://www.worldometers.info/coronavirus/" ):
snake_case_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) )
_SCREAMING_SNAKE_CASE = """Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}"""
print(fmt.format(*covid_stats()))
| 327 | 0 |
"""simple docstring"""
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _A ( _a ,unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase : str = LayoutLMTokenizer
UpperCAmelCase : int = LayoutLMTokenizerFast
UpperCAmelCase : Union[str, Any] = True
UpperCAmelCase : Optional[Any] = True
def __snake_case ( self : Optional[int]):
super().setUp()
a : Tuple = [
"[UNK]",
"[CLS]",
"[SEP]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
a : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
def __snake_case ( self : Optional[int] , **__UpperCAmelCase : Tuple):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase)
def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : str):
a : Tuple = "UNwant\u00E9d,running"
a : Dict = "unwanted, running"
return input_text, output_text
def __snake_case ( self : Any):
a : List[Any] = self.tokenizer_class(self.vocab_file)
a : str = tokenizer.tokenize("UNwant\u00E9d,running")
self.assertListEqual(__UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase) , [7, 4, 5, 10, 8, 9])
def __snake_case ( self : Dict):
pass
| 40 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_lxmert import LxmertTokenizer
_SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_SCREAMING_SNAKE_CASE = {
"""vocab_file""": {
"""unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""",
},
"""tokenizer_file""": {
"""unc-nlp/lxmert-base-uncased""": (
"""https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json"""
),
},
}
_SCREAMING_SNAKE_CASE = {
"""unc-nlp/lxmert-base-uncased""": 5_12,
}
_SCREAMING_SNAKE_CASE = {
"""unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True},
}
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
__magic_name__: List[Any] = VOCAB_FILES_NAMES
__magic_name__: List[str] = PRETRAINED_VOCAB_FILES_MAP
__magic_name__: List[str] = PRETRAINED_INIT_CONFIGURATION
__magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__: Union[str, Any] = LxmertTokenizer
def __init__( self : List[str] , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=True , _A : Dict="[UNK]" , _A : Optional[int]="[SEP]" , _A : Dict="[PAD]" , _A : Union[str, Any]="[CLS]" , _A : str="[MASK]" , _A : Tuple=True , _A : Dict=None , **_A : List[Any] , ) -> Optional[int]:
"""simple docstring"""
super().__init__(
_A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , )
snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _A ) != do_lower_case
or normalizer_state.get('strip_accents' , _A ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars
):
snake_case_ : Tuple = getattr(_A , normalizer_state.pop('type' ) )
snake_case_ : Union[str, Any] = do_lower_case
snake_case_ : int = strip_accents
snake_case_ : Optional[Any] = tokenize_chinese_chars
snake_case_ : List[Any] = normalizer_class(**_A )
snake_case_ : Tuple = do_lower_case
def UpperCAmelCase_ ( self : Dict , _A : Any , _A : List[Any]=None ) -> Dict:
"""simple docstring"""
snake_case_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase_ ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
snake_case_ : str = [self.sep_token_id]
snake_case_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A )
return tuple(_A )
| 327 | 0 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Tuple:
lowerCamelCase__ : Tuple = SwinConfig(image_size=192 )
if "base" in model_name:
lowerCamelCase__ : Union[str, Any] = 6
lowerCamelCase__ : Dict = 128
lowerCamelCase__ : Any = (2, 2, 18, 2)
lowerCamelCase__ : Tuple = (4, 8, 16, 32)
elif "large" in model_name:
lowerCamelCase__ : Any = 12
lowerCamelCase__ : Tuple = 192
lowerCamelCase__ : List[str] = (2, 2, 18, 2)
lowerCamelCase__ : Union[str, Any] = (6, 12, 24, 48)
else:
raise ValueError("""Model not supported, only supports base and large variants""" )
lowerCamelCase__ : str = window_size
lowerCamelCase__ : Dict = embed_dim
lowerCamelCase__ : Tuple = depths
lowerCamelCase__ : str = num_heads
return config
def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> int:
if "encoder.mask_token" in name:
lowerCamelCase__ : Any = name.replace("""encoder.mask_token""" , """embeddings.mask_token""" )
if "encoder.patch_embed.proj" in name:
lowerCamelCase__ : List[Any] = name.replace("""encoder.patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "encoder.patch_embed.norm" in name:
lowerCamelCase__ : str = name.replace("""encoder.patch_embed.norm""" , """embeddings.norm""" )
if "attn.proj" in name:
lowerCamelCase__ : List[Any] = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
lowerCamelCase__ : List[Any] = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowerCamelCase__ : Tuple = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowerCamelCase__ : int = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowerCamelCase__ : Optional[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowerCamelCase__ : Optional[Any] = name.replace("""mlp.fc2""" , """output.dense""" )
if name == "encoder.norm.weight":
lowerCamelCase__ : Optional[int] = """layernorm.weight"""
if name == "encoder.norm.bias":
lowerCamelCase__ : str = """layernorm.bias"""
if "decoder" in name:
pass
else:
lowerCamelCase__ : Tuple = """swin.""" + name
return name
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Optional[int]:
for key in orig_state_dict.copy().keys():
lowerCamelCase__ : Tuple = orig_state_dict.pop(UpperCamelCase )
if "attn_mask" in key:
pass
elif "qkv" in key:
lowerCamelCase__ : Union[str, Any] = key.split(""".""" )
lowerCamelCase__ : Optional[Any] = int(key_split[2] )
lowerCamelCase__ : Any = int(key_split[4] )
lowerCamelCase__ : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
lowerCamelCase__ : Union[str, Any] = val[:dim, :]
lowerCamelCase__ : Tuple = val[
dim : dim * 2, :
]
lowerCamelCase__ : Union[str, Any] = val[-dim:, :]
else:
lowerCamelCase__ : Union[str, Any] = val[
:dim
]
lowerCamelCase__ : int = val[
dim : dim * 2
]
lowerCamelCase__ : List[str] = val[
-dim:
]
else:
lowerCamelCase__ : Union[str, Any] = val
return orig_state_dict
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[Any]:
lowerCamelCase__ : Optional[int] = torch.load(UpperCamelCase , map_location="""cpu""" )["""model"""]
lowerCamelCase__ : List[str] = get_swin_config(UpperCamelCase )
lowerCamelCase__ : str = SwinForMaskedImageModeling(UpperCamelCase )
model.eval()
lowerCamelCase__ : List[Any] = convert_state_dict(UpperCamelCase , UpperCamelCase )
model.load_state_dict(UpperCamelCase )
lowerCamelCase__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCamelCase__ : Dict = ViTImageProcessor(size={"""height""": 192, """width""": 192} )
lowerCamelCase__ : Dict = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw )
lowerCamelCase__ : Union[str, Any] = image_processor(images=UpperCamelCase , return_tensors="""pt""" )
with torch.no_grad():
lowerCamelCase__ : List[Any] = model(**UpperCamelCase ).logits
print(outputs.keys() )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(UpperCamelCase )
if push_to_hub:
print(f'''Pushing model and image processor for {model_name} to hub''' )
model.push_to_hub(f'''microsoft/{model_name}''' )
image_processor.push_to_hub(f'''microsoft/{model_name}''' )
if __name__ == "__main__":
_A : Union[str, Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''swin-base-simmim-window6-192''',
type=str,
choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''],
help='''Name of the Swin SimMIM model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''',
default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''',
type=str,
help='''Path to the original PyTorch checkpoint (.pth file).''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_A : int =parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 41 |
def SCREAMING_SNAKE_CASE__ ( __a ):
if not isinstance(__a , __a ):
snake_case_ : int = f"""Input value of [number={number}] must be an integer"""
raise TypeError(__a )
if number < 0:
return False
snake_case_ : Dict = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
'''simple docstring'''
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class __UpperCAmelCase ( _lowerCamelCase ):
# to overwrite at feature extractactor specific tests
__lowercase = None
__lowercase = None
@property
def lowerCamelCase ( self ):
"""simple docstring"""
return self.feat_extract_tester.prepare_feat_extract_dict()
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(lowerCAmelCase_ , 'feature_size' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , 'sampling_rate' ) )
self.assertTrue(hasattr(lowerCAmelCase_ , 'padding_value' ) )
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = self.feat_extract_tester.prepare_inputs_for_common()
_snake_case = self.feature_extraction_class(**self.feat_extract_dict )
_snake_case = feat_extract.model_input_names[0]
_snake_case = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) for x, y in zip(lowerCAmelCase_ , processed_features[input_name] ) ) )
_snake_case = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase_ )
_snake_case = BatchFeature({input_name: speech_inputs} , tensor_type='np' )
_snake_case = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
_snake_case = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_torch
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase_ )
_snake_case = self.feature_extraction_class(**self.feat_extract_dict )
_snake_case = feat_extract.model_input_names[0]
_snake_case = BatchFeature({input_name: speech_inputs} , tensor_type='pt' )
_snake_case = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
_snake_case = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_tf
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase_ )
_snake_case = self.feature_extraction_class(**self.feat_extract_dict )
_snake_case = feat_extract.model_input_names[0]
_snake_case = BatchFeature({input_name: speech_inputs} , tensor_type='tf' )
_snake_case = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
_snake_case = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
def lowerCamelCase ( self , lowerCAmelCase_=False ):
"""simple docstring"""
def _inputs_have_equal_length(lowerCAmelCase_ ):
_snake_case = len(input[0] )
for input_slice in input[1:]:
if len(lowerCAmelCase_ ) != length:
return False
return True
def _inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ):
if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ):
return False
for input_slice_a, input_slice_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ):
if not np.allclose(np.asarray(lowerCAmelCase_ ) , np.asarray(lowerCAmelCase_ ) , atol=1E-3 ):
return False
return True
_snake_case = self.feature_extraction_class(**self.feat_extract_dict )
_snake_case = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase_ )
_snake_case = feat_extract.model_input_names[0]
_snake_case = BatchFeature({input_name: speech_inputs} )
_snake_case = self.feat_extract_tester.seq_length_diff
_snake_case = self.feat_extract_tester.max_seq_length + pad_diff
_snake_case = self.feat_extract_tester.min_seq_length
_snake_case = self.feat_extract_tester.batch_size
_snake_case = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
_snake_case = feat_extract.pad(lowerCAmelCase_ , padding=lowerCAmelCase_ )
_snake_case = input_a[input_name]
_snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' )
_snake_case = input_a[input_name]
_snake_case = feat_extract.pad(lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[-1] ) )
_snake_case = input_a[input_name]
_snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='np' )
_snake_case = input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(lowerCAmelCase_ ):
feat_extract.pad(lowerCAmelCase_ , padding='max_length' )[input_name]
_snake_case = feat_extract.pad(
lowerCAmelCase_ , padding='max_length' , max_length=lowerCAmelCase_ , return_tensors='np' )
_snake_case = input_a[input_name]
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) )
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) )
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) )
self.assertTrue(_inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ) )
self.assertTrue(len(input_a[0] ) == pad_min_length )
self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff )
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) )
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size )
# test padding for `pad_to_multiple_of` for List[int] + numpy
_snake_case = feat_extract.pad(lowerCAmelCase_ , pad_to_multiple_of=10 )
_snake_case = input_a[input_name]
_snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , pad_to_multiple_of=10 )
_snake_case = input_a[input_name]
_snake_case = feat_extract.pad(
lowerCAmelCase_ , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase_ )
_snake_case = input_a[input_name]
_snake_case = feat_extract.pad(
lowerCAmelCase_ , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase_ , return_tensors='np' , )
_snake_case = input_a[input_name]
self.assertTrue(all(len(lowerCAmelCase_ ) % 10 == 0 for x in input_a ) )
self.assertTrue(_inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ) )
_snake_case = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(lowerCAmelCase_ ) == expected_mult_pad_length for x in input_a ) )
self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size )
# Check padding value is correct
_snake_case = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) )
< 1E-3 )
self.assertTrue(
abs(
np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) )
< 1E-3 )
self.assertTrue(
abs(
np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) )
< 1E-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) )
< 1E-3 )
def lowerCamelCase ( self , lowerCAmelCase_=False ):
"""simple docstring"""
def _inputs_have_equal_length(lowerCAmelCase_ ):
_snake_case = len(input[0] )
for input_slice in input[1:]:
if len(lowerCAmelCase_ ) != length:
return False
return True
def _inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ):
if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ):
return False
for input_slice_a, input_slice_a in zip(lowerCAmelCase_ , lowerCAmelCase_ ):
if not np.allclose(np.asarray(lowerCAmelCase_ ) , np.asarray(lowerCAmelCase_ ) , atol=1E-3 ):
return False
return True
_snake_case = self.feature_extraction_class(**self.feat_extract_dict )
_snake_case = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase_ )
_snake_case = feat_extract.model_input_names[0]
_snake_case = BatchFeature({input_name: speech_inputs} )
# truncate to smallest
_snake_case = feat_extract.pad(
lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , truncation=lowerCAmelCase_ )
_snake_case = input_a[input_name]
_snake_case = feat_extract.pad(lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) )
_snake_case = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) )
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) )
# truncate to smallest with np
_snake_case = feat_extract.pad(
lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' , truncation=lowerCAmelCase_ , )
_snake_case = input_a[input_name]
_snake_case = feat_extract.pad(
lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' )
_snake_case = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) )
self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) )
# truncate to middle
_snake_case = feat_extract.pad(
lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=lowerCAmelCase_ , return_tensors='np' , )
_snake_case = input_a[input_name]
_snake_case = feat_extract.pad(
lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=lowerCAmelCase_ )
_snake_case = input_a[input_name]
_snake_case = feat_extract.pad(
lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[1] ) , return_tensors='np' )
_snake_case = input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) )
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) )
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) )
self.assertTrue(_inputs_are_equal(lowerCAmelCase_ , lowerCAmelCase_ ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) )
self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) )
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase_ ):
feat_extract.pad(lowerCAmelCase_ , truncation=lowerCAmelCase_ )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase_ ):
feat_extract.pad(lowerCAmelCase_ , padding='longest' , truncation=lowerCAmelCase_ )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(lowerCAmelCase_ ):
feat_extract.pad(lowerCAmelCase_ , padding='longest' , truncation=lowerCAmelCase_ )[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(lowerCAmelCase_ ):
feat_extract.pad(lowerCAmelCase_ , padding='max_length' , truncation=lowerCAmelCase_ )[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
_snake_case = 12
_snake_case = feat_extract.pad(
lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCAmelCase_ , truncation=lowerCAmelCase_ , )
_snake_case = input_a[input_name]
_snake_case = feat_extract.pad(
lowerCAmelCase_ , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCAmelCase_ , )
_snake_case = input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
_snake_case = len(speech_inputs[0] )
if expected_length % pad_to_multiple_of != 0:
_snake_case = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0] ) == expected_length )
self.assertTrue(_inputs_have_equal_length(lowerCAmelCase_ ) )
self.assertFalse(_inputs_have_equal_length(lowerCAmelCase_ ) )
def lowerCamelCase ( self ):
"""simple docstring"""
self._check_padding(numpify=lowerCAmelCase_ )
def lowerCamelCase ( self ):
"""simple docstring"""
self._check_padding(numpify=lowerCAmelCase_ )
def lowerCamelCase ( self ):
"""simple docstring"""
self._check_truncation(numpify=lowerCAmelCase_ )
def lowerCamelCase ( self ):
"""simple docstring"""
self._check_truncation(numpify=lowerCAmelCase_ )
@require_torch
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = self.feature_extraction_class(**self.feat_extract_dict )
_snake_case = self.feat_extract_tester.prepare_inputs_for_common()
_snake_case = feat_extract.model_input_names[0]
_snake_case = BatchFeature({input_name: speech_inputs} )
_snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='np' )[input_name]
_snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='pt' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 )
@require_tf
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = self.feature_extraction_class(**self.feat_extract_dict )
_snake_case = self.feat_extract_tester.prepare_inputs_for_common()
_snake_case = feat_extract.model_input_names[0]
_snake_case = BatchFeature({input_name: speech_inputs} )
_snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='np' )[input_name]
_snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='tf' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 )
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = self.feat_extract_dict
_snake_case = True
_snake_case = self.feature_extraction_class(**lowerCAmelCase_ )
_snake_case = self.feat_extract_tester.prepare_inputs_for_common()
_snake_case = [len(lowerCAmelCase_ ) for x in speech_inputs]
_snake_case = feat_extract.model_input_names[0]
_snake_case = BatchFeature({input_name: speech_inputs} )
_snake_case = feat_extract.pad(lowerCAmelCase_ , padding='longest' , return_tensors='np' )
self.assertIn('attention_mask' , lowerCAmelCase_ )
self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCAmelCase_ )
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = self.feat_extract_dict
_snake_case = True
_snake_case = self.feature_extraction_class(**lowerCAmelCase_ )
_snake_case = self.feat_extract_tester.prepare_inputs_for_common()
_snake_case = [len(lowerCAmelCase_ ) for x in speech_inputs]
_snake_case = feat_extract.model_input_names[0]
_snake_case = BatchFeature({input_name: speech_inputs} )
_snake_case = min(lowerCAmelCase_ )
_snake_case = feat_extract.pad(
lowerCAmelCase_ , padding='max_length' , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='np' )
self.assertIn('attention_mask' , lowerCAmelCase_ )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
| 42 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_SCREAMING_SNAKE_CASE = {
"""configuration_autoformer""": [
"""AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AutoformerConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"""AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AutoformerForPrediction""",
"""AutoformerModel""",
"""AutoformerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 327 | 0 |
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def lowerCamelCase ( SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=100 , SCREAMING_SNAKE_CASE=1_026 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="data/tokenized_stories_train_wikitext103.jbl" , SCREAMING_SNAKE_CASE="igf_context_pairs.jbl" , ):
'''simple docstring'''
set_seed(3 )
# generate train_data and objective_set
__UpperCamelCase , __UpperCamelCase :Optional[Any] = generate_datasets(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , number=SCREAMING_SNAKE_CASE , min_len=1_026 , trim=SCREAMING_SNAKE_CASE )
# keeps model same across runs
set_seed(4 )
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
__UpperCamelCase :List[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' )
# load pretrained model
__UpperCamelCase :str = load_gpta('''gpt2''' ).to(SCREAMING_SNAKE_CASE )
print('''computing perplexity on objective set''' )
__UpperCamelCase :List[str] = compute_perplexity(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).item()
print('''perplexity on objective set:''' , SCREAMING_SNAKE_CASE )
# collect igf pairs and save to file demo.jbl
collect_objective_set(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=15 , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=100 , SCREAMING_SNAKE_CASE="igf_model.pt" , ):
'''simple docstring'''
set_seed(42 )
# Load pre-trained model
__UpperCamelCase :str = GPTaLMHeadModel.from_pretrained('''gpt2''' )
# Initialize secondary learner to use embedding weights of model
__UpperCamelCase :List[str] = SecondaryLearner(SCREAMING_SNAKE_CASE )
# Train secondary learner
__UpperCamelCase :Tuple = train_secondary_learner(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , max_epochs=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , eval_freq=100 , igf_model_path=SCREAMING_SNAKE_CASE , )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=1_000 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=recopy_gpta , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE="gpt2_finetuned.pt" , ):
'''simple docstring'''
__UpperCamelCase :List[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' )
__UpperCamelCase :Tuple = RandomSampler(SCREAMING_SNAKE_CASE )
__UpperCamelCase :Union[str, Any] = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE )
__UpperCamelCase :List[Any] = max_steps // (len(SCREAMING_SNAKE_CASE )) + 1
__UpperCamelCase :Optional[int] = 0
__UpperCamelCase :int = torch.zeros((1, context_len) , dtype=torch.long , device=SCREAMING_SNAKE_CASE )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase :List[str] = recopy_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
model.train()
if secondary_learner is not None:
secondary_learner.to(SCREAMING_SNAKE_CASE )
secondary_learner.eval()
__UpperCamelCase :List[str] = []
__UpperCamelCase :str = 0
__UpperCamelCase :int = []
__UpperCamelCase :int = []
# Compute the performance of the transformer model at the beginning
__UpperCamelCase :List[str] = compute_perplexity(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
test_perps.append(SCREAMING_SNAKE_CASE )
print('''Test perplexity, step''' , SCREAMING_SNAKE_CASE , ''':''' , SCREAMING_SNAKE_CASE )
for epoch in range(int(SCREAMING_SNAKE_CASE ) ):
for step, example in enumerate(SCREAMING_SNAKE_CASE ):
torch.cuda.empty_cache()
__UpperCamelCase :Optional[Any] = random.randint(0 , example.size(2 ) - context_len - 1 )
__UpperCamelCase :Tuple = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
__UpperCamelCase :List[str] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE )
__UpperCamelCase :Any = True
if secondary_learner is not None:
__UpperCamelCase :List[Any] = secondary_learner.forward(
torch.tensor(SCREAMING_SNAKE_CASE , dtype=torch.long , device=SCREAMING_SNAKE_CASE ).unsqueeze(0 ) )[0].item()
observed_qs.append(float(SCREAMING_SNAKE_CASE ) )
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
__UpperCamelCase :List[Any] = -1
if predicted_q < threshold:
__UpperCamelCase :List[str] = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu() ) )
__UpperCamelCase :int = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
__UpperCamelCase :Any = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 )
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
__UpperCamelCase :Tuple = compute_perplexity(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
test_perps.append(SCREAMING_SNAKE_CASE )
print('''Test perplexity, step''' , SCREAMING_SNAKE_CASE , ''':''' , SCREAMING_SNAKE_CASE )
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict() , SCREAMING_SNAKE_CASE )
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def lowerCamelCase ( ):
'''simple docstring'''
__UpperCamelCase :List[str] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' )
# Required parameters
parser.add_argument(
'''--data_dir''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''The input data dir. Should contain data files for WikiText.''' , )
parser.add_argument(
'''--model_name_or_path''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--data_file''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=(
'''A jbl file containing tokenized data which can be split as objective dataset, '''
'''train_dataset and test_dataset.'''
) , )
parser.add_argument(
'''--igf_data_file''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , )
parser.add_argument(
'''--output_dir''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''The output directory where the final fine-tuned model is stored.''' , )
parser.add_argument(
'''--tokenizer_name''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument('''--seed''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='''A seed for reproducible training.''' )
parser.add_argument(
'''--context_len''' , default=32 , type=SCREAMING_SNAKE_CASE , help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) , )
parser.add_argument(
'''--size_objective_set''' , default=100 , type=SCREAMING_SNAKE_CASE , help='''number of articles that are long enough to be used as our objective set''' , )
parser.add_argument(
'''--eval_freq''' , default=100 , type=SCREAMING_SNAKE_CASE , help='''secondary model evaluation is triggered at eval_freq''' )
parser.add_argument('''--max_steps''' , default=1_000 , type=SCREAMING_SNAKE_CASE , help='''To calculate training epochs''' )
parser.add_argument(
'''--secondary_learner_batch_size''' , default=128 , type=SCREAMING_SNAKE_CASE , help='''batch size of training data for secondary learner''' , )
parser.add_argument(
'''--batch_size''' , default=16 , type=SCREAMING_SNAKE_CASE , help='''batch size of training data of language model(gpt2) ''' )
parser.add_argument(
'''--eval_interval''' , default=10 , type=SCREAMING_SNAKE_CASE , help=(
'''decay the selectivity of our secondary learner filter from'''
'''1 standard deviation above average to 1 below average after 10 batches'''
) , )
parser.add_argument(
'''--number''' , default=100 , type=SCREAMING_SNAKE_CASE , help='''The number of examples split to be used as objective_set/test_data''' )
parser.add_argument(
'''--min_len''' , default=1_026 , type=SCREAMING_SNAKE_CASE , help='''The minimum length of the article to be used as objective set''' )
parser.add_argument(
'''--secondary_learner_max_epochs''' , default=15 , type=SCREAMING_SNAKE_CASE , help='''number of epochs to train secondary learner''' )
parser.add_argument('''--trim''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help='''truncate the example if it exceeds context length''' )
parser.add_argument(
'''--threshold''' , default=1.0 , type=SCREAMING_SNAKE_CASE , help=(
'''The threshold value used by secondary learner to filter the train_data and allow only'''
''' informative data as input to the model'''
) , )
parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=SCREAMING_SNAKE_CASE , help='''finetuned_model_name''' )
parser.add_argument(
'''--recopy_model''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=SCREAMING_SNAKE_CASE , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , )
# Load train data for secondary learner
__UpperCamelCase :Optional[Any] = joblib.load('''data/IGF_values.jbl''' )
# Train secondary learner
__UpperCamelCase :str = training_secondary_learner(
SCREAMING_SNAKE_CASE , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , )
# load pretrained gpt2 model
__UpperCamelCase :Union[str, Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' )
set_seed(42 )
# Generate train and test data to train and evaluate gpt2 model
__UpperCamelCase , __UpperCamelCase :Dict = generate_datasets(
context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1_026 , trim=SCREAMING_SNAKE_CASE )
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=SCREAMING_SNAKE_CASE , secondary_learner=SCREAMING_SNAKE_CASE , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , )
if __name__ == "__main__":
main()
| 43 |
from typing import Dict
from .base import GenericTensor, Pipeline
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
def UpperCAmelCase_ ( self : str , _A : Optional[Any]=None , _A : List[str]=None , _A : Optional[Any]=None , **_A : List[str] ) -> Any:
"""simple docstring"""
if tokenize_kwargs is None:
snake_case_ : Optional[Any] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
snake_case_ : int = truncation
snake_case_ : Optional[int] = tokenize_kwargs
snake_case_ : Dict = {}
if return_tensors is not None:
snake_case_ : Union[str, Any] = return_tensors
return preprocess_params, {}, postprocess_params
def UpperCAmelCase_ ( self : Optional[int] , _A : int , **_A : Any ) -> Dict[str, GenericTensor]:
"""simple docstring"""
snake_case_ : Dict = self.framework
snake_case_ : Any = self.tokenizer(_A , return_tensors=_A , **_A )
return model_inputs
def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] ) -> int:
"""simple docstring"""
snake_case_ : Tuple = self.model(**_A )
return model_outputs
def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str=False ) -> Any:
"""simple docstring"""
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> List[str]:
"""simple docstring"""
return super().__call__(*_A , **_A )
| 327 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_a : Tuple = {
'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'],
'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'],
'processing_wav2vec2': ['Wav2Vec2Processor'],
'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Any = [
'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Wav2Vec2ForAudioFrameClassification',
'Wav2Vec2ForCTC',
'Wav2Vec2ForMaskedLM',
'Wav2Vec2ForPreTraining',
'Wav2Vec2ForSequenceClassification',
'Wav2Vec2ForXVector',
'Wav2Vec2Model',
'Wav2Vec2PreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : int = [
'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFWav2Vec2ForCTC',
'TFWav2Vec2Model',
'TFWav2Vec2PreTrainedModel',
'TFWav2Vec2ForSequenceClassification',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : int = [
'FlaxWav2Vec2ForCTC',
'FlaxWav2Vec2ForPreTraining',
'FlaxWav2Vec2Model',
'FlaxWav2Vec2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
_a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 44 |
from itertools import permutations
def SCREAMING_SNAKE_CASE__ ( __a ):
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
snake_case_ : Any = [7, 11, 13, 17]
for i, test in enumerate(__a ):
if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def SCREAMING_SNAKE_CASE__ ( __a = 10 ):
return sum(
int(''.join(map(__a , __a ) ) )
for num in permutations(range(__a ) )
if is_substring_divisible(__a ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 327 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInstructPixaPixPipeline,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import floats_tensor, load_image, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = StableDiffusionInstructPixaPixPipeline
__UpperCAmelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'}
__UpperCAmelCase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
__UpperCAmelCase : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS
__UpperCAmelCase : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS
def __UpperCAmelCase ( self ):
torch.manual_seed(0 )
__a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
__a = PNDMScheduler(skip_prk_steps=_a )
torch.manual_seed(0 )
__a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
__a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__a = CLIPTextModel(_a )
__a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__a = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __UpperCAmelCase ( self , _a , _a=0 ):
__a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a )
__a = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' )
if str(_a ).startswith('''mps''' ):
__a = torch.manual_seed(_a )
else:
__a = torch.Generator(device=_a ).manual_seed(_a )
__a = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''image_guidance_scale''': 1,
'''output_type''': '''numpy''',
}
return inputs
def __UpperCAmelCase ( self ):
__a = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__a = self.get_dummy_components()
__a = StableDiffusionInstructPixaPixPipeline(**_a )
__a = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
__a = self.get_dummy_inputs(_a )
__a = sd_pipe(**_a ).images
__a = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__a = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def __UpperCAmelCase ( self ):
__a = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__a = self.get_dummy_components()
__a = StableDiffusionInstructPixaPixPipeline(**_a )
__a = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
__a = self.get_dummy_inputs(_a )
__a = '''french fries'''
__a = sd_pipe(**_a , negative_prompt=_a )
__a = output.images
__a = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__a = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def __UpperCAmelCase ( self ):
__a = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__a = self.get_dummy_components()
__a = StableDiffusionInstructPixaPixPipeline(**_a )
__a = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
__a = self.get_dummy_inputs(_a )
__a = [inputs['''prompt''']] * 2
__a = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0
__a = torch.from_numpy(_a ).unsqueeze(0 ).to(_a )
__a = image / 2 + 0.5
__a = image.permute(0 , 3 , 1 , 2 )
__a = image.repeat(2 , 1 , 1 , 1 )
__a = sd_pipe(**_a ).images
__a = image[-1, -3:, -3:, -1]
assert image.shape == (2, 32, 32, 3)
__a = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def __UpperCAmelCase ( self ):
__a = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__a = self.get_dummy_components()
__a = EulerAncestralDiscreteScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' )
__a = StableDiffusionInstructPixaPixPipeline(**_a )
__a = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
__a = self.get_dummy_inputs(_a )
__a = sd_pipe(**_a ).images
__a = image[0, -3:, -3:, -1]
__a = [round(_a , 4 ) for x in image_slice.flatten().tolist()]
print(''','''.join([str(_a ) for x in slice] ) )
assert image.shape == (1, 32, 32, 3)
__a = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def __UpperCAmelCase ( self ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def __UpperCAmelCase ( self ):
__a = self.get_dummy_components()
__a = StableDiffusionInstructPixaPixPipeline(**_a )
__a = VaeImageProcessor(do_resize=_a , do_normalize=_a )
__a = pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
__a = pipe(**self.get_dummy_inputs_by_type(_a , input_image_type='''pt''' ) )[0]
__a = components['''vae''']
__a = self.get_dummy_inputs_by_type(_a , input_image_type='''pt''' )
for image_param in self.image_latents_params:
if image_param in inputs.keys():
__a = vae.encode(inputs[image_param] ).latent_dist.mode()
__a = pipe(**_a )[0]
__a = np.abs(out - out_latents_inputs ).max()
self.assertLess(_a , 1E-4 , '''passing latents as image input generate different result from passing image''' )
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self , _a=0 ):
__a = torch.manual_seed(_a )
__a = load_image(
'''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' )
__a = {
'''prompt''': '''turn him into a cyborg''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''image_guidance_scale''': 1.0,
'''output_type''': '''numpy''',
}
return inputs
def __UpperCAmelCase ( self ):
__a = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'''timbrooks/instruct-pix2pix''' , safety_checker=_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
__a = self.get_inputs()
__a = pipe(**_a ).images
__a = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
__a = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] )
assert np.abs(expected_slice - image_slice ).max() < 1E-3
def __UpperCAmelCase ( self ):
__a = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'''timbrooks/instruct-pix2pix''' , safety_checker=_a )
__a = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
__a = self.get_inputs()
__a = pipe(**_a ).images
__a = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
__a = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] )
assert np.abs(expected_slice - image_slice ).max() < 1E-3
def __UpperCAmelCase ( self ):
__a = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'''timbrooks/instruct-pix2pix''' , safety_checker=_a )
__a = DDIMScheduler.from_config(pipe.scheduler.config )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
__a = self.get_inputs()
__a = pipe(**_a ).images
__a = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
__a = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] )
assert np.abs(expected_slice - image_slice ).max() < 1E-3
def __UpperCAmelCase ( self ):
__a = 0
def callback_fn(_a , _a , _a ) -> None:
__a = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
__a = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
__a = latents[0, -3:, -3:, -1]
__a = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2
elif step == 2:
__a = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 64)
__a = latents[0, -3:, -3:, -1]
__a = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2
__a = False
__a = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'''timbrooks/instruct-pix2pix''' , safety_checker=_a , torch_dtype=torch.floataa )
__a = pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
__a = self.get_inputs()
pipe(**_a , callback=_a , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def __UpperCAmelCase ( self ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__a = StableDiffusionInstructPixaPixPipeline.from_pretrained(
'''timbrooks/instruct-pix2pix''' , safety_checker=_a , torch_dtype=torch.floataa )
__a = pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__a = self.get_inputs()
__a = pipe(**_a )
__a = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 10**9
def __UpperCAmelCase ( self ):
__a = self.get_inputs()
# resize to resolution that is divisible by 8 but not 16 or 32
__a = inputs['''image'''].resize((504, 504) )
__a = '''timbrooks/instruct-pix2pix'''
__a = StableDiffusionInstructPixaPixPipeline.from_pretrained(
_a , safety_checker=_a , )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
__a = pipe(**_a )
__a = output.images[0]
__a = image[255:258, 383:386, -1]
assert image.shape == (504, 504, 3)
__a = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
| 45 |
from __future__ import annotations
from collections import namedtuple
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ):
snake_case_ : Any = namedtuple('result' , 'name value' )
if (voltage, current, power).count(0 ) != 1:
raise ValueError('Only one argument must be 0' )
elif power < 0:
raise ValueError(
'Power cannot be negative in any electrical/electronics system' )
elif voltage == 0:
return result('voltage' , power / current )
elif current == 0:
return result('current' , power / voltage )
elif power == 0:
return result('power' , float(round(abs(voltage * current ) , 2 ) ) )
else:
raise ValueError('Exactly one argument must be 0' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class lowercase ( metaclass=_UpperCAmelCase ):
_SCREAMING_SNAKE_CASE = ['flax']
def __init__( self , *lowercase , **lowercase ) -> int:
requires_backends(self , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> List[str]:
requires_backends(cls , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> str:
requires_backends(cls , ["""flax"""] )
class lowercase ( metaclass=_UpperCAmelCase ):
_SCREAMING_SNAKE_CASE = ['flax']
def __init__( self , *lowercase , **lowercase ) -> str:
requires_backends(self , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> Dict:
requires_backends(cls , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> Any:
requires_backends(cls , ["""flax"""] )
class lowercase ( metaclass=_UpperCAmelCase ):
_SCREAMING_SNAKE_CASE = ['flax']
def __init__( self , *lowercase , **lowercase ) -> Tuple:
requires_backends(self , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> Dict:
requires_backends(cls , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[Any]:
requires_backends(cls , ["""flax"""] )
class lowercase ( metaclass=_UpperCAmelCase ):
_SCREAMING_SNAKE_CASE = ['flax']
def __init__( self , *lowercase , **lowercase ) -> Optional[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> List[str]:
requires_backends(cls , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> List[str]:
requires_backends(cls , ["""flax"""] )
class lowercase ( metaclass=_UpperCAmelCase ):
_SCREAMING_SNAKE_CASE = ['flax']
def __init__( self , *lowercase , **lowercase ) -> str:
requires_backends(self , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[Any]:
requires_backends(cls , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> int:
requires_backends(cls , ["""flax"""] )
class lowercase ( metaclass=_UpperCAmelCase ):
_SCREAMING_SNAKE_CASE = ['flax']
def __init__( self , *lowercase , **lowercase ) -> Tuple:
requires_backends(self , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> List[Any]:
requires_backends(cls , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> List[Any]:
requires_backends(cls , ["""flax"""] )
class lowercase ( metaclass=_UpperCAmelCase ):
_SCREAMING_SNAKE_CASE = ['flax']
def __init__( self , *lowercase , **lowercase ) -> Tuple:
requires_backends(self , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> Union[str, Any]:
requires_backends(cls , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(cls , ["""flax"""] )
class lowercase ( metaclass=_UpperCAmelCase ):
_SCREAMING_SNAKE_CASE = ['flax']
def __init__( self , *lowercase , **lowercase ) -> int:
requires_backends(self , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[Any]:
requires_backends(cls , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> List[str]:
requires_backends(cls , ["""flax"""] )
class lowercase ( metaclass=_UpperCAmelCase ):
_SCREAMING_SNAKE_CASE = ['flax']
def __init__( self , *lowercase , **lowercase ) -> List[str]:
requires_backends(self , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> int:
requires_backends(cls , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[Any]:
requires_backends(cls , ["""flax"""] )
class lowercase ( metaclass=_UpperCAmelCase ):
_SCREAMING_SNAKE_CASE = ['flax']
def __init__( self , *lowercase , **lowercase ) -> Optional[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(cls , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> Any:
requires_backends(cls , ["""flax"""] )
class lowercase ( metaclass=_UpperCAmelCase ):
_SCREAMING_SNAKE_CASE = ['flax']
def __init__( self , *lowercase , **lowercase ) -> str:
requires_backends(self , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> Dict:
requires_backends(cls , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> Optional[Any]:
requires_backends(cls , ["""flax"""] )
class lowercase ( metaclass=_UpperCAmelCase ):
_SCREAMING_SNAKE_CASE = ['flax']
def __init__( self , *lowercase , **lowercase ) -> Any:
requires_backends(self , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> int:
requires_backends(cls , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
class lowercase ( metaclass=_UpperCAmelCase ):
_SCREAMING_SNAKE_CASE = ['flax']
def __init__( self , *lowercase , **lowercase ) -> str:
requires_backends(self , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> Dict:
requires_backends(cls , ["""flax"""] )
@classmethod
def _snake_case ( cls , *lowercase , **lowercase ) -> str:
requires_backends(cls , ["""flax"""] )
| 46 |
import re
import string
import numpy as np
import datasets
_SCREAMING_SNAKE_CASE = """
Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.
"""
_SCREAMING_SNAKE_CASE = """
Args:
predictions: List of predicted texts.
references: List of reference texts.
regexes_to_ignore: List, defaults to None. Regex expressions of characters to
ignore when calculating the exact matches. Note: these regexes are removed
from the input data before the changes based on the options below (e.g. ignore_case,
ignore_punctuation, ignore_numbers) are applied.
ignore_case: Boolean, defaults to False. If true, turns everything
to lowercase so that capitalization differences are ignored.
ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
Returns:
exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.
Examples:
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results[\"exact_match\"], 1))
25.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results[\"exact_match\"], 1))
50.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results[\"exact_match\"], 1))
75.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)
>>> print(round(results[\"exact_match\"], 1))
100.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]
>>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results[\"exact_match\"], 1))
33.3
"""
_SCREAMING_SNAKE_CASE = """
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE_ ( datasets.Metric ):
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , reference_urls=[] , )
def UpperCAmelCase_ ( self : int , _A : Tuple , _A : Tuple , _A : str=None , _A : Dict=False , _A : Tuple=False , _A : str=False , ) -> Tuple:
"""simple docstring"""
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
snake_case_ : List[Any] = np.array([re.sub(_A , '' , _A ) for x in predictions] )
snake_case_ : Optional[Any] = np.array([re.sub(_A , '' , _A ) for x in references] )
else:
snake_case_ : Dict = np.asarray(_A )
snake_case_ : Tuple = np.asarray(_A )
if ignore_case:
snake_case_ : List[str] = np.char.lower(_A )
snake_case_ : Any = np.char.lower(_A )
if ignore_punctuation:
snake_case_ : int = string.punctuation.maketrans('' , '' , string.punctuation )
snake_case_ : Tuple = np.char.translate(_A , table=_A )
snake_case_ : str = np.char.translate(_A , table=_A )
if ignore_numbers:
snake_case_ : Optional[int] = string.digits.maketrans('' , '' , string.digits )
snake_case_ : str = np.char.translate(_A , table=_A )
snake_case_ : Union[str, Any] = np.char.translate(_A , table=_A )
snake_case_ : int = predictions == references
return {"exact_match": np.mean(_A ) * 100}
| 327 | 0 |
'''simple docstring'''
from unittest import TestCase
from datasets import Sequence, Value
from datasets.arrow_dataset import Dataset
class A__ ( A__ ):
def A ( self : Optional[Any] ) -> str:
'''simple docstring'''
return [
{"col_1": 3, "col_2": "a"},
{"col_1": 2, "col_2": "b"},
{"col_1": 1, "col_2": "c"},
{"col_1": 0, "col_2": "d"},
]
def A ( self : Any ) -> Tuple:
'''simple docstring'''
_SCREAMING_SNAKE_CASE ={'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']}
return Dataset.from_dict(_a )
def A ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =self._create_example_records()
_SCREAMING_SNAKE_CASE =Dataset.from_list(_a )
self.assertListEqual(dset.column_names , ['col_1', 'col_2'] )
for i, r in enumerate(_a ):
self.assertDictEqual(_a , example_records[i] )
def A ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =self._create_example_records()
_SCREAMING_SNAKE_CASE =Dataset.from_list(_a )
_SCREAMING_SNAKE_CASE =Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} )
self.assertEqual(dset.info , dset_from_dict.info )
def A ( self : Any ) -> List[Any]: # checks what happens with missing columns
'''simple docstring'''
_SCREAMING_SNAKE_CASE =[{'col_1': 1}, {'col_2': 'x'}]
_SCREAMING_SNAKE_CASE =Dataset.from_list(_a )
self.assertDictEqual(dset[0] , {'col_1': 1} )
self.assertDictEqual(dset[1] , {'col_1': None} ) # NB: first record is used for columns
def A ( self : str ) -> int: # checks if the type can be inferred from the second record
'''simple docstring'''
_SCREAMING_SNAKE_CASE =[{'col_1': []}, {'col_1': [1, 2]}]
_SCREAMING_SNAKE_CASE =Dataset.from_list(_a )
self.assertEqual(dset.info.features['col_1'] , Sequence(Value('int64' ) ) )
def A ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =Dataset.from_list([] )
self.assertEqual(len(_a ) , 0 )
self.assertListEqual(dset.column_names , [] )
| 47 |
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class SCREAMING_SNAKE_CASE_ :
def __init__( self : List[Any] , _A : Optional[Any] , _A : Dict=13 , _A : Union[str, Any]=30 , _A : Tuple=2 , _A : Union[str, Any]=3 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : str=32 , _A : int=2 , _A : List[str]=4 , _A : List[str]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=10 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=3 , _A : str=0.6 , _A : Union[str, Any]=None , ) -> Any:
"""simple docstring"""
snake_case_ : Optional[int] = parent
snake_case_ : Tuple = batch_size
snake_case_ : List[Any] = image_size
snake_case_ : List[str] = patch_size
snake_case_ : List[str] = num_channels
snake_case_ : Optional[Any] = is_training
snake_case_ : Any = use_labels
snake_case_ : Tuple = hidden_size
snake_case_ : Union[str, Any] = num_hidden_layers
snake_case_ : List[Any] = num_attention_heads
snake_case_ : Optional[Any] = intermediate_size
snake_case_ : List[Any] = hidden_act
snake_case_ : Union[str, Any] = hidden_dropout_prob
snake_case_ : Any = attention_probs_dropout_prob
snake_case_ : Tuple = type_sequence_label_size
snake_case_ : List[str] = initializer_range
snake_case_ : Optional[Any] = mask_ratio
snake_case_ : Any = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
snake_case_ : Optional[int] = (image_size // patch_size) ** 2
snake_case_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ : Union[str, Any] = None
if self.use_labels:
snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase_ ( self : int ) -> Optional[Any]:
"""simple docstring"""
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : Dict , _A : str ) -> Dict:
"""simple docstring"""
snake_case_ : Union[str, Any] = TFViTMAEModel(config=_A )
snake_case_ : str = model(_A , training=_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : Any , _A : List[Any] ) -> int:
"""simple docstring"""
snake_case_ : Any = TFViTMAEForPreTraining(_A )
snake_case_ : Optional[Any] = model(_A , training=_A )
# expected sequence length = num_patches
snake_case_ : List[str] = (self.image_size // self.patch_size) ** 2
snake_case_ : Optional[Any] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
snake_case_ : str = 1
snake_case_ : Dict = TFViTMAEForPreTraining(_A )
snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case_ : List[str] = model(_A , training=_A )
snake_case_ : Optional[Any] = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
snake_case_ : List[Any] = self.prepare_config_and_inputs()
((snake_case_) ,(snake_case_) ,(snake_case_)) : Any = config_and_inputs
snake_case_ : Optional[Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ):
__magic_name__: List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
__magic_name__: str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {}
__magic_name__: Dict = False
__magic_name__: Dict = False
__magic_name__: List[Any] = False
__magic_name__: Dict = False
def UpperCAmelCase_ ( self : Any ) -> List[Any]:
"""simple docstring"""
snake_case_ : List[Any] = TFViTMAEModelTester(self )
snake_case_ : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 )
def UpperCAmelCase_ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='ViTMAE does not use inputs_embeds' )
def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ ,snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : List[Any] = model_class(_A )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
snake_case_ : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) )
def UpperCAmelCase_ ( self : List[str] ) -> Dict:
"""simple docstring"""
snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : List[str] = model_class(_A )
snake_case_ : Any = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ : Dict = [*signature.parameters.keys()]
snake_case_ : Dict = ['pixel_values']
self.assertListEqual(arg_names[:1] , _A )
def UpperCAmelCase_ ( self : Dict ) -> List[str]:
"""simple docstring"""
snake_case_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def UpperCAmelCase_ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
snake_case_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_A )
def UpperCAmelCase_ ( self : Tuple ) -> Dict:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
snake_case_ : Optional[Any] = model_class(_A )
snake_case_ : Union[str, Any] = self._prepare_for_class(_A , _A )
snake_case_ : List[str] = model(_A , noise=_A )
snake_case_ : Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) )
snake_case_ : str = model(**_A , noise=_A )
snake_case_ : Union[str, Any] = outputs_dict[0].numpy()
snake_case_ : Optional[Any] = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 )
def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Tuple = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(_A : int ):
snake_case_ : Any = {}
for k, v in inputs_dict.items():
if tf.is_tensor(_A ):
snake_case_ : str = v.numpy()
else:
snake_case_ : Optional[Any] = np.array(_A )
return inputs_np_dict
for model_class in self.all_model_classes:
snake_case_ : int = model_class(_A )
snake_case_ : List[Any] = self._prepare_for_class(_A , _A )
snake_case_ : Any = prepare_numpy_arrays(_A )
snake_case_ : List[Any] = model(_A , noise=_A )
snake_case_ : List[Any] = model(**_A , noise=_A )
self.assert_outputs_same(_A , _A )
def UpperCAmelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> List[str]:
"""simple docstring"""
np.random.seed(2 )
snake_case_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
snake_case_ : Optional[int] = tf.constant(_A )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
snake_case_ : Optional[Any] = tf_noise
super().check_pt_tf_models(_A , _A , _A )
def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : int = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(_A )
if module_member_name.endswith('MainLayer' )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )]
for module_member in (getattr(_A , _A ),)
if isinstance(_A , _A )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(_A , '_keras_serializable' , _A )
}
snake_case_ : List[Any] = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
snake_case_ : Optional[int] = tf.convert_to_tensor(_A )
inputs_dict.update({'noise': noise} )
for main_layer_class in tf_main_layer_classes:
snake_case_ : Optional[Any] = main_layer_class(_A )
snake_case_ : List[str] = {
name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
snake_case_ : Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) )
snake_case_ : int = model(_A )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : List[Any] = os.path.join(_A , 'keras_model.h5' )
model.save(_A )
snake_case_ : str = tf.keras.models.load_model(
_A , custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(_A , tf.keras.Model )
snake_case_ : List[str] = model(_A )
self.assert_outputs_same(_A , _A )
@slow
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : int = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
snake_case_ : Optional[Any] = model_class(_A )
snake_case_ : Optional[Any] = self._prepare_for_class(_A , _A )
snake_case_ : int = model(_A , noise=_A )
if model_class.__name__ == "TFViTMAEModel":
snake_case_ : Any = outputs.last_hidden_state.numpy()
snake_case_ : Optional[int] = 0
else:
snake_case_ : str = outputs.logits.numpy()
snake_case_ : Optional[Any] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A , saved_model=_A )
snake_case_ : Any = model_class.from_pretrained(_A )
snake_case_ : Any = model(_A , noise=_A )
if model_class.__name__ == "TFViTMAEModel":
snake_case_ : Dict = after_outputs['last_hidden_state'].numpy()
snake_case_ : Dict = 0
else:
snake_case_ : Any = after_outputs['logits'].numpy()
snake_case_ : Optional[Any] = 0
snake_case_ : Any = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_A , 1E-5 )
def UpperCAmelCase_ ( self : Any ) -> str:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
snake_case_ : str = model_class(_A )
snake_case_ : int = self._prepare_for_class(_A , _A )
snake_case_ : str = model(_A , noise=_A )
snake_case_ : Dict = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(_A )
snake_case_ : Any = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
snake_case_ : str = model_class.from_config(model.config )
snake_case_ : Union[str, Any] = new_model(_A ) # Build model
new_model.set_weights(model.get_weights() )
snake_case_ : List[str] = new_model(_A , noise=_A )
self.assert_outputs_same(_A , _A )
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' )
def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
pass
@unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' )
def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
pass
@slow
def UpperCAmelCase_ ( self : Tuple ) -> Tuple:
"""simple docstring"""
snake_case_ : Optional[Any] = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' )
self.assertIsNotNone(_A )
def SCREAMING_SNAKE_CASE__ ( ):
snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
@cached_property
def UpperCAmelCase_ ( self : str ) -> Dict:
"""simple docstring"""
return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None
@slow
def UpperCAmelCase_ ( self : str ) -> Dict:
"""simple docstring"""
np.random.seed(2 )
snake_case_ : List[str] = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' )
snake_case_ : List[Any] = self.default_image_processor
snake_case_ : Dict = prepare_img()
snake_case_ : Optional[Any] = image_processor(images=_A , return_tensors='tf' )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
snake_case_ : int = ViTMAEConfig()
snake_case_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
snake_case_ : List[Any] = np.random.uniform(size=(1, num_patches) )
# forward pass
snake_case_ : Optional[Any] = model(**_A , noise=_A )
# verify the logits
snake_case_ : Optional[int] = tf.convert_to_tensor([1, 196, 768] )
self.assertEqual(outputs.logits.shape , _A )
snake_case_ : Any = tf.convert_to_tensor(
[[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
| 327 | 0 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
# See all BART models at https://huggingface.co/models?filter=bart
SCREAMING_SNAKE_CASE__ : Optional[int] = {
'vocab_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json',
},
'merges_file': {
'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt',
'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt',
'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt',
'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt',
'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt',
'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt',
},
}
SCREAMING_SNAKE_CASE__ : List[Any] = {
'facebook/bart-base': 1024,
'facebook/bart-large': 1024,
'facebook/bart-large-mnli': 1024,
'facebook/bart-large-cnn': 1024,
'facebook/bart-large-xsum': 1024,
'yjernite/bart_eli5': 1024,
}
@lru_cache()
def A ( ) -> Union[str, Any]:
lowerCamelCase : Any = (
list(range(ord("!" ) ,ord("~" ) + 1 ) ) + list(range(ord("¡" ) ,ord("¬" ) + 1 ) ) + list(range(ord("®" ) ,ord("ÿ" ) + 1 ) )
)
lowerCamelCase : str = bs[:]
lowerCamelCase : Dict = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_SCREAMING_SNAKE_CASE )
cs.append(2**8 + n )
n += 1
lowerCamelCase : Any = [chr(_SCREAMING_SNAKE_CASE ) for n in cs]
return dict(zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) )
def A ( _SCREAMING_SNAKE_CASE ) -> List[str]:
lowerCamelCase : Tuple = set()
lowerCamelCase : List[Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase : Optional[int] = char
return pairs
class UpperCamelCase__ (lowerCAmelCase__ ):
'''simple docstring'''
lowerCamelCase_ : Dict = VOCAB_FILES_NAMES
lowerCamelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase_ : Optional[Any] = ["""input_ids""", """attention_mask"""]
def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__="replace" , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , UpperCamelCase__=False , **UpperCamelCase__ , ) -> List[str]:
lowerCamelCase : List[Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token
lowerCamelCase : Optional[int] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token
lowerCamelCase : Union[str, Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token
lowerCamelCase : Union[str, Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token
lowerCamelCase : Dict = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token
lowerCamelCase : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase : Dict = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token
super().__init__(
errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , )
with open(UpperCamelCase__ , encoding="utf-8" ) as vocab_handle:
lowerCamelCase : int = json.load(UpperCamelCase__ )
lowerCamelCase : List[Any] = {v: k for k, v in self.encoder.items()}
lowerCamelCase : List[str] = errors # how to handle errors in decoding
lowerCamelCase : List[Any] = bytes_to_unicode()
lowerCamelCase : int = {v: k for k, v in self.byte_encoder.items()}
with open(UpperCamelCase__ , encoding="utf-8" ) as merges_handle:
lowerCamelCase : Union[str, Any] = merges_handle.read().split("\n" )[1:-1]
lowerCamelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges]
lowerCamelCase : Tuple = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) )
lowerCamelCase : Tuple = {}
lowerCamelCase : Optional[int] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowerCamelCase : List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
def _lowercase ( self ) -> List[str]:
return len(self.encoder )
def _lowercase ( self ) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder )
def _lowercase ( self , UpperCamelCase__ ) -> str:
if token in self.cache:
return self.cache[token]
lowerCamelCase : Any = tuple(UpperCamelCase__ )
lowerCamelCase : List[str] = get_pairs(UpperCamelCase__ )
if not pairs:
return token
while True:
lowerCamelCase : List[Any] = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase , lowerCamelCase : Any = bigram
lowerCamelCase : int = []
lowerCamelCase : Optional[Any] = 0
while i < len(UpperCamelCase__ ):
try:
lowerCamelCase : Optional[Any] = word.index(UpperCamelCase__ , UpperCamelCase__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCamelCase : List[str] = j
if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase : Optional[int] = tuple(UpperCamelCase__ )
lowerCamelCase : str = new_word
if len(UpperCamelCase__ ) == 1:
break
else:
lowerCamelCase : List[str] = get_pairs(UpperCamelCase__ )
lowerCamelCase : Union[str, Any] = " ".join(UpperCamelCase__ )
lowerCamelCase : Optional[Any] = word
return word
def _lowercase ( self , UpperCamelCase__ ) -> str:
lowerCamelCase : Tuple = []
for token in re.findall(self.pat , UpperCamelCase__ ):
lowerCamelCase : str = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase__ ).split(" " ) )
return bpe_tokens
def _lowercase ( self , UpperCamelCase__ ) -> Union[str, Any]:
return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) )
def _lowercase ( self , UpperCamelCase__ ) -> Tuple:
return self.decoder.get(UpperCamelCase__ )
def _lowercase ( self , UpperCamelCase__ ) -> Optional[int]:
lowerCamelCase : str = "".join(UpperCamelCase__ )
lowerCamelCase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]:
if not os.path.isdir(UpperCamelCase__ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCamelCase : Optional[int] = os.path.join(
UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase : Optional[int] = os.path.join(
UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + "\n" )
lowerCamelCase : Optional[int] = 0
with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
lowerCamelCase : Any = token_index
writer.write(" ".join(UpperCamelCase__ ) + "\n" )
index += 1
return vocab_file, merge_file
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase : List[Any] = [self.cls_token_id]
lowerCamelCase : Dict = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(UpperCamelCase__ )) + [1]
return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1]
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]:
lowerCamelCase : Optional[Any] = [self.sep_token_id]
lowerCamelCase : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__=False , **UpperCamelCase__ ) -> Optional[int]:
lowerCamelCase : List[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase__ ) > 0 and not text[0].isspace()):
lowerCamelCase : Tuple = " " + text
return (text, kwargs)
| 48 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
snake_case_ : list[list[int]] = []
snake_case_ : list[int] = []
snake_case_ : List[Any] = 0
snake_case_ : Union[str, Any] = sum(__a )
create_state_space_tree(__a , __a , __a , __a , __a , __a )
return result
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ):
if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum:
return
if sum(__a ) == max_sum:
result.append(__a )
return
for index in range(__a , len(__a ) ):
create_state_space_tree(
__a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , )
_SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2]
_SCREAMING_SNAKE_CASE = 9
_SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 327 | 0 |
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class _A ( unittest.TestCase ):
def _lowerCamelCase ( self : List[Any]):
'''simple docstring'''
__a = [
'''safety_checker/pytorch_model.bin''',
'''safety_checker/model.safetensors''',
'''vae/diffusion_pytorch_model.bin''',
'''vae/diffusion_pytorch_model.safetensors''',
'''text_encoder/pytorch_model.bin''',
'''text_encoder/model.safetensors''',
'''unet/diffusion_pytorch_model.bin''',
'''unet/diffusion_pytorch_model.safetensors''',
]
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : Optional[Any]):
'''simple docstring'''
__a = [
'''unet/diffusion_pytorch_model.bin''',
'''unet/diffusion_pytorch_model.safetensors''',
]
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : Optional[Any]):
'''simple docstring'''
__a = [
'''safety_checker/pytorch_model.bin''',
'''safety_checker/model.safetensors''',
'''vae/diffusion_pytorch_model.bin''',
'''vae/diffusion_pytorch_model.safetensors''',
'''text_encoder/pytorch_model.bin''',
'''text_encoder/model.safetensors''',
'''unet/diffusion_pytorch_model.bin''',
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : Dict):
'''simple docstring'''
__a = [
'''text_encoder/pytorch_model.bin''',
'''text_encoder/model.safetensors''',
]
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : Union[str, Any]):
'''simple docstring'''
__a = [
'''safety_checker/pytorch_model.bin''',
'''safety_checker/model.safetensors''',
'''vae/diffusion_pytorch_model.bin''',
'''vae/diffusion_pytorch_model.safetensors''',
'''text_encoder/pytorch_model.bin''',
# Removed: 'text_encoder/model.safetensors',
'''unet/diffusion_pytorch_model.bin''',
'''unet/diffusion_pytorch_model.safetensors''',
]
self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : Tuple):
'''simple docstring'''
__a = [
'''safety_checker/pytorch_model.fp16.bin''',
'''safety_checker/model.fp16.safetensors''',
'''vae/diffusion_pytorch_model.fp16.bin''',
'''vae/diffusion_pytorch_model.fp16.safetensors''',
'''text_encoder/pytorch_model.fp16.bin''',
'''text_encoder/model.fp16.safetensors''',
'''unet/diffusion_pytorch_model.fp16.bin''',
'''unet/diffusion_pytorch_model.fp16.safetensors''',
]
__a = '''fp16'''
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : Dict):
'''simple docstring'''
__a = [
'''unet/diffusion_pytorch_model.fp16.bin''',
'''unet/diffusion_pytorch_model.fp16.safetensors''',
]
__a = '''fp16'''
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : Optional[Any]):
'''simple docstring'''
__a = [
'''unet/diffusion_pytorch_model.bin''',
'''unet/diffusion_pytorch_model.safetensors''',
]
__a = '''fp16'''
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : Union[str, Any]):
'''simple docstring'''
__a = [
'''safety_checker/pytorch_model.fp16.bin''',
'''safety_checker/model.fp16.safetensors''',
'''vae/diffusion_pytorch_model.fp16.bin''',
'''vae/diffusion_pytorch_model.fp16.safetensors''',
'''text_encoder/pytorch_model.fp16.bin''',
'''text_encoder/model.fp16.safetensors''',
'''unet/diffusion_pytorch_model.fp16.bin''',
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
__a = '''fp16'''
self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : Dict):
'''simple docstring'''
__a = [
'''text_encoder/pytorch_model.fp16.bin''',
'''text_encoder/model.fp16.safetensors''',
]
__a = '''fp16'''
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : List[str]):
'''simple docstring'''
__a = [
'''text_encoder/pytorch_model.bin''',
'''text_encoder/model.safetensors''',
]
__a = '''fp16'''
self.assertTrue(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE))
def _lowerCamelCase ( self : List[str]):
'''simple docstring'''
__a = [
'''safety_checker/pytorch_model.fp16.bin''',
'''safety_checker/model.fp16.safetensors''',
'''vae/diffusion_pytorch_model.fp16.bin''',
'''vae/diffusion_pytorch_model.fp16.safetensors''',
'''text_encoder/pytorch_model.fp16.bin''',
# 'text_encoder/model.fp16.safetensors',
'''unet/diffusion_pytorch_model.fp16.bin''',
'''unet/diffusion_pytorch_model.fp16.safetensors''',
]
__a = '''fp16'''
self.assertFalse(is_safetensors_compatible(__SCREAMING_SNAKE_CASE , variant=__SCREAMING_SNAKE_CASE))
| 49 |
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
if density <= 0:
raise ValueError('Impossible fluid density' )
if bulk_modulus <= 0:
raise ValueError('Impossible bulk modulus' )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( ) -> List[Any]:
lowerCamelCase__ : Union[str, Any] = 10
lowerCamelCase__ : int = datasets.Features(
{
'tokens': datasets.Sequence(datasets.Value('string' ) ),
'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ),
'answers': datasets.Sequence(
{
'text': datasets.Value('string' ),
'answer_start': datasets.Value('int32' ),
} ),
'id': datasets.Value('int64' ),
} )
lowerCamelCase__ : str = datasets.Dataset.from_dict(
{
'tokens': [['foo'] * 5] * n,
'labels': [[1] * 5] * n,
'answers': [{'answer_start': [97], 'text': ['1976']}] * 10,
'id': list(range(_UpperCAmelCase ) ),
} , features=_UpperCAmelCase , )
return dataset
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> int:
lowerCamelCase__ : Dict = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' )
dataset.map(cache_file_name=_UpperCAmelCase )
return filename
# FILE_CONTENT + files
_UpperCAmelCase : Optional[int] = """\
Text data.
Second line of data."""
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int:
lowerCamelCase__ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt'
lowerCamelCase__ : Optional[int] = FILE_CONTENT
with open(_UpperCAmelCase , 'w' ) as f:
f.write(_UpperCAmelCase )
return filename
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[Any]:
import bza
lowerCamelCase__ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2'
lowerCamelCase__ : Any = bytes(_UpperCAmelCase , 'utf-8' )
with bza.open(_UpperCAmelCase , 'wb' ) as f:
f.write(_UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]:
import gzip
lowerCamelCase__ : Any = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' )
lowerCamelCase__ : Optional[Any] = bytes(_UpperCAmelCase , 'utf-8' )
with gzip.open(_UpperCAmelCase , 'wb' ) as f:
f.write(_UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int:
if datasets.config.LZ4_AVAILABLE:
import lza.frame
lowerCamelCase__ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4'
lowerCamelCase__ : int = bytes(_UpperCAmelCase , 'utf-8' )
with lza.frame.open(_UpperCAmelCase , 'wb' ) as f:
f.write(_UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]:
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
lowerCamelCase__ : List[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.7z'
with pyazr.SevenZipFile(_UpperCAmelCase , 'w' ) as archive:
archive.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]:
import tarfile
lowerCamelCase__ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.tar'
with tarfile.TarFile(_UpperCAmelCase , 'w' ) as f:
f.add(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]:
import lzma
lowerCamelCase__ : int = tmp_path_factory.mktemp('data' ) / 'file.txt.xz'
lowerCamelCase__ : Optional[Any] = bytes(_UpperCAmelCase , 'utf-8' )
with lzma.open(_UpperCAmelCase , 'wb' ) as f:
f.write(_UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
import zipfile
lowerCamelCase__ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.txt.zip'
with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f:
f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]:
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
lowerCamelCase__ : Tuple = tmp_path_factory.mktemp('data' ) / 'file.txt.zst'
lowerCamelCase__ : int = bytes(_UpperCAmelCase , 'utf-8' )
with zstd.open(_UpperCAmelCase , 'wb' ) as f:
f.write(_UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]:
lowerCamelCase__ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.xml'
lowerCamelCase__ : Optional[int] = textwrap.dedent(
'\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' )
with open(_UpperCAmelCase , 'w' ) as f:
f.write(_UpperCAmelCase )
return filename
_UpperCAmelCase : Union[str, Any] = [
{"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0},
{"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0},
{"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0},
{"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0},
]
_UpperCAmelCase : List[Any] = [
{"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0},
{"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0},
]
_UpperCAmelCase : Optional[int] = {
"""col_1""": ["""0""", """1""", """2""", """3"""],
"""col_2""": [0, 1, 2, 3],
"""col_3""": [0.0, 1.0, 2.0, 3.0],
}
_UpperCAmelCase : Any = [
{"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0},
{"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1},
]
_UpperCAmelCase : int = [
{"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0},
{"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0},
{"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0},
{"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0},
]
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]:
return DATA_DICT_OF_LISTS
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[int]:
lowerCamelCase__ : int = datasets.Dataset.from_dict(_UpperCAmelCase )
lowerCamelCase__ : str = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' )
dataset.map(cache_file_name=_UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]:
lowerCamelCase__ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' )
with contextlib.closing(sqlitea.connect(_UpperCAmelCase ) ) as con:
lowerCamelCase__ : List[str] = con.cursor()
cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' )
for item in DATA:
cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str:
lowerCamelCase__ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' )
with open(_UpperCAmelCase , 'w' , newline='' ) as f:
lowerCamelCase__ : str = csv.DictWriter(_UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] )
writer.writeheader()
for item in DATA:
writer.writerow(_UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str:
lowerCamelCase__ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' )
with open(_UpperCAmelCase , 'w' , newline='' ) as f:
lowerCamelCase__ : str = csv.DictWriter(_UpperCAmelCase , fieldnames=['col_1', 'col_2', 'col_3'] )
writer.writeheader()
for item in DATA:
writer.writerow(_UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> str:
import bza
lowerCamelCase__ : Dict = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2'
with open(_UpperCAmelCase , 'rb' ) as f:
lowerCamelCase__ : List[Any] = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(_UpperCAmelCase , 'wb' ) as f:
f.write(_UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any:
lowerCamelCase__ : int = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip'
with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f:
f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) )
f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict:
lowerCamelCase__ : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip'
with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f:
f.write(_UpperCAmelCase , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) )
f.write(_UpperCAmelCase , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]:
lowerCamelCase__ : str = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip'
with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f:
f.write(_UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_UpperCAmelCase ) ) )
f.write(_UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_UpperCAmelCase ) ) )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]:
lowerCamelCase__ : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' )
lowerCamelCase__ : List[str] = pa.schema(
{
'col_1': pa.string(),
'col_2': pa.intaa(),
'col_3': pa.floataa(),
} )
with open(_UpperCAmelCase , 'wb' ) as f:
lowerCamelCase__ : Union[str, Any] = pq.ParquetWriter(_UpperCAmelCase , schema=_UpperCAmelCase )
lowerCamelCase__ : Optional[int] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_UpperCAmelCase ) )] for k in DATA[0]} , schema=_UpperCAmelCase )
writer.write_table(_UpperCAmelCase )
writer.close()
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[int]:
lowerCamelCase__ : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' )
lowerCamelCase__ : Tuple = {'data': DATA}
with open(_UpperCAmelCase , 'w' ) as f:
json.dump(_UpperCAmelCase , _UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]:
lowerCamelCase__ : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' )
lowerCamelCase__ : int = {'data': DATA_DICT_OF_LISTS}
with open(_UpperCAmelCase , 'w' ) as f:
json.dump(_UpperCAmelCase , _UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]:
lowerCamelCase__ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' )
with open(_UpperCAmelCase , 'w' ) as f:
for item in DATA:
f.write(json.dumps(_UpperCAmelCase ) + '\n' )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[Any]:
lowerCamelCase__ : str = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' )
with open(_UpperCAmelCase , 'w' ) as f:
for item in DATA:
f.write(json.dumps(_UpperCAmelCase ) + '\n' )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str:
lowerCamelCase__ : str = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' )
with open(_UpperCAmelCase , 'w' ) as f:
for item in DATA_312:
f.write(json.dumps(_UpperCAmelCase ) + '\n' )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[int]:
lowerCamelCase__ : str = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' )
with open(_UpperCAmelCase , 'w' ) as f:
for item in DATA_STR:
f.write(json.dumps(_UpperCAmelCase ) + '\n' )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]:
import gzip
lowerCamelCase__ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' )
with open(_UpperCAmelCase , 'rb' ) as orig_file:
with gzip.open(_UpperCAmelCase , 'wb' ) as zipped_file:
zipped_file.writelines(_UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
import gzip
lowerCamelCase__ : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' )
with open(_UpperCAmelCase , 'rb' ) as orig_file:
with gzip.open(_UpperCAmelCase , 'wb' ) as zipped_file:
zipped_file.writelines(_UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str:
lowerCamelCase__ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip'
with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f:
f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) )
f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any:
lowerCamelCase__ : List[str] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip'
with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f:
f.write(_UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(_UpperCAmelCase ) ) )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]:
lowerCamelCase__ : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip'
with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f:
f.write(_UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_UpperCAmelCase ) ) )
f.write(_UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_UpperCAmelCase ) ) )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
lowerCamelCase__ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar'
with tarfile.TarFile(_UpperCAmelCase , 'w' ) as f:
f.add(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) )
f.add(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]:
lowerCamelCase__ : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar'
with tarfile.TarFile(_UpperCAmelCase , 'w' ) as f:
f.add(_UpperCAmelCase , arcname=os.path.join('nested' , os.path.basename(_UpperCAmelCase ) ) )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]:
lowerCamelCase__ : int = ['0', '1', '2', '3']
lowerCamelCase__ : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' )
with open(_UpperCAmelCase , 'w' ) as f:
for item in data:
f.write(item + '\n' )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int:
lowerCamelCase__ : Dict = ['0', '1', '2', '3']
lowerCamelCase__ : Union[str, Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' )
with open(_UpperCAmelCase , 'w' ) as f:
for item in data:
f.write(item + '\n' )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple:
lowerCamelCase__ : List[Any] = ['0', '1', '2', '3']
lowerCamelCase__ : str = tmp_path_factory.mktemp('data' ) / 'dataset.abc'
with open(_UpperCAmelCase , 'w' ) as f:
for item in data:
f.write(item + '\n' )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]:
lowerCamelCase__ : Dict = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip'
with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f:
f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) )
f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]:
lowerCamelCase__ : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip'
with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f:
f.write(_UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_UpperCAmelCase ) ) )
f.write(_UpperCAmelCase , arcname=os.path.join('main_dir' , os.path.basename(_UpperCAmelCase ) ) )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple:
lowerCamelCase__ : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip'
with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f:
f.write(_UpperCAmelCase , arcname=os.path.basename('unsupported.ext' ) )
f.write(_UpperCAmelCase , arcname=os.path.basename('unsupported_2.ext' ) )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[int]:
lowerCamelCase__ : Optional[int] = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] )
lowerCamelCase__ : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(_UpperCAmelCase )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( ) -> Tuple:
return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' )
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( ) -> Dict:
return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' )
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]:
lowerCamelCase__ : int = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip'
with zipfile.ZipFile(_UpperCAmelCase , 'w' ) as f:
f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ) )
f.write(_UpperCAmelCase , arcname=os.path.basename(_UpperCAmelCase ).replace('.jpg' , '2.jpg' ) )
return path
@pytest.fixture(scope='session' )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any:
lowerCamelCase__ : List[Any] = tmp_path_factory.mktemp('data_dir' )
(data_dir / "subdir").mkdir()
with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f:
f.write('foo\n' * 10 )
with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f:
f.write('bar\n' * 10 )
# hidden file
with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f:
f.write('bar\n' * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f:
f.write('foo\n' * 10 )
with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f:
f.write('bar\n' * 10 )
return data_dir
| 50 |
from math import pi
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
return 2 * pi * radius * (angle / 3_60)
if __name__ == "__main__":
print(arc_length(90, 10))
| 327 | 0 |
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def A (__A : List[str] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ = image.size
UpperCAmelCase_ , UpperCAmelCase_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
UpperCAmelCase_ = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] )
UpperCAmelCase_ = np.array(__A ).astype(np.floataa ) / 255.0
UpperCAmelCase_ = image[None].transpose(0 , 3 , 1 , 2 )
UpperCAmelCase_ = torch.from_numpy(__A )
return 2.0 * image - 1.0
class __snake_case ( a ):
def __init__( self : int , _snake_case : VQModel , _snake_case : UNetaDModel , _snake_case : Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
] , ):
"""simple docstring"""
super().__init__()
self.register_modules(vqvae=_snake_case , unet=_snake_case , scheduler=_snake_case)
@torch.no_grad()
def __call__( self : List[Any] , _snake_case : Union[torch.Tensor, PIL.Image.Image] = None , _snake_case : Optional[int] = 1 , _snake_case : Optional[int] = 100 , _snake_case : Optional[float] = 0.0 , _snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _snake_case : Optional[str] = "pil" , _snake_case : bool = True , ):
"""simple docstring"""
if isinstance(_snake_case , PIL.Image.Image):
UpperCAmelCase_ = 1
elif isinstance(_snake_case , torch.Tensor):
UpperCAmelCase_ = image.shape[0]
else:
raise ValueError(F"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_snake_case)}""")
if isinstance(_snake_case , PIL.Image.Image):
UpperCAmelCase_ = preprocess(_snake_case)
UpperCAmelCase_ , UpperCAmelCase_ = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
UpperCAmelCase_ = (batch_size, self.unet.config.in_channels // 2, height, width)
UpperCAmelCase_ = next(self.unet.parameters()).dtype
UpperCAmelCase_ = randn_tensor(_snake_case , generator=_snake_case , device=self.device , dtype=_snake_case)
UpperCAmelCase_ = image.to(device=self.device , dtype=_snake_case)
# set timesteps and move to the correct device
self.scheduler.set_timesteps(_snake_case , device=self.device)
UpperCAmelCase_ = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
UpperCAmelCase_ = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
UpperCAmelCase_ = '''eta''' in set(inspect.signature(self.scheduler.step).parameters.keys())
UpperCAmelCase_ = {}
if accepts_eta:
UpperCAmelCase_ = eta
for t in self.progress_bar(_snake_case):
# concat latents and low resolution image in the channel dimension.
UpperCAmelCase_ = torch.cat([latents, image] , dim=1)
UpperCAmelCase_ = self.scheduler.scale_model_input(_snake_case , _snake_case)
# predict the noise residual
UpperCAmelCase_ = self.unet(_snake_case , _snake_case).sample
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase_ = self.scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case).prev_sample
# decode the image latents with the VQVAE
UpperCAmelCase_ = self.vqvae.decode(_snake_case).sample
UpperCAmelCase_ = torch.clamp(_snake_case , -1.0 , 1.0)
UpperCAmelCase_ = image / 2 + 0.5
UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1).numpy()
if output_type == "pil":
UpperCAmelCase_ = self.numpy_to_pil(_snake_case)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_snake_case)
| 51 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
__magic_name__: Optional[Any] = ["pixel_values"]
def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PIL.Image.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : str , ) -> None:
"""simple docstring"""
super().__init__(**_A )
snake_case_ : Dict = size if size is not None else {'height': 256, 'width': 256}
snake_case_ : Tuple = get_size_dict(_A )
snake_case_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224}
snake_case_ : int = get_size_dict(_A , param_name='crop_size' )
snake_case_ : Union[str, Any] = do_resize
snake_case_ : str = size
snake_case_ : List[str] = resample
snake_case_ : List[Any] = do_center_crop
snake_case_ : Dict = crop_size
snake_case_ : Tuple = do_rescale
snake_case_ : Optional[Any] = rescale_factor
snake_case_ : Any = do_normalize
snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
snake_case_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCAmelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray:
"""simple docstring"""
snake_case_ : Tuple = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return resize(
_A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray:
"""simple docstring"""
snake_case_ : Optional[int] = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A )
def UpperCAmelCase_ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> str:
"""simple docstring"""
return rescale(_A , scale=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray:
"""simple docstring"""
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self : List[str] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : Union[str, Any]=None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ) -> PIL.Image.Image:
"""simple docstring"""
snake_case_ : int = do_resize if do_resize is not None else self.do_resize
snake_case_ : str = resample if resample is not None else self.resample
snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop
snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale
snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor
snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize
snake_case_ : Any = image_mean if image_mean is not None else self.image_mean
snake_case_ : Dict = image_std if image_std is not None else self.image_std
snake_case_ : int = size if size is not None else self.size
snake_case_ : Optional[int] = get_size_dict(_A )
snake_case_ : int = crop_size if crop_size is not None else self.crop_size
snake_case_ : Any = get_size_dict(_A , param_name='crop_size' )
snake_case_ : Optional[Any] = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
snake_case_ : Optional[Any] = [to_numpy_array(_A ) for image in images]
if do_resize:
snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images]
if do_center_crop:
snake_case_ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images]
if do_rescale:
snake_case_ : Optional[int] = [self.rescale(image=_A , scale=_A ) for image in images]
if do_normalize:
snake_case_ : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images]
snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images]
snake_case_ : Tuple = {'pixel_values': images}
return BatchFeature(data=_A , tensor_type=_A )
| 327 | 0 |
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
# Initialise PyTorch model
UpperCamelCase : Any = AlbertConfig.from_json_file(_lowerCAmelCase )
print(F"""Building PyTorch model from configuration: {config}""" )
UpperCamelCase : int = AlbertForPreTraining(_lowerCAmelCase )
# Load weights from tf checkpoint
load_tf_weights_in_albert(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , _lowerCAmelCase )
if __name__ == "__main__":
__lowerCamelCase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--albert_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained ALBERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
__lowerCamelCase : int = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 52 |
import sys
_SCREAMING_SNAKE_CASE = (
"""73167176531330624919225119674426574742355349194934"""
"""96983520312774506326239578318016984801869478851843"""
"""85861560789112949495459501737958331952853208805511"""
"""12540698747158523863050715693290963295227443043557"""
"""66896648950445244523161731856403098711121722383113"""
"""62229893423380308135336276614282806444486645238749"""
"""30358907296290491560440772390713810515859307960866"""
"""70172427121883998797908792274921901699720888093776"""
"""65727333001053367881220235421809751254540594752243"""
"""52584907711670556013604839586446706324415722155397"""
"""53697817977846174064955149290862569321978468622482"""
"""83972241375657056057490261407972968652414535100474"""
"""82166370484403199890008895243450658541227588666881"""
"""16427171479924442928230863465674813919123162824586"""
"""17866458359124566529476545682848912883142607690042"""
"""24219022671055626321111109370544217506941658960408"""
"""07198403850962455444362981230987879927244284909188"""
"""84580156166097919133875499200524063689912560717606"""
"""05886116467109405077541002256983155200055935729725"""
"""71636269561882670428252483600823257530420752963450"""
)
def SCREAMING_SNAKE_CASE__ ( __a = N ):
snake_case_ : Optional[Any] = -sys.maxsize - 1
for i in range(len(__a ) - 12 ):
snake_case_ : Optional[Any] = 1
for j in range(13 ):
product *= int(n[i + j] )
if product > largest_product:
snake_case_ : int = product
return largest_product
if __name__ == "__main__":
print(F'''{solution() = }''')
| 327 | 0 |
'''simple docstring'''
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
a__ : Any =1.054571817E-34 # unit of ℏ : J * s
a__ : List[Any] =3E8 # unit of c : m * s^-1
def lowercase__ ( __lowercase : float , __lowercase : float , __lowercase : float ) -> dict[str, float]:
"""simple docstring"""
if (force, area, distance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if force < 0:
raise ValueError('Magnitude of force can not be negative' )
if distance < 0:
raise ValueError('Distance can not be negative' )
if area < 0:
raise ValueError('Area can not be negative' )
if force == 0:
__UpperCamelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
240 * (distance) ** 4
)
return {"force": force}
elif area == 0:
__UpperCamelCase = (240 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
__UpperCamelCase = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError('One and only one argument must be 0' )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 53 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
_SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ :
__magic_name__: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
__magic_name__: Optional[str] = field(
default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
__magic_name__: Optional[str] = field(
default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
__magic_name__: Optional[str] = field(
default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} )
__magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} )
@dataclass
class SCREAMING_SNAKE_CASE_ :
__magic_name__: str = field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} )
__magic_name__: Optional[str] = field(
default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , )
__magic_name__: Optional[int] = field(
default=1024 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__magic_name__: Optional[int] = field(
default=128 , metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__magic_name__: Optional[int] = field(
default=142 , metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. "
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
} , )
__magic_name__: Optional[int] = field(
default=142 , metadata={
"help": (
"The maximum total sequence length for test target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} )
__magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} )
__magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} )
__magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} )
__magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} )
__magic_name__: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} )
__magic_name__: bool = field(
default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ):
logger.info(f"""***** {split} metrics *****""" )
for key in sorted(metrics.keys() ):
logger.info(f""" {key} = {metrics[key]}""" )
save_json(__a , os.path.join(__a , f"""{split}_results.json""" ) )
def SCREAMING_SNAKE_CASE__ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
snake_case_ ,snake_case_ ,snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
snake_case_ ,snake_case_ ,snake_case_ : List[str] = parser.parse_args_into_dataclasses()
check_output_dir(__a )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('Training/evaluation parameters %s' , __a )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case_ : Tuple = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(__a , __a , __a ):
assert hasattr(__a , __a ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute"""
setattr(__a , __a , getattr(__a , __a ) )
snake_case_ : Tuple = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=__a , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(__a , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
snake_case_ : Any = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(__a , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(__a , __a ):
snake_case_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
snake_case_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(__a )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
snake_case_ : List[Any] = SeqaSeqDataset
# Get datasets
snake_case_ : List[Any] = (
dataset_class(
__a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_train
else None
)
snake_case_ : List[str] = (
dataset_class(
__a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
snake_case_ : List[Any] = (
dataset_class(
__a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
snake_case_ : Any = (
build_compute_metrics_fn(data_args.task , __a ) if training_args.predict_with_generate else None
)
snake_case_ : List[str] = SeqaSeqTrainer(
model=__a , args=__a , data_args=__a , train_dataset=__a , eval_dataset=__a , data_collator=SeqaSeqDataCollator(
__a , __a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__a , tokenizer=__a , )
snake_case_ : Optional[int] = {}
# Training
if training_args.do_train:
logger.info('*** Train ***' )
snake_case_ : Any = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
snake_case_ : Tuple = train_result.metrics
snake_case_ : List[str] = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('train' , __a , training_args.output_dir )
all_metrics.update(__a )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
snake_case_ : List[Any] = trainer.evaluate(metric_key_prefix='val' )
snake_case_ : str = data_args.n_val
snake_case_ : Union[str, Any] = round(metrics['val_loss'] , 4 )
if trainer.is_world_process_zero():
handle_metrics('val' , __a , training_args.output_dir )
all_metrics.update(__a )
if training_args.do_predict:
logger.info('*** Predict ***' )
snake_case_ : Dict = trainer.predict(test_dataset=__a , metric_key_prefix='test' )
snake_case_ : Union[str, Any] = test_output.metrics
snake_case_ : int = data_args.n_test
if trainer.is_world_process_zero():
snake_case_ : List[str] = round(metrics['test_loss'] , 4 )
handle_metrics('test' , __a , training_args.output_dir )
all_metrics.update(__a )
if training_args.predict_with_generate:
snake_case_ : Any = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=__a , clean_up_tokenization_spaces=__a )
snake_case_ : Any = lmap(str.strip , __a )
write_txt_file(__a , os.path.join(training_args.output_dir , 'test_generations.txt' ) )
if trainer.is_world_process_zero():
save_json(__a , os.path.join(training_args.output_dir , 'all_results.json' ) )
return all_metrics
def SCREAMING_SNAKE_CASE__ ( __a ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 327 | 0 |
"""simple docstring"""
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
a__ : Optional[int] = logging.get_logger(__name__)
a__ : List[Any] = ['''model.decoder.embed_positions.weights''']
def UpperCAmelCase__ (lowerCAmelCase_ ):
'''simple docstring'''
if "emb" in name:
__SCREAMING_SNAKE_CASE = name.replace("emb" , "model.decoder.embed_tokens" )
if "transformer" in name:
__SCREAMING_SNAKE_CASE = name.replace("transformer" , "model.decoder" )
if "cross_attention" in name:
__SCREAMING_SNAKE_CASE = name.replace("cross_attention" , "encoder_attn" )
if "linear1" in name:
__SCREAMING_SNAKE_CASE = name.replace("linear1" , "fc1" )
if "linear2" in name:
__SCREAMING_SNAKE_CASE = name.replace("linear2" , "fc2" )
if "norm1" in name:
__SCREAMING_SNAKE_CASE = name.replace("norm1" , "self_attn_layer_norm" )
if "norm_cross" in name:
__SCREAMING_SNAKE_CASE = name.replace("norm_cross" , "encoder_attn_layer_norm" )
if "norm2" in name:
__SCREAMING_SNAKE_CASE = name.replace("norm2" , "final_layer_norm" )
if "out_norm" in name:
__SCREAMING_SNAKE_CASE = name.replace("out_norm" , "model.decoder.layer_norm" )
if "linears" in name:
__SCREAMING_SNAKE_CASE = name.replace("linears" , "lm_heads" )
if "condition_provider.conditioners.description.output_proj" in name:
__SCREAMING_SNAKE_CASE = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" )
return name
def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = list(state_dict.keys() )
__SCREAMING_SNAKE_CASE = {}
for key in keys:
__SCREAMING_SNAKE_CASE = state_dict.pop(lowerCAmelCase_ )
__SCREAMING_SNAKE_CASE = rename_keys(lowerCAmelCase_ )
if "in_proj_weight" in key:
# split fused qkv proj
__SCREAMING_SNAKE_CASE = val[:hidden_size, :]
__SCREAMING_SNAKE_CASE = val[hidden_size : 2 * hidden_size, :]
__SCREAMING_SNAKE_CASE = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
__SCREAMING_SNAKE_CASE = val
else:
__SCREAMING_SNAKE_CASE = val
return state_dict, enc_dec_proj_state_dict
def UpperCAmelCase__ (lowerCAmelCase_ ):
'''simple docstring'''
if checkpoint == "small":
# default config values
__SCREAMING_SNAKE_CASE = 1024
__SCREAMING_SNAKE_CASE = 24
__SCREAMING_SNAKE_CASE = 16
elif checkpoint == "medium":
__SCREAMING_SNAKE_CASE = 1536
__SCREAMING_SNAKE_CASE = 48
__SCREAMING_SNAKE_CASE = 24
elif checkpoint == "large":
__SCREAMING_SNAKE_CASE = 2048
__SCREAMING_SNAKE_CASE = 48
__SCREAMING_SNAKE_CASE = 32
else:
raise ValueError(f"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
__SCREAMING_SNAKE_CASE = MusicgenDecoderConfig(
hidden_size=lowerCAmelCase_ , ffn_dim=hidden_size * 4 , num_hidden_layers=lowerCAmelCase_ , num_attention_heads=lowerCAmelCase_ , )
return config
@torch.no_grad()
def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_="cpu" ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = MusicGen.get_pretrained(lowerCAmelCase_ , device=lowerCAmelCase_ )
__SCREAMING_SNAKE_CASE = decoder_config_from_checkpoint(lowerCAmelCase_ )
__SCREAMING_SNAKE_CASE = fairseq_model.lm.state_dict()
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rename_state_dict(
lowerCAmelCase_ , hidden_size=decoder_config.hidden_size )
__SCREAMING_SNAKE_CASE = TaEncoderModel.from_pretrained("t5-base" )
__SCREAMING_SNAKE_CASE = EncodecModel.from_pretrained("facebook/encodec_32khz" )
__SCREAMING_SNAKE_CASE = MusicgenForCausalLM(lowerCAmelCase_ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = decoder.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ )
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(lowerCAmelCase_ )
if len(lowerCAmelCase_ ) > 0:
raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" )
if len(lowerCAmelCase_ ) > 0:
raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
__SCREAMING_SNAKE_CASE = MusicgenForConditionalGeneration(text_encoder=lowerCAmelCase_ , audio_encoder=lowerCAmelCase_ , decoder=lowerCAmelCase_ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(lowerCAmelCase_ )
# check we can do a forward pass
__SCREAMING_SNAKE_CASE = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
__SCREAMING_SNAKE_CASE = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
__SCREAMING_SNAKE_CASE = model(input_ids=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_ ).logits
if logits.shape != (8, 1, 2048):
raise ValueError("Incorrect shape for logits" )
# now construct the processor
__SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("t5-base" )
__SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" )
__SCREAMING_SNAKE_CASE = MusicgenProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ )
# set the appropriate bos/pad token ids
__SCREAMING_SNAKE_CASE = 2048
__SCREAMING_SNAKE_CASE = 2048
# set other default generation config params
__SCREAMING_SNAKE_CASE = int(30 * audio_encoder.config.frame_rate )
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = 3.0
if pytorch_dump_folder is not None:
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(lowerCAmelCase_ )
processor.save_pretrained(lowerCAmelCase_ )
if repo_id:
logger.info(f"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(lowerCAmelCase_ )
processor.push_to_hub(lowerCAmelCase_ )
if __name__ == "__main__":
a__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint''',
default='''small''',
type=str,
help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''',
)
parser.add_argument(
'''--pytorch_dump_folder''',
required=True,
default=None,
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
parser.add_argument(
'''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.'''
)
a__ : int = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 54 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_SCREAMING_SNAKE_CASE = {
"""configuration_poolformer""": [
"""POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""PoolFormerConfig""",
"""PoolFormerOnnxConfig""",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""]
_SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"""POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PoolFormerForImageClassification""",
"""PoolFormerModel""",
"""PoolFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 327 | 0 |
'''simple docstring'''
from __future__ import annotations
def __snake_case ( UpperCAmelCase_ : list[float] , UpperCAmelCase_ : list[float] ):
lowerCamelCase_ = sorted(numsa + numsa )
lowerCamelCase_ ,lowerCamelCase_ = divmod(len(UpperCAmelCase_ ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ : Optional[int] = [float(x) for x in input("""Enter the elements of first array: """).split()]
a_ : Union[str, Any] = [float(x) for x in input("""Enter the elements of second array: """).split()]
print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
| 55 |
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def UpperCAmelCase_ ( self : Dict ) -> List[Any]:
"""simple docstring"""
snake_case_ : Any = 'hf-internal-testing/tiny-random-t5'
snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_A )
snake_case_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A )
snake_case_ : List[Any] = tokenizer('This is me' , return_tensors='pt' )
snake_case_ : Any = model.to_bettertransformer()
self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
snake_case_ : Optional[Any] = model.generate(**_A )
snake_case_ : int = model.reverse_bettertransformer()
self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A )
snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_A )
self.assertFalse(
any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
snake_case_ : Optional[Any] = model_reloaded.generate(**_A )
self.assertTrue(torch.allclose(_A , _A ) )
def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
snake_case_ : Any = 'hf-internal-testing/tiny-random-t5'
snake_case_ : int = AutoModelForSeqaSeqLM.from_pretrained(_A )
snake_case_ : Dict = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(_A ):
model.save_pretrained(_A )
snake_case_ : Union[str, Any] = model.reverse_bettertransformer()
model.save_pretrained(_A )
| 327 | 0 |
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
a : List[Any] = ['gpt2']
a : Any = 'gpt2'
if is_tf_available():
class a ( tf.Module ):
def __init__( self : Optional[Any] , lowercase_ : Optional[int] ):
super().__init__()
snake_case_ = tokenizer
snake_case_ = AutoConfig.from_pretrained(lowercase_ )
snake_case_ = TFGPTaLMHeadModel.from_config(lowercase_ )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) )
def A_ ( self : Optional[Any] , lowercase_ : List[Any] ):
snake_case_ = self.tokenizer(lowercase_ )
snake_case_ = tokenized['''input_ids'''].to_tensor()
snake_case_ = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
snake_case_ = self.model(input_ids=lowercase_ , attention_mask=lowercase_ )['''logits''']
return outputs
@require_tf
@require_keras_nlp
class a ( unittest.TestCase ):
def A_ ( self : Optional[Any] ):
super().setUp()
snake_case_ = [GPTaTokenizer.from_pretrained(lowercase_ ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
snake_case_ = [TFGPTaTokenizer.from_pretrained(lowercase_ ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
snake_case_ = [
'''This is a straightforward English test sentence.''',
'''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''',
'''Now we\'re going to add some Chinese: 一 二 三 一二三''',
'''And some much more rare Chinese: 齉 堃 齉堃''',
'''Je vais aussi écrire en français pour tester les accents''',
'''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''',
]
snake_case_ = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def A_ ( self : List[str] ):
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
snake_case_ = tokenizer([test_inputs] , return_tensors='''tf''' )
snake_case_ = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
snake_case_ = python_outputs[key].numpy()
snake_case_ = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(lowercase_ , tf.intaa ) == tf_outputs_values ) )
@slow
def A_ ( self : List[Any] ):
for tf_tokenizer in self.tf_tokenizers:
snake_case_ = tf.function(lowercase_ )
for test_inputs in self.test_sentences:
snake_case_ = tf.constant(lowercase_ )
snake_case_ = compiled_tokenizer(lowercase_ )
snake_case_ = tf_tokenizer(lowercase_ )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def A_ ( self : Union[str, Any] ):
for tf_tokenizer in self.tf_tokenizers:
snake_case_ = ModelToSave(tokenizer=lowercase_ )
snake_case_ = tf.convert_to_tensor([self.test_sentences[0]] )
snake_case_ = model.serving(lowercase_ ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
snake_case_ = Path(lowercase_ ) / '''saved.model'''
tf.saved_model.save(lowercase_ , lowercase_ , signatures={'''serving_default''': model.serving} )
snake_case_ = tf.saved_model.load(lowercase_ )
snake_case_ = loaded_model.signatures['''serving_default'''](lowercase_ )['''output_0''']
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def A_ ( self : List[Any] ):
for tf_tokenizer in self.tf_tokenizers:
snake_case_ = tf.convert_to_tensor([self.test_sentences[0]] )
snake_case_ = tf_tokenizer(lowercase_ ) # Build model with some sample inputs
snake_case_ = tf_tokenizer.get_config()
snake_case_ = TFGPTaTokenizer.from_config(lowercase_ )
snake_case_ = model_from_config(lowercase_ )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def A_ ( self : Dict ):
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
snake_case_ = 12_3123
for max_length in [3, 5, 1024]:
snake_case_ = tf.convert_to_tensor([self.test_sentences[0]] )
snake_case_ = tf_tokenizer(lowercase_ , max_length=lowercase_ )
snake_case_ = out['''input_ids'''].numpy().shape[1]
assert out_length == max_length
| 56 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ : str = params
snake_case_ : int = np.array(_A )
snake_case_ : Optional[int] = np.array([len(_A ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self : Tuple , _A : Optional[int] ) -> str:
"""simple docstring"""
return (self.token_ids[index], self.lengths[index])
def __len__( self : List[str] ) -> str:
"""simple docstring"""
return len(self.lengths )
def UpperCAmelCase_ ( self : Dict ) -> str:
"""simple docstring"""
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def UpperCAmelCase_ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
snake_case_ : Dict = self.params.max_model_input_size
snake_case_ : Tuple = self.lengths > max_len
logger.info(F"""Splitting {sum(_A )} too long sequences.""" )
def divide_chunks(_A : Union[str, Any] , _A : Dict ):
return [l[i : i + n] for i in range(0 , len(_A ) , _A )]
snake_case_ : Dict = []
snake_case_ : Union[str, Any] = []
if self.params.mlm:
snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token']
else:
snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token']
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
snake_case_ : List[Any] = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
snake_case_ : Optional[int] = np.insert(_A , 0 , _A )
if sub_s[-1] != sep_id:
snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A )
assert len(_A ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(_A )
new_tok_ids.extend(_A )
new_lengths.extend([len(_A ) for l in sub_seqs] )
snake_case_ : Tuple = np.array(_A )
snake_case_ : int = np.array(_A )
def UpperCAmelCase_ ( self : List[str] ) -> List[str]:
"""simple docstring"""
snake_case_ : Tuple = len(self )
snake_case_ : int = self.lengths > 11
snake_case_ : Dict = self.token_ids[indices]
snake_case_ : int = self.lengths[indices]
snake_case_ : List[Any] = len(self )
logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
if "unk_token" not in self.params.special_tok_ids:
return
else:
snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token']
snake_case_ : Dict = len(self )
snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
snake_case_ : Any = (unk_occs / self.lengths) < 0.5
snake_case_ : List[Any] = self.token_ids[indices]
snake_case_ : int = self.lengths[indices]
snake_case_ : Tuple = len(self )
logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
if not self.params.is_master:
return
logger.info(F"""{len(self )} sequences""" )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
snake_case_ : Any = [t[0] for t in batch]
snake_case_ : int = [t[1] for t in batch]
assert len(_A ) == len(_A )
# Max for paddings
snake_case_ : str = max(_A )
# Pad token ids
if self.params.mlm:
snake_case_ : int = self.params.special_tok_ids['pad_token']
else:
snake_case_ : Dict = self.params.special_tok_ids['unk_token']
snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids]
assert len(tk_ ) == len(_A )
assert all(len(_A ) == max_seq_len_ for t in tk_ )
snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_)
snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs)
return tk_t, lg_t
| 327 | 0 |
"""simple docstring"""
def _lowerCamelCase ( _UpperCamelCase = 6008_5147_5143 ):
'''simple docstring'''
try:
__lowerCAmelCase = int(_UpperCamelCase )
except (TypeError, ValueError):
raise TypeError("Parameter n must be int or castable to int." )
if n <= 0:
raise ValueError("Parameter n must be greater than or equal to one." )
__lowerCAmelCase = 2
__lowerCAmelCase = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
__lowerCAmelCase = i
while n % i == 0:
__lowerCAmelCase = n // i
i += 1
return int(_UpperCamelCase )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 57 |
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
while b:
snake_case_ ,snake_case_ : Any = b, a % b
return a
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
return a if b == 0 else euclidean_gcd_recursive(__a , a % b )
def SCREAMING_SNAKE_CASE__ ( ):
print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" )
print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" )
print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" )
print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" )
print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" )
print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" )
print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" )
print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" )
if __name__ == "__main__":
main()
| 327 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
lowercase_ = None
lowercase_ = logging.get_logger(__name__)
lowercase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
lowercase_ = {
"""vocab_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"""
),
},
}
lowercase_ = {
"""facebook/nllb-large-en-ro""": 1_024,
"""facebook/nllb-200-distilled-600M""": 1_024,
}
# fmt: off
lowercase_ = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""]
class a_ ( snake_case_ ):
'''simple docstring'''
UpperCamelCase = VOCAB_FILES_NAMES
UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase = ['''input_ids''', '''attention_mask''']
UpperCamelCase = NllbTokenizer
UpperCamelCase = []
UpperCamelCase = []
def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=None , A=None , A=None , A=False , **A , ) -> Dict:
# Mask token behave like a normal word, i.e. include the space before it
_SCREAMING_SNAKE_CASE = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token
_SCREAMING_SNAKE_CASE = legacy_behaviour
super().__init__(
vocab_file=A , tokenizer_file=A , bos_token=A , eos_token=A , sep_token=A , cls_token=A , unk_token=A , pad_token=A , mask_token=A , src_lang=A , tgt_lang=A , additional_special_tokens=A , legacy_behaviour=A , **A , )
_SCREAMING_SNAKE_CASE = vocab_file
_SCREAMING_SNAKE_CASE = False if not self.vocab_file else True
_SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} )
_SCREAMING_SNAKE_CASE = {
lang_code: self.convert_tokens_to_ids(A ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else """eng_Latn"""
_SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang )
_SCREAMING_SNAKE_CASE = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def snake_case_( self ) -> str:
return self._src_lang
@src_lang.setter
def snake_case_( self , A ) -> None:
_SCREAMING_SNAKE_CASE = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def snake_case_( self , A , A = None ) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def snake_case_( self , A , A = None ) -> List[int]:
_SCREAMING_SNAKE_CASE = [self.sep_token_id]
_SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def snake_case_( self , A , A , A , A , **A ) -> Dict:
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
_SCREAMING_SNAKE_CASE = src_lang
_SCREAMING_SNAKE_CASE = self(A , add_special_tokens=A , return_tensors=A , **A )
_SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(A )
_SCREAMING_SNAKE_CASE = tgt_lang_id
return inputs
def snake_case_( self , A , A = "eng_Latn" , A = None , A = "fra_Latn" , **A , ) -> BatchEncoding:
_SCREAMING_SNAKE_CASE = src_lang
_SCREAMING_SNAKE_CASE = tgt_lang
return super().prepare_seqaseq_batch(A , A , **A )
def snake_case_( self ) -> int:
return self.set_src_lang_special_tokens(self.src_lang )
def snake_case_( self ) -> Any:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def snake_case_( self , A ) -> None:
_SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(A )
if self.legacy_behaviour:
_SCREAMING_SNAKE_CASE = []
_SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code]
else:
_SCREAMING_SNAKE_CASE = [self.cur_lang_code]
_SCREAMING_SNAKE_CASE = [self.eos_token_id]
_SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens )
_SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens )
_SCREAMING_SNAKE_CASE = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def snake_case_( self , A ) -> None:
_SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(A )
if self.legacy_behaviour:
_SCREAMING_SNAKE_CASE = []
_SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code]
else:
_SCREAMING_SNAKE_CASE = [self.cur_lang_code]
_SCREAMING_SNAKE_CASE = [self.eos_token_id]
_SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens )
_SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens )
_SCREAMING_SNAKE_CASE = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def snake_case_( self , A , A = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(A ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory.' )
return
_SCREAMING_SNAKE_CASE = os.path.join(
A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ):
copyfile(self.vocab_file , A )
return (out_vocab_file,)
| 58 |
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version(""">=""", FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
_SCREAMING_SNAKE_CASE = get_logger(__name__)
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ):
os.makedirs(__a , exist_ok=__a )
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
snake_case_ : Dict = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin"""
snake_case_ : Dict = os.path.join(__a , __a )
if accelerator.process_index == 0:
logger.info(f"""Saving model to {output_model_file}""" )
torch.save(__a , __a )
logger.info(f"""Model saved to {output_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
snake_case_ : Dict = (
f"""{MODEL_NAME}_rank{accelerator.process_index}.bin"""
if model_index == 0
else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"""
)
snake_case_ : Dict = os.path.join(__a , __a )
logger.info(f"""Saving model to {output_model_file}""" )
torch.save(__a , __a )
logger.info(f"""Model saved to {output_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" )
os.makedirs(__a , exist_ok=__a )
logger.info(f"""Saving model to {ckpt_dir}""" )
snake_case_ : int = {'model': state_dict}
dist_cp.save_state_dict(
state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , )
logger.info(f"""Model saved to {ckpt_dir}""" )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(__a ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
'Set the `sync_module_states` flag to `True` so that model states are synced across processes when '
'initializing FSDP object' )
return
snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin"""
snake_case_ : Optional[Any] = os.path.join(__a , __a )
logger.info(f"""Loading model from {input_model_file}""" )
snake_case_ : Optional[Any] = torch.load(__a )
logger.info(f"""Model loaded from {input_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
snake_case_ : Optional[Any] = (
f"""{MODEL_NAME}_rank{accelerator.process_index}.bin"""
if model_index == 0
else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"""
)
snake_case_ : Tuple = os.path.join(__a , __a )
logger.info(f"""Loading model from {input_model_file}""" )
snake_case_ : Optional[int] = torch.load(__a )
logger.info(f"""Model loaded from {input_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
snake_case_ : Tuple = (
os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" )
if f"""{MODEL_NAME}""" not in input_dir
else input_dir
)
logger.info(f"""Loading model from {ckpt_dir}""" )
snake_case_ : List[Any] = {'model': model.state_dict()}
dist_cp.load_state_dict(
state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , )
snake_case_ : Any = state_dict['model']
logger.info(f"""Model loaded from {ckpt_dir}""" )
model.load_state_dict(__a )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ):
os.makedirs(__a , exist_ok=__a )
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
snake_case_ : str = (
f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin"""
)
snake_case_ : Any = os.path.join(__a , __a )
logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" )
torch.save(__a , __a )
logger.info(f"""Optimizer state saved in {output_optimizer_file}""" )
else:
snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" )
os.makedirs(__a , exist_ok=__a )
logger.info(f"""Saving Optimizer state to {ckpt_dir}""" )
dist_cp.save_state_dict(
state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , )
logger.info(f"""Optimizer state saved in {ckpt_dir}""" )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
snake_case_ : Optional[Any] = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
snake_case_ : Union[str, Any] = (
f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin"""
)
snake_case_ : List[Any] = os.path.join(__a , __a )
logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" )
snake_case_ : Optional[int] = torch.load(__a )
logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" )
else:
snake_case_ : str = (
os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" )
if f"""{OPTIMIZER_NAME}""" not in input_dir
else input_dir
)
logger.info(f"""Loading Optimizer from {ckpt_dir}""" )
snake_case_ : Any = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , )
snake_case_ : Optional[int] = optim_state['optimizer']
logger.info(f"""Optimizer loaded from {ckpt_dir}""" )
snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a )
optimizer.load_state_dict(__a )
| 327 | 0 |
def UpperCamelCase ( __lowerCamelCase : int ):
if a < 0:
raise ValueError("Input value must be a positive integer" )
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
raise TypeError("Input value must be a 'int' type" )
return bin(__lowerCamelCase ).count("1" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 59 |
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def __init__( self : List[str] , _A : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _A : bool = True , _A : Tuple=7 , _A : Tuple=30 , _A : int=400 , _A : Tuple=3 , ) -> Optional[int]:
"""simple docstring"""
snake_case_ : str = parent
snake_case_ : str = do_resize
snake_case_ : str = size if size is not None else {'shortest_edge': 288}
snake_case_ : Any = size_divisor
snake_case_ : Any = do_rescale
snake_case_ : Union[str, Any] = rescale_factor
snake_case_ : str = do_normalize
snake_case_ : int = do_center_crop
snake_case_ : str = image_mean
snake_case_ : int = image_std
snake_case_ : Any = do_pad
snake_case_ : Optional[int] = batch_size
snake_case_ : List[str] = num_channels
snake_case_ : Any = min_resolution
snake_case_ : str = max_resolution
def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def UpperCAmelCase_ ( self : Dict , _A : str , _A : Union[str, Any]=False ) -> int:
"""simple docstring"""
if not batched:
snake_case_ : Optional[int] = self.size['shortest_edge']
snake_case_ : List[Any] = image_inputs[0]
if isinstance(_A , Image.Image ):
snake_case_ ,snake_case_ : Optional[Any] = image.size
else:
snake_case_ ,snake_case_ : str = image.shape[1], image.shape[2]
snake_case_ : Dict = size / min(_A , _A )
if h < w:
snake_case_ ,snake_case_ : str = size, scale * w
else:
snake_case_ ,snake_case_ : Tuple = scale * h, size
snake_case_ : Dict = int((1333 / 800) * size )
if max(_A , _A ) > max_size:
snake_case_ : Union[str, Any] = max_size / max(_A , _A )
snake_case_ : Any = newh * scale
snake_case_ : Union[str, Any] = neww * scale
snake_case_ ,snake_case_ : Any = int(newh + 0.5 ), int(neww + 0.5 )
snake_case_ ,snake_case_ : int = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
snake_case_ : Optional[int] = []
for image in image_inputs:
snake_case_ ,snake_case_ : Optional[int] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case_ : str = max(_A , key=lambda _A : item[0] )[0]
snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ):
__magic_name__: List[Any] = BridgeTowerImageProcessor if is_vision_available() else None
def UpperCAmelCase_ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
snake_case_ : int = BridgeTowerImageProcessingTester(self )
@property
def UpperCAmelCase_ ( self : int ) -> Any:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , 'image_mean' ) )
self.assertTrue(hasattr(_A , 'image_std' ) )
self.assertTrue(hasattr(_A , 'do_normalize' ) )
self.assertTrue(hasattr(_A , 'do_resize' ) )
self.assertTrue(hasattr(_A , 'size' ) )
self.assertTrue(hasattr(_A , 'size_divisor' ) )
def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
pass
def UpperCAmelCase_ ( self : Tuple ) -> Tuple:
"""simple docstring"""
snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A , Image.Image )
# Test not batched input
snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : List[str] = image_processing(_A , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
snake_case_ : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A , np.ndarray )
# Test not batched input
snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : Any = image_processing(_A , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase_ ( self : Dict ) -> List[str]:
"""simple docstring"""
snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
# Test not batched input
snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : str = image_processing(_A , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 327 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
snake_case__ : str = {
'''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''],
'''tokenization_ctrl''': ['''CTRLTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : Tuple = [
'''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CTRLForSequenceClassification''',
'''CTRLLMHeadModel''',
'''CTRLModel''',
'''CTRLPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ : List[Any] = [
'''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFCTRLForSequenceClassification''',
'''TFCTRLLMHeadModel''',
'''TFCTRLModel''',
'''TFCTRLPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig
from .tokenization_ctrl import CTRLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ctrl import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
CTRLPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_ctrl import (
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCTRLForSequenceClassification,
TFCTRLLMHeadModel,
TFCTRLModel,
TFCTRLPreTrainedModel,
)
else:
import sys
snake_case__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 60 |
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
_SCREAMING_SNAKE_CASE = 50_00_00
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = os.path.split(__file__)
_SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json"""))
@get_duration
def SCREAMING_SNAKE_CASE__ ( __a , **__a ):
snake_case_ : int = dataset.map(**__a )
@get_duration
def SCREAMING_SNAKE_CASE__ ( __a , **__a ):
snake_case_ : Dict = dataset.filter(**__a )
def SCREAMING_SNAKE_CASE__ ( ):
snake_case_ : Tuple = {'num examples': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ : Dict = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} )
snake_case_ : List[Any] = generate_example_dataset(
os.path.join(__a , 'dataset.arrow' ) , __a , num_examples=__a )
snake_case_ : str = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__a )
def tokenize(__a ):
return tokenizer(examples['text'] )
snake_case_ : Any = map(__a )
snake_case_ : Tuple = map(__a , batched=__a )
snake_case_ : str = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='numpy' ):
snake_case_ : Optional[int] = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='pandas' ):
snake_case_ : str = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='torch' , columns='numbers' ):
snake_case_ : int = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='tensorflow' , columns='numbers' ):
snake_case_ : List[Any] = map(__a , function=lambda __a : None , batched=__a )
snake_case_ : int = map(__a , function=__a , batched=__a )
snake_case_ : Optional[Any] = filter(__a )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(__a , 'wb' ) as f:
f.write(json.dumps(__a ).encode('utf-8' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 327 | 0 |
"""simple docstring"""
import argparse
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_a = 16
_a = 32
def __a ( __lowerCamelCase, __lowerCamelCase = 16 ):
UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained("bert-base-cased" )
UpperCAmelCase_ : Optional[Any] = load_dataset("glue", "mrpc" )
def tokenize_function(__lowerCamelCase ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase_ : Optional[Any] = tokenizer(examples["sentence1"], examples["sentence2"], truncation=__lowerCamelCase, max_length=__lowerCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
UpperCAmelCase_ : Optional[Any] = datasets.map(
__lowerCamelCase, batched=__lowerCamelCase, remove_columns=["idx", "sentence1", "sentence2"], )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase_ : Optional[int] = tokenized_datasets.rename_column("label", "labels" )
def collate_fn(__lowerCamelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
UpperCAmelCase_ : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
UpperCAmelCase_ : int = 16
elif accelerator.mixed_precision != "no":
UpperCAmelCase_ : Optional[Any] = 8
else:
UpperCAmelCase_ : Any = None
return tokenizer.pad(
__lowerCamelCase, padding="longest", max_length=__lowerCamelCase, pad_to_multiple_of=__lowerCamelCase, return_tensors="pt", )
# Instantiate dataloaders.
UpperCAmelCase_ : Optional[int] = DataLoader(
tokenized_datasets["train"], shuffle=__lowerCamelCase, collate_fn=__lowerCamelCase, batch_size=__lowerCamelCase, drop_last=__lowerCamelCase )
UpperCAmelCase_ : int = DataLoader(
tokenized_datasets["validation"], shuffle=__lowerCamelCase, collate_fn=__lowerCamelCase, batch_size=__lowerCamelCase, drop_last=(accelerator.mixed_precision == "fp8"), )
return train_dataloader, eval_dataloader
def __a ( __lowerCamelCase, __lowerCamelCase ):
# Initialize accelerator
UpperCAmelCase_ : Any = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase_ : str = config["lr"]
UpperCAmelCase_ : str = int(config["num_epochs"] )
UpperCAmelCase_ : Dict = int(config["seed"] )
UpperCAmelCase_ : str = int(config["batch_size"] )
UpperCAmelCase_ : str = evaluate.load("glue", "mrpc" )
# If the batch size is too big we use gradient accumulation
UpperCAmelCase_ : Any = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
UpperCAmelCase_ : Any = batch_size // MAX_GPU_BATCH_SIZE
UpperCAmelCase_ : Optional[Any] = MAX_GPU_BATCH_SIZE
set_seed(__lowerCamelCase )
UpperCAmelCase_ , UpperCAmelCase_ : str = get_dataloaders(__lowerCamelCase, __lowerCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase_ : int = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=__lowerCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCAmelCase_ : Dict = model.to(accelerator.device )
# Instantiate optimizer
UpperCAmelCase_ : str = AdamW(params=model.parameters(), lr=__lowerCamelCase )
# Instantiate scheduler
UpperCAmelCase_ : Any = get_linear_schedule_with_warmup(
optimizer=__lowerCamelCase, num_warmup_steps=100, num_training_steps=(len(__lowerCamelCase ) * num_epochs) // gradient_accumulation_steps, )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(
__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# Now we train the model
for epoch in range(__lowerCamelCase ):
model.train()
for step, batch in enumerate(__lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
UpperCAmelCase_ : Union[str, Any] = model(**__lowerCamelCase )
UpperCAmelCase_ : Union[str, Any] = outputs.loss
UpperCAmelCase_ : int = loss / gradient_accumulation_steps
accelerator.backward(__lowerCamelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(**__lowerCamelCase )
UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 )
UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.gather_for_metrics((predictions, batch["labels"]) )
metric.add_batch(
predictions=__lowerCamelCase, references=__lowerCamelCase, )
UpperCAmelCase_ : Tuple = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""", __lowerCamelCase )
def __a ( ):
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument(
"--mixed_precision", type=__lowerCamelCase, default=__lowerCamelCase, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.", )
parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU." )
UpperCAmelCase_ : List[Any] = parser.parse_args()
UpperCAmelCase_ : Optional[int] = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16}
training_function(__lowerCamelCase, __lowerCamelCase )
if __name__ == "__main__":
main()
| 61 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
_SCREAMING_SNAKE_CASE = namedtuple("""covid_data""", """cases deaths recovered""")
def SCREAMING_SNAKE_CASE__ ( __a = "https://www.worldometers.info/coronavirus/" ):
snake_case_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) )
_SCREAMING_SNAKE_CASE = """Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}"""
print(fmt.format(*covid_stats()))
| 327 | 0 |
from collections.abc import Generator
def _UpperCAmelCase ( ):
__UpperCamelCase , __UpperCamelCase =0, 1
while True:
__UpperCamelCase , __UpperCamelCase =b, a + b
yield b
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int = 10_00 ):
__UpperCamelCase =1
__UpperCamelCase =fibonacci_generator()
while len(str(next(SCREAMING_SNAKE_CASE__ ) ) ) < n:
answer += 1
return answer + 1
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 62 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_lxmert import LxmertTokenizer
_SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_SCREAMING_SNAKE_CASE = {
"""vocab_file""": {
"""unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""",
},
"""tokenizer_file""": {
"""unc-nlp/lxmert-base-uncased""": (
"""https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json"""
),
},
}
_SCREAMING_SNAKE_CASE = {
"""unc-nlp/lxmert-base-uncased""": 5_12,
}
_SCREAMING_SNAKE_CASE = {
"""unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True},
}
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
__magic_name__: List[Any] = VOCAB_FILES_NAMES
__magic_name__: List[str] = PRETRAINED_VOCAB_FILES_MAP
__magic_name__: List[str] = PRETRAINED_INIT_CONFIGURATION
__magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__: Union[str, Any] = LxmertTokenizer
def __init__( self : List[str] , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=True , _A : Dict="[UNK]" , _A : Optional[int]="[SEP]" , _A : Dict="[PAD]" , _A : Union[str, Any]="[CLS]" , _A : str="[MASK]" , _A : Tuple=True , _A : Dict=None , **_A : List[Any] , ) -> Optional[int]:
"""simple docstring"""
super().__init__(
_A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , )
snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _A ) != do_lower_case
or normalizer_state.get('strip_accents' , _A ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars
):
snake_case_ : Tuple = getattr(_A , normalizer_state.pop('type' ) )
snake_case_ : Union[str, Any] = do_lower_case
snake_case_ : int = strip_accents
snake_case_ : Optional[Any] = tokenize_chinese_chars
snake_case_ : List[Any] = normalizer_class(**_A )
snake_case_ : Tuple = do_lower_case
def UpperCAmelCase_ ( self : Dict , _A : Any , _A : List[Any]=None ) -> Dict:
"""simple docstring"""
snake_case_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase_ ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
snake_case_ : str = [self.sep_token_id]
snake_case_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A )
return tuple(_A )
| 327 | 0 |
'''simple docstring'''
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
lowerCAmelCase_ : List[str] = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__a =PegasusConfig
__a ={}
__a ='gelu'
def __init__( self : Optional[Any] , __a : str , __a : List[str]=13 , __a : Union[str, Any]=7 , __a : List[str]=True , __a : Optional[int]=False , __a : Tuple=99 , __a : Dict=32 , __a : str=5 , __a : Any=4 , __a : Optional[int]=37 , __a : Optional[int]=0.1 , __a : Tuple=0.1 , __a : Optional[Any]=20 , __a : List[str]=2 , __a : Optional[Any]=1 , __a : Optional[int]=0 , ):
_a = parent
_a = batch_size
_a = seq_length
_a = is_training
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = eos_token_id
_a = pad_token_id
_a = bos_token_id
def UpperCamelCase__ ( self : Any ):
_a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
_a = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
_a = np.concatenate([input_ids, eos_tensor] , axis=1 )
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_a = prepare_pegasus_inputs_dict(__a , __a , __a )
return config, inputs_dict
def UpperCamelCase__ ( self : str , __a : Tuple , __a : List[Any] , __a : Optional[int] ):
_a = 20
_a = model_class_name(__a )
_a = model.encode(inputs_dict["input_ids"] )
_a , _a = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
_a = model.init_cache(decoder_input_ids.shape[0] , __a , __a )
_a = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" )
_a = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_a = model.decode(
decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , )
_a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
_a = model.decode(
decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , )
_a = model.decode(__a , __a )
_a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' )
def UpperCamelCase__ ( self : Tuple , __a : Tuple , __a : int , __a : Dict ):
_a = 20
_a = model_class_name(__a )
_a = model.encode(inputs_dict["input_ids"] )
_a , _a = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
_a = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_a = model.init_cache(decoder_input_ids.shape[0] , __a , __a )
_a = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_a = model.decode(
decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , )
_a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
_a = model.decode(
decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , )
_a = model.decode(__a , __a , decoder_attention_mask=__a )
_a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' )
def _lowerCamelCase ( lowercase : Tuple , lowercase : Optional[int] , lowercase : int , lowercase : str=None , lowercase : Any=None , ) -> Union[str, Any]:
if attention_mask is None:
_a = np.not_equal(lowercase , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
_a = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =(
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
__a =(FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
__a =True
__a =False
__a =False
__a =False
def UpperCamelCase__ ( self : Tuple ):
_a = FlaxPegasusModelTester(self )
_a = ConfigTester(self , config_class=__a )
def UpperCamelCase__ ( self : Dict ):
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self : List[Any] ):
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(__a , __a , __a )
def UpperCamelCase__ ( self : str ):
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a )
def UpperCamelCase__ ( self : Any ):
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_a = self._prepare_for_class(__a , __a )
_a = model_class(__a )
@jax.jit
def encode_jitted(__a : Dict , __a : Dict=None , **__a : str ):
return model.encode(input_ids=__a , attention_mask=__a )
with self.subTest("JIT Enabled" ):
_a = encode_jitted(**__a ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
_a = encode_jitted(**__a ).to_tuple()
self.assertEqual(len(__a ) , len(__a ) )
for jitted_output, output in zip(__a , __a ):
self.assertEqual(jitted_output.shape , output.shape )
def UpperCamelCase__ ( self : Optional[int] ):
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_a = model_class(__a )
_a = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] )
_a = {
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(__a : Dict , __a : List[str] , __a : str ):
return model.decode(
decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , )
with self.subTest("JIT Enabled" ):
_a = decode_jitted(**__a ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
_a = decode_jitted(**__a ).to_tuple()
self.assertEqual(len(__a ) , len(__a ) )
for jitted_output, output in zip(__a , __a ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def UpperCamelCase__ ( self : List[Any] ):
for model_class_name in self.all_model_classes:
_a = model_class_name.from_pretrained("google/pegasus-large" , from_pt=__a )
_a = np.ones((1, 1) )
_a = model(__a )
self.assertIsNotNone(__a )
@slow
def UpperCamelCase__ ( self : str ):
_a = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" )
_a = PegasusTokenizer.from_pretrained("google/pegasus-xsum" )
_a = [
" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.",
" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ",
]
_a = [
"California's largest electricity provider has turned off power to hundreds of thousands of customers.",
"Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.",
]
_a = tokenizer(__a , return_tensors="np" , truncation=__a , max_length=5_12 , padding=__a )
_a = model.generate(**__a , num_beams=2 ).sequences
_a = tokenizer.batch_decode(__a , skip_special_tokens=__a )
assert tgt_text == decoded
| 63 |
def SCREAMING_SNAKE_CASE__ ( __a ):
if not isinstance(__a , __a ):
snake_case_ : int = f"""Input value of [number={number}] must be an integer"""
raise TypeError(__a )
if number < 0:
return False
snake_case_ : Dict = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def UpperCAmelCase__ (snake_case__ : str , snake_case__ : List[str]=False ):
"""simple docstring"""
_snake_case : Optional[Any] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append(
(F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
("""module.cls_token""", """vit.embeddings.cls_token"""),
("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""module.pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""module.norm.weight""", """layernorm.weight"""),
("""module.norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
_snake_case : Any = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : Dict , snake_case__ : List[str]=False ):
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
_snake_case : List[Any] = """"""
else:
_snake_case : List[Any] = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_snake_case : Optional[Any] = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" )
_snake_case : Optional[Any] = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
_snake_case : Optional[Any] = in_proj_weight[
: config.hidden_size, :
]
_snake_case : Union[str, Any] = in_proj_bias[: config.hidden_size]
_snake_case : Union[str, Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_snake_case : Optional[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_snake_case : Union[str, Any] = in_proj_weight[
-config.hidden_size :, :
]
_snake_case : List[str] = in_proj_bias[-config.hidden_size :]
def UpperCAmelCase__ (snake_case__ : str ):
"""simple docstring"""
_snake_case : Tuple = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(snake_case__ , snake_case__ )
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
_snake_case : List[str] = [
"""module.fc.fc1.weight""",
"""module.fc.fc1.bias""",
"""module.fc.bn1.weight""",
"""module.fc.bn1.bias""",
"""module.fc.bn1.running_mean""",
"""module.fc.bn1.running_var""",
"""module.fc.bn1.num_batches_tracked""",
"""module.fc.fc2.weight""",
"""module.fc.fc2.bias""",
"""module.fc.bn2.weight""",
"""module.fc.bn2.bias""",
"""module.fc.bn2.running_mean""",
"""module.fc.bn2.running_var""",
"""module.fc.bn2.num_batches_tracked""",
"""module.fc.fc3.weight""",
"""module.fc.fc3.bias""",
]
for k in ignore_keys:
state_dict.pop(snake_case__ , snake_case__ )
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : int ):
"""simple docstring"""
_snake_case : Optional[Any] = dct.pop(snake_case__ )
_snake_case : Union[str, Any] = val
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : str ):
"""simple docstring"""
_snake_case : str = ViTMSNConfig()
_snake_case : Any = 10_00
_snake_case : Tuple = """datasets/huggingface/label-files"""
_snake_case : Dict = """imagenet-1k-id2label.json"""
_snake_case : int = json.load(open(hf_hub_download(snake_case__ , snake_case__ ) , """r""" ) )
_snake_case : Any = {int(snake_case__ ): v for k, v in idalabel.items()}
_snake_case : List[Any] = idalabel
_snake_case : str = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
_snake_case : Tuple = 3_84
_snake_case : Dict = 15_36
_snake_case : Tuple = 6
elif "l16" in checkpoint_url:
_snake_case : Any = 10_24
_snake_case : int = 40_96
_snake_case : str = 24
_snake_case : Optional[int] = 16
_snake_case : List[Any] = 0.1
elif "b4" in checkpoint_url:
_snake_case : Tuple = 4
elif "l7" in checkpoint_url:
_snake_case : int = 7
_snake_case : Dict = 10_24
_snake_case : Optional[Any] = 40_96
_snake_case : Any = 24
_snake_case : Union[str, Any] = 16
_snake_case : Optional[int] = 0.1
_snake_case : int = ViTMSNModel(snake_case__ )
_snake_case : Optional[int] = torch.hub.load_state_dict_from_url(snake_case__ , map_location="""cpu""" )["""target_encoder"""]
_snake_case : List[str] = ViTImageProcessor(size=config.image_size )
remove_projection_head(snake_case__ )
_snake_case : List[str] = create_rename_keys(snake_case__ , base_model=snake_case__ )
for src, dest in rename_keys:
rename_key(snake_case__ , snake_case__ , snake_case__ )
read_in_q_k_v(snake_case__ , snake_case__ , base_model=snake_case__ )
model.load_state_dict(snake_case__ )
model.eval()
_snake_case : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
_snake_case : Tuple = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw )
_snake_case : str = ViTImageProcessor(
size=config.image_size , image_mean=snake_case__ , image_std=snake_case__ )
_snake_case : Any = image_processor(images=snake_case__ , return_tensors="""pt""" )
# forward pass
torch.manual_seed(2 )
_snake_case : int = model(**snake_case__ )
_snake_case : List[Any] = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
_snake_case : Optional[Any] = torch.tensor([[-1.09_15, -1.48_76, -1.18_09]] )
elif "b16" in checkpoint_url:
_snake_case : str = torch.tensor([[14.28_89, -18.90_45, 11.72_81]] )
elif "l16" in checkpoint_url:
_snake_case : Optional[int] = torch.tensor([[41.50_28, -22.86_81, 45.64_75]] )
elif "b4" in checkpoint_url:
_snake_case : List[Any] = torch.tensor([[-4.38_68, 5.29_32, -0.41_37]] )
else:
_snake_case : Optional[int] = torch.tensor([[-0.17_92, -0.64_65, 2.42_63]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , snake_case__ , atol=1e-4 )
print(F"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case__ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(snake_case__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
A_ = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 64 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_SCREAMING_SNAKE_CASE = {
"""configuration_autoformer""": [
"""AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AutoformerConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"""AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AutoformerForPrediction""",
"""AutoformerModel""",
"""AutoformerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 327 | 0 |
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
UpperCamelCase__ = logging.get_logger(__name__)
class A ( UpperCAmelCase_ ):
def __init__(self : List[str] , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : str ) -> None:
"""simple docstring"""
warnings.warn(
"The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use YolosImageProcessor instead." , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 65 |
from typing import Dict
from .base import GenericTensor, Pipeline
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
def UpperCAmelCase_ ( self : str , _A : Optional[Any]=None , _A : List[str]=None , _A : Optional[Any]=None , **_A : List[str] ) -> Any:
"""simple docstring"""
if tokenize_kwargs is None:
snake_case_ : Optional[Any] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
snake_case_ : int = truncation
snake_case_ : Optional[int] = tokenize_kwargs
snake_case_ : Dict = {}
if return_tensors is not None:
snake_case_ : Union[str, Any] = return_tensors
return preprocess_params, {}, postprocess_params
def UpperCAmelCase_ ( self : Optional[int] , _A : int , **_A : Any ) -> Dict[str, GenericTensor]:
"""simple docstring"""
snake_case_ : Dict = self.framework
snake_case_ : Any = self.tokenizer(_A , return_tensors=_A , **_A )
return model_inputs
def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] ) -> int:
"""simple docstring"""
snake_case_ : Tuple = self.model(**_A )
return model_outputs
def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str=False ) -> Any:
"""simple docstring"""
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> List[str]:
"""simple docstring"""
return super().__call__(*_A , **_A )
| 327 | 0 |
"""simple docstring"""
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCamelCase ( _lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
_A : Union[str, Any] = BlenderbotSmallTokenizer
_A : List[Any] = False
def lowerCAmelCase_ ( self: Any ) -> Dict:
super().setUp()
snake_case_ :Dict = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""]
snake_case_ :Dict = dict(zip(snake_case , range(len(snake_case ) ) ) )
snake_case_ :Union[str, Any] = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""]
snake_case_ :Dict = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""}
snake_case_ :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
snake_case_ :str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(snake_case ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(snake_case ) )
def lowerCAmelCase_ ( self: List[Any] , **snake_case: Optional[int] ) -> str:
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **snake_case )
def lowerCAmelCase_ ( self: Any , snake_case: Optional[Any] ) -> Any:
snake_case_ :Any = """adapt act apte"""
snake_case_ :int = """adapt act apte"""
return input_text, output_text
def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[int]:
snake_case_ :Any = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
snake_case_ :Dict = """adapt act apte"""
snake_case_ :Optional[Any] = ["""adapt""", """act""", """ap@@""", """te"""]
snake_case_ :List[str] = tokenizer.tokenize(snake_case )
self.assertListEqual(snake_case , snake_case )
snake_case_ :int = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
snake_case_ :str = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) , snake_case )
def lowerCAmelCase_ ( self: Optional[Any] ) -> Union[str, Any]:
snake_case_ :List[Any] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" )
assert tok("""sam""" ).input_ids == [1_384]
snake_case_ :str = """I am a small frog."""
snake_case_ :Dict = tok([src_text] , padding=snake_case , truncation=snake_case )["""input_ids"""]
snake_case_ :Optional[Any] = tok.batch_decode(snake_case , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def lowerCAmelCase_ ( self: str ) -> str:
snake_case_ :Optional[int] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" )
snake_case_ :str = """I am a small frog ."""
snake_case_ :Dict = """."""
snake_case_ :int = tok(snake_case )["""input_ids"""]
snake_case_ :List[Any] = tok(snake_case )["""input_ids"""]
assert encoded[-1] == encoded_dot[0]
| 66 |
from itertools import permutations
def SCREAMING_SNAKE_CASE__ ( __a ):
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
snake_case_ : Any = [7, 11, 13, 17]
for i, test in enumerate(__a ):
if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def SCREAMING_SNAKE_CASE__ ( __a = 10 ):
return sum(
int(''.join(map(__a , __a ) ) )
for num in permutations(range(__a ) )
if is_substring_divisible(__a ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 327 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available
@dataclass
class a__ ( UpperCAmelCase__ ):
lowerCamelCase : Union[List[PIL.Image.Image], np.ndarray]
lowerCamelCase : Optional[List[bool]]
if is_transformers_available() and is_torch_available():
from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
| 67 |
from __future__ import annotations
from collections import namedtuple
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ):
snake_case_ : Any = namedtuple('result' , 'name value' )
if (voltage, current, power).count(0 ) != 1:
raise ValueError('Only one argument must be 0' )
elif power < 0:
raise ValueError(
'Power cannot be negative in any electrical/electronics system' )
elif voltage == 0:
return result('voltage' , power / current )
elif current == 0:
return result('current' , power / voltage )
elif power == 0:
return result('power' , float(round(abs(voltage * current ) , 2 ) ) )
else:
raise ValueError('Exactly one argument must be 0' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
from PIL import Image
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Image ) -> Image:
'''simple docstring'''
A__ , A__ = image.size
A__ = 0
A__ = image.load()
for i in range(SCREAMING_SNAKE_CASE_ ):
for j in range(SCREAMING_SNAKE_CASE_ ):
A__ = pixels[j, i]
mean += pixel
mean //= width * height
for j in range(SCREAMING_SNAKE_CASE_ ):
for i in range(SCREAMING_SNAKE_CASE_ ):
A__ = 2_5_5 if pixels[i, j] > mean else 0
return image
if __name__ == "__main__":
lowerCAmelCase__ = mean_threshold(Image.open("""path_to_image""").convert("""L"""))
image.save("""output_image_path""")
| 68 |
import re
import string
import numpy as np
import datasets
_SCREAMING_SNAKE_CASE = """
Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.
"""
_SCREAMING_SNAKE_CASE = """
Args:
predictions: List of predicted texts.
references: List of reference texts.
regexes_to_ignore: List, defaults to None. Regex expressions of characters to
ignore when calculating the exact matches. Note: these regexes are removed
from the input data before the changes based on the options below (e.g. ignore_case,
ignore_punctuation, ignore_numbers) are applied.
ignore_case: Boolean, defaults to False. If true, turns everything
to lowercase so that capitalization differences are ignored.
ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
Returns:
exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.
Examples:
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results[\"exact_match\"], 1))
25.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results[\"exact_match\"], 1))
50.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results[\"exact_match\"], 1))
75.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)
>>> print(round(results[\"exact_match\"], 1))
100.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]
>>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results[\"exact_match\"], 1))
33.3
"""
_SCREAMING_SNAKE_CASE = """
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE_ ( datasets.Metric ):
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , reference_urls=[] , )
def UpperCAmelCase_ ( self : int , _A : Tuple , _A : Tuple , _A : str=None , _A : Dict=False , _A : Tuple=False , _A : str=False , ) -> Tuple:
"""simple docstring"""
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
snake_case_ : List[Any] = np.array([re.sub(_A , '' , _A ) for x in predictions] )
snake_case_ : Optional[Any] = np.array([re.sub(_A , '' , _A ) for x in references] )
else:
snake_case_ : Dict = np.asarray(_A )
snake_case_ : Tuple = np.asarray(_A )
if ignore_case:
snake_case_ : List[str] = np.char.lower(_A )
snake_case_ : Any = np.char.lower(_A )
if ignore_punctuation:
snake_case_ : int = string.punctuation.maketrans('' , '' , string.punctuation )
snake_case_ : Tuple = np.char.translate(_A , table=_A )
snake_case_ : str = np.char.translate(_A , table=_A )
if ignore_numbers:
snake_case_ : Optional[int] = string.digits.maketrans('' , '' , string.digits )
snake_case_ : str = np.char.translate(_A , table=_A )
snake_case_ : Union[str, Any] = np.char.translate(_A , table=_A )
snake_case_ : int = predictions == references
return {"exact_match": np.mean(_A ) * 100}
| 327 | 0 |
"""simple docstring"""
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
__UpperCamelCase = logging.get_logger(__name__)
def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> str:
try:
import torch # noqa: F401
except ImportError:
logger.error(
'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see'
' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'
' instructions.' )
raise
if not is_sharded:
snake_case_ = os.path.abspath(UpperCAmelCase )
logger.info(f'Loading PyTorch weights from {pt_path}' )
snake_case_ = torch.load(UpperCAmelCase , map_location='cpu' )
logger.info(f'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' )
snake_case_ = convert_pytorch_state_dict_to_flax(UpperCAmelCase , UpperCAmelCase )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
snake_case_ = convert_pytorch_sharded_state_dict_to_flax(UpperCAmelCase , UpperCAmelCase )
return flax_state_dict
def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> (Tuple[str], np.ndarray):
def is_key_or_prefix_key_in_dict(UpperCAmelCase ) -> bool:
return len(set(UpperCAmelCase ) & {key, (model_prefix,) + key} ) > 0
# layer norm
snake_case_ = pt_tuple_key[:-1] + ('scale',)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(UpperCAmelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
snake_case_ = pt_tuple_key[:-1] + ('mean',)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(UpperCAmelCase ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
snake_case_ = pt_tuple_key[:-1] + ('var',)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(UpperCAmelCase ):
return renamed_pt_tuple_key, pt_tensor
# embedding
snake_case_ = pt_tuple_key[:-1] + ('embedding',)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(UpperCAmelCase ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
snake_case_ = pt_tuple_key[:-1] + ('kernel',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(UpperCAmelCase ):
snake_case_ = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
snake_case_ = pt_tuple_key[:-1] + ('kernel',)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(UpperCAmelCase ):
snake_case_ = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
snake_case_ = pt_tuple_key[:-1] + ('weight',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
snake_case_ = pt_tuple_key[:-1] + ('bias',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
snake_case_ = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
snake_case_ = pt_tuple_key[-2] + '_g'
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
snake_case_ = pt_tuple_key[-2] + '_v'
if name is not None:
snake_case_ = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Tuple:
# convert pytorch tensor to numpy
snake_case_ = {k: v.numpy() for k, v in pt_state_dict.items()}
snake_case_ = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
snake_case_ = flax_model.params['params']
else:
snake_case_ = flax_model.params
snake_case_ = flatten_dict(UpperCAmelCase )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
snake_case_ = flatten_dict(flax_model.params['batch_stats'] )
random_flax_state_dict.update(UpperCAmelCase )
snake_case_ = {}
snake_case_ = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()}
)
snake_case_ = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
snake_case_ = tuple(pt_key.split('.' ) )
# remove base model prefix if necessary
snake_case_ = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
snake_case_ = pt_tuple_key[1:]
# Correctly rename weight parameters
snake_case_ , snake_case_ = rename_key_and_reshape_tensor(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# add model prefix if necessary
snake_case_ = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
snake_case_ = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '
f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
snake_case_ = jnp.asarray(UpperCAmelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(UpperCAmelCase , UpperCAmelCase )
continue
# also add unexpected weight so that warning is thrown
snake_case_ = jnp.asarray(UpperCAmelCase )
else:
# also add unexpected weight so that warning is thrown
snake_case_ = jnp.asarray(UpperCAmelCase )
return unflatten_dict(UpperCAmelCase )
def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> str:
import torch
# Load the index
snake_case_ = {}
for shard_file in shard_filenames:
# load using msgpack utils
snake_case_ = torch.load(UpperCAmelCase )
snake_case_ = {k: v.numpy() for k, v in pt_state_dict.items()}
snake_case_ = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
snake_case_ = flax_model.params['params']
snake_case_ = flatten_dict(UpperCAmelCase )
random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) )
else:
snake_case_ = flax_model.params
snake_case_ = flatten_dict(UpperCAmelCase )
snake_case_ = (model_prefix not in flax_model_params) and (
model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()}
)
snake_case_ = (model_prefix in flax_model_params) and (
model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
snake_case_ = tuple(pt_key.split('.' ) )
# remove base model prefix if necessary
snake_case_ = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
snake_case_ = pt_tuple_key[1:]
# Correctly rename weight parameters
snake_case_ , snake_case_ = rename_key_and_reshape_tensor(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# add model prefix if necessary
snake_case_ = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
snake_case_ = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '
f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
snake_case_ = jnp.asarray(UpperCAmelCase )
continue
if "var" in flax_key[-1]:
snake_case_ = jnp.asarray(UpperCAmelCase )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(UpperCAmelCase , UpperCAmelCase )
continue
# also add unexpected weight so that warning is thrown
snake_case_ = jnp.asarray(UpperCAmelCase )
else:
# also add unexpected weight so that warning is thrown
snake_case_ = jnp.asarray(UpperCAmelCase )
return unflatten_dict(UpperCAmelCase )
def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]:
snake_case_ = os.path.abspath(UpperCAmelCase )
logger.info(f'Loading Flax weights from {flax_checkpoint_path}' )
# import correct flax class
snake_case_ = getattr(UpperCAmelCase , 'Flax' + model.__class__.__name__ )
# load flax weight dict
with open(UpperCAmelCase , 'rb' ) as state_f:
try:
snake_case_ = from_bytes(UpperCAmelCase , state_f.read() )
except UnpicklingError:
raise EnvironmentError(f'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' )
return load_flax_weights_in_pytorch_model(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Tuple:
try:
import torch # noqa: F401
except ImportError:
logger.error(
'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see'
' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'
' instructions.' )
raise
# check if we have bf16 weights
snake_case_ = flatten_dict(jax.tree_util.tree_map(lambda UpperCAmelCase : x.dtype == jnp.bfloataa , UpperCAmelCase ) ).values()
if any(UpperCAmelCase ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '
'before loading those in PyTorch model.' )
snake_case_ = jax.tree_util.tree_map(
lambda UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCAmelCase )
snake_case_ = flatten_dict(UpperCAmelCase )
snake_case_ = pt_model.state_dict()
snake_case_ = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()}
)
snake_case_ = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
snake_case_ = []
snake_case_ = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
snake_case_ = flax_key_tuple[0] == pt_model.base_model_prefix
snake_case_ = '.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
snake_case_ = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
snake_case_ = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(UpperCAmelCase ) not in pt_model_dict:
# conv layer
snake_case_ = flax_key_tuple[:-1] + ('weight',)
snake_case_ = jnp.transpose(UpperCAmelCase , (3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(UpperCAmelCase ) not in pt_model_dict:
# linear layer
snake_case_ = flax_key_tuple[:-1] + ('weight',)
snake_case_ = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
snake_case_ = flax_key_tuple[:-1] + ('weight',)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
snake_case_ = flax_key_tuple[:-1] + ('running_mean',)
elif "var" in flax_key_tuple[-1]:
snake_case_ = flax_key_tuple[:-1] + ('running_var',)
if "batch_stats" in flax_state:
snake_case_ = '.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
snake_case_ = '.'.join(UpperCAmelCase )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
snake_case_ = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
snake_case_ = key.split('.' )
snake_case_ = None
if key_components[-3::2] == ["parametrizations", "original0"]:
snake_case_ = key_components[-2] + '_g'
elif key_components[-3::2] == ["parametrizations", "original1"]:
snake_case_ = key_components[-2] + '_v'
if name is not None:
snake_case_ = key_components[:-3] + [name]
snake_case_ = '.'.join(UpperCAmelCase )
snake_case_ = key
if flax_key in special_pt_names:
snake_case_ = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '
f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
else:
# add weight to pytorch dict
snake_case_ = np.asarray(UpperCAmelCase ) if not isinstance(UpperCAmelCase , np.ndarray ) else flax_tensor
snake_case_ = torch.from_numpy(UpperCAmelCase )
# remove from missing keys
missing_keys.remove(UpperCAmelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(UpperCAmelCase )
pt_model.load_state_dict(UpperCAmelCase )
# re-transform missing_keys to list
snake_case_ = list(UpperCAmelCase )
if len(UpperCAmelCase ) > 0:
logger.warning(
'Some weights of the Flax model were not used when initializing the PyTorch model'
f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'
f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'
' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'
f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'
' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'
' FlaxBertForSequenceClassification model).' )
else:
logger.warning(f'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' )
if len(UpperCAmelCase ) > 0:
logger.warning(
f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'
f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'
' use it for predictions and inference.' )
else:
logger.warning(
f'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n'
'If your task is similar to the task the model of the checkpoint was trained on, '
f'you can already use {pt_model.__class__.__name__} for predictions without further training.' )
return pt_model
| 69 |
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class SCREAMING_SNAKE_CASE_ :
def __init__( self : List[Any] , _A : Optional[Any] , _A : Dict=13 , _A : Union[str, Any]=30 , _A : Tuple=2 , _A : Union[str, Any]=3 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : str=32 , _A : int=2 , _A : List[str]=4 , _A : List[str]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=10 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=3 , _A : str=0.6 , _A : Union[str, Any]=None , ) -> Any:
"""simple docstring"""
snake_case_ : Optional[int] = parent
snake_case_ : Tuple = batch_size
snake_case_ : List[Any] = image_size
snake_case_ : List[str] = patch_size
snake_case_ : List[str] = num_channels
snake_case_ : Optional[Any] = is_training
snake_case_ : Any = use_labels
snake_case_ : Tuple = hidden_size
snake_case_ : Union[str, Any] = num_hidden_layers
snake_case_ : List[Any] = num_attention_heads
snake_case_ : Optional[Any] = intermediate_size
snake_case_ : List[Any] = hidden_act
snake_case_ : Union[str, Any] = hidden_dropout_prob
snake_case_ : Any = attention_probs_dropout_prob
snake_case_ : Tuple = type_sequence_label_size
snake_case_ : List[str] = initializer_range
snake_case_ : Optional[Any] = mask_ratio
snake_case_ : Any = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
snake_case_ : Optional[int] = (image_size // patch_size) ** 2
snake_case_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ : Union[str, Any] = None
if self.use_labels:
snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase_ ( self : int ) -> Optional[Any]:
"""simple docstring"""
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : Dict , _A : str ) -> Dict:
"""simple docstring"""
snake_case_ : Union[str, Any] = TFViTMAEModel(config=_A )
snake_case_ : str = model(_A , training=_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : Any , _A : List[Any] ) -> int:
"""simple docstring"""
snake_case_ : Any = TFViTMAEForPreTraining(_A )
snake_case_ : Optional[Any] = model(_A , training=_A )
# expected sequence length = num_patches
snake_case_ : List[str] = (self.image_size // self.patch_size) ** 2
snake_case_ : Optional[Any] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
snake_case_ : str = 1
snake_case_ : Dict = TFViTMAEForPreTraining(_A )
snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case_ : List[str] = model(_A , training=_A )
snake_case_ : Optional[Any] = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
snake_case_ : List[Any] = self.prepare_config_and_inputs()
((snake_case_) ,(snake_case_) ,(snake_case_)) : Any = config_and_inputs
snake_case_ : Optional[Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ):
__magic_name__: List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
__magic_name__: str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {}
__magic_name__: Dict = False
__magic_name__: Dict = False
__magic_name__: List[Any] = False
__magic_name__: Dict = False
def UpperCAmelCase_ ( self : Any ) -> List[Any]:
"""simple docstring"""
snake_case_ : List[Any] = TFViTMAEModelTester(self )
snake_case_ : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 )
def UpperCAmelCase_ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='ViTMAE does not use inputs_embeds' )
def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ ,snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : List[Any] = model_class(_A )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
snake_case_ : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) )
def UpperCAmelCase_ ( self : List[str] ) -> Dict:
"""simple docstring"""
snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : List[str] = model_class(_A )
snake_case_ : Any = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ : Dict = [*signature.parameters.keys()]
snake_case_ : Dict = ['pixel_values']
self.assertListEqual(arg_names[:1] , _A )
def UpperCAmelCase_ ( self : Dict ) -> List[str]:
"""simple docstring"""
snake_case_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def UpperCAmelCase_ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
snake_case_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_A )
def UpperCAmelCase_ ( self : Tuple ) -> Dict:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
snake_case_ : Optional[Any] = model_class(_A )
snake_case_ : Union[str, Any] = self._prepare_for_class(_A , _A )
snake_case_ : List[str] = model(_A , noise=_A )
snake_case_ : Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) )
snake_case_ : str = model(**_A , noise=_A )
snake_case_ : Union[str, Any] = outputs_dict[0].numpy()
snake_case_ : Optional[Any] = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 )
def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Tuple = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(_A : int ):
snake_case_ : Any = {}
for k, v in inputs_dict.items():
if tf.is_tensor(_A ):
snake_case_ : str = v.numpy()
else:
snake_case_ : Optional[Any] = np.array(_A )
return inputs_np_dict
for model_class in self.all_model_classes:
snake_case_ : int = model_class(_A )
snake_case_ : List[Any] = self._prepare_for_class(_A , _A )
snake_case_ : Any = prepare_numpy_arrays(_A )
snake_case_ : List[Any] = model(_A , noise=_A )
snake_case_ : List[Any] = model(**_A , noise=_A )
self.assert_outputs_same(_A , _A )
def UpperCAmelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> List[str]:
"""simple docstring"""
np.random.seed(2 )
snake_case_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
snake_case_ : Optional[int] = tf.constant(_A )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
snake_case_ : Optional[Any] = tf_noise
super().check_pt_tf_models(_A , _A , _A )
def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : int = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(_A )
if module_member_name.endswith('MainLayer' )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )]
for module_member in (getattr(_A , _A ),)
if isinstance(_A , _A )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(_A , '_keras_serializable' , _A )
}
snake_case_ : List[Any] = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
snake_case_ : Optional[int] = tf.convert_to_tensor(_A )
inputs_dict.update({'noise': noise} )
for main_layer_class in tf_main_layer_classes:
snake_case_ : Optional[Any] = main_layer_class(_A )
snake_case_ : List[str] = {
name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
snake_case_ : Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) )
snake_case_ : int = model(_A )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : List[Any] = os.path.join(_A , 'keras_model.h5' )
model.save(_A )
snake_case_ : str = tf.keras.models.load_model(
_A , custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(_A , tf.keras.Model )
snake_case_ : List[str] = model(_A )
self.assert_outputs_same(_A , _A )
@slow
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : int = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
snake_case_ : Optional[Any] = model_class(_A )
snake_case_ : Optional[Any] = self._prepare_for_class(_A , _A )
snake_case_ : int = model(_A , noise=_A )
if model_class.__name__ == "TFViTMAEModel":
snake_case_ : Any = outputs.last_hidden_state.numpy()
snake_case_ : Optional[int] = 0
else:
snake_case_ : str = outputs.logits.numpy()
snake_case_ : Optional[Any] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A , saved_model=_A )
snake_case_ : Any = model_class.from_pretrained(_A )
snake_case_ : Any = model(_A , noise=_A )
if model_class.__name__ == "TFViTMAEModel":
snake_case_ : Dict = after_outputs['last_hidden_state'].numpy()
snake_case_ : Dict = 0
else:
snake_case_ : Any = after_outputs['logits'].numpy()
snake_case_ : Optional[Any] = 0
snake_case_ : Any = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_A , 1E-5 )
def UpperCAmelCase_ ( self : Any ) -> str:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
snake_case_ : str = model_class(_A )
snake_case_ : int = self._prepare_for_class(_A , _A )
snake_case_ : str = model(_A , noise=_A )
snake_case_ : Dict = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(_A )
snake_case_ : Any = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
snake_case_ : str = model_class.from_config(model.config )
snake_case_ : Union[str, Any] = new_model(_A ) # Build model
new_model.set_weights(model.get_weights() )
snake_case_ : List[str] = new_model(_A , noise=_A )
self.assert_outputs_same(_A , _A )
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' )
def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
pass
@unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' )
def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
pass
@slow
def UpperCAmelCase_ ( self : Tuple ) -> Tuple:
"""simple docstring"""
snake_case_ : Optional[Any] = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' )
self.assertIsNotNone(_A )
def SCREAMING_SNAKE_CASE__ ( ):
snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
@cached_property
def UpperCAmelCase_ ( self : str ) -> Dict:
"""simple docstring"""
return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None
@slow
def UpperCAmelCase_ ( self : str ) -> Dict:
"""simple docstring"""
np.random.seed(2 )
snake_case_ : List[str] = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' )
snake_case_ : List[Any] = self.default_image_processor
snake_case_ : Dict = prepare_img()
snake_case_ : Optional[Any] = image_processor(images=_A , return_tensors='tf' )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
snake_case_ : int = ViTMAEConfig()
snake_case_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
snake_case_ : List[Any] = np.random.uniform(size=(1, num_patches) )
# forward pass
snake_case_ : Optional[Any] = model(**_A , noise=_A )
# verify the logits
snake_case_ : Optional[int] = tf.convert_to_tensor([1, 196, 768] )
self.assertEqual(outputs.logits.shape , _A )
snake_case_ : Any = tf.convert_to_tensor(
[[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
| 327 | 0 |
'''simple docstring'''
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCAmelCase ( snake_case_ , unittest.TestCase ):
_lowercase: List[Any] = LEDTokenizer
_lowercase: Dict = LEDTokenizerFast
_lowercase: List[str] = True
def lowercase__ ( self : Optional[int] ) -> str:
super().setUp()
_lowerCAmelCase = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
_lowerCAmelCase = dict(zip(__snake_case , range(len(__snake_case ) ) ) )
_lowerCAmelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
_lowerCAmelCase = {"""unk_token""": """<unk>"""}
_lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
_lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__snake_case ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(__snake_case ) )
def lowercase__ ( self : List[Any] , **__snake_case : str ) -> Union[str, Any]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case )
def lowercase__ ( self : int , **__snake_case : Optional[int] ) -> List[str]:
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case )
def lowercase__ ( self : List[Any] , __snake_case : Optional[Any] ) -> Tuple:
return "lower newer", "lower newer"
@cached_property
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" )
@cached_property
def lowercase__ ( self : str ) -> Optional[int]:
return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" )
@require_torch
def lowercase__ ( self : str ) -> int:
_lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
_lowerCAmelCase = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_lowerCAmelCase = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors="""pt""" )
self.assertIsInstance(__snake_case , __snake_case )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
_lowerCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(__snake_case , __snake_case )
@require_torch
def lowercase__ ( self : Tuple ) -> Any:
_lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_lowerCAmelCase = tokenizer(__snake_case , padding=__snake_case , return_tensors="""pt""" )
self.assertIn("""input_ids""" , __snake_case )
self.assertIn("""attention_mask""" , __snake_case )
self.assertNotIn("""labels""" , __snake_case )
self.assertNotIn("""decoder_attention_mask""" , __snake_case )
@require_torch
def lowercase__ ( self : Optional[int] ) -> List[Any]:
_lowerCAmelCase = [
"""Summary of the text.""",
"""Another summary.""",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_lowerCAmelCase = tokenizer(text_target=__snake_case , max_length=32 , padding="""max_length""" , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
@require_torch
def lowercase__ ( self : Tuple ) -> Dict:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_lowerCAmelCase = tokenizer(
["""I am a small frog""" * 10_24, """I am a small frog"""] , padding=__snake_case , truncation=__snake_case , return_tensors="""pt""" )
self.assertIsInstance(__snake_case , __snake_case )
self.assertEqual(batch.input_ids.shape , (2, 51_22) )
@require_torch
def lowercase__ ( self : str ) -> Any:
_lowerCAmelCase = ["""A long paragraph for summarization."""]
_lowerCAmelCase = [
"""Summary of the text.""",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_lowerCAmelCase = tokenizer(__snake_case , return_tensors="""pt""" )
_lowerCAmelCase = tokenizer(text_target=__snake_case , return_tensors="""pt""" )
_lowerCAmelCase = inputs["""input_ids"""]
_lowerCAmelCase = targets["""input_ids"""]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def lowercase__ ( self : str ) -> Any:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_lowerCAmelCase = ["""Summary of the text.""", """Another summary."""]
_lowerCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
_lowerCAmelCase = tokenizer(__snake_case , padding=__snake_case )
_lowerCAmelCase = [[0] * len(__snake_case ) for x in encoded_output["""input_ids"""]]
_lowerCAmelCase = tokenizer.pad(__snake_case )
self.assertSequenceEqual(outputs["""global_attention_mask"""] , __snake_case )
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
pass
def lowercase__ ( self : int ) -> Optional[Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
_lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case )
_lowerCAmelCase = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case )
_lowerCAmelCase = """A, <mask> AllenNLP sentence."""
_lowerCAmelCase = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case )
_lowerCAmelCase = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case )
self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) )
self.assertEqual(
sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , )
_lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] )
_lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] )
self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
__snake_case , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
self.assertSequenceEqual(
__snake_case , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
| 70 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
snake_case_ : list[list[int]] = []
snake_case_ : list[int] = []
snake_case_ : List[Any] = 0
snake_case_ : Union[str, Any] = sum(__a )
create_state_space_tree(__a , __a , __a , __a , __a , __a )
return result
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ):
if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum:
return
if sum(__a ) == max_sum:
result.append(__a )
return
for index in range(__a , len(__a ) ):
create_state_space_tree(
__a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , )
_SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2]
_SCREAMING_SNAKE_CASE = 9
_SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 327 | 0 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ :str = logging.get_logger(__name__)
A_ :Tuple = {
'''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''',
}
class __A ( a ):
"""simple docstring"""
UpperCamelCase__ : Any ="""git_vision_model"""
def __init__( self , lowerCamelCase__=768 , lowerCamelCase__=3072 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3 , lowerCamelCase__=224 , lowerCamelCase__=16 , lowerCamelCase__="quick_gelu" , lowerCamelCase__=1E-5 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , **lowerCamelCase__ , ):
"""simple docstring"""
super().__init__(**lowerCamelCase__ )
__UpperCamelCase : str =hidden_size
__UpperCamelCase : Union[str, Any] =intermediate_size
__UpperCamelCase : Any =num_hidden_layers
__UpperCamelCase : Any =num_attention_heads
__UpperCamelCase : Union[str, Any] =num_channels
__UpperCamelCase : Optional[Any] =patch_size
__UpperCamelCase : int =image_size
__UpperCamelCase : str =initializer_range
__UpperCamelCase : Optional[int] =attention_dropout
__UpperCamelCase : Tuple =layer_norm_eps
__UpperCamelCase : str =hidden_act
@classmethod
def __lowercase ( cls , lowerCamelCase__ , **lowerCamelCase__ ):
"""simple docstring"""
cls._set_token_in_kwargs(lowerCamelCase__ )
__UpperCamelCase , __UpperCamelCase : List[Any] =cls.get_config_dict(lowerCamelCase__ , **lowerCamelCase__ )
# get the vision config dict if we are loading from GITConfig
if config_dict.get('model_type' ) == "git":
__UpperCamelCase : int =config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(lowerCamelCase__ , **lowerCamelCase__ )
class __A ( a ):
"""simple docstring"""
UpperCamelCase__ : Tuple ="""git"""
def __init__( self , lowerCamelCase__=None , lowerCamelCase__=30522 , lowerCamelCase__=768 , lowerCamelCase__=6 , lowerCamelCase__=12 , lowerCamelCase__=3072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=1024 , lowerCamelCase__=0.02 , lowerCamelCase__=1E-12 , lowerCamelCase__=0 , lowerCamelCase__="absolute" , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=101 , lowerCamelCase__=102 , lowerCamelCase__=None , **lowerCamelCase__ , ):
"""simple docstring"""
super().__init__(bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , pad_token_id=lowerCamelCase__ , **lowerCamelCase__ )
if vision_config is None:
__UpperCamelCase : str ={}
logger.info('vision_config is None. initializing the GitVisionConfig with default values.' )
__UpperCamelCase : Optional[int] =GitVisionConfig(**lowerCamelCase__ )
__UpperCamelCase : List[Any] =vocab_size
__UpperCamelCase : int =hidden_size
__UpperCamelCase : Optional[int] =num_hidden_layers
__UpperCamelCase : str =num_attention_heads
__UpperCamelCase : int =hidden_act
__UpperCamelCase : int =intermediate_size
__UpperCamelCase : List[str] =hidden_dropout_prob
__UpperCamelCase : Tuple =attention_probs_dropout_prob
__UpperCamelCase : Tuple =max_position_embeddings
__UpperCamelCase : List[Any] =initializer_range
__UpperCamelCase : Optional[int] =layer_norm_eps
__UpperCamelCase : Optional[int] =position_embedding_type
__UpperCamelCase : List[str] =use_cache
__UpperCamelCase : Any =tie_word_embeddings
__UpperCamelCase : int =num_image_with_embedding
__UpperCamelCase : List[Any] =bos_token_id
__UpperCamelCase : Any =eos_token_id
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Dict =copy.deepcopy(self.__dict__ )
__UpperCamelCase : Any =self.vision_config.to_dict()
__UpperCamelCase : Optional[Any] =self.__class__.model_type
return output
| 71 |
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
if density <= 0:
raise ValueError('Impossible fluid density' )
if bulk_modulus <= 0:
raise ValueError('Impossible bulk modulus' )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
"""simple docstring"""
from math import isqrt, loga
def snake_case_ ( A_ : int ):
'''simple docstring'''
_lowerCamelCase : Optional[Any] = [True] * max_number
for i in range(2, isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2, A_, A_ ):
_lowerCamelCase : str = False
return [i for i in range(2, A_ ) if is_prime[i]]
def snake_case_ ( A_ : int = 80_08_00, A_ : int = 80_08_00 ):
'''simple docstring'''
_lowerCamelCase : Dict = degree * loga(A_ )
_lowerCamelCase : Any = int(A_ )
_lowerCamelCase : List[Any] = calculate_prime_numbers(A_ )
_lowerCamelCase : Dict = 0
_lowerCamelCase : Dict = 0
_lowerCamelCase : str = len(A_ ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F"""{solution() = }""")
| 72 |
from math import pi
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
return 2 * pi * radius * (angle / 3_60)
if __name__ == "__main__":
print(arc_length(90, 10))
| 327 | 0 |
import argparse
from collections import defaultdict
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]:
__lowerCamelCase : List[str] = F"{file}_{class_name}_{test_name}"
done_test[_id] += 1
with open(lowerCamelCase__ , 'r' ) as f:
__lowerCamelCase : Tuple = f.readlines()
__lowerCamelCase : Optional[Any] = F"class {class_name}("
__lowerCamelCase : Tuple = F"{4 * ' '}def {test_name}("
__lowerCamelCase : List[str] = F"{8 * ' '}{correct_line.split()[0]}"
__lowerCamelCase : Union[str, Any] = F"{1_6 * ' '}{correct_line.split()[0]}"
__lowerCamelCase : List[str] = False
__lowerCamelCase : List[str] = False
__lowerCamelCase : List[str] = False
__lowerCamelCase : Any = False
__lowerCamelCase : Optional[int] = 0
__lowerCamelCase : Union[str, Any] = 0
__lowerCamelCase : Dict = []
for line in lines:
if line.startswith(lowerCamelCase__ ):
__lowerCamelCase : int = True
elif in_class and line.startswith(lowerCamelCase__ ):
__lowerCamelCase : Union[str, Any] = True
elif in_class and in_func and (line.startswith(lowerCamelCase__ ) or line.startswith(lowerCamelCase__ )):
__lowerCamelCase : Dict = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
__lowerCamelCase : int = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
__lowerCamelCase : int = True
if in_class and in_func and in_line and insert_line:
new_lines.append(F"{spaces * ' '}{correct_line}" )
__lowerCamelCase : int = False
else:
new_lines.append(lowerCamelCase__ )
with open(lowerCamelCase__ , 'w' ) as f:
for line in new_lines:
f.write(lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=None ) -> Union[str, Any]:
if fail is not None:
with open(lowerCamelCase__ , 'r' ) as f:
__lowerCamelCase : str = {l.strip() for l in f.readlines()}
else:
__lowerCamelCase : List[Any] = None
with open(lowerCamelCase__ , 'r' ) as f:
__lowerCamelCase : Optional[Any] = f.readlines()
__lowerCamelCase : Union[str, Any] = defaultdict(lowerCamelCase__ )
for line in correct_lines:
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = line.split(';' )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
if __name__ == "__main__":
a =argparse.ArgumentParser()
parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""")
parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None)
a =parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 73 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
__magic_name__: Optional[Any] = ["pixel_values"]
def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PIL.Image.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : str , ) -> None:
"""simple docstring"""
super().__init__(**_A )
snake_case_ : Dict = size if size is not None else {'height': 256, 'width': 256}
snake_case_ : Tuple = get_size_dict(_A )
snake_case_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224}
snake_case_ : int = get_size_dict(_A , param_name='crop_size' )
snake_case_ : Union[str, Any] = do_resize
snake_case_ : str = size
snake_case_ : List[str] = resample
snake_case_ : List[Any] = do_center_crop
snake_case_ : Dict = crop_size
snake_case_ : Tuple = do_rescale
snake_case_ : Optional[Any] = rescale_factor
snake_case_ : Any = do_normalize
snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
snake_case_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCAmelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray:
"""simple docstring"""
snake_case_ : Tuple = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return resize(
_A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray:
"""simple docstring"""
snake_case_ : Optional[int] = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A )
def UpperCAmelCase_ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> str:
"""simple docstring"""
return rescale(_A , scale=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray:
"""simple docstring"""
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self : List[str] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : Union[str, Any]=None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ) -> PIL.Image.Image:
"""simple docstring"""
snake_case_ : int = do_resize if do_resize is not None else self.do_resize
snake_case_ : str = resample if resample is not None else self.resample
snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop
snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale
snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor
snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize
snake_case_ : Any = image_mean if image_mean is not None else self.image_mean
snake_case_ : Dict = image_std if image_std is not None else self.image_std
snake_case_ : int = size if size is not None else self.size
snake_case_ : Optional[int] = get_size_dict(_A )
snake_case_ : int = crop_size if crop_size is not None else self.crop_size
snake_case_ : Any = get_size_dict(_A , param_name='crop_size' )
snake_case_ : Optional[Any] = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
snake_case_ : Optional[Any] = [to_numpy_array(_A ) for image in images]
if do_resize:
snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images]
if do_center_crop:
snake_case_ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images]
if do_rescale:
snake_case_ : Optional[int] = [self.rescale(image=_A , scale=_A ) for image in images]
if do_normalize:
snake_case_ : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images]
snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images]
snake_case_ : Tuple = {'pixel_values': images}
return BatchFeature(data=_A , tensor_type=_A )
| 327 | 0 |
"""simple docstring"""
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
'''huggingface/informer-tourism-monthly''': (
'''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json'''
),
# See all Informer models at https://huggingface.co/models?filter=informer
}
class lowerCAmelCase_ ( _lowercase ):
'''simple docstring'''
_lowerCamelCase: List[str] = '''informer'''
_lowerCamelCase: Dict = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : Union[str, Any] ,A_ : Optional[int] = None ,A_ : Optional[int] = None ,A_ : str = "student_t" ,A_ : str = "nll" ,A_ : int = 1 ,A_ : List[int] = None ,A_ : Optional[Union[str, bool]] = "mean" ,A_ : int = 0 ,A_ : int = 0 ,A_ : int = 0 ,A_ : int = 0 ,A_ : Optional[List[int]] = None ,A_ : Optional[List[int]] = None ,A_ : int = 64 ,A_ : int = 32 ,A_ : int = 32 ,A_ : int = 2 ,A_ : int = 2 ,A_ : int = 2 ,A_ : int = 2 ,A_ : bool = True ,A_ : str = "gelu" ,A_ : float = 0.05 ,A_ : float = 0.1 ,A_ : float = 0.1 ,A_ : float = 0.1 ,A_ : float = 0.1 ,A_ : int = 100 ,A_ : float = 0.02 ,A_ : Tuple=True ,A_ : str = "prob" ,A_ : int = 5 ,A_ : bool = True ,**A_ : Any ,) -> Dict:
# time series specific configuration
A = prediction_length
A = context_length or prediction_length
A = distribution_output
A = loss
A = input_size
A = num_time_features
A = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7]
A = scaling
A = num_dynamic_real_features
A = num_static_real_features
A = num_static_categorical_features
# set cardinality
if cardinality and num_static_categorical_features > 0:
if len(A_ ) != num_static_categorical_features:
raise ValueError(
'The cardinality should be a list of the same length as `num_static_categorical_features`' )
A = cardinality
else:
A = [0]
# set embedding_dimension
if embedding_dimension and num_static_categorical_features > 0:
if len(A_ ) != num_static_categorical_features:
raise ValueError(
'The embedding dimension should be a list of the same length as `num_static_categorical_features`' )
A = embedding_dimension
else:
A = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality]
A = num_parallel_samples
# Transformer architecture configuration
A = input_size * len(self.lags_sequence ) + self._number_of_features
A = d_model
A = encoder_attention_heads
A = decoder_attention_heads
A = encoder_ffn_dim
A = decoder_ffn_dim
A = encoder_layers
A = decoder_layers
A = dropout
A = attention_dropout
A = activation_dropout
A = encoder_layerdrop
A = decoder_layerdrop
A = activation_function
A = init_std
A = use_cache
# Informer
A = attention_type
A = sampling_factor
A = distil
super().__init__(is_encoder_decoder=A_ ,**A_ )
@property
def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int:
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
) | 74 |
import sys
_SCREAMING_SNAKE_CASE = (
"""73167176531330624919225119674426574742355349194934"""
"""96983520312774506326239578318016984801869478851843"""
"""85861560789112949495459501737958331952853208805511"""
"""12540698747158523863050715693290963295227443043557"""
"""66896648950445244523161731856403098711121722383113"""
"""62229893423380308135336276614282806444486645238749"""
"""30358907296290491560440772390713810515859307960866"""
"""70172427121883998797908792274921901699720888093776"""
"""65727333001053367881220235421809751254540594752243"""
"""52584907711670556013604839586446706324415722155397"""
"""53697817977846174064955149290862569321978468622482"""
"""83972241375657056057490261407972968652414535100474"""
"""82166370484403199890008895243450658541227588666881"""
"""16427171479924442928230863465674813919123162824586"""
"""17866458359124566529476545682848912883142607690042"""
"""24219022671055626321111109370544217506941658960408"""
"""07198403850962455444362981230987879927244284909188"""
"""84580156166097919133875499200524063689912560717606"""
"""05886116467109405077541002256983155200055935729725"""
"""71636269561882670428252483600823257530420752963450"""
)
def SCREAMING_SNAKE_CASE__ ( __a = N ):
snake_case_ : Optional[Any] = -sys.maxsize - 1
for i in range(len(__a ) - 12 ):
snake_case_ : Optional[Any] = 1
for j in range(13 ):
product *= int(n[i + j] )
if product > largest_product:
snake_case_ : int = product
return largest_product
if __name__ == "__main__":
print(F'''{solution() = }''')
| 327 | 0 |
'''simple docstring'''
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def a_ ( __snake_case : Union[str, Any] ) -> int:
"""simple docstring"""
monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' , set() )
@pytest.fixture
def a_ ( __snake_case : Any ) -> Union[str, Any]:
"""simple docstring"""
class __UpperCamelCase :
def __init__( self, lowerCAmelCase ):
"""simple docstring"""
lowerCamelCase_ =metric_id
class __UpperCamelCase :
lowercase : Dict =[MetricMock(lowerCamelCase__ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']]
def lowercase__ ( self ):
"""simple docstring"""
return self._metrics
monkeypatch.setattr('''datasets.inspect.huggingface_hub''' , HfhMock() )
@pytest.mark.parametrize(
'''func, args''' , [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] )
def a_ ( __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : int , __snake_case : Any ) -> Optional[Any]:
"""simple docstring"""
if "tmp_path" in args:
lowerCamelCase_ =tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args )
with pytest.warns(__snake_case , match='''https://huggingface.co/docs/evaluate''' ):
func(*__snake_case )
| 75 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
_SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ :
__magic_name__: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
__magic_name__: Optional[str] = field(
default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
__magic_name__: Optional[str] = field(
default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
__magic_name__: Optional[str] = field(
default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} )
__magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} )
@dataclass
class SCREAMING_SNAKE_CASE_ :
__magic_name__: str = field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} )
__magic_name__: Optional[str] = field(
default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , )
__magic_name__: Optional[int] = field(
default=1024 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__magic_name__: Optional[int] = field(
default=128 , metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__magic_name__: Optional[int] = field(
default=142 , metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. "
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
} , )
__magic_name__: Optional[int] = field(
default=142 , metadata={
"help": (
"The maximum total sequence length for test target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} )
__magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} )
__magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} )
__magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} )
__magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} )
__magic_name__: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} )
__magic_name__: bool = field(
default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ):
logger.info(f"""***** {split} metrics *****""" )
for key in sorted(metrics.keys() ):
logger.info(f""" {key} = {metrics[key]}""" )
save_json(__a , os.path.join(__a , f"""{split}_results.json""" ) )
def SCREAMING_SNAKE_CASE__ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
snake_case_ ,snake_case_ ,snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
snake_case_ ,snake_case_ ,snake_case_ : List[str] = parser.parse_args_into_dataclasses()
check_output_dir(__a )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('Training/evaluation parameters %s' , __a )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case_ : Tuple = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(__a , __a , __a ):
assert hasattr(__a , __a ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute"""
setattr(__a , __a , getattr(__a , __a ) )
snake_case_ : Tuple = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=__a , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(__a , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
snake_case_ : Any = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(__a , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(__a , __a ):
snake_case_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
snake_case_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(__a )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
snake_case_ : List[Any] = SeqaSeqDataset
# Get datasets
snake_case_ : List[Any] = (
dataset_class(
__a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_train
else None
)
snake_case_ : List[str] = (
dataset_class(
__a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
snake_case_ : List[Any] = (
dataset_class(
__a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
snake_case_ : Any = (
build_compute_metrics_fn(data_args.task , __a ) if training_args.predict_with_generate else None
)
snake_case_ : List[str] = SeqaSeqTrainer(
model=__a , args=__a , data_args=__a , train_dataset=__a , eval_dataset=__a , data_collator=SeqaSeqDataCollator(
__a , __a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__a , tokenizer=__a , )
snake_case_ : Optional[int] = {}
# Training
if training_args.do_train:
logger.info('*** Train ***' )
snake_case_ : Any = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
snake_case_ : Tuple = train_result.metrics
snake_case_ : List[str] = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('train' , __a , training_args.output_dir )
all_metrics.update(__a )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
snake_case_ : List[Any] = trainer.evaluate(metric_key_prefix='val' )
snake_case_ : str = data_args.n_val
snake_case_ : Union[str, Any] = round(metrics['val_loss'] , 4 )
if trainer.is_world_process_zero():
handle_metrics('val' , __a , training_args.output_dir )
all_metrics.update(__a )
if training_args.do_predict:
logger.info('*** Predict ***' )
snake_case_ : Dict = trainer.predict(test_dataset=__a , metric_key_prefix='test' )
snake_case_ : Union[str, Any] = test_output.metrics
snake_case_ : int = data_args.n_test
if trainer.is_world_process_zero():
snake_case_ : List[str] = round(metrics['test_loss'] , 4 )
handle_metrics('test' , __a , training_args.output_dir )
all_metrics.update(__a )
if training_args.predict_with_generate:
snake_case_ : Any = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=__a , clean_up_tokenization_spaces=__a )
snake_case_ : Any = lmap(str.strip , __a )
write_txt_file(__a , os.path.join(training_args.output_dir , 'test_generations.txt' ) )
if trainer.is_world_process_zero():
save_json(__a , os.path.join(training_args.output_dir , 'all_results.json' ) )
return all_metrics
def SCREAMING_SNAKE_CASE__ ( __a ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 327 | 0 |
from __future__ import annotations
import math
def lowerCamelCase__ ( _a , _a):
if len(_a) != 2 or len(a[0]) != 2 or len(_a) != 2 or len(b[0]) != 2:
raise Exception("Matrices are not 2x2")
SCREAMING_SNAKE_CASE : str = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def lowerCamelCase__ ( _a , _a):
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row]))]
for row in range(len(_a))
]
def lowerCamelCase__ ( _a , _a):
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row]))]
for row in range(len(_a))
]
def lowerCamelCase__ ( _a):
if len(_a) % 2 != 0 or len(a[0]) % 2 != 0:
raise Exception("Odd matrices are not supported!")
SCREAMING_SNAKE_CASE : str = len(_a)
SCREAMING_SNAKE_CASE : List[str] = matrix_length // 2
SCREAMING_SNAKE_CASE : List[Any] = [[a[i][j] for j in range(_a , _a)] for i in range(_a)]
SCREAMING_SNAKE_CASE : Any = [
[a[i][j] for j in range(_a , _a)] for i in range(_a , _a)
]
SCREAMING_SNAKE_CASE : List[str] = [[a[i][j] for j in range(_a)] for i in range(_a)]
SCREAMING_SNAKE_CASE : Dict = [[a[i][j] for j in range(_a)] for i in range(_a , _a)]
return top_left, top_right, bot_left, bot_right
def lowerCamelCase__ ( _a):
return len(_a), len(matrix[0])
def lowerCamelCase__ ( _a):
print("\n".join(str(_a) for line in matrix))
def lowerCamelCase__ ( _a , _a):
if matrix_dimensions(_a) == (2, 2):
return default_matrix_multiplication(_a , _a)
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = split_matrix(_a)
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = split_matrix(_a)
SCREAMING_SNAKE_CASE : int = actual_strassen(_a , matrix_subtraction(_a , _a))
SCREAMING_SNAKE_CASE : Optional[Any] = actual_strassen(matrix_addition(_a , _a) , _a)
SCREAMING_SNAKE_CASE : Dict = actual_strassen(matrix_addition(_a , _a) , _a)
SCREAMING_SNAKE_CASE : Union[str, Any] = actual_strassen(_a , matrix_subtraction(_a , _a))
SCREAMING_SNAKE_CASE : Optional[Any] = actual_strassen(matrix_addition(_a , _a) , matrix_addition(_a , _a))
SCREAMING_SNAKE_CASE : Union[str, Any] = actual_strassen(matrix_subtraction(_a , _a) , matrix_addition(_a , _a))
SCREAMING_SNAKE_CASE : Union[str, Any] = actual_strassen(matrix_subtraction(_a , _a) , matrix_addition(_a , _a))
SCREAMING_SNAKE_CASE : List[Any] = matrix_addition(matrix_subtraction(matrix_addition(_a , _a) , _a) , _a)
SCREAMING_SNAKE_CASE : Any = matrix_addition(_a , _a)
SCREAMING_SNAKE_CASE : int = matrix_addition(_a , _a)
SCREAMING_SNAKE_CASE : Union[str, Any] = matrix_subtraction(matrix_subtraction(matrix_addition(_a , _a) , _a) , _a)
# construct the new matrix from our 4 quadrants
SCREAMING_SNAKE_CASE : Tuple = []
for i in range(len(_a)):
new_matrix.append(top_left[i] + top_right[i])
for i in range(len(_a)):
new_matrix.append(bot_left[i] + bot_right[i])
return new_matrix
def lowerCamelCase__ ( _a , _a):
if matrix_dimensions(_a)[1] != matrix_dimensions(_a)[0]:
SCREAMING_SNAKE_CASE : Optional[int] = (
"Unable to multiply these matrices, please check the dimensions.\n"
f"Matrix A: {matrixa}\n"
f"Matrix B: {matrixa}"
)
raise Exception(_a)
SCREAMING_SNAKE_CASE : Optional[Any] = matrix_dimensions(_a)
SCREAMING_SNAKE_CASE : Union[str, Any] = matrix_dimensions(_a)
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
SCREAMING_SNAKE_CASE : Union[str, Any] = max(*_a , *_a)
SCREAMING_SNAKE_CASE : Any = int(math.pow(2 , math.ceil(math.loga(_a))))
SCREAMING_SNAKE_CASE : List[Any] = matrixa
SCREAMING_SNAKE_CASE : List[Any] = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0 , _a):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , _a):
new_matrixa[i].append(0)
else:
new_matrixa.append([0] * maxim)
if i < dimensiona[0]:
for _ in range(dimensiona[1] , _a):
new_matrixa[i].append(0)
else:
new_matrixa.append([0] * maxim)
SCREAMING_SNAKE_CASE : List[Any] = actual_strassen(_a , _a)
# Removing the additional zeros
for i in range(0 , _a):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , _a):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
a_ = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
a_ = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]]
print(strassen(matrixa, matrixa)) | 76 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_SCREAMING_SNAKE_CASE = {
"""configuration_poolformer""": [
"""POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""PoolFormerConfig""",
"""PoolFormerOnnxConfig""",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""]
_SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"""POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PoolFormerForImageClassification""",
"""PoolFormerModel""",
"""PoolFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 327 | 0 |
"""simple docstring"""
from math import loga
def a_ ( _lowerCAmelCase : int ):
'''simple docstring'''
if a < 0:
raise ValueError('Input value must be a positive integer' )
elif isinstance(_lowerCAmelCase , _lowerCAmelCase ):
raise TypeError('Input value must be a \'int\' type' )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 77 |
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def UpperCAmelCase_ ( self : Dict ) -> List[Any]:
"""simple docstring"""
snake_case_ : Any = 'hf-internal-testing/tiny-random-t5'
snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_A )
snake_case_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A )
snake_case_ : List[Any] = tokenizer('This is me' , return_tensors='pt' )
snake_case_ : Any = model.to_bettertransformer()
self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
snake_case_ : Optional[Any] = model.generate(**_A )
snake_case_ : int = model.reverse_bettertransformer()
self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A )
snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_A )
self.assertFalse(
any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
snake_case_ : Optional[Any] = model_reloaded.generate(**_A )
self.assertTrue(torch.allclose(_A , _A ) )
def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
snake_case_ : Any = 'hf-internal-testing/tiny-random-t5'
snake_case_ : int = AutoModelForSeqaSeqLM.from_pretrained(_A )
snake_case_ : Dict = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(_A ):
model.save_pretrained(_A )
snake_case_ : Union[str, Any] = model.reverse_bettertransformer()
model.save_pretrained(_A )
| 327 | 0 |
"""simple docstring"""
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetrImageProcessor
class A_ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self :int , lowercase_ :Union[str, Any] , lowercase_ :List[str]=7 , lowercase_ :Any=3 , lowercase_ :List[str]=30 , lowercase_ :Union[str, Any]=4_00 , lowercase_ :int=True , lowercase_ :Optional[int]=None , lowercase_ :Any=True , lowercase_ :Optional[Any]=1 / 2_55 , lowercase_ :Union[str, Any]=True , lowercase_ :Any=[0.5, 0.5, 0.5] , lowercase_ :int=[0.5, 0.5, 0.5] , lowercase_ :List[Any]=True , ) -> Tuple:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33}
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = num_channels
UpperCAmelCase = min_resolution
UpperCAmelCase = max_resolution
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = do_rescale
UpperCAmelCase = rescale_factor
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean
UpperCAmelCase = image_std
UpperCAmelCase = do_pad
def UpperCAmelCase__ ( self :Union[str, Any] ) -> Union[str, Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_pad": self.do_pad,
}
def UpperCAmelCase__ ( self :int , lowercase_ :List[str] , lowercase_ :List[str]=False ) -> Union[str, Any]:
if not batched:
UpperCAmelCase = image_inputs[0]
if isinstance(lowercase_ , Image.Image ):
UpperCAmelCase , UpperCAmelCase = image.size
else:
UpperCAmelCase , UpperCAmelCase = image.shape[1], image.shape[2]
if w < h:
UpperCAmelCase = int(self.size['shortest_edge'] * h / w )
UpperCAmelCase = self.size['shortest_edge']
elif w > h:
UpperCAmelCase = self.size['shortest_edge']
UpperCAmelCase = int(self.size['shortest_edge'] * w / h )
else:
UpperCAmelCase = self.size['shortest_edge']
UpperCAmelCase = self.size['shortest_edge']
else:
UpperCAmelCase = []
for image in image_inputs:
UpperCAmelCase , UpperCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
UpperCAmelCase = max(lowercase_ , key=lambda lowercase_ : item[0] )[0]
UpperCAmelCase = max(lowercase_ , key=lambda lowercase_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class A_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__UpperCamelCase = DetrImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self :Any ) -> Tuple:
UpperCAmelCase = DetrImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self :Optional[int] ) -> Dict:
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self :List[str] ) -> Tuple:
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase_ , 'image_mean' ) )
self.assertTrue(hasattr(lowercase_ , 'image_std' ) )
self.assertTrue(hasattr(lowercase_ , 'do_normalize' ) )
self.assertTrue(hasattr(lowercase_ , 'do_rescale' ) )
self.assertTrue(hasattr(lowercase_ , 'rescale_factor' ) )
self.assertTrue(hasattr(lowercase_ , 'do_resize' ) )
self.assertTrue(hasattr(lowercase_ , 'size' ) )
self.assertTrue(hasattr(lowercase_ , 'do_pad' ) )
def UpperCAmelCase__ ( self :Dict ) -> Optional[Any]:
UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} )
self.assertEqual(image_processor.do_pad , lowercase_ )
UpperCAmelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_ )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , lowercase_ )
def UpperCAmelCase__ ( self :List[Any] ) -> Union[str, Any]:
pass
def UpperCAmelCase__ ( self :Tuple ) -> Union[str, Any]:
# Initialize image_processing
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , Image.Image )
# Test not batched input
UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
UpperCAmelCase = image_processing(lowercase_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase__ ( self :int ) -> Optional[int]:
# Initialize image_processing
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , np.ndarray )
# Test not batched input
UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase = image_processing(lowercase_ , return_tensors='pt' ).pixel_values
UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase__ ( self :Dict ) -> int:
# Initialize image_processing
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_ , torch.Tensor )
# Test not batched input
UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(lowercase_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCAmelCase = image_processing(lowercase_ , return_tensors='pt' ).pixel_values
UpperCAmelCase , UpperCAmelCase = self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def UpperCAmelCase__ ( self :List[str] ) -> List[str]:
# prepare image and target
UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
UpperCAmelCase = json.loads(f.read() )
UpperCAmelCase = {'image_id': 3_97_69, 'annotations': target}
# encode them
UpperCAmelCase = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' )
UpperCAmelCase = image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors='pt' )
# verify pixel values
UpperCAmelCase = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , lowercase_ )
UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1E-4 ) )
# verify area
UpperCAmelCase = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_ ) )
# verify boxes
UpperCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_ )
UpperCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1E-3 ) )
# verify image_id
UpperCAmelCase = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_ ) )
# verify is_crowd
UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_ ) )
# verify class_labels
UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_ ) )
# verify orig_size
UpperCAmelCase = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_ ) )
# verify size
UpperCAmelCase = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_ ) )
@slow
def UpperCAmelCase__ ( self :Optional[Any] ) -> Union[str, Any]:
# prepare image, target and masks_path
UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
UpperCAmelCase = json.loads(f.read() )
UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target}
UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
UpperCAmelCase = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' )
UpperCAmelCase = image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors='pt' )
# verify pixel values
UpperCAmelCase = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , lowercase_ )
UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1E-4 ) )
# verify area
UpperCAmelCase = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_ ) )
# verify boxes
UpperCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_ )
UpperCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1E-3 ) )
# verify image_id
UpperCAmelCase = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_ ) )
# verify is_crowd
UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_ ) )
# verify class_labels
UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_ ) )
# verify masks
UpperCAmelCase = 82_28_73
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowercase_ )
# verify orig_size
UpperCAmelCase = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_ ) )
# verify size
UpperCAmelCase = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_ ) )
| 78 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ : str = params
snake_case_ : int = np.array(_A )
snake_case_ : Optional[int] = np.array([len(_A ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self : Tuple , _A : Optional[int] ) -> str:
"""simple docstring"""
return (self.token_ids[index], self.lengths[index])
def __len__( self : List[str] ) -> str:
"""simple docstring"""
return len(self.lengths )
def UpperCAmelCase_ ( self : Dict ) -> str:
"""simple docstring"""
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def UpperCAmelCase_ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
snake_case_ : Dict = self.params.max_model_input_size
snake_case_ : Tuple = self.lengths > max_len
logger.info(F"""Splitting {sum(_A )} too long sequences.""" )
def divide_chunks(_A : Union[str, Any] , _A : Dict ):
return [l[i : i + n] for i in range(0 , len(_A ) , _A )]
snake_case_ : Dict = []
snake_case_ : Union[str, Any] = []
if self.params.mlm:
snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token']
else:
snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token']
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
snake_case_ : List[Any] = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
snake_case_ : Optional[int] = np.insert(_A , 0 , _A )
if sub_s[-1] != sep_id:
snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A )
assert len(_A ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(_A )
new_tok_ids.extend(_A )
new_lengths.extend([len(_A ) for l in sub_seqs] )
snake_case_ : Tuple = np.array(_A )
snake_case_ : int = np.array(_A )
def UpperCAmelCase_ ( self : List[str] ) -> List[str]:
"""simple docstring"""
snake_case_ : Tuple = len(self )
snake_case_ : int = self.lengths > 11
snake_case_ : Dict = self.token_ids[indices]
snake_case_ : int = self.lengths[indices]
snake_case_ : List[Any] = len(self )
logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
if "unk_token" not in self.params.special_tok_ids:
return
else:
snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token']
snake_case_ : Dict = len(self )
snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
snake_case_ : Any = (unk_occs / self.lengths) < 0.5
snake_case_ : List[Any] = self.token_ids[indices]
snake_case_ : int = self.lengths[indices]
snake_case_ : Tuple = len(self )
logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
if not self.params.is_master:
return
logger.info(F"""{len(self )} sequences""" )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
snake_case_ : Any = [t[0] for t in batch]
snake_case_ : int = [t[1] for t in batch]
assert len(_A ) == len(_A )
# Max for paddings
snake_case_ : str = max(_A )
# Pad token ids
if self.params.mlm:
snake_case_ : int = self.params.special_tok_ids['pad_token']
else:
snake_case_ : Dict = self.params.special_tok_ids['unk_token']
snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids]
assert len(tk_ ) == len(_A )
assert all(len(_A ) == max_seq_len_ for t in tk_ )
snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_)
snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs)
return tk_t, lg_t
| 327 | 0 |
'''simple docstring'''
from __future__ import annotations
def __lowercase ( __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ) -> tuple[int, float, str]:
'''simple docstring'''
_A = cipher_alphabet or [chr(__lowercase ) for i in range(97 , 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
_A = {
"a": 0.08497,
"b": 0.01492,
"c": 0.02202,
"d": 0.04253,
"e": 0.11162,
"f": 0.02228,
"g": 0.02015,
"h": 0.06094,
"i": 0.07546,
"j": 0.00153,
"k": 0.01292,
"l": 0.04025,
"m": 0.02406,
"n": 0.06749,
"o": 0.07507,
"p": 0.01929,
"q": 0.00095,
"r": 0.07587,
"s": 0.06327,
"t": 0.09356,
"u": 0.02758,
"v": 0.00978,
"w": 0.02560,
"x": 0.00150,
"y": 0.01994,
"z": 0.00077,
}
else:
# Custom frequencies dictionary
_A = frequencies_dict
if not case_sensitive:
_A = ciphertext.lower()
# Chi squared statistic values
_A = {}
# cycle through all of the shifts
for shift in range(len(__lowercase ) ):
_A = ""
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
_A = (alphabet_letters.index(letter.lower() ) - shift) % len(
__lowercase )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
_A = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
_A = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
_A = decrypted_with_shift.lower().count(__lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_A = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_A = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
_A = decrypted_with_shift.count(__lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_A = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_A = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
_A = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(__lowercase ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
_A = min(
__lowercase , key=__lowercase , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
_A
) , (
_A
) ,
) = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 79 |
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
while b:
snake_case_ ,snake_case_ : Any = b, a % b
return a
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
return a if b == 0 else euclidean_gcd_recursive(__a , a % b )
def SCREAMING_SNAKE_CASE__ ( ):
print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" )
print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" )
print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" )
print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" )
print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" )
print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" )
print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" )
print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" )
if __name__ == "__main__":
main()
| 327 | 0 |
'''simple docstring'''
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name
def _UpperCamelCase ( __A ) -> List[Any]:
'''simple docstring'''
warnings.warn(
"The preprocess method is deprecated and will be removed in a future version. Please"
" use VaeImageProcessor.preprocess instead" , __A , )
if isinstance(__A , torch.Tensor ):
return image
elif isinstance(__A , PIL.Image.Image ):
UpperCamelCase__ = [image]
if isinstance(image[0] , PIL.Image.Image ):
UpperCamelCase__ , UpperCamelCase__ = image[0].size
UpperCamelCase__ , UpperCamelCase__ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
UpperCamelCase__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image]
UpperCamelCase__ = np.concatenate(__A , axis=0 )
UpperCamelCase__ = np.array(__A ).astype(np.floataa ) / 255.0
UpperCamelCase__ = image.transpose(0 , 3 , 1 , 2 )
UpperCamelCase__ = 2.0 * image - 1.0
UpperCamelCase__ = torch.from_numpy(__A )
elif isinstance(image[0] , torch.Tensor ):
UpperCamelCase__ = torch.cat(__A , dim=0 )
return image
def _UpperCamelCase ( __A ) -> Optional[int]:
'''simple docstring'''
if isinstance(__A , torch.Tensor ):
return mask
elif isinstance(__A , PIL.Image.Image ):
UpperCamelCase__ = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
UpperCamelCase__ , UpperCamelCase__ = mask[0].size
UpperCamelCase__ , UpperCamelCase__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
UpperCamelCase__ = [np.array(m.convert("L" ).resize((w, h) , resample=PIL_INTERPOLATION["nearest"] ) )[None, :] for m in mask]
UpperCamelCase__ = np.concatenate(__A , axis=0 )
UpperCamelCase__ = mask.astype(np.floataa ) / 255.0
UpperCamelCase__ = 0
UpperCamelCase__ = 1
UpperCamelCase__ = torch.from_numpy(__A )
elif isinstance(mask[0] , torch.Tensor ):
UpperCamelCase__ = torch.cat(__A , dim=0 )
return mask
class lowercase_ ( a__ ):
__UpperCAmelCase = 42
__UpperCAmelCase = 42
def __init__( self , a , a ):
super().__init__()
self.register_modules(unet=a , scheduler=a )
@torch.no_grad()
def __call__( self , a , a , a = 2_50 , a = 0.0 , a = 10 , a = 10 , a = None , a = "pil" , a = True , ):
UpperCamelCase__ = image
UpperCamelCase__ = _preprocess_image(a )
UpperCamelCase__ = original_image.to(device=self.device , dtype=self.unet.dtype )
UpperCamelCase__ = _preprocess_mask(a )
UpperCamelCase__ = mask_image.to(device=self.device , dtype=self.unet.dtype )
UpperCamelCase__ = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(a , a ) and len(a ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(a )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
UpperCamelCase__ = original_image.shape
UpperCamelCase__ = randn_tensor(a , generator=a , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(a , a , a , self.device )
UpperCamelCase__ = eta
UpperCamelCase__ = self.scheduler.timesteps[0] + 1
UpperCamelCase__ = generator[0] if isinstance(a , a ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
UpperCamelCase__ = self.unet(a , a ).sample
# compute previous image: x_t -> x_t-1
UpperCamelCase__ = self.scheduler.step(a , a , a , a , a , a ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
UpperCamelCase__ = self.scheduler.undo_step(a , a , a )
UpperCamelCase__ = t
UpperCamelCase__ = (image / 2 + 0.5).clamp(0 , 1 )
UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCamelCase__ = self.numpy_to_pil(a )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=a )
| 80 |
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version(""">=""", FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
_SCREAMING_SNAKE_CASE = get_logger(__name__)
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ):
os.makedirs(__a , exist_ok=__a )
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
snake_case_ : Dict = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin"""
snake_case_ : Dict = os.path.join(__a , __a )
if accelerator.process_index == 0:
logger.info(f"""Saving model to {output_model_file}""" )
torch.save(__a , __a )
logger.info(f"""Model saved to {output_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
snake_case_ : Dict = (
f"""{MODEL_NAME}_rank{accelerator.process_index}.bin"""
if model_index == 0
else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"""
)
snake_case_ : Dict = os.path.join(__a , __a )
logger.info(f"""Saving model to {output_model_file}""" )
torch.save(__a , __a )
logger.info(f"""Model saved to {output_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" )
os.makedirs(__a , exist_ok=__a )
logger.info(f"""Saving model to {ckpt_dir}""" )
snake_case_ : int = {'model': state_dict}
dist_cp.save_state_dict(
state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , )
logger.info(f"""Model saved to {ckpt_dir}""" )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(__a ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
'Set the `sync_module_states` flag to `True` so that model states are synced across processes when '
'initializing FSDP object' )
return
snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin"""
snake_case_ : Optional[Any] = os.path.join(__a , __a )
logger.info(f"""Loading model from {input_model_file}""" )
snake_case_ : Optional[Any] = torch.load(__a )
logger.info(f"""Model loaded from {input_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
snake_case_ : Optional[Any] = (
f"""{MODEL_NAME}_rank{accelerator.process_index}.bin"""
if model_index == 0
else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"""
)
snake_case_ : Tuple = os.path.join(__a , __a )
logger.info(f"""Loading model from {input_model_file}""" )
snake_case_ : Optional[int] = torch.load(__a )
logger.info(f"""Model loaded from {input_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
snake_case_ : Tuple = (
os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" )
if f"""{MODEL_NAME}""" not in input_dir
else input_dir
)
logger.info(f"""Loading model from {ckpt_dir}""" )
snake_case_ : List[Any] = {'model': model.state_dict()}
dist_cp.load_state_dict(
state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , )
snake_case_ : Any = state_dict['model']
logger.info(f"""Model loaded from {ckpt_dir}""" )
model.load_state_dict(__a )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ):
os.makedirs(__a , exist_ok=__a )
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
snake_case_ : str = (
f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin"""
)
snake_case_ : Any = os.path.join(__a , __a )
logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" )
torch.save(__a , __a )
logger.info(f"""Optimizer state saved in {output_optimizer_file}""" )
else:
snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" )
os.makedirs(__a , exist_ok=__a )
logger.info(f"""Saving Optimizer state to {ckpt_dir}""" )
dist_cp.save_state_dict(
state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , )
logger.info(f"""Optimizer state saved in {ckpt_dir}""" )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
snake_case_ : Optional[Any] = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
snake_case_ : Union[str, Any] = (
f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin"""
)
snake_case_ : List[Any] = os.path.join(__a , __a )
logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" )
snake_case_ : Optional[int] = torch.load(__a )
logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" )
else:
snake_case_ : str = (
os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" )
if f"""{OPTIMIZER_NAME}""" not in input_dir
else input_dir
)
logger.info(f"""Loading Optimizer from {ckpt_dir}""" )
snake_case_ : Any = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , )
snake_case_ : Optional[int] = optim_state['optimizer']
logger.info(f"""Optimizer loaded from {ckpt_dir}""" )
snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a )
optimizer.load_state_dict(__a )
| 327 | 0 |
"""simple docstring"""
class __A :
"""simple docstring"""
def __init__( self , __A ) -> None:
a =len(__A )
a =[0] * len_array
if len_array > 0:
a =array[0]
for i in range(1 , __A ):
a =self.prefix_sum[i - 1] + array[i]
def SCREAMING_SNAKE_CASE ( self , __A , __A ) -> int:
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def SCREAMING_SNAKE_CASE ( self , __A ) -> bool:
a ={0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(__A )
return False
if __name__ == "__main__":
import doctest
doctest.testmod() | 81 |
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def __init__( self : List[str] , _A : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _A : bool = True , _A : Tuple=7 , _A : Tuple=30 , _A : int=400 , _A : Tuple=3 , ) -> Optional[int]:
"""simple docstring"""
snake_case_ : str = parent
snake_case_ : str = do_resize
snake_case_ : str = size if size is not None else {'shortest_edge': 288}
snake_case_ : Any = size_divisor
snake_case_ : Any = do_rescale
snake_case_ : Union[str, Any] = rescale_factor
snake_case_ : str = do_normalize
snake_case_ : int = do_center_crop
snake_case_ : str = image_mean
snake_case_ : int = image_std
snake_case_ : Any = do_pad
snake_case_ : Optional[int] = batch_size
snake_case_ : List[str] = num_channels
snake_case_ : Any = min_resolution
snake_case_ : str = max_resolution
def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def UpperCAmelCase_ ( self : Dict , _A : str , _A : Union[str, Any]=False ) -> int:
"""simple docstring"""
if not batched:
snake_case_ : Optional[int] = self.size['shortest_edge']
snake_case_ : List[Any] = image_inputs[0]
if isinstance(_A , Image.Image ):
snake_case_ ,snake_case_ : Optional[Any] = image.size
else:
snake_case_ ,snake_case_ : str = image.shape[1], image.shape[2]
snake_case_ : Dict = size / min(_A , _A )
if h < w:
snake_case_ ,snake_case_ : str = size, scale * w
else:
snake_case_ ,snake_case_ : Tuple = scale * h, size
snake_case_ : Dict = int((1333 / 800) * size )
if max(_A , _A ) > max_size:
snake_case_ : Union[str, Any] = max_size / max(_A , _A )
snake_case_ : Any = newh * scale
snake_case_ : Union[str, Any] = neww * scale
snake_case_ ,snake_case_ : Any = int(newh + 0.5 ), int(neww + 0.5 )
snake_case_ ,snake_case_ : int = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
snake_case_ : Optional[int] = []
for image in image_inputs:
snake_case_ ,snake_case_ : Optional[int] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case_ : str = max(_A , key=lambda _A : item[0] )[0]
snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ):
__magic_name__: List[Any] = BridgeTowerImageProcessor if is_vision_available() else None
def UpperCAmelCase_ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
snake_case_ : int = BridgeTowerImageProcessingTester(self )
@property
def UpperCAmelCase_ ( self : int ) -> Any:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , 'image_mean' ) )
self.assertTrue(hasattr(_A , 'image_std' ) )
self.assertTrue(hasattr(_A , 'do_normalize' ) )
self.assertTrue(hasattr(_A , 'do_resize' ) )
self.assertTrue(hasattr(_A , 'size' ) )
self.assertTrue(hasattr(_A , 'size_divisor' ) )
def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
pass
def UpperCAmelCase_ ( self : Tuple ) -> Tuple:
"""simple docstring"""
snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A , Image.Image )
# Test not batched input
snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : List[str] = image_processing(_A , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
snake_case_ : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A , np.ndarray )
# Test not batched input
snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : Any = image_processing(_A , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase_ ( self : Dict ) -> List[str]:
"""simple docstring"""
snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
# Test not batched input
snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : str = image_processing(_A , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 327 | 0 |
A__ = """
# Installazione di Transformers
! pip install transformers datasets
# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e
# rimuovi la modalità commento al comando seguente.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
A__ = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
A__ = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 82 |
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
_SCREAMING_SNAKE_CASE = 50_00_00
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = os.path.split(__file__)
_SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json"""))
@get_duration
def SCREAMING_SNAKE_CASE__ ( __a , **__a ):
snake_case_ : int = dataset.map(**__a )
@get_duration
def SCREAMING_SNAKE_CASE__ ( __a , **__a ):
snake_case_ : Dict = dataset.filter(**__a )
def SCREAMING_SNAKE_CASE__ ( ):
snake_case_ : Tuple = {'num examples': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ : Dict = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} )
snake_case_ : List[Any] = generate_example_dataset(
os.path.join(__a , 'dataset.arrow' ) , __a , num_examples=__a )
snake_case_ : str = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__a )
def tokenize(__a ):
return tokenizer(examples['text'] )
snake_case_ : Any = map(__a )
snake_case_ : Tuple = map(__a , batched=__a )
snake_case_ : str = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='numpy' ):
snake_case_ : Optional[int] = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='pandas' ):
snake_case_ : str = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='torch' , columns='numbers' ):
snake_case_ : int = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='tensorflow' , columns='numbers' ):
snake_case_ : List[Any] = map(__a , function=lambda __a : None , batched=__a )
snake_case_ : int = map(__a , function=__a , batched=__a )
snake_case_ : Optional[Any] = filter(__a )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(__a , 'wb' ) as f:
f.write(json.dumps(__a ).encode('utf-8' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 327 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case_ : str = logging.get_logger(__name__)
snake_case_ : Any = {'vocab_file': 'spiece.model'}
snake_case_ : List[str] = {
'vocab_file': {
'bert_for_seq_generation': (
'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model'
),
}
}
snake_case_ : str = {'bert_for_seq_generation': 512}
class lowercase__ ( lowercase ):
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = []
lowercase__ = ["""input_ids""", """attention_mask"""]
def __init__( self : Optional[int] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : List[str]="<s>" ,lowerCamelCase__ : List[str]="</s>" ,lowerCamelCase__ : int="<unk>" ,lowerCamelCase__ : Dict="<pad>" ,lowerCamelCase__ : Optional[Any]="<::::>" ,lowerCamelCase__ : Optional[Dict[str, Any]] = None ,**lowerCamelCase__ : List[str] ,):
'''simple docstring'''
_UpperCamelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs
# Add extra_ids to the special token list
super().__init__(
bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,sp_model_kwargs=self.sp_model_kwargs ,**lowerCamelCase__ ,)
_UpperCamelCase : Optional[Any] = vocab_file
_UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCamelCase__ )
@property
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
return self.sp_model.get_piece_size()
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
_UpperCamelCase : Optional[int] = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : int ):
'''simple docstring'''
_UpperCamelCase : Optional[Any] = self.__dict__.copy()
_UpperCamelCase : Optional[Any] = None
return state
def __setstate__( self : List[Any] ,lowerCamelCase__ : Optional[int] ):
'''simple docstring'''
_UpperCamelCase : Optional[int] = d
# for backward compatibility
if not hasattr(self ,'sp_model_kwargs' ):
_UpperCamelCase : int = {}
_UpperCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : str ):
'''simple docstring'''
return self.sp_model.encode(lowerCamelCase__ ,out_type=lowerCamelCase__ )
def UpperCamelCase_ ( self : str ,lowerCamelCase__ : List[str] ):
'''simple docstring'''
return self.sp_model.piece_to_id(lowerCamelCase__ )
def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : int ):
'''simple docstring'''
_UpperCamelCase : Any = self.sp_model.IdToPiece(lowerCamelCase__ )
return token
def UpperCamelCase_ ( self : int ,lowerCamelCase__ : str ):
'''simple docstring'''
_UpperCamelCase : Optional[Any] = []
_UpperCamelCase : Dict = ''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(lowerCamelCase__ ) + token
_UpperCamelCase : int = []
else:
current_sub_tokens.append(lowerCamelCase__ )
out_string += self.sp_model.decode(lowerCamelCase__ )
return out_string.strip()
def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(lowerCamelCase__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
_UpperCamelCase : Dict = os.path.join(
lowerCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file ,lowerCamelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCamelCase__ ,'wb' ) as fi:
_UpperCamelCase : int = self.sp_model.serialized_model_proto()
fi.write(lowerCamelCase__ )
return (out_vocab_file,)
| 83 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
_SCREAMING_SNAKE_CASE = namedtuple("""covid_data""", """cases deaths recovered""")
def SCREAMING_SNAKE_CASE__ ( __a = "https://www.worldometers.info/coronavirus/" ):
snake_case_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) )
_SCREAMING_SNAKE_CASE = """Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}"""
print(fmt.format(*covid_stats()))
| 327 | 0 |
"""simple docstring"""
from collections import Counter
from pathlib import Path
from typing import Optional, Tuple
import yaml
class _SCREAMING_SNAKE_CASE ( yaml.SafeLoader ):
def __lowerCAmelCase ( self , __A ) -> Optional[int]:
lowerCAmelCase_ :Dict = [self.constructed_objects[key_node] for key_node, _ in node.value]
lowerCAmelCase_ :Optional[int] = [tuple(__A ) if isinstance(__A , __A ) else key for key in keys]
lowerCAmelCase_ :List[Any] = Counter(__A )
lowerCAmelCase_ :List[str] = [key for key in counter if counter[key] > 1]
if duplicate_keys:
raise TypeError(f"""Got duplicate yaml keys: {duplicate_keys}""" )
def __lowerCAmelCase ( self , __A , __A=False ) -> Optional[Any]:
lowerCAmelCase_ :Union[str, Any] = super().construct_mapping(__A , deep=__A )
self._check_no_duplicates_on_constructed_node(__A )
return mapping
def _snake_case ( lowercase__ : str ) -> Tuple[Optional[str], str]:
'''simple docstring'''
lowerCAmelCase_ :List[Any] = list(readme_content.splitlines() )
if full_content and full_content[0] == "---" and "---" in full_content[1:]:
lowerCAmelCase_ :Optional[Any] = full_content[1:].index("""---""" ) + 1
lowerCAmelCase_ :List[Any] = """\n""".join(full_content[1:sep_idx] )
return yamlblock, "\n".join(full_content[sep_idx + 1 :] )
return None, "\n".join(lowercase__ )
class _SCREAMING_SNAKE_CASE ( A__ ):
# class attributes
UpperCAmelCase_ :Union[str, Any] = {"train_eval_index"} # train-eval-index in the YAML metadata
@classmethod
def __lowerCAmelCase ( cls , __A ) -> "DatasetMetadata":
with open(__A , encoding="""utf-8""" ) as readme_file:
lowerCAmelCase_ , lowerCAmelCase_ :Tuple = _split_yaml_from_readme(readme_file.read() )
if yaml_string is not None:
return cls.from_yaml_string(__A )
else:
return cls()
def __lowerCAmelCase ( self , __A ) -> List[Any]:
if path.exists():
with open(__A , encoding="""utf-8""" ) as readme_file:
lowerCAmelCase_ :List[str] = readme_file.read()
else:
lowerCAmelCase_ :str = None
lowerCAmelCase_ :Optional[Any] = self._to_readme(__A )
with open(__A , """w""" , encoding="""utf-8""" ) as readme_file:
readme_file.write(__A )
def __lowerCAmelCase ( self , __A = None ) -> str:
if readme_content is not None:
lowerCAmelCase_ , lowerCAmelCase_ :List[str] = _split_yaml_from_readme(__A )
lowerCAmelCase_ :Optional[int] = """---\n""" + self.to_yaml_string() + """---\n""" + content
else:
lowerCAmelCase_ :int = """---\n""" + self.to_yaml_string() + """---\n"""
return full_content
@classmethod
def __lowerCAmelCase ( cls , __A ) -> "DatasetMetadata":
lowerCAmelCase_ :int = yaml.load(__A , Loader=_NoDuplicateSafeLoader ) or {}
# Convert the YAML keys to DatasetMetadata fields
lowerCAmelCase_ :Tuple = {
(key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value
for key, value in metadata_dict.items()
}
return cls(**__A )
def __lowerCAmelCase ( self ) -> str:
return yaml.safe_dump(
{
(key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value
for key, value in self.items()
} , sort_keys=__A , allow_unicode=__A , encoding="""utf-8""" , ).decode("""utf-8""" )
__UpperCAmelCase = {
'image-classification': [],
'translation': [],
'image-segmentation': [],
'fill-mask': [],
'automatic-speech-recognition': [],
'token-classification': [],
'sentence-similarity': [],
'audio-classification': [],
'question-answering': [],
'summarization': [],
'zero-shot-classification': [],
'table-to-text': [],
'feature-extraction': [],
'other': [],
'multiple-choice': [],
'text-classification': [],
'text-to-image': [],
'text2text-generation': [],
'zero-shot-image-classification': [],
'tabular-classification': [],
'tabular-regression': [],
'image-to-image': [],
'tabular-to-text': [],
'unconditional-image-generation': [],
'text-retrieval': [],
'text-to-speech': [],
'object-detection': [],
'audio-to-audio': [],
'text-generation': [],
'conversational': [],
'table-question-answering': [],
'visual-question-answering': [],
'image-to-text': [],
'reinforcement-learning': [],
'voice-activity-detection': [],
'time-series-forecasting': [],
'document-question-answering': [],
}
if __name__ == "__main__":
from argparse import ArgumentParser
__UpperCAmelCase = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.')
ap.add_argument('readme_filepath')
__UpperCAmelCase = ap.parse_args()
__UpperCAmelCase = Path(args.readme_filepath)
__UpperCAmelCase = DatasetMetadata.from_readme(readme_filepath)
print(dataset_metadata)
dataset_metadata.to_readme(readme_filepath)
| 84 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_lxmert import LxmertTokenizer
_SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_SCREAMING_SNAKE_CASE = {
"""vocab_file""": {
"""unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""",
},
"""tokenizer_file""": {
"""unc-nlp/lxmert-base-uncased""": (
"""https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json"""
),
},
}
_SCREAMING_SNAKE_CASE = {
"""unc-nlp/lxmert-base-uncased""": 5_12,
}
_SCREAMING_SNAKE_CASE = {
"""unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True},
}
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
__magic_name__: List[Any] = VOCAB_FILES_NAMES
__magic_name__: List[str] = PRETRAINED_VOCAB_FILES_MAP
__magic_name__: List[str] = PRETRAINED_INIT_CONFIGURATION
__magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__: Union[str, Any] = LxmertTokenizer
def __init__( self : List[str] , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=True , _A : Dict="[UNK]" , _A : Optional[int]="[SEP]" , _A : Dict="[PAD]" , _A : Union[str, Any]="[CLS]" , _A : str="[MASK]" , _A : Tuple=True , _A : Dict=None , **_A : List[Any] , ) -> Optional[int]:
"""simple docstring"""
super().__init__(
_A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , )
snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _A ) != do_lower_case
or normalizer_state.get('strip_accents' , _A ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars
):
snake_case_ : Tuple = getattr(_A , normalizer_state.pop('type' ) )
snake_case_ : Union[str, Any] = do_lower_case
snake_case_ : int = strip_accents
snake_case_ : Optional[Any] = tokenize_chinese_chars
snake_case_ : List[Any] = normalizer_class(**_A )
snake_case_ : Tuple = do_lower_case
def UpperCAmelCase_ ( self : Dict , _A : Any , _A : List[Any]=None ) -> Dict:
"""simple docstring"""
snake_case_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase_ ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
snake_case_ : str = [self.sep_token_id]
snake_case_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A )
return tuple(_A )
| 327 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
_SCREAMING_SNAKE_CASE : Tuple = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE : Tuple = ["GPTNeoXTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE : Optional[int] = [
"GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTNeoXForCausalLM",
"GPTNeoXForQuestionAnswering",
"GPTNeoXForSequenceClassification",
"GPTNeoXForTokenClassification",
"GPTNeoXLayer",
"GPTNeoXModel",
"GPTNeoXPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox import (
GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXLayer,
GPTNeoXModel,
GPTNeoXPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 85 |
def SCREAMING_SNAKE_CASE__ ( __a ):
if not isinstance(__a , __a ):
snake_case_ : int = f"""Input value of [number={number}] must be an integer"""
raise TypeError(__a )
if number < 0:
return False
snake_case_ : Dict = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCamelCase__ = {
"""configuration_longformer""": [
"""LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""LongformerConfig""",
"""LongformerOnnxConfig""",
],
"""tokenization_longformer""": ["""LongformerTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["""LongformerTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""LongformerForMaskedLM""",
"""LongformerForMultipleChoice""",
"""LongformerForQuestionAnswering""",
"""LongformerForSequenceClassification""",
"""LongformerForTokenClassification""",
"""LongformerModel""",
"""LongformerPreTrainedModel""",
"""LongformerSelfAttention""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFLongformerForMaskedLM""",
"""TFLongformerForMultipleChoice""",
"""TFLongformerForQuestionAnswering""",
"""TFLongformerForSequenceClassification""",
"""TFLongformerForTokenClassification""",
"""TFLongformerModel""",
"""TFLongformerPreTrainedModel""",
"""TFLongformerSelfAttention""",
]
if TYPE_CHECKING:
from .configuration_longformer import (
LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
LongformerConfig,
LongformerOnnxConfig,
)
from .tokenization_longformer import LongformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_longformer_fast import LongformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longformer import (
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
LongformerForMaskedLM,
LongformerForMultipleChoice,
LongformerForQuestionAnswering,
LongformerForSequenceClassification,
LongformerForTokenClassification,
LongformerModel,
LongformerPreTrainedModel,
LongformerSelfAttention,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_longformer import (
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLongformerForMaskedLM,
TFLongformerForMultipleChoice,
TFLongformerForQuestionAnswering,
TFLongformerForSequenceClassification,
TFLongformerForTokenClassification,
TFLongformerModel,
TFLongformerPreTrainedModel,
TFLongformerSelfAttention,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 86 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_SCREAMING_SNAKE_CASE = {
"""configuration_autoformer""": [
"""AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AutoformerConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"""AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AutoformerForPrediction""",
"""AutoformerModel""",
"""AutoformerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 327 | 0 |
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
UpperCamelCase = pd.read_csv('''sample_data.csv''', header=None)
UpperCamelCase = df.shape[:1][0]
# If you're using some other dataset input the target column
UpperCamelCase = df.iloc[:, 1:2]
UpperCamelCase = actual_data.values.reshape(len_data, 1)
UpperCamelCase = MinMaxScaler().fit_transform(actual_data)
UpperCamelCase = 10
UpperCamelCase = 5
UpperCamelCase = 20
UpperCamelCase = len_data - periods * look_back
UpperCamelCase = actual_data[:division]
UpperCamelCase = actual_data[division - look_back :]
UpperCamelCase , UpperCamelCase = [], []
UpperCamelCase , UpperCamelCase = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
UpperCamelCase = np.array(train_x)
UpperCamelCase = np.array(test_x)
UpperCamelCase = np.array([list(i.ravel()) for i in train_y])
UpperCamelCase = np.array([list(i.ravel()) for i in test_y])
UpperCamelCase = Sequential()
model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(128, 1)))
model.add(Dense(forward_days))
model.compile(loss='''mean_squared_error''', optimizer='''adam''')
UpperCamelCase = model.fit(
x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4
)
UpperCamelCase = model.predict(x_test)
| 87 |
from typing import Dict
from .base import GenericTensor, Pipeline
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
def UpperCAmelCase_ ( self : str , _A : Optional[Any]=None , _A : List[str]=None , _A : Optional[Any]=None , **_A : List[str] ) -> Any:
"""simple docstring"""
if tokenize_kwargs is None:
snake_case_ : Optional[Any] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
snake_case_ : int = truncation
snake_case_ : Optional[int] = tokenize_kwargs
snake_case_ : Dict = {}
if return_tensors is not None:
snake_case_ : Union[str, Any] = return_tensors
return preprocess_params, {}, postprocess_params
def UpperCAmelCase_ ( self : Optional[int] , _A : int , **_A : Any ) -> Dict[str, GenericTensor]:
"""simple docstring"""
snake_case_ : Dict = self.framework
snake_case_ : Any = self.tokenizer(_A , return_tensors=_A , **_A )
return model_inputs
def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] ) -> int:
"""simple docstring"""
snake_case_ : Tuple = self.model(**_A )
return model_outputs
def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str=False ) -> Any:
"""simple docstring"""
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> List[str]:
"""simple docstring"""
return super().__call__(*_A , **_A )
| 327 | 0 |
import math
import os
import sys
def a__ ( A_ ):
'''simple docstring'''
__magic_name__ = """"""
try:
with open(A_, """rb""" ) as binary_file:
__magic_name__ = binary_file.read()
for dat in data:
__magic_name__ = f'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print("""File not accessible""" )
sys.exit()
def a__ ( A_, A_, A_, A_ ):
'''simple docstring'''
lexicon.pop(A_ )
__magic_name__ = last_match_id
if math.loga(A_ ).is_integer():
for curr_key in lexicon:
__magic_name__ = """0""" + lexicon[curr_key]
__magic_name__ = bin(A_ )[2:]
def a__ ( A_ ):
'''simple docstring'''
__magic_name__ = {"""0""": """0""", """1""": """1"""}
__magic_name__ , __magic_name__ = """""", """"""
__magic_name__ = len(A_ )
for i in range(len(A_ ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
__magic_name__ = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(A_, A_, A_, A_ )
index += 1
__magic_name__ = """"""
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
__magic_name__ = lexicon[curr_string]
result += last_match_id
return result
def a__ ( A_, A_ ):
'''simple docstring'''
__magic_name__ = os.path.getsize(A_ )
__magic_name__ = bin(A_ )[2:]
__magic_name__ = len(A_ )
return "0" * (length_length - 1) + file_length_binary + compressed
def a__ ( A_, A_ ):
'''simple docstring'''
__magic_name__ = 8
try:
with open(A_, """wb""" ) as opened_file:
__magic_name__ = [
to_write[i : i + byte_length]
for i in range(0, len(A_ ), A_ )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append("""10000000""" )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(A_, 2 ).to_bytes(1, byteorder="""big""" ) )
except OSError:
print("""File not accessible""" )
sys.exit()
def a__ ( A_, A_ ):
'''simple docstring'''
__magic_name__ = read_file_binary(A_ )
__magic_name__ = compress_data(A_ )
__magic_name__ = add_file_length(A_, A_ )
write_file_binary(A_, A_ )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 88 |
from itertools import permutations
def SCREAMING_SNAKE_CASE__ ( __a ):
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
snake_case_ : Any = [7, 11, 13, 17]
for i, test in enumerate(__a ):
if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def SCREAMING_SNAKE_CASE__ ( __a = 10 ):
return sum(
int(''.join(map(__a , __a ) ) )
for num in permutations(range(__a ) )
if is_substring_divisible(__a ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 327 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowerCAmelCase = {
'''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''LiltForQuestionAnswering''',
'''LiltForSequenceClassification''',
'''LiltForTokenClassification''',
'''LiltModel''',
'''LiltPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lilt import (
LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
LiltPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 89 |
from __future__ import annotations
from collections import namedtuple
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ):
snake_case_ : Any = namedtuple('result' , 'name value' )
if (voltage, current, power).count(0 ) != 1:
raise ValueError('Only one argument must be 0' )
elif power < 0:
raise ValueError(
'Power cannot be negative in any electrical/electronics system' )
elif voltage == 0:
return result('voltage' , power / current )
elif current == 0:
return result('current' , power / voltage )
elif power == 0:
return result('power' , float(round(abs(voltage * current ) , 2 ) ) )
else:
raise ValueError('Exactly one argument must be 0' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
import unittest
from transformers import DebertaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
)
from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__="None" , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , ) -> int:
'''simple docstring'''
__lowerCamelCase = parent
__lowerCamelCase = batch_size
__lowerCamelCase = seq_length
__lowerCamelCase = is_training
__lowerCamelCase = use_input_mask
__lowerCamelCase = use_token_type_ids
__lowerCamelCase = use_labels
__lowerCamelCase = vocab_size
__lowerCamelCase = hidden_size
__lowerCamelCase = num_hidden_layers
__lowerCamelCase = num_attention_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = type_vocab_size
__lowerCamelCase = type_sequence_label_size
__lowerCamelCase = initializer_range
__lowerCamelCase = num_labels
__lowerCamelCase = num_choices
__lowerCamelCase = relative_attention
__lowerCamelCase = position_biased_input
__lowerCamelCase = pos_att_type
__lowerCamelCase = scope
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCamelCase = None
if self.use_input_mask:
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
__lowerCamelCase = None
if self.use_token_type_ids:
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCamelCase = None
__lowerCamelCase = None
__lowerCamelCase = None
if self.use_labels:
__lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices )
__lowerCamelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
return DebertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , )
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = self.get_config()
__lowerCamelCase = 300
return config
def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
self.parent.assertListEqual(list(result.loss.size() ) , [] )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
'''simple docstring'''
__lowerCamelCase = DebertaModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ )[0]
__lowerCamelCase = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ )[0]
__lowerCamelCase = model(lowerCamelCase__ )[0]
self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = DebertaForMaskedLM(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = self.num_labels
__lowerCamelCase = DebertaForSequenceClassification(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] )
self.check_loss_output(lowerCamelCase__ )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase = self.num_labels
__lowerCamelCase = DebertaForTokenClassification(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict:
'''simple docstring'''
__lowerCamelCase = DebertaForQuestionAnswering(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__lowerCamelCase = model(
lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
__lowerCamelCase = self.prepare_config_and_inputs()
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) = config_and_inputs
__lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = (
(
DebertaModel,
DebertaForMaskedLM,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaForQuestionAnswering,
)
if is_torch_available()
else ()
)
snake_case_ = (
{
'''feature-extraction''': DebertaModel,
'''fill-mask''': DebertaForMaskedLM,
'''question-answering''': DebertaForQuestionAnswering,
'''text-classification''': DebertaForSequenceClassification,
'''token-classification''': DebertaForTokenClassification,
'''zero-shot''': DebertaForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case_ = True
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def lowercase_ ( self ) -> List[Any]:
'''simple docstring'''
__lowerCamelCase = DebertaModelTester(self )
__lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase_ ( self ) -> List[str]:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_model(*lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCamelCase__ )
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCamelCase__ )
def lowercase_ ( self ) -> Optional[Any]:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_question_answering(*lowerCamelCase__ )
def lowercase_ ( self ) -> str:
'''simple docstring'''
__lowerCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_deberta_for_token_classification(*lowerCamelCase__ )
@slow
def lowercase_ ( self ) -> Optional[int]:
'''simple docstring'''
for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowerCamelCase = DebertaModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@unittest.skip(reason='Model not available yet' )
def lowercase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
pass
@slow
def lowercase_ ( self ) -> Tuple:
'''simple docstring'''
__lowerCamelCase = DebertaModel.from_pretrained('microsoft/deberta-base' )
__lowerCamelCase = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] )
__lowerCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowerCamelCase = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )[0]
# compare the actual values for a slice.
__lowerCamelCase = torch.tensor(
[[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCamelCase__ , atol=1e-4 ) , f"""{output[:, 1:4, 1:4]}""" )
| 90 |
import re
import string
import numpy as np
import datasets
_SCREAMING_SNAKE_CASE = """
Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.
"""
_SCREAMING_SNAKE_CASE = """
Args:
predictions: List of predicted texts.
references: List of reference texts.
regexes_to_ignore: List, defaults to None. Regex expressions of characters to
ignore when calculating the exact matches. Note: these regexes are removed
from the input data before the changes based on the options below (e.g. ignore_case,
ignore_punctuation, ignore_numbers) are applied.
ignore_case: Boolean, defaults to False. If true, turns everything
to lowercase so that capitalization differences are ignored.
ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before
comparing predictions and references.
Returns:
exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.
Examples:
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results[\"exact_match\"], 1))
25.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results[\"exact_match\"], 1))
50.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)
>>> print(round(results[\"exact_match\"], 1))
75.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]
>>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)
>>> print(round(results[\"exact_match\"], 1))
100.0
>>> exact_match = datasets.load_metric(\"exact_match\")
>>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]
>>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]
>>> results = exact_match.compute(references=refs, predictions=preds)
>>> print(round(results[\"exact_match\"], 1))
33.3
"""
_SCREAMING_SNAKE_CASE = """
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE_ ( datasets.Metric ):
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , reference_urls=[] , )
def UpperCAmelCase_ ( self : int , _A : Tuple , _A : Tuple , _A : str=None , _A : Dict=False , _A : Tuple=False , _A : str=False , ) -> Tuple:
"""simple docstring"""
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
snake_case_ : List[Any] = np.array([re.sub(_A , '' , _A ) for x in predictions] )
snake_case_ : Optional[Any] = np.array([re.sub(_A , '' , _A ) for x in references] )
else:
snake_case_ : Dict = np.asarray(_A )
snake_case_ : Tuple = np.asarray(_A )
if ignore_case:
snake_case_ : List[str] = np.char.lower(_A )
snake_case_ : Any = np.char.lower(_A )
if ignore_punctuation:
snake_case_ : int = string.punctuation.maketrans('' , '' , string.punctuation )
snake_case_ : Tuple = np.char.translate(_A , table=_A )
snake_case_ : str = np.char.translate(_A , table=_A )
if ignore_numbers:
snake_case_ : Optional[int] = string.digits.maketrans('' , '' , string.digits )
snake_case_ : str = np.char.translate(_A , table=_A )
snake_case_ : Union[str, Any] = np.char.translate(_A , table=_A )
snake_case_ : int = predictions == references
return {"exact_match": np.mean(_A ) * 100}
| 327 | 0 |
"""simple docstring"""
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = ["image_processor", "tokenizer"]
__UpperCamelCase = "Pix2StructImageProcessor"
__UpperCamelCase = ("T5Tokenizer", "T5TokenizerFast")
def __init__( self : Any , lowercase_ : Dict , lowercase_ : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = False
super().__init__(lowercase_ , lowercase_)
def __call__( self : Dict , lowercase_ : Optional[int]=None , lowercase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase_ : bool = True , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Union[bool, str, TruncationStrategy] = None , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = 2048 , lowercase_ : int = 0 , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = True , lowercase_ : Optional[Union[str, TensorType]] = None , **lowercase_ : List[str] , ):
'''simple docstring'''
if images is None and text is None:
raise ValueError('''You have to specify either images or text.''')
# Get only text
if images is None and not self.image_processor.is_vqa:
SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer
SCREAMING_SNAKE_CASE_ : List[Any] = self.tokenizer(
text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , )
return text_encoding
if not self.image_processor.is_vqa:
# add pixel_values
SCREAMING_SNAKE_CASE_ : Any = self.image_processor(
lowercase_ , return_tensors=lowercase_ , max_patches=lowercase_ , **lowercase_)
else:
# add pixel_values and bbox
SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processor(
lowercase_ , return_tensors=lowercase_ , max_patches=lowercase_ , header_text=lowercase_ , **lowercase_)
if text is not None and not self.image_processor.is_vqa:
SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer(
text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , )
if "attention_mask" in text_encoding:
SCREAMING_SNAKE_CASE_ : List[Any] = text_encoding.pop('''attention_mask''')
if "input_ids" in text_encoding:
SCREAMING_SNAKE_CASE_ : Dict = text_encoding.pop('''input_ids''')
else:
SCREAMING_SNAKE_CASE_ : str = None
if text_encoding is not None:
encoding_image_processor.update(lowercase_)
return encoding_image_processor
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , *lowercase_ : str , **lowercase_ : List[str]):
'''simple docstring'''
return self.tokenizer.batch_decode(*lowercase_ , **lowercase_)
def _SCREAMING_SNAKE_CASE ( self : List[str] , *lowercase_ : List[Any] , **lowercase_ : Any):
'''simple docstring'''
return self.tokenizer.decode(*lowercase_ , **lowercase_)
@property
def _SCREAMING_SNAKE_CASE ( self : str):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : int = self.tokenizer.model_input_names
SCREAMING_SNAKE_CASE_ : List[str] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
| 91 |
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class SCREAMING_SNAKE_CASE_ :
def __init__( self : List[Any] , _A : Optional[Any] , _A : Dict=13 , _A : Union[str, Any]=30 , _A : Tuple=2 , _A : Union[str, Any]=3 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : str=32 , _A : int=2 , _A : List[str]=4 , _A : List[str]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=10 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=3 , _A : str=0.6 , _A : Union[str, Any]=None , ) -> Any:
"""simple docstring"""
snake_case_ : Optional[int] = parent
snake_case_ : Tuple = batch_size
snake_case_ : List[Any] = image_size
snake_case_ : List[str] = patch_size
snake_case_ : List[str] = num_channels
snake_case_ : Optional[Any] = is_training
snake_case_ : Any = use_labels
snake_case_ : Tuple = hidden_size
snake_case_ : Union[str, Any] = num_hidden_layers
snake_case_ : List[Any] = num_attention_heads
snake_case_ : Optional[Any] = intermediate_size
snake_case_ : List[Any] = hidden_act
snake_case_ : Union[str, Any] = hidden_dropout_prob
snake_case_ : Any = attention_probs_dropout_prob
snake_case_ : Tuple = type_sequence_label_size
snake_case_ : List[str] = initializer_range
snake_case_ : Optional[Any] = mask_ratio
snake_case_ : Any = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
snake_case_ : Optional[int] = (image_size // patch_size) ** 2
snake_case_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ : Union[str, Any] = None
if self.use_labels:
snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase_ ( self : int ) -> Optional[Any]:
"""simple docstring"""
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : Dict , _A : str ) -> Dict:
"""simple docstring"""
snake_case_ : Union[str, Any] = TFViTMAEModel(config=_A )
snake_case_ : str = model(_A , training=_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : Any , _A : List[Any] ) -> int:
"""simple docstring"""
snake_case_ : Any = TFViTMAEForPreTraining(_A )
snake_case_ : Optional[Any] = model(_A , training=_A )
# expected sequence length = num_patches
snake_case_ : List[str] = (self.image_size // self.patch_size) ** 2
snake_case_ : Optional[Any] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
snake_case_ : str = 1
snake_case_ : Dict = TFViTMAEForPreTraining(_A )
snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case_ : List[str] = model(_A , training=_A )
snake_case_ : Optional[Any] = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
snake_case_ : List[Any] = self.prepare_config_and_inputs()
((snake_case_) ,(snake_case_) ,(snake_case_)) : Any = config_and_inputs
snake_case_ : Optional[Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ):
__magic_name__: List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
__magic_name__: str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {}
__magic_name__: Dict = False
__magic_name__: Dict = False
__magic_name__: List[Any] = False
__magic_name__: Dict = False
def UpperCAmelCase_ ( self : Any ) -> List[Any]:
"""simple docstring"""
snake_case_ : List[Any] = TFViTMAEModelTester(self )
snake_case_ : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 )
def UpperCAmelCase_ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='ViTMAE does not use inputs_embeds' )
def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ ,snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : List[Any] = model_class(_A )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
snake_case_ : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) )
def UpperCAmelCase_ ( self : List[str] ) -> Dict:
"""simple docstring"""
snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : List[str] = model_class(_A )
snake_case_ : Any = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ : Dict = [*signature.parameters.keys()]
snake_case_ : Dict = ['pixel_values']
self.assertListEqual(arg_names[:1] , _A )
def UpperCAmelCase_ ( self : Dict ) -> List[str]:
"""simple docstring"""
snake_case_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def UpperCAmelCase_ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
snake_case_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_A )
def UpperCAmelCase_ ( self : Tuple ) -> Dict:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
snake_case_ : Optional[Any] = model_class(_A )
snake_case_ : Union[str, Any] = self._prepare_for_class(_A , _A )
snake_case_ : List[str] = model(_A , noise=_A )
snake_case_ : Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) )
snake_case_ : str = model(**_A , noise=_A )
snake_case_ : Union[str, Any] = outputs_dict[0].numpy()
snake_case_ : Optional[Any] = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 )
def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Tuple = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(_A : int ):
snake_case_ : Any = {}
for k, v in inputs_dict.items():
if tf.is_tensor(_A ):
snake_case_ : str = v.numpy()
else:
snake_case_ : Optional[Any] = np.array(_A )
return inputs_np_dict
for model_class in self.all_model_classes:
snake_case_ : int = model_class(_A )
snake_case_ : List[Any] = self._prepare_for_class(_A , _A )
snake_case_ : Any = prepare_numpy_arrays(_A )
snake_case_ : List[Any] = model(_A , noise=_A )
snake_case_ : List[Any] = model(**_A , noise=_A )
self.assert_outputs_same(_A , _A )
def UpperCAmelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> List[str]:
"""simple docstring"""
np.random.seed(2 )
snake_case_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
snake_case_ : Optional[int] = tf.constant(_A )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
snake_case_ : Optional[Any] = tf_noise
super().check_pt_tf_models(_A , _A , _A )
def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : int = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(_A )
if module_member_name.endswith('MainLayer' )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )]
for module_member in (getattr(_A , _A ),)
if isinstance(_A , _A )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(_A , '_keras_serializable' , _A )
}
snake_case_ : List[Any] = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
snake_case_ : Optional[int] = tf.convert_to_tensor(_A )
inputs_dict.update({'noise': noise} )
for main_layer_class in tf_main_layer_classes:
snake_case_ : Optional[Any] = main_layer_class(_A )
snake_case_ : List[str] = {
name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
snake_case_ : Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) )
snake_case_ : int = model(_A )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : List[Any] = os.path.join(_A , 'keras_model.h5' )
model.save(_A )
snake_case_ : str = tf.keras.models.load_model(
_A , custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(_A , tf.keras.Model )
snake_case_ : List[str] = model(_A )
self.assert_outputs_same(_A , _A )
@slow
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : int = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
snake_case_ : Optional[Any] = model_class(_A )
snake_case_ : Optional[Any] = self._prepare_for_class(_A , _A )
snake_case_ : int = model(_A , noise=_A )
if model_class.__name__ == "TFViTMAEModel":
snake_case_ : Any = outputs.last_hidden_state.numpy()
snake_case_ : Optional[int] = 0
else:
snake_case_ : str = outputs.logits.numpy()
snake_case_ : Optional[Any] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A , saved_model=_A )
snake_case_ : Any = model_class.from_pretrained(_A )
snake_case_ : Any = model(_A , noise=_A )
if model_class.__name__ == "TFViTMAEModel":
snake_case_ : Dict = after_outputs['last_hidden_state'].numpy()
snake_case_ : Dict = 0
else:
snake_case_ : Any = after_outputs['logits'].numpy()
snake_case_ : Optional[Any] = 0
snake_case_ : Any = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_A , 1E-5 )
def UpperCAmelCase_ ( self : Any ) -> str:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
snake_case_ : str = model_class(_A )
snake_case_ : int = self._prepare_for_class(_A , _A )
snake_case_ : str = model(_A , noise=_A )
snake_case_ : Dict = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(_A )
snake_case_ : Any = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
snake_case_ : str = model_class.from_config(model.config )
snake_case_ : Union[str, Any] = new_model(_A ) # Build model
new_model.set_weights(model.get_weights() )
snake_case_ : List[str] = new_model(_A , noise=_A )
self.assert_outputs_same(_A , _A )
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' )
def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
pass
@unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' )
def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
pass
@slow
def UpperCAmelCase_ ( self : Tuple ) -> Tuple:
"""simple docstring"""
snake_case_ : Optional[Any] = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' )
self.assertIsNotNone(_A )
def SCREAMING_SNAKE_CASE__ ( ):
snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
@cached_property
def UpperCAmelCase_ ( self : str ) -> Dict:
"""simple docstring"""
return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None
@slow
def UpperCAmelCase_ ( self : str ) -> Dict:
"""simple docstring"""
np.random.seed(2 )
snake_case_ : List[str] = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' )
snake_case_ : List[Any] = self.default_image_processor
snake_case_ : Dict = prepare_img()
snake_case_ : Optional[Any] = image_processor(images=_A , return_tensors='tf' )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
snake_case_ : int = ViTMAEConfig()
snake_case_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
snake_case_ : List[Any] = np.random.uniform(size=(1, num_patches) )
# forward pass
snake_case_ : Optional[Any] = model(**_A , noise=_A )
# verify the logits
snake_case_ : Optional[int] = tf.convert_to_tensor([1, 196, 768] )
self.assertEqual(outputs.logits.shape , _A )
snake_case_ : Any = tf.convert_to_tensor(
[[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
| 327 | 0 |
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
UpperCamelCase__ = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class a__ ( snake_case__ ):
_a : bool = field(default=snake_case__ , metadata={"""help""": """Whether to use SortishSampler or not."""} )
_a : bool = field(
default=snake_case__ , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} )
_a : Optional[int] = field(
default=snake_case__ , metadata={
"""help""": (
"""The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `max_length` value of the model configuration."""
)
} , )
_a : Optional[int] = field(
default=snake_case__ , metadata={
"""help""": (
"""The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `num_beams` value of the model configuration."""
)
} , )
_a : Optional[Union[str, Path, GenerationConfig]] = field(
default=snake_case__ , metadata={
"""help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction."""
} , )
def __SCREAMING_SNAKE_CASE( self ):
"""simple docstring"""
__lowerCAmelCase = super().to_dict()
for k, v in d.items():
if isinstance(_A , _A ):
__lowerCAmelCase = v.to_dict()
return d
| 92 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
snake_case_ : list[list[int]] = []
snake_case_ : list[int] = []
snake_case_ : List[Any] = 0
snake_case_ : Union[str, Any] = sum(__a )
create_state_space_tree(__a , __a , __a , __a , __a , __a )
return result
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ):
if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum:
return
if sum(__a ) == max_sum:
result.append(__a )
return
for index in range(__a , len(__a ) ):
create_state_space_tree(
__a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , )
_SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2]
_SCREAMING_SNAKE_CASE = 9
_SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 327 | 0 |
'''simple docstring'''
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
_lowercase : Optional[Any] = ["small", "medium", "large"]
_lowercase : Any = "lm_head.decoder.weight"
_lowercase : List[str] = "lm_head.weight"
def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
lowercase_ : Union[str, Any] = torch.load(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = d.pop(__SCREAMING_SNAKE_CASE )
os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE )
torch.save(__SCREAMING_SNAKE_CASE , os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
_lowercase : Dict = argparse.ArgumentParser()
parser.add_argument("--dialogpt_path", default=".", type=str)
_lowercase : List[Any] = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
_lowercase : Optional[int] = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""")
_lowercase : Optional[Any] = f"""./DialoGPT-{MODEL}"""
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 93 |
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
if density <= 0:
raise ValueError('Impossible fluid density' )
if bulk_modulus <= 0:
raise ValueError('Impossible bulk modulus' )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def __lowerCamelCase ( UpperCAmelCase_ : ndarray ):
"""simple docstring"""
return np.dot(UpperCAmelCase_ , UpperCAmelCase_ )
class _snake_case :
def __init__( self , *,
_lowerCamelCase = np.inf , _lowerCamelCase = "linear" , _lowerCamelCase = 0.0 , ):
a :List[str] = regularization
a :Optional[Any] = gamma
if kernel == "linear":
a :Optional[Any] = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('''rbf kernel requires gamma''' )
if not isinstance(self.gamma , (float, int) ):
raise ValueError('''gamma must be float or int''' )
if not self.gamma > 0:
raise ValueError('''gamma must be > 0''' )
a :List[Any] = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
a :Dict = F'''Unknown kernel: {kernel}'''
raise ValueError(_lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ):
return np.dot(_lowerCamelCase , _lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ):
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ):
a :str = observations
a :Any = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((a) , ) :Tuple = np.shape(_lowerCamelCase )
def to_minimize(_lowerCamelCase ) -> float:
a :Union[str, Any] = 0
((a) , ) :Tuple = np.shape(_lowerCamelCase )
for i in range(_lowerCamelCase ):
for j in range(_lowerCamelCase ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i] , observations[j] )
)
return 1 / 2 * s - sum(_lowerCamelCase )
a :str = LinearConstraint(_lowerCamelCase , 0 , 0 )
a :Tuple = Bounds(0 , self.regularization )
a :List[str] = minimize(
_lowerCamelCase , np.ones(_lowerCamelCase ) , bounds=_lowerCamelCase , constraints=[ly_contraint] ).x
a :str = l_star
# calculating mean offset of separation plane to points
a :Tuple = 0
for i in range(_lowerCamelCase ):
for j in range(_lowerCamelCase ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i] , observations[j] )
a :Optional[Any] = s / n
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
a :List[str] = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n] , _lowerCamelCase )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 94 |
from math import pi
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
return 2 * pi * radius * (angle / 3_60)
if __name__ == "__main__":
print(arc_length(90, 10))
| 327 | 0 |
import os
from datetime import datetime as dt
from github import Github
UpperCAmelCase : str = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""enhancement""",
"""new pipeline/model""",
"""new scheduler""",
"""wip""",
]
def _A ( ):
"""simple docstring"""
a__ : Tuple =Github(os.environ["GITHUB_TOKEN"] )
a__ : int =g.get_repo("huggingface/diffusers" )
a__ : int =repo.get_issues(state="open" )
for issue in open_issues:
a__ : int =sorted(issue.get_comments() , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=SCREAMING_SNAKE_CASE )
a__ : Tuple =comments[0] if len(SCREAMING_SNAKE_CASE ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="closed" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="open" )
issue.remove_from_labels("stale" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
issue.add_to_labels("stale" )
if __name__ == "__main__":
main()
| 95 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
__magic_name__: Optional[Any] = ["pixel_values"]
def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PIL.Image.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : str , ) -> None:
"""simple docstring"""
super().__init__(**_A )
snake_case_ : Dict = size if size is not None else {'height': 256, 'width': 256}
snake_case_ : Tuple = get_size_dict(_A )
snake_case_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224}
snake_case_ : int = get_size_dict(_A , param_name='crop_size' )
snake_case_ : Union[str, Any] = do_resize
snake_case_ : str = size
snake_case_ : List[str] = resample
snake_case_ : List[Any] = do_center_crop
snake_case_ : Dict = crop_size
snake_case_ : Tuple = do_rescale
snake_case_ : Optional[Any] = rescale_factor
snake_case_ : Any = do_normalize
snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
snake_case_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCAmelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray:
"""simple docstring"""
snake_case_ : Tuple = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return resize(
_A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray:
"""simple docstring"""
snake_case_ : Optional[int] = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A )
def UpperCAmelCase_ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> str:
"""simple docstring"""
return rescale(_A , scale=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray:
"""simple docstring"""
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self : List[str] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : Union[str, Any]=None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ) -> PIL.Image.Image:
"""simple docstring"""
snake_case_ : int = do_resize if do_resize is not None else self.do_resize
snake_case_ : str = resample if resample is not None else self.resample
snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop
snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale
snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor
snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize
snake_case_ : Any = image_mean if image_mean is not None else self.image_mean
snake_case_ : Dict = image_std if image_std is not None else self.image_std
snake_case_ : int = size if size is not None else self.size
snake_case_ : Optional[int] = get_size_dict(_A )
snake_case_ : int = crop_size if crop_size is not None else self.crop_size
snake_case_ : Any = get_size_dict(_A , param_name='crop_size' )
snake_case_ : Optional[Any] = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
snake_case_ : Optional[Any] = [to_numpy_array(_A ) for image in images]
if do_resize:
snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images]
if do_center_crop:
snake_case_ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images]
if do_rescale:
snake_case_ : Optional[int] = [self.rescale(image=_A , scale=_A ) for image in images]
if do_normalize:
snake_case_ : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images]
snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images]
snake_case_ : Tuple = {'pixel_values': images}
return BatchFeature(data=_A , tensor_type=_A )
| 327 | 0 |
"""simple docstring"""
import argparse
import hashlib # hashlib is only used inside the Test class
import struct
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , lowercase ):
_lowerCamelCase : Tuple = data
_lowerCamelCase : int = [0X67452301, 0XEFCDAB89, 0X98BADCFE, 0X10325476, 0XC3D2E1F0]
@staticmethod
def A_ ( lowercase , lowercase ):
return ((n << b) | (n >> (32 - b))) & 0XFFFFFFFF
def A_ ( self ):
_lowerCamelCase : List[str] = B'\x80' + B'\x00' * (63 - (len(self.data ) + 8) % 64)
_lowerCamelCase : Optional[int] = self.data + padding + struct.pack('>Q' , 8 * len(self.data ) )
return padded_data
def A_ ( self ):
return [
self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 )
]
def A_ ( self , lowercase ):
_lowerCamelCase : Union[str, Any] = list(struct.unpack('>16L' , lowercase ) ) + [0] * 64
for i in range(16 , 80 ):
_lowerCamelCase : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 )
return w
def A_ ( self ):
_lowerCamelCase : Any = self.padding()
_lowerCamelCase : str = self.split_blocks()
for block in self.blocks:
_lowerCamelCase : Union[str, Any] = self.expand_block(lowercase )
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self.h
for i in range(0 , 80 ):
if 0 <= i < 20:
_lowerCamelCase : Union[str, Any] = (b & c) | ((~b) & d)
_lowerCamelCase : Optional[Any] = 0X5A827999
elif 20 <= i < 40:
_lowerCamelCase : str = b ^ c ^ d
_lowerCamelCase : List[str] = 0X6ED9EBA1
elif 40 <= i < 60:
_lowerCamelCase : Any = (b & c) | (b & d) | (c & d)
_lowerCamelCase : Optional[Any] = 0X8F1BBCDC
elif 60 <= i < 80:
_lowerCamelCase : Union[str, Any] = b ^ c ^ d
_lowerCamelCase : List[str] = 0XCA62C1D6
_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = (
self.rotate(lowercase , 5 ) + f + e + k + expanded_block[i] & 0XFFFFFFFF,
a,
self.rotate(lowercase , 30 ),
c,
d,
)
_lowerCamelCase : Any = (
self.h[0] + a & 0XFFFFFFFF,
self.h[1] + b & 0XFFFFFFFF,
self.h[2] + c & 0XFFFFFFFF,
self.h[3] + d & 0XFFFFFFFF,
self.h[4] + e & 0XFFFFFFFF,
)
return ("{:08x}" * 5).format(*self.h )
def _snake_case ( ):
_lowerCamelCase : List[str] = B'Test String'
assert SHAaHash(lowercase__ ).final_hash() == hashlib.shaa(lowercase__ ).hexdigest() # noqa: S324
def _snake_case ( ):
_lowerCamelCase : Optional[int] = argparse.ArgumentParser(description='Process some strings or files' )
parser.add_argument(
'--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' )
_lowerCamelCase : Dict = parser.parse_args()
_lowerCamelCase : List[str] = args.input_string
# In any case hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
_lowerCamelCase : Optional[Any] = f.read()
else:
_lowerCamelCase : List[str] = bytes(lowercase__ , 'utf-8' )
print(SHAaHash(lowercase__ ).final_hash() )
if __name__ == "__main__":
main()
import doctest
doctest.testmod() | 96 |
import sys
_SCREAMING_SNAKE_CASE = (
"""73167176531330624919225119674426574742355349194934"""
"""96983520312774506326239578318016984801869478851843"""
"""85861560789112949495459501737958331952853208805511"""
"""12540698747158523863050715693290963295227443043557"""
"""66896648950445244523161731856403098711121722383113"""
"""62229893423380308135336276614282806444486645238749"""
"""30358907296290491560440772390713810515859307960866"""
"""70172427121883998797908792274921901699720888093776"""
"""65727333001053367881220235421809751254540594752243"""
"""52584907711670556013604839586446706324415722155397"""
"""53697817977846174064955149290862569321978468622482"""
"""83972241375657056057490261407972968652414535100474"""
"""82166370484403199890008895243450658541227588666881"""
"""16427171479924442928230863465674813919123162824586"""
"""17866458359124566529476545682848912883142607690042"""
"""24219022671055626321111109370544217506941658960408"""
"""07198403850962455444362981230987879927244284909188"""
"""84580156166097919133875499200524063689912560717606"""
"""05886116467109405077541002256983155200055935729725"""
"""71636269561882670428252483600823257530420752963450"""
)
def SCREAMING_SNAKE_CASE__ ( __a = N ):
snake_case_ : Optional[Any] = -sys.maxsize - 1
for i in range(len(__a ) - 12 ):
snake_case_ : Optional[Any] = 1
for j in range(13 ):
product *= int(n[i + j] )
if product > largest_product:
snake_case_ : int = product
return largest_product
if __name__ == "__main__":
print(F'''{solution() = }''')
| 327 | 0 |
'''simple docstring'''
import math
import sys
import cva
import numpy as np
def a ( __a , __a ) -> np.ndarray:
'''simple docstring'''
UpperCamelCase__ :Optional[int] = math.sqrt(__a )
UpperCamelCase__ :Tuple = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def a ( __a , __a , __a , __a ) -> np.ndarray:
'''simple docstring'''
UpperCamelCase__ :Optional[int] = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def a ( __a , __a ) -> np.ndarray:
'''simple docstring'''
UpperCamelCase__ :Optional[int] = np.zeros((kernel_size, kernel_size) )
for i in range(0 , __a ):
for j in range(0 , __a ):
UpperCamelCase__ :Any = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(__a , __a )
def a ( __a , __a , __a , __a , ) -> np.ndarray:
'''simple docstring'''
UpperCamelCase__ :Optional[Any] = np.zeros(img.shape )
UpperCamelCase__ :str = get_gauss_kernel(__a , __a )
UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
UpperCamelCase__ :str = get_slice(__a , __a , __a , __a )
UpperCamelCase__ :Any = img_s - img_s[kernel_size // 2, kernel_size // 2]
UpperCamelCase__ :Optional[Any] = vec_gaussian(__a , __a )
UpperCamelCase__ :int = np.multiply(__a , __a )
UpperCamelCase__ :Optional[Any] = np.multiply(__a , __a )
UpperCamelCase__ :Dict = np.sum(__a ) / np.sum(__a )
UpperCamelCase__ :List[str] = val
return imga
def a ( __a ) -> tuple:
'''simple docstring'''
UpperCamelCase__ :List[str] = args[1] if args[1:] else '''../image_data/lena.jpg'''
UpperCamelCase__ :Union[str, Any] = float(args[2] ) if args[2:] else 1.0
UpperCamelCase__ :Optional[int] = float(args[3] ) if args[3:] else 1.0
if args[4:]:
UpperCamelCase__ :Tuple = int(args[4] )
UpperCamelCase__ :Optional[Any] = kernel_size + abs(kernel_size % 2 - 1 )
else:
UpperCamelCase__ :Optional[Any] = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
__snake_case , __snake_case , __snake_case , __snake_case = parse_args(sys.argv)
__snake_case = cva.imread(filename, 0)
cva.imshow('''input image''', img)
__snake_case = img / 255
__snake_case = out.astype('''float32''')
__snake_case = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
__snake_case = out * 255
__snake_case = np.uinta(out)
cva.imshow('''output image''', out)
cva.waitKey(0)
cva.destroyAllWindows() | 97 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
_SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ :
__magic_name__: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
__magic_name__: Optional[str] = field(
default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
__magic_name__: Optional[str] = field(
default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
__magic_name__: Optional[str] = field(
default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} )
__magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} )
@dataclass
class SCREAMING_SNAKE_CASE_ :
__magic_name__: str = field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} )
__magic_name__: Optional[str] = field(
default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , )
__magic_name__: Optional[int] = field(
default=1024 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__magic_name__: Optional[int] = field(
default=128 , metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__magic_name__: Optional[int] = field(
default=142 , metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. "
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
} , )
__magic_name__: Optional[int] = field(
default=142 , metadata={
"help": (
"The maximum total sequence length for test target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} )
__magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} )
__magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} )
__magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} )
__magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} )
__magic_name__: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} )
__magic_name__: bool = field(
default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ):
logger.info(f"""***** {split} metrics *****""" )
for key in sorted(metrics.keys() ):
logger.info(f""" {key} = {metrics[key]}""" )
save_json(__a , os.path.join(__a , f"""{split}_results.json""" ) )
def SCREAMING_SNAKE_CASE__ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
snake_case_ ,snake_case_ ,snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
snake_case_ ,snake_case_ ,snake_case_ : List[str] = parser.parse_args_into_dataclasses()
check_output_dir(__a )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('Training/evaluation parameters %s' , __a )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case_ : Tuple = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(__a , __a , __a ):
assert hasattr(__a , __a ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute"""
setattr(__a , __a , getattr(__a , __a ) )
snake_case_ : Tuple = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=__a , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(__a , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
snake_case_ : Any = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(__a , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(__a , __a ):
snake_case_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
snake_case_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(__a )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
snake_case_ : List[Any] = SeqaSeqDataset
# Get datasets
snake_case_ : List[Any] = (
dataset_class(
__a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_train
else None
)
snake_case_ : List[str] = (
dataset_class(
__a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
snake_case_ : List[Any] = (
dataset_class(
__a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
snake_case_ : Any = (
build_compute_metrics_fn(data_args.task , __a ) if training_args.predict_with_generate else None
)
snake_case_ : List[str] = SeqaSeqTrainer(
model=__a , args=__a , data_args=__a , train_dataset=__a , eval_dataset=__a , data_collator=SeqaSeqDataCollator(
__a , __a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__a , tokenizer=__a , )
snake_case_ : Optional[int] = {}
# Training
if training_args.do_train:
logger.info('*** Train ***' )
snake_case_ : Any = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
snake_case_ : Tuple = train_result.metrics
snake_case_ : List[str] = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('train' , __a , training_args.output_dir )
all_metrics.update(__a )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
snake_case_ : List[Any] = trainer.evaluate(metric_key_prefix='val' )
snake_case_ : str = data_args.n_val
snake_case_ : Union[str, Any] = round(metrics['val_loss'] , 4 )
if trainer.is_world_process_zero():
handle_metrics('val' , __a , training_args.output_dir )
all_metrics.update(__a )
if training_args.do_predict:
logger.info('*** Predict ***' )
snake_case_ : Dict = trainer.predict(test_dataset=__a , metric_key_prefix='test' )
snake_case_ : Union[str, Any] = test_output.metrics
snake_case_ : int = data_args.n_test
if trainer.is_world_process_zero():
snake_case_ : List[str] = round(metrics['test_loss'] , 4 )
handle_metrics('test' , __a , training_args.output_dir )
all_metrics.update(__a )
if training_args.predict_with_generate:
snake_case_ : Any = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=__a , clean_up_tokenization_spaces=__a )
snake_case_ : Any = lmap(str.strip , __a )
write_txt_file(__a , os.path.join(training_args.output_dir , 'test_generations.txt' ) )
if trainer.is_world_process_zero():
save_json(__a , os.path.join(training_args.output_dir , 'all_results.json' ) )
return all_metrics
def SCREAMING_SNAKE_CASE__ ( __a ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 327 | 0 |
"""simple docstring"""
from PIL import Image
def a_ ( lowerCamelCase , lowerCamelCase ):
UpperCAmelCase__ = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level))
def contrast(lowerCamelCase ) -> int:
return int(1_2_8 + factor * (c - 1_2_8) )
return img.point(lowerCamelCase )
if __name__ == "__main__":
# Load image
with Image.open('image_data/lena.jpg') as img:
# Change contrast to 170
lowerCAmelCase__ : Any = change_contrast(img, 170)
cont_img.save('image_data/lena_high_contrast.png', format='png')
| 98 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_SCREAMING_SNAKE_CASE = {
"""configuration_poolformer""": [
"""POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""PoolFormerConfig""",
"""PoolFormerOnnxConfig""",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""]
_SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"""POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PoolFormerForImageClassification""",
"""PoolFormerModel""",
"""PoolFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 327 | 0 |
import argparse
import collections
import json
import os
import re
import string
import sys
import numpy as np
lowercase : Union[str, Any] = re.compile(r"""\b(a|an|the)\b""", re.UNICODE)
lowercase : Union[str, Any] = None
def A_ ( ) -> Dict:
a__ : Dict = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' )
parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' )
parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' )
parser.add_argument(
'--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' )
parser.add_argument(
'--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' )
parser.add_argument(
'--na-prob-thresh' , '-t' , type=A__ , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , )
parser.add_argument(
'--out-image-dir' , '-p' , metavar='out_images' , default=A__ , help='Save precision-recall curves to directory.' )
parser.add_argument('--verbose' , '-v' , action='store_true' )
if len(sys.argv ) == 1:
parser.print_help()
sys.exit(1 )
return parser.parse_args()
def A_ ( A__ ) -> int:
a__ : Any = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
a__ : Optional[int] = bool(qa['answers']['text'] )
return qid_to_has_ans
def A_ ( A__ ) -> List[Any]:
def remove_articles(A__ ):
return ARTICLES_REGEX.sub(' ' , A__ )
def white_space_fix(A__ ):
return " ".join(text.split() )
def remove_punc(A__ ):
a__ : Optional[Any] = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(A__ ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(A__ ) ) ) )
def A_ ( A__ ) -> Union[str, Any]:
if not s:
return []
return normalize_answer(A__ ).split()
def A_ ( A__ , A__ ) -> Optional[Any]:
return int(normalize_answer(A__ ) == normalize_answer(A__ ) )
def A_ ( A__ , A__ ) -> Any:
a__ : Tuple = get_tokens(A__ )
a__ : Optional[int] = get_tokens(A__ )
a__ : int = collections.Counter(A__ ) & collections.Counter(A__ )
a__ : Optional[Any] = sum(common.values() )
if len(A__ ) == 0 or len(A__ ) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks )
if num_same == 0:
return 0
a__ : int = 1.0 * num_same / len(A__ )
a__ : List[Any] = 1.0 * num_same / len(A__ )
a__ : Tuple = (2 * precision * recall) / (precision + recall)
return fa
def A_ ( A__ , A__ ) -> Any:
a__ : Tuple = {}
a__ : int = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
a__ : Optional[int] = qa['id']
a__ : Any = [t for t in qa['answers']['text'] if normalize_answer(A__ )]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
a__ : List[str] = ['']
if qid not in preds:
print(F'Missing prediction for {qid}' )
continue
a__ : Union[str, Any] = preds[qid]
# Take max over all gold answers
a__ : Tuple = max(compute_exact(A__ , A__ ) for a in gold_answers )
a__ : List[Any] = max(compute_fa(A__ , A__ ) for a in gold_answers )
return exact_scores, fa_scores
def A_ ( A__ , A__ , A__ , A__ ) -> Tuple:
a__ : List[Any] = {}
for qid, s in scores.items():
a__ : Tuple = na_probs[qid] > na_prob_thresh
if pred_na:
a__ : str = float(not qid_to_has_ans[qid] )
else:
a__ : int = s
return new_scores
def A_ ( A__ , A__ , A__=None ) -> List[Any]:
if not qid_list:
a__ : str = len(A__ )
return collections.OrderedDict(
[
('exact', 1_00.0 * sum(exact_scores.values() ) / total),
('f1', 1_00.0 * sum(fa_scores.values() ) / total),
('total', total),
] )
else:
a__ : int = len(A__ )
return collections.OrderedDict(
[
('exact', 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total),
('f1', 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total),
('total', total),
] )
def A_ ( A__ , A__ , A__ ) -> Optional[int]:
for k in new_eval:
a__ : Optional[int] = new_eval[k]
def A_ ( A__ , A__ , A__ , A__ ) -> Union[str, Any]:
plt.step(A__ , A__ , color='b' , alpha=0.2 , where='post' )
plt.fill_between(A__ , A__ , step='post' , alpha=0.2 , color='b' )
plt.xlabel('Recall' )
plt.ylabel('Precision' )
plt.xlim([0.0, 1.05] )
plt.ylim([0.0, 1.05] )
plt.title(A__ )
plt.savefig(A__ )
plt.clf()
def A_ ( A__ , A__ , A__ , A__ , A__=None , A__=None ) -> Any:
a__ : str = sorted(A__ , key=lambda A__ : na_probs[k] )
a__ : Tuple = 0.0
a__ : List[str] = 1.0
a__ : Optional[int] = 0.0
a__ : Any = [1.0]
a__ : Optional[int] = [0.0]
a__ : Tuple = 0.0
for i, qid in enumerate(A__ ):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
a__ : Union[str, Any] = true_pos / float(i + 1 )
a__ : List[Any] = true_pos / float(A__ )
if i == len(A__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(A__ )
recalls.append(A__ )
if out_image:
plot_pr_curve(A__ , A__ , A__ , A__ )
return {"ap": 1_00.0 * avg_prec}
def A_ ( A__ , A__ , A__ , A__ , A__ , A__ ) -> str:
if out_image_dir and not os.path.exists(A__ ):
os.makedirs(A__ )
a__ : List[str] = sum(1 for v in qid_to_has_ans.values() if v )
if num_true_pos == 0:
return
a__ : Optional[int] = make_precision_recall_eval(
A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , )
a__ : Optional[int] = make_precision_recall_eval(
A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , )
a__ : int = {k: float(A__ ) for k, v in qid_to_has_ans.items()}
a__ : Optional[Any] = make_precision_recall_eval(
A__ , A__ , A__ , A__ , out_image=os.path.join(A__ , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , )
merge_eval(A__ , A__ , 'pr_exact' )
merge_eval(A__ , A__ , 'pr_f1' )
merge_eval(A__ , A__ , 'pr_oracle' )
def A_ ( A__ , A__ , A__ , A__ ) -> List[Any]:
if not qid_list:
return
a__ : List[str] = [na_probs[k] for k in qid_list]
a__ : Dict = np.ones_like(A__ ) / float(len(A__ ) )
plt.hist(A__ , weights=A__ , bins=20 , range=(0.0, 1.0) )
plt.xlabel('Model probability of no-answer' )
plt.ylabel('Proportion of dataset' )
plt.title(F'Histogram of no-answer probability: {name}' )
plt.savefig(os.path.join(A__ , F'na_prob_hist_{name}.png' ) )
plt.clf()
def A_ ( A__ , A__ , A__ , A__ ) -> Optional[int]:
a__ : Any = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] )
a__ : List[str] = num_no_ans
a__ : Tuple = cur_score
a__ : Tuple = 0.0
a__ : str = sorted(A__ , key=lambda A__ : na_probs[k] )
for i, qid in enumerate(A__ ):
if qid not in scores:
continue
if qid_to_has_ans[qid]:
a__ : str = scores[qid]
else:
if preds[qid]:
a__ : int = -1
else:
a__ : Tuple = 0
cur_score += diff
if cur_score > best_score:
a__ : Dict = cur_score
a__ : Tuple = na_probs[qid]
return 1_00.0 * best_score / len(A__ ), best_thresh
def A_ ( A__ , A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]:
a__ , a__ : str = find_best_thresh(A__ , A__ , A__ , A__ )
a__ , a__ : Tuple = find_best_thresh(A__ , A__ , A__ , A__ )
a__ : Optional[Any] = best_exact
a__ : Optional[Any] = exact_thresh
a__ : Tuple = best_fa
a__ : int = fa_thresh
def A_ ( ) -> Union[str, Any]:
with open(OPTS.data_file ) as f:
a__ : Optional[int] = json.load(A__ )
a__ : Any = dataset_json['data']
with open(OPTS.pred_file ) as f:
a__ : Optional[Any] = json.load(A__ )
if OPTS.na_prob_file:
with open(OPTS.na_prob_file ) as f:
a__ : int = json.load(A__ )
else:
a__ : Union[str, Any] = {k: 0.0 for k in preds}
a__ : str = make_qid_to_has_ans(A__ ) # maps qid to True/False
a__ : int = [k for k, v in qid_to_has_ans.items() if v]
a__ : Tuple = [k for k, v in qid_to_has_ans.items() if not v]
a__ , a__ : str = get_raw_scores(A__ , A__ )
a__ : str = apply_no_ans_threshold(A__ , A__ , A__ , OPTS.na_prob_thresh )
a__ : Union[str, Any] = apply_no_ans_threshold(A__ , A__ , A__ , OPTS.na_prob_thresh )
a__ : List[Any] = make_eval_dict(A__ , A__ )
if has_ans_qids:
a__ : str = make_eval_dict(A__ , A__ , qid_list=A__ )
merge_eval(A__ , A__ , 'HasAns' )
if no_ans_qids:
a__ : int = make_eval_dict(A__ , A__ , qid_list=A__ )
merge_eval(A__ , A__ , 'NoAns' )
if OPTS.na_prob_file:
find_all_best_thresh(A__ , A__ , A__ , A__ , A__ , A__ )
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(A__ , A__ , A__ , A__ , A__ , OPTS.out_image_dir )
histogram_na_prob(A__ , A__ , OPTS.out_image_dir , 'hasAns' )
histogram_na_prob(A__ , A__ , OPTS.out_image_dir , 'noAns' )
if OPTS.out_file:
with open(OPTS.out_file , 'w' ) as f:
json.dump(A__ , A__ )
else:
print(json.dumps(A__ , indent=2 ) )
if __name__ == "__main__":
lowercase : List[Any] = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use("""Agg""")
import matplotlib.pyplot as plt
main()
| 99 |
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def UpperCAmelCase_ ( self : Dict ) -> List[Any]:
"""simple docstring"""
snake_case_ : Any = 'hf-internal-testing/tiny-random-t5'
snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_A )
snake_case_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A )
snake_case_ : List[Any] = tokenizer('This is me' , return_tensors='pt' )
snake_case_ : Any = model.to_bettertransformer()
self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
snake_case_ : Optional[Any] = model.generate(**_A )
snake_case_ : int = model.reverse_bettertransformer()
self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A )
snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_A )
self.assertFalse(
any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
snake_case_ : Optional[Any] = model_reloaded.generate(**_A )
self.assertTrue(torch.allclose(_A , _A ) )
def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
snake_case_ : Any = 'hf-internal-testing/tiny-random-t5'
snake_case_ : int = AutoModelForSeqaSeqLM.from_pretrained(_A )
snake_case_ : Dict = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(_A ):
model.save_pretrained(_A )
snake_case_ : Union[str, Any] = model.reverse_bettertransformer()
model.save_pretrained(_A )
| 327 | 0 |
"""simple docstring"""
from __future__ import annotations
def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ):
# Checks if the entire collection has been sorted
if len(UpperCamelCase_ ) <= 1 or n <= 1:
return
insert_next(UpperCamelCase_ , n - 1 )
rec_insertion_sort(UpperCamelCase_ , n - 1 )
def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ):
# Checks order between adjacent elements
if index >= len(UpperCamelCase_ ) or collection[index - 1] <= collection[index]:
return
# Swaps adjacent elements since they are not in ascending order
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = (
collection[index],
collection[index - 1],
)
insert_next(UpperCamelCase_ , index + 1 )
if __name__ == "__main__":
__magic_name__ = input("Enter integers separated by spaces: ")
__magic_name__ = [int(num) for num in numbers.split()]
rec_insertion_sort(number_list, len(number_list))
print(number_list)
| 100 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ : str = params
snake_case_ : int = np.array(_A )
snake_case_ : Optional[int] = np.array([len(_A ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self : Tuple , _A : Optional[int] ) -> str:
"""simple docstring"""
return (self.token_ids[index], self.lengths[index])
def __len__( self : List[str] ) -> str:
"""simple docstring"""
return len(self.lengths )
def UpperCAmelCase_ ( self : Dict ) -> str:
"""simple docstring"""
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def UpperCAmelCase_ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
snake_case_ : Dict = self.params.max_model_input_size
snake_case_ : Tuple = self.lengths > max_len
logger.info(F"""Splitting {sum(_A )} too long sequences.""" )
def divide_chunks(_A : Union[str, Any] , _A : Dict ):
return [l[i : i + n] for i in range(0 , len(_A ) , _A )]
snake_case_ : Dict = []
snake_case_ : Union[str, Any] = []
if self.params.mlm:
snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token']
else:
snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token']
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
snake_case_ : List[Any] = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
snake_case_ : Optional[int] = np.insert(_A , 0 , _A )
if sub_s[-1] != sep_id:
snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A )
assert len(_A ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(_A )
new_tok_ids.extend(_A )
new_lengths.extend([len(_A ) for l in sub_seqs] )
snake_case_ : Tuple = np.array(_A )
snake_case_ : int = np.array(_A )
def UpperCAmelCase_ ( self : List[str] ) -> List[str]:
"""simple docstring"""
snake_case_ : Tuple = len(self )
snake_case_ : int = self.lengths > 11
snake_case_ : Dict = self.token_ids[indices]
snake_case_ : int = self.lengths[indices]
snake_case_ : List[Any] = len(self )
logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
if "unk_token" not in self.params.special_tok_ids:
return
else:
snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token']
snake_case_ : Dict = len(self )
snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
snake_case_ : Any = (unk_occs / self.lengths) < 0.5
snake_case_ : List[Any] = self.token_ids[indices]
snake_case_ : int = self.lengths[indices]
snake_case_ : Tuple = len(self )
logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
if not self.params.is_master:
return
logger.info(F"""{len(self )} sequences""" )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
snake_case_ : Any = [t[0] for t in batch]
snake_case_ : int = [t[1] for t in batch]
assert len(_A ) == len(_A )
# Max for paddings
snake_case_ : str = max(_A )
# Pad token ids
if self.params.mlm:
snake_case_ : int = self.params.special_tok_ids['pad_token']
else:
snake_case_ : Dict = self.params.special_tok_ids['unk_token']
snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids]
assert len(tk_ ) == len(_A )
assert all(len(_A ) == max_seq_len_ for t in tk_ )
snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_)
snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs)
return tk_t, lg_t
| 327 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.