code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def a__ ( _UpperCamelCase : int ):
__lowerCamelCase = 3_84
__lowerCamelCase = 7
if "tiny" in model_name:
__lowerCamelCase = 96
__lowerCamelCase = (2, 2, 6, 2)
__lowerCamelCase = (3, 6, 12, 24)
elif "small" in model_name:
__lowerCamelCase = 96
__lowerCamelCase = (2, 2, 18, 2)
__lowerCamelCase = (3, 6, 12, 24)
elif "base" in model_name:
__lowerCamelCase = 1_28
__lowerCamelCase = (2, 2, 18, 2)
__lowerCamelCase = (4, 8, 16, 32)
__lowerCamelCase = 12
__lowerCamelCase = 5_12
elif "large" in model_name:
__lowerCamelCase = 1_92
__lowerCamelCase = (2, 2, 18, 2)
__lowerCamelCase = (6, 12, 24, 48)
__lowerCamelCase = 12
__lowerCamelCase = 7_68
# set label information
__lowerCamelCase = 1_50
__lowerCamelCase = 'huggingface/label-files'
__lowerCamelCase = 'ade20k-id2label.json'
__lowerCamelCase = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) )
__lowerCamelCase = {int(__a ): v for k, v in idalabel.items()}
__lowerCamelCase = {v: k for k, v in idalabel.items()}
__lowerCamelCase = SwinConfig(
embed_dim=__a ,depths=__a ,num_heads=__a ,window_size=__a ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,)
__lowerCamelCase = UperNetConfig(
backbone_config=__a ,auxiliary_in_channels=__a ,num_labels=__a ,idalabel=__a ,labelaid=__a ,)
return config
def a__ ( _UpperCamelCase : Tuple ):
__lowerCamelCase = []
# fmt: off
# stem
rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') )
rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') )
rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') )
rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") )
rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") )
if i < 3:
rename_keys.append((F"""backbone.stages.{i}.downsample.reduction.weight""", F"""backbone.encoder.layers.{i}.downsample.reduction.weight""") )
rename_keys.append((F"""backbone.stages.{i}.downsample.norm.weight""", F"""backbone.encoder.layers.{i}.downsample.norm.weight""") )
rename_keys.append((F"""backbone.stages.{i}.downsample.norm.bias""", F"""backbone.encoder.layers.{i}.downsample.norm.bias""") )
rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") )
rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") )
# decode head
rename_keys.extend(
[
('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''),
('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''),
('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''),
('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''),
] )
# fmt: on
return rename_keys
def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : Tuple ,_UpperCamelCase : List[Any] ):
__lowerCamelCase = dct.pop(__a )
__lowerCamelCase = val
def a__ ( _UpperCamelCase : str ,_UpperCamelCase : List[Any] ):
__lowerCamelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
__lowerCamelCase = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
__lowerCamelCase = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" )
__lowerCamelCase = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
__lowerCamelCase = in_proj_weight[:dim, :]
__lowerCamelCase = in_proj_bias[: dim]
__lowerCamelCase = in_proj_weight[
dim : dim * 2, :
]
__lowerCamelCase = in_proj_bias[
dim : dim * 2
]
__lowerCamelCase = in_proj_weight[
-dim :, :
]
__lowerCamelCase = in_proj_bias[-dim :]
# fmt: on
def a__ ( _UpperCamelCase : Union[str, Any] ):
__lowerCamelCase = x.shape
__lowerCamelCase = x.reshape(__a ,4 ,in_channel // 4 )
__lowerCamelCase = x[:, [0, 2, 1, 3], :].transpose(1 ,2 ).reshape(__a ,__a )
return x
def a__ ( _UpperCamelCase : Dict ):
__lowerCamelCase = x.shape
__lowerCamelCase = x.reshape(__a ,in_channel // 4 ,4 )
__lowerCamelCase = x[:, :, [0, 2, 1, 3]].transpose(1 ,2 ).reshape(__a ,__a )
return x
def a__ ( _UpperCamelCase : int ):
__lowerCamelCase = x.shape[0]
__lowerCamelCase = x.reshape(4 ,in_channel // 4 )
__lowerCamelCase = x[[0, 2, 1, 3], :].transpose(0 ,1 ).reshape(__a )
return x
def a__ ( _UpperCamelCase : Optional[Any] ):
__lowerCamelCase = x.shape[0]
__lowerCamelCase = x.reshape(in_channel // 4 ,4 )
__lowerCamelCase = x[:, [0, 2, 1, 3]].transpose(0 ,1 ).reshape(__a )
return x
def a__ ( _UpperCamelCase : Dict ,_UpperCamelCase : int ,_UpperCamelCase : str ):
__lowerCamelCase = {
'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth',
'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth',
'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth',
'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth',
}
__lowerCamelCase = model_name_to_url[model_name]
__lowerCamelCase = torch.hub.load_state_dict_from_url(__a ,map_location='''cpu''' ,file_name=__a )[
'state_dict'
]
for name, param in state_dict.items():
print(__a ,param.shape )
__lowerCamelCase = get_upernet_config(__a )
__lowerCamelCase = UperNetForSemanticSegmentation(__a )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
__lowerCamelCase = state_dict.pop(__a )
if "bn" in key:
__lowerCamelCase = key.replace('''bn''' ,'''batch_norm''' )
__lowerCamelCase = val
# rename keys
__lowerCamelCase = create_rename_keys(__a )
for src, dest in rename_keys:
rename_key(__a ,__a ,__a )
read_in_q_k_v(__a ,config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
__lowerCamelCase = reverse_correct_unfold_reduction_order(__a )
if "norm" in key:
__lowerCamelCase = reverse_correct_unfold_norm_order(__a )
model.load_state_dict(__a )
# verify on image
__lowerCamelCase = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'
__lowerCamelCase = Image.open(requests.get(__a ,stream=__a ).raw ).convert('''RGB''' )
__lowerCamelCase = SegformerImageProcessor()
__lowerCamelCase = processor(__a ,return_tensors='''pt''' ).pixel_values
with torch.no_grad():
__lowerCamelCase = model(__a )
__lowerCamelCase = outputs.logits
print(logits.shape )
print('''First values of logits:''' ,logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
__lowerCamelCase = torch.tensor(
[[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] )
elif model_name == "upernet-swin-small":
__lowerCamelCase = torch.tensor(
[[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] )
elif model_name == "upernet-swin-base":
__lowerCamelCase = torch.tensor(
[[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] )
elif model_name == "upernet-swin-large":
__lowerCamelCase = torch.tensor(
[[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] )
print('''Logits:''' ,outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] ,__a ,atol=1e-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(__a )
print(F"""Saving processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(__a )
if push_to_hub:
print(F"""Pushing model and processor for {model_name} to hub""" )
model.push_to_hub(F"""openmmlab/{model_name}""" )
processor.push_to_hub(F"""openmmlab/{model_name}""" )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""upernet-swin-tiny""",
type=str,
choices=[f"upernet-swin-{size}" for size in ["""tiny""", """small""", """base""", """large"""]],
help="""Name of the Swin + UperNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
a_ = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 330 |
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class SCREAMING_SNAKE_CASE_ :
def __init__( self : List[Any] , _A : Optional[Any] , _A : Dict=13 , _A : Union[str, Any]=30 , _A : Tuple=2 , _A : Union[str, Any]=3 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : str=32 , _A : int=2 , _A : List[str]=4 , _A : List[str]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=10 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=3 , _A : str=0.6 , _A : Union[str, Any]=None , ) -> Any:
"""simple docstring"""
snake_case_ : Optional[int] = parent
snake_case_ : Tuple = batch_size
snake_case_ : List[Any] = image_size
snake_case_ : List[str] = patch_size
snake_case_ : List[str] = num_channels
snake_case_ : Optional[Any] = is_training
snake_case_ : Any = use_labels
snake_case_ : Tuple = hidden_size
snake_case_ : Union[str, Any] = num_hidden_layers
snake_case_ : List[Any] = num_attention_heads
snake_case_ : Optional[Any] = intermediate_size
snake_case_ : List[Any] = hidden_act
snake_case_ : Union[str, Any] = hidden_dropout_prob
snake_case_ : Any = attention_probs_dropout_prob
snake_case_ : Tuple = type_sequence_label_size
snake_case_ : List[str] = initializer_range
snake_case_ : Optional[Any] = mask_ratio
snake_case_ : Any = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
snake_case_ : Optional[int] = (image_size // patch_size) ** 2
snake_case_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ : Union[str, Any] = None
if self.use_labels:
snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase_ ( self : int ) -> Optional[Any]:
"""simple docstring"""
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : Dict , _A : str ) -> Dict:
"""simple docstring"""
snake_case_ : Union[str, Any] = TFViTMAEModel(config=_A )
snake_case_ : str = model(_A , training=_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : Any , _A : List[Any] ) -> int:
"""simple docstring"""
snake_case_ : Any = TFViTMAEForPreTraining(_A )
snake_case_ : Optional[Any] = model(_A , training=_A )
# expected sequence length = num_patches
snake_case_ : List[str] = (self.image_size // self.patch_size) ** 2
snake_case_ : Optional[Any] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
snake_case_ : str = 1
snake_case_ : Dict = TFViTMAEForPreTraining(_A )
snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
snake_case_ : List[str] = model(_A , training=_A )
snake_case_ : Optional[Any] = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
snake_case_ : List[Any] = self.prepare_config_and_inputs()
((snake_case_) ,(snake_case_) ,(snake_case_)) : Any = config_and_inputs
snake_case_ : Optional[Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ):
__magic_name__: List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
__magic_name__: str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {}
__magic_name__: Dict = False
__magic_name__: Dict = False
__magic_name__: List[Any] = False
__magic_name__: Dict = False
def UpperCAmelCase_ ( self : Any ) -> List[Any]:
"""simple docstring"""
snake_case_ : List[Any] = TFViTMAEModelTester(self )
snake_case_ : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 )
def UpperCAmelCase_ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='ViTMAE does not use inputs_embeds' )
def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ ,snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : List[Any] = model_class(_A )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
snake_case_ : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) )
def UpperCAmelCase_ ( self : List[str] ) -> Dict:
"""simple docstring"""
snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : List[str] = model_class(_A )
snake_case_ : Any = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ : Dict = [*signature.parameters.keys()]
snake_case_ : Dict = ['pixel_values']
self.assertListEqual(arg_names[:1] , _A )
def UpperCAmelCase_ ( self : Dict ) -> List[str]:
"""simple docstring"""
snake_case_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def UpperCAmelCase_ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
snake_case_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_A )
def UpperCAmelCase_ ( self : Tuple ) -> Dict:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
snake_case_ : Optional[Any] = model_class(_A )
snake_case_ : Union[str, Any] = self._prepare_for_class(_A , _A )
snake_case_ : List[str] = model(_A , noise=_A )
snake_case_ : Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) )
snake_case_ : str = model(**_A , noise=_A )
snake_case_ : Union[str, Any] = outputs_dict[0].numpy()
snake_case_ : Optional[Any] = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 )
def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Tuple = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(_A : int ):
snake_case_ : Any = {}
for k, v in inputs_dict.items():
if tf.is_tensor(_A ):
snake_case_ : str = v.numpy()
else:
snake_case_ : Optional[Any] = np.array(_A )
return inputs_np_dict
for model_class in self.all_model_classes:
snake_case_ : int = model_class(_A )
snake_case_ : List[Any] = self._prepare_for_class(_A , _A )
snake_case_ : Any = prepare_numpy_arrays(_A )
snake_case_ : List[Any] = model(_A , noise=_A )
snake_case_ : List[Any] = model(**_A , noise=_A )
self.assert_outputs_same(_A , _A )
def UpperCAmelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> List[str]:
"""simple docstring"""
np.random.seed(2 )
snake_case_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
snake_case_ : Optional[int] = tf.constant(_A )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
snake_case_ : Optional[Any] = tf_noise
super().check_pt_tf_models(_A , _A , _A )
def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : int = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(_A )
if module_member_name.endswith('MainLayer' )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )]
for module_member in (getattr(_A , _A ),)
if isinstance(_A , _A )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(_A , '_keras_serializable' , _A )
}
snake_case_ : List[Any] = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
snake_case_ : Optional[int] = tf.convert_to_tensor(_A )
inputs_dict.update({'noise': noise} )
for main_layer_class in tf_main_layer_classes:
snake_case_ : Optional[Any] = main_layer_class(_A )
snake_case_ : List[str] = {
name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
snake_case_ : Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) )
snake_case_ : int = model(_A )
with tempfile.TemporaryDirectory() as tmpdirname:
snake_case_ : List[Any] = os.path.join(_A , 'keras_model.h5' )
model.save(_A )
snake_case_ : str = tf.keras.models.load_model(
_A , custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(_A , tf.keras.Model )
snake_case_ : List[str] = model(_A )
self.assert_outputs_same(_A , _A )
@slow
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : int = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
snake_case_ : Optional[Any] = model_class(_A )
snake_case_ : Optional[Any] = self._prepare_for_class(_A , _A )
snake_case_ : int = model(_A , noise=_A )
if model_class.__name__ == "TFViTMAEModel":
snake_case_ : Any = outputs.last_hidden_state.numpy()
snake_case_ : Optional[int] = 0
else:
snake_case_ : str = outputs.logits.numpy()
snake_case_ : Optional[Any] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A , saved_model=_A )
snake_case_ : Any = model_class.from_pretrained(_A )
snake_case_ : Any = model(_A , noise=_A )
if model_class.__name__ == "TFViTMAEModel":
snake_case_ : Dict = after_outputs['last_hidden_state'].numpy()
snake_case_ : Dict = 0
else:
snake_case_ : Any = after_outputs['logits'].numpy()
snake_case_ : Optional[Any] = 0
snake_case_ : Any = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_A , 1E-5 )
def UpperCAmelCase_ ( self : Any ) -> str:
"""simple docstring"""
np.random.seed(2 )
snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 )
snake_case_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
snake_case_ : str = model_class(_A )
snake_case_ : int = self._prepare_for_class(_A , _A )
snake_case_ : str = model(_A , noise=_A )
snake_case_ : Dict = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(_A )
snake_case_ : Any = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
snake_case_ : str = model_class.from_config(model.config )
snake_case_ : Union[str, Any] = new_model(_A ) # Build model
new_model.set_weights(model.get_weights() )
snake_case_ : List[str] = new_model(_A , noise=_A )
self.assert_outputs_same(_A , _A )
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' )
def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
pass
@unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' )
def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
pass
@slow
def UpperCAmelCase_ ( self : Tuple ) -> Tuple:
"""simple docstring"""
snake_case_ : Optional[Any] = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' )
self.assertIsNotNone(_A )
def SCREAMING_SNAKE_CASE__ ( ):
snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
@cached_property
def UpperCAmelCase_ ( self : str ) -> Dict:
"""simple docstring"""
return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None
@slow
def UpperCAmelCase_ ( self : str ) -> Dict:
"""simple docstring"""
np.random.seed(2 )
snake_case_ : List[str] = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' )
snake_case_ : List[Any] = self.default_image_processor
snake_case_ : Dict = prepare_img()
snake_case_ : Optional[Any] = image_processor(images=_A , return_tensors='tf' )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
snake_case_ : int = ViTMAEConfig()
snake_case_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
snake_case_ : List[Any] = np.random.uniform(size=(1, num_patches) )
# forward pass
snake_case_ : Optional[Any] = model(**_A , noise=_A )
# verify the logits
snake_case_ : Optional[int] = tf.convert_to_tensor([1, 196, 768] )
self.assertEqual(outputs.logits.shape , _A )
snake_case_ : Any = tf.convert_to_tensor(
[[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
| 327 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
lowerCamelCase__ : List[str] = {
'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Union[str, Any] = [
'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST',
'GPTNeoForCausalLM',
'GPTNeoForQuestionAnswering',
'GPTNeoForSequenceClassification',
'GPTNeoForTokenClassification',
'GPTNeoModel',
'GPTNeoPreTrainedModel',
'load_tf_weights_in_gpt_neo',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ : Any = [
'FlaxGPTNeoForCausalLM',
'FlaxGPTNeoModel',
'FlaxGPTNeoPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
lowerCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 225 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
snake_case_ : list[list[int]] = []
snake_case_ : list[int] = []
snake_case_ : List[Any] = 0
snake_case_ : Union[str, Any] = sum(__a )
create_state_space_tree(__a , __a , __a , __a , __a , __a )
return result
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ):
if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum:
return
if sum(__a ) == max_sum:
result.append(__a )
return
for index in range(__a , len(__a ) ):
create_state_space_tree(
__a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , )
_SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2]
_SCREAMING_SNAKE_CASE = 9
_SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 327 | 0 |
"""simple docstring"""
import random
import unittest
import numpy as np
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionImgaImgPipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class snake_case ( snake_case_ , unittest.TestCase ):
'''simple docstring'''
A_ : Tuple = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline"
def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Union[str, Any]=0 ):
'''simple docstring'''
__A = floats_tensor((1, 3, 1_28, 1_28), rng=random.Random(_A ) )
__A = np.random.RandomState(_A )
__A = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 3,
'strength': 0.75,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
'''simple docstring'''
__A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='''CPUExecutionProvider''' )
pipe.set_progress_bar_config(disable=_A )
__A = self.get_dummy_inputs()
__A = pipe(**_A ).images
__A = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 1_28, 1_28, 3)
__A = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] )
assert np.abs(image_slice - expected_slice ).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : Dict ):
'''simple docstring'''
__A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='''CPUExecutionProvider''' )
__A = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=_A )
pipe.set_progress_bar_config(disable=_A )
__A = self.get_dummy_inputs()
__A = pipe(**_A ).images
__A = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
__A = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
'''simple docstring'''
__A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='''CPUExecutionProvider''' )
__A = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_A )
# warmup pass to apply optimizations
__A = pipe(**self.get_dummy_inputs() )
__A = self.get_dummy_inputs()
__A = pipe(**_A ).images
__A = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
__A = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
'''simple docstring'''
__A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='''CPUExecutionProvider''' )
__A = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_A )
__A = self.get_dummy_inputs()
__A = pipe(**_A ).images
__A = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
__A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
'''simple docstring'''
__A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='''CPUExecutionProvider''' )
__A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_A )
__A = self.get_dummy_inputs()
__A = pipe(**_A ).images
__A = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
__A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def _SCREAMING_SNAKE_CASE ( self : Tuple ):
'''simple docstring'''
__A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='''CPUExecutionProvider''' )
__A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_A )
__A = self.get_dummy_inputs()
__A = pipe(**_A ).images
__A = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_28, 1_28, 3)
__A = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class snake_case ( unittest.TestCase ):
'''simple docstring'''
@property
def _SCREAMING_SNAKE_CASE ( self : Dict ):
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _SCREAMING_SNAKE_CASE ( self : List[str] ):
'''simple docstring'''
__A = ort.SessionOptions()
__A = False
return options
def _SCREAMING_SNAKE_CASE ( self : List[Any] ):
'''simple docstring'''
__A = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
__A = init_image.resize((7_68, 5_12) )
# using the PNDM scheduler by default
__A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'''CompVis/stable-diffusion-v1-4''', revision='''onnx''', safety_checker=_A, feature_extractor=_A, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=_A )
__A = 'A fantasy landscape, trending on artstation'
__A = np.random.RandomState(0 )
__A = pipe(
prompt=_A, image=_A, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=_A, output_type='''np''', )
__A = output.images
__A = images[0, 2_55:2_58, 3_83:3_86, -1]
assert images.shape == (1, 5_12, 7_68, 3)
__A = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ):
'''simple docstring'''
__A = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
__A = init_image.resize((7_68, 5_12) )
__A = LMSDiscreteScheduler.from_pretrained(
'''runwayml/stable-diffusion-v1-5''', subfolder='''scheduler''', revision='''onnx''' )
__A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'''runwayml/stable-diffusion-v1-5''', revision='''onnx''', scheduler=_A, safety_checker=_A, feature_extractor=_A, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=_A )
__A = 'A fantasy landscape, trending on artstation'
__A = np.random.RandomState(0 )
__A = pipe(
prompt=_A, image=_A, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=_A, output_type='''np''', )
__A = output.images
__A = images[0, 2_55:2_58, 3_83:3_86, -1]
assert images.shape == (1, 5_12, 7_68, 3)
__A = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
| 266 |
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
if density <= 0:
raise ValueError('Impossible fluid density' )
if bulk_modulus <= 0:
raise ValueError('Impossible bulk modulus' )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
__lowerCAmelCase : Dict = logging.getLogger(__name__)
@dataclass
class UpperCAmelCase_ :
'''simple docstring'''
a__ = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
a__ = field(
default=snake_case_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
a__ = field(
default=snake_case_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
a__ = field(
default=snake_case_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
a__ = field(default=snake_case_ , metadata={"""help""": """Whether tp freeze the encoder."""} )
a__ = field(default=snake_case_ , metadata={"""help""": """Whether to freeze the embeddings."""} )
@dataclass
class UpperCAmelCase_ :
'''simple docstring'''
a__ = field(
metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} )
a__ = field(
default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , )
a__ = field(
default=10_24 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ = field(
default=1_28 , metadata={
"""help""": (
"""The maximum total sequence length for target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ = field(
default=1_42 , metadata={
"""help""": (
"""The maximum total sequence length for validation target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded. """
"""This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """
"""during ``evaluate`` and ``predict``."""
)
} , )
a__ = field(
default=1_42 , metadata={
"""help""": (
"""The maximum total sequence length for test target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a__ = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} )
a__ = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} )
a__ = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} )
a__ = field(default=snake_case_ , metadata={"""help""": """Source language id for translation."""} )
a__ = field(default=snake_case_ , metadata={"""help""": """Target language id for translation."""} )
a__ = field(default=snake_case_ , metadata={"""help""": """# num_beams to use for evaluation."""} )
a__ = field(
default=snake_case_ , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , )
def a__ ( A_, A_, A_ ):
'''simple docstring'''
logger.info(f'''***** {split} metrics *****''' )
for key in sorted(metrics.keys() ):
logger.info(f''' {key} = {metrics[key]}''' )
save_json(__a, os.path.join(__a, f'''{split}_results.json''' ) )
def a__ ( ):
'''simple docstring'''
__magic_name__ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__magic_name__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__magic_name__ = parser.parse_args_into_dataclasses()
check_output_dir(__a )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ), training_args.fpaa, )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info("""Training/evaluation parameters %s""", __a )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__magic_name__ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, )
__magic_name__ = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(__a, __a, __a ):
assert hasattr(__a, __a ), f'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute'''
setattr(__a, __a, getattr(__a, __a ) )
__magic_name__ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, )
__magic_name__ = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path, from_tf=""".ckpt""" in model_args.model_name_or_path, config=__a, cache_dir=model_args.cache_dir, )
# use task specific params
use_task_specific_params(__a, data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
__magic_name__ = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(__a, (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(__a, __a ):
__magic_name__ = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
__magic_name__ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(__a )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
__magic_name__ = SeqaSeqDataset
# Get datasets
__magic_name__ = (
dataset_class(
__a, type_path="""train""", data_dir=data_args.data_dir, n_obs=data_args.n_train, max_target_length=data_args.max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or """""", )
if training_args.do_train
else None
)
__magic_name__ = (
dataset_class(
__a, type_path="""val""", data_dir=data_args.data_dir, n_obs=data_args.n_val, max_target_length=data_args.val_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or """""", )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
__magic_name__ = (
dataset_class(
__a, type_path="""test""", data_dir=data_args.data_dir, n_obs=data_args.n_test, max_target_length=data_args.test_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or """""", )
if training_args.do_predict
else None
)
# Initialize our Trainer
__magic_name__ = (
build_compute_metrics_fn(data_args.task, __a ) if training_args.predict_with_generate else None
)
__magic_name__ = SeqaSeqTrainer(
model=__a, args=__a, data_args=__a, train_dataset=__a, eval_dataset=__a, data_collator=SeqaSeqDataCollator(
__a, __a, model.config.decoder_start_token_id, training_args.tpu_num_cores ), compute_metrics=__a, tokenizer=__a, )
__magic_name__ = {}
# Training
if training_args.do_train:
logger.info("""*** Train ***""" )
__magic_name__ = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
__magic_name__ = train_result.metrics
__magic_name__ = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics("""train""", __a, training_args.output_dir )
all_metrics.update(__a )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir, """trainer_state.json""" ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__magic_name__ = trainer.evaluate(metric_key_prefix="""val""" )
__magic_name__ = data_args.n_val
__magic_name__ = round(metrics["""val_loss"""], 4 )
if trainer.is_world_process_zero():
handle_metrics("""val""", __a, training_args.output_dir )
all_metrics.update(__a )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
__magic_name__ = trainer.predict(test_dataset=__a, metric_key_prefix="""test""" )
__magic_name__ = test_output.metrics
__magic_name__ = data_args.n_test
if trainer.is_world_process_zero():
__magic_name__ = round(metrics["""test_loss"""], 4 )
handle_metrics("""test""", __a, training_args.output_dir )
all_metrics.update(__a )
if training_args.predict_with_generate:
__magic_name__ = tokenizer.batch_decode(
test_output.predictions, skip_special_tokens=__a, clean_up_tokenization_spaces=__a )
__magic_name__ = lmap(str.strip, __a )
write_txt_file(__a, os.path.join(training_args.output_dir, """test_generations.txt""" ) )
if trainer.is_world_process_zero():
save_json(__a, os.path.join(training_args.output_dir, """all_results.json""" ) )
return all_metrics
def a__ ( A_ ):
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 88 |
from math import pi
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
return 2 * pi * radius * (angle / 3_60)
if __name__ == "__main__":
print(arc_length(90, 10))
| 327 | 0 |
"""simple docstring"""
def __UpperCAmelCase ( __UpperCamelCase ):
if number > 0:
raise ValueError('''input must be a negative integer''' )
__lowercase : Dict = len(bin(__a )[3:] )
__lowercase : Union[str, Any] = bin(abs(__a ) - (1 << binary_number_length) )[3:]
__lowercase : List[Any] = (
(
'1'
+ '0' * (binary_number_length - len(__a ))
+ twos_complement_number
)
if number < 0
else '0'
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 249 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
__magic_name__: Optional[Any] = ["pixel_values"]
def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PIL.Image.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : str , ) -> None:
"""simple docstring"""
super().__init__(**_A )
snake_case_ : Dict = size if size is not None else {'height': 256, 'width': 256}
snake_case_ : Tuple = get_size_dict(_A )
snake_case_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224}
snake_case_ : int = get_size_dict(_A , param_name='crop_size' )
snake_case_ : Union[str, Any] = do_resize
snake_case_ : str = size
snake_case_ : List[str] = resample
snake_case_ : List[Any] = do_center_crop
snake_case_ : Dict = crop_size
snake_case_ : Tuple = do_rescale
snake_case_ : Optional[Any] = rescale_factor
snake_case_ : Any = do_normalize
snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
snake_case_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCAmelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray:
"""simple docstring"""
snake_case_ : Tuple = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return resize(
_A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray:
"""simple docstring"""
snake_case_ : Optional[int] = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A )
def UpperCAmelCase_ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> str:
"""simple docstring"""
return rescale(_A , scale=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray:
"""simple docstring"""
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def UpperCAmelCase_ ( self : List[str] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : Union[str, Any]=None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ) -> PIL.Image.Image:
"""simple docstring"""
snake_case_ : int = do_resize if do_resize is not None else self.do_resize
snake_case_ : str = resample if resample is not None else self.resample
snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop
snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale
snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor
snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize
snake_case_ : Any = image_mean if image_mean is not None else self.image_mean
snake_case_ : Dict = image_std if image_std is not None else self.image_std
snake_case_ : int = size if size is not None else self.size
snake_case_ : Optional[int] = get_size_dict(_A )
snake_case_ : int = crop_size if crop_size is not None else self.crop_size
snake_case_ : Any = get_size_dict(_A , param_name='crop_size' )
snake_case_ : Optional[Any] = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
snake_case_ : Optional[Any] = [to_numpy_array(_A ) for image in images]
if do_resize:
snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images]
if do_center_crop:
snake_case_ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images]
if do_rescale:
snake_case_ : Optional[int] = [self.rescale(image=_A , scale=_A ) for image in images]
if do_normalize:
snake_case_ : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images]
snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images]
snake_case_ : Tuple = {'pixel_values': images}
return BatchFeature(data=_A , tensor_type=_A )
| 327 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase__ : Any = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Tuple = ['BeitFeatureExtractor']
UpperCAmelCase__ : str = ['BeitImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : Tuple = [
'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BeitForImageClassification',
'BeitForMaskedImageModeling',
'BeitForSemanticSegmentation',
'BeitModel',
'BeitPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ : str = [
'FlaxBeitForImageClassification',
'FlaxBeitForMaskedImageModeling',
'FlaxBeitModel',
'FlaxBeitPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_beit import BeitFeatureExtractor
from .image_processing_beit import BeitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_beit import (
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
BeitPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_beit import (
FlaxBeitForImageClassification,
FlaxBeitForMaskedImageModeling,
FlaxBeitModel,
FlaxBeitPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 25 |
import sys
_SCREAMING_SNAKE_CASE = (
"""73167176531330624919225119674426574742355349194934"""
"""96983520312774506326239578318016984801869478851843"""
"""85861560789112949495459501737958331952853208805511"""
"""12540698747158523863050715693290963295227443043557"""
"""66896648950445244523161731856403098711121722383113"""
"""62229893423380308135336276614282806444486645238749"""
"""30358907296290491560440772390713810515859307960866"""
"""70172427121883998797908792274921901699720888093776"""
"""65727333001053367881220235421809751254540594752243"""
"""52584907711670556013604839586446706324415722155397"""
"""53697817977846174064955149290862569321978468622482"""
"""83972241375657056057490261407972968652414535100474"""
"""82166370484403199890008895243450658541227588666881"""
"""16427171479924442928230863465674813919123162824586"""
"""17866458359124566529476545682848912883142607690042"""
"""24219022671055626321111109370544217506941658960408"""
"""07198403850962455444362981230987879927244284909188"""
"""84580156166097919133875499200524063689912560717606"""
"""05886116467109405077541002256983155200055935729725"""
"""71636269561882670428252483600823257530420752963450"""
)
def SCREAMING_SNAKE_CASE__ ( __a = N ):
snake_case_ : Optional[Any] = -sys.maxsize - 1
for i in range(len(__a ) - 12 ):
snake_case_ : Optional[Any] = 1
for j in range(13 ):
product *= int(n[i + j] )
if product > largest_product:
snake_case_ : int = product
return largest_product
if __name__ == "__main__":
print(F'''{solution() = }''')
| 327 | 0 |
import argparse
from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ):
# Initialise PyTorch model
lowercase :List[Any] = BigBirdConfig.from_json_file(__a )
print(F"Building PyTorch model from configuration: {config}" )
if is_trivia_qa:
lowercase :Dict = BigBirdForQuestionAnswering(__a )
else:
lowercase :Tuple = BigBirdForPreTraining(__a )
# Load weights from tf checkpoint
load_tf_weights_in_big_bird(__a, __a, is_trivia_qa=__a )
# Save pytorch-model
print(F"Save PyTorch model to {pytorch_dump_path}" )
model.save_pretrained(__a )
if __name__ == "__main__":
_UpperCAmelCase : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--big_bird_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head."
)
_UpperCAmelCase : Optional[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa
)
| 236 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
_SCREAMING_SNAKE_CASE = logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ :
__magic_name__: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
__magic_name__: Optional[str] = field(
default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
__magic_name__: Optional[str] = field(
default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
__magic_name__: Optional[str] = field(
default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} )
__magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} )
@dataclass
class SCREAMING_SNAKE_CASE_ :
__magic_name__: str = field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} )
__magic_name__: Optional[str] = field(
default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , )
__magic_name__: Optional[int] = field(
default=1024 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__magic_name__: Optional[int] = field(
default=128 , metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__magic_name__: Optional[int] = field(
default=142 , metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. "
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
} , )
__magic_name__: Optional[int] = field(
default=142 , metadata={
"help": (
"The maximum total sequence length for test target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} )
__magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} )
__magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} )
__magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} )
__magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} )
__magic_name__: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} )
__magic_name__: bool = field(
default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ):
logger.info(f"""***** {split} metrics *****""" )
for key in sorted(metrics.keys() ):
logger.info(f""" {key} = {metrics[key]}""" )
save_json(__a , os.path.join(__a , f"""{split}_results.json""" ) )
def SCREAMING_SNAKE_CASE__ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
snake_case_ ,snake_case_ ,snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
snake_case_ ,snake_case_ ,snake_case_ : List[str] = parser.parse_args_into_dataclasses()
check_output_dir(__a )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info('Training/evaluation parameters %s' , __a )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case_ : Tuple = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(__a , __a , __a ):
assert hasattr(__a , __a ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute"""
setattr(__a , __a , getattr(__a , __a ) )
snake_case_ : Tuple = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=__a , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(__a , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
snake_case_ : Any = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(__a , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(__a , __a ):
snake_case_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
snake_case_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(__a )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
snake_case_ : List[Any] = SeqaSeqDataset
# Get datasets
snake_case_ : List[Any] = (
dataset_class(
__a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_train
else None
)
snake_case_ : List[str] = (
dataset_class(
__a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
snake_case_ : List[Any] = (
dataset_class(
__a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , )
if training_args.do_predict
else None
)
# Initialize our Trainer
snake_case_ : Any = (
build_compute_metrics_fn(data_args.task , __a ) if training_args.predict_with_generate else None
)
snake_case_ : List[str] = SeqaSeqTrainer(
model=__a , args=__a , data_args=__a , train_dataset=__a , eval_dataset=__a , data_collator=SeqaSeqDataCollator(
__a , __a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__a , tokenizer=__a , )
snake_case_ : Optional[int] = {}
# Training
if training_args.do_train:
logger.info('*** Train ***' )
snake_case_ : Any = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
snake_case_ : Tuple = train_result.metrics
snake_case_ : List[str] = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics('train' , __a , training_args.output_dir )
all_metrics.update(__a )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
snake_case_ : List[Any] = trainer.evaluate(metric_key_prefix='val' )
snake_case_ : str = data_args.n_val
snake_case_ : Union[str, Any] = round(metrics['val_loss'] , 4 )
if trainer.is_world_process_zero():
handle_metrics('val' , __a , training_args.output_dir )
all_metrics.update(__a )
if training_args.do_predict:
logger.info('*** Predict ***' )
snake_case_ : Dict = trainer.predict(test_dataset=__a , metric_key_prefix='test' )
snake_case_ : Union[str, Any] = test_output.metrics
snake_case_ : int = data_args.n_test
if trainer.is_world_process_zero():
snake_case_ : List[str] = round(metrics['test_loss'] , 4 )
handle_metrics('test' , __a , training_args.output_dir )
all_metrics.update(__a )
if training_args.predict_with_generate:
snake_case_ : Any = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=__a , clean_up_tokenization_spaces=__a )
snake_case_ : Any = lmap(str.strip , __a )
write_txt_file(__a , os.path.join(training_args.output_dir , 'test_generations.txt' ) )
if trainer.is_world_process_zero():
save_json(__a , os.path.join(training_args.output_dir , 'all_results.json' ) )
return all_metrics
def SCREAMING_SNAKE_CASE__ ( __a ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 327 | 0 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class a ( snake_case_ ):
"""simple docstring"""
lowerCamelCase :Dict = ["pixel_values"]
def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = 1 / 2_55 , lowerCAmelCase_ = True , lowerCAmelCase_ = 8 , **lowerCAmelCase_ , ) -> None:
super().__init__(**_A )
_A = do_rescale
_A = rescale_factor
_A = do_pad
_A = pad_size
def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ ) -> np.ndarray:
return rescale(_A , scale=_A , data_format=_A , **_A )
def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> int:
_A = get_image_size(_A )
_A = (old_height // size + 1) * size - old_height
_A = (old_width // size + 1) * size - old_width
return pad(_A , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=_A )
def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ) -> Any:
_A = do_rescale if do_rescale is not None else self.do_rescale
_A = rescale_factor if rescale_factor is not None else self.rescale_factor
_A = do_pad if do_pad is not None else self.do_pad
_A = pad_size if pad_size is not None else self.pad_size
_A = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
# All transformations expect numpy arrays.
_A = [to_numpy_array(_A ) for image in images]
if do_rescale:
_A = [self.rescale(image=_A , scale=_A ) for image in images]
if do_pad:
_A = [self.pad(_A , size=_A ) for image in images]
_A = [to_channel_dimension_format(_A , _A ) for image in images]
_A = {'pixel_values': images}
return BatchFeature(data=_A , tensor_type=_A )
| 180 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_SCREAMING_SNAKE_CASE = {
"""configuration_poolformer""": [
"""POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""PoolFormerConfig""",
"""PoolFormerOnnxConfig""",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""]
_SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"""POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PoolFormerForImageClassification""",
"""PoolFormerModel""",
"""PoolFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 327 | 0 |
"""simple docstring"""
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
__UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
__UpperCAmelCase = ' \"\"\"\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n'
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def __lowerCAmelCase ( self ) -> Any:
lowerCAmelCase_ :Any = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) )
lowerCAmelCase_ :Any = self.diffusers_dir
shutil.copy(
os.path.join(_A , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , )
def __lowerCAmelCase ( self ) -> List[str]:
lowerCAmelCase_ :List[str] = 'src/diffusers'
shutil.rmtree(self.diffusers_dir )
def __lowerCAmelCase ( self , __A , __A , __A , __A=None ) -> Optional[int]:
lowerCAmelCase_ :List[Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code
if overwrite_result is not None:
lowerCAmelCase_ :int = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result
lowerCAmelCase_ :Dict = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
lowerCAmelCase_ :Tuple = black.format_str(_A , mode=_A )
lowerCAmelCase_ :Union[str, Any] = os.path.join(self.diffusers_dir , """new_code.py""" )
with open(_A , """w""" , newline="""\n""" ) as f:
f.write(_A )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=_A )
with open(_A , """r""" ) as f:
self.assertTrue(f.read() , _A )
def __lowerCAmelCase ( self ) -> str:
lowerCAmelCase_ :List[str] = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" )
self.assertEqual(_A , _A )
def __lowerCAmelCase ( self ) -> str:
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , )
# With no empty line at the end
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , _A , )
# Copy consistency with rename
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , _A ) , )
# Copy consistency with a really long name
lowerCAmelCase_ :int = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'
self.check_copy_consistency(
f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("""Bert""" , _A , _A ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , _A , overwrite_result=re.sub("""DDPM""" , """Test""" , _A ) , )
| 84 |
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def UpperCAmelCase_ ( self : Dict ) -> List[Any]:
"""simple docstring"""
snake_case_ : Any = 'hf-internal-testing/tiny-random-t5'
snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_A )
snake_case_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A )
snake_case_ : List[Any] = tokenizer('This is me' , return_tensors='pt' )
snake_case_ : Any = model.to_bettertransformer()
self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
snake_case_ : Optional[Any] = model.generate(**_A )
snake_case_ : int = model.reverse_bettertransformer()
self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A )
snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_A )
self.assertFalse(
any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
snake_case_ : Optional[Any] = model_reloaded.generate(**_A )
self.assertTrue(torch.allclose(_A , _A ) )
def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
snake_case_ : Any = 'hf-internal-testing/tiny-random-t5'
snake_case_ : int = AutoModelForSeqaSeqLM.from_pretrained(_A )
snake_case_ : Dict = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(_A ):
model.save_pretrained(_A )
snake_case_ : Union[str, Any] = model.reverse_bettertransformer()
model.save_pretrained(_A )
| 327 | 0 |
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
_lowercase : Tuple =logging.getLogger(__name__)
class snake_case__ (snake_case_ ):
"""simple docstring"""
def __init__( self , __lowercase=-1 ) -> Dict:
"""simple docstring"""
a__ : str = label_idx
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> List[InputExample]:
"""simple docstring"""
if isinstance(_A , _A ):
a__ : int = mode.value
a__ : Union[str, Any] = os.path.join(_A , F'''{mode}.txt''' )
a__ : Dict = 1
a__ : Optional[int] = []
with open(_A , encoding="""utf-8""" ) as f:
a__ : str = []
a__ : List[str] = []
for line in f:
if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=_A , labels=_A ) )
guid_index += 1
a__ : List[str] = []
a__ : List[Any] = []
else:
a__ : List[str] = line.split(""" """ )
words.append(splits[0] )
if len(_A ) > 1:
labels.append(splits[self.label_idx].replace("""\n""" , """""" ) )
else:
# Examples could have no label for mode = "test"
labels.append("""O""" )
if words:
examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=_A , labels=_A ) )
return examples
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase ) -> Dict:
"""simple docstring"""
a__ : int = 0
for line in test_input_reader:
if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n":
writer.write(_A )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
a__ : Dict = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n'
writer.write(_A )
else:
logger.warning("""Maximum sequence length exceeded: No prediction for \'%s\'.""" , line.split()[0] )
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[str]:
"""simple docstring"""
if path:
with open(_A , """r""" ) as f:
a__ : Optional[int] = f.read().splitlines()
if "O" not in labels:
a__ : Dict = ['O'] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class snake_case__ (snake_case_ ):
"""simple docstring"""
def __init__( self ) -> Tuple:
"""simple docstring"""
super().__init__(label_idx=-2 )
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[str]:
"""simple docstring"""
if path:
with open(_A , """r""" ) as f:
a__ : Optional[Any] = f.read().splitlines()
if "O" not in labels:
a__ : Optional[Any] = ['O'] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class snake_case__ (snake_case_ ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> List[InputExample]:
"""simple docstring"""
if isinstance(_A , _A ):
a__ : Tuple = mode.value
a__ : Tuple = os.path.join(_A , F'''{mode}.txt''' )
a__ : Optional[Any] = 1
a__ : List[str] = []
with open(_A , encoding="""utf-8""" ) as f:
for sentence in parse_incr(_A ):
a__ : int = []
a__ : Dict = []
for token in sentence:
words.append(token["""form"""] )
labels.append(token["""upos"""] )
assert len(_A ) == len(_A )
if words:
examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=_A , labels=_A ) )
guid_index += 1
return examples
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase ) -> int:
"""simple docstring"""
a__ : List[str] = 0
for sentence in parse_incr(_A ):
a__ : Tuple = preds_list[example_id]
a__ : Tuple = ''
for token in sentence:
out += F'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) '''
out += "\n"
writer.write(_A )
example_id += 1
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[str]:
"""simple docstring"""
if path:
with open(_A , """r""" ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 170 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ : str = params
snake_case_ : int = np.array(_A )
snake_case_ : Optional[int] = np.array([len(_A ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self : Tuple , _A : Optional[int] ) -> str:
"""simple docstring"""
return (self.token_ids[index], self.lengths[index])
def __len__( self : List[str] ) -> str:
"""simple docstring"""
return len(self.lengths )
def UpperCAmelCase_ ( self : Dict ) -> str:
"""simple docstring"""
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def UpperCAmelCase_ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
snake_case_ : Dict = self.params.max_model_input_size
snake_case_ : Tuple = self.lengths > max_len
logger.info(F"""Splitting {sum(_A )} too long sequences.""" )
def divide_chunks(_A : Union[str, Any] , _A : Dict ):
return [l[i : i + n] for i in range(0 , len(_A ) , _A )]
snake_case_ : Dict = []
snake_case_ : Union[str, Any] = []
if self.params.mlm:
snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token']
else:
snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token']
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
snake_case_ : List[Any] = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
snake_case_ : Optional[int] = np.insert(_A , 0 , _A )
if sub_s[-1] != sep_id:
snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A )
assert len(_A ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(_A )
new_tok_ids.extend(_A )
new_lengths.extend([len(_A ) for l in sub_seqs] )
snake_case_ : Tuple = np.array(_A )
snake_case_ : int = np.array(_A )
def UpperCAmelCase_ ( self : List[str] ) -> List[str]:
"""simple docstring"""
snake_case_ : Tuple = len(self )
snake_case_ : int = self.lengths > 11
snake_case_ : Dict = self.token_ids[indices]
snake_case_ : int = self.lengths[indices]
snake_case_ : List[Any] = len(self )
logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
if "unk_token" not in self.params.special_tok_ids:
return
else:
snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token']
snake_case_ : Dict = len(self )
snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
snake_case_ : Any = (unk_occs / self.lengths) < 0.5
snake_case_ : List[Any] = self.token_ids[indices]
snake_case_ : int = self.lengths[indices]
snake_case_ : Tuple = len(self )
logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
if not self.params.is_master:
return
logger.info(F"""{len(self )} sequences""" )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
snake_case_ : Any = [t[0] for t in batch]
snake_case_ : int = [t[1] for t in batch]
assert len(_A ) == len(_A )
# Max for paddings
snake_case_ : str = max(_A )
# Pad token ids
if self.params.mlm:
snake_case_ : int = self.params.special_tok_ids['pad_token']
else:
snake_case_ : Dict = self.params.special_tok_ids['unk_token']
snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids]
assert len(tk_ ) == len(_A )
assert all(len(_A ) == max_seq_len_ for t in tk_ )
snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_)
snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs)
return tk_t, lg_t
| 327 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_lowerCamelCase : Optional[int] = {
"""configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""],
"""tokenization_perceiver""": ["""PerceiverTokenizer"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Tuple = ["""PerceiverFeatureExtractor"""]
_lowerCamelCase : List[Any] = ["""PerceiverImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : str = [
"""PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PerceiverForImageClassificationConvProcessing""",
"""PerceiverForImageClassificationFourier""",
"""PerceiverForImageClassificationLearned""",
"""PerceiverForMaskedLM""",
"""PerceiverForMultimodalAutoencoding""",
"""PerceiverForOpticalFlow""",
"""PerceiverForSequenceClassification""",
"""PerceiverLayer""",
"""PerceiverModel""",
"""PerceiverPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
while b:
snake_case_ ,snake_case_ : Any = b, a % b
return a
def SCREAMING_SNAKE_CASE__ ( __a , __a ):
return a if b == 0 else euclidean_gcd_recursive(__a , a % b )
def SCREAMING_SNAKE_CASE__ ( ):
print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" )
print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" )
print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" )
print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" )
print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" )
print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" )
print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" )
print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" )
if __name__ == "__main__":
main()
| 327 | 0 |
import argparse
import torch
from transformers import GPTaLMHeadModel, RobertaForMaskedLM
if __name__ == "__main__":
a_ = argparse.ArgumentParser(
description=(
"""Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned"""
""" Distillation"""
)
)
parser.add_argument("""--model_type""", default="""roberta""", choices=["""roberta""", """gpt2"""])
parser.add_argument("""--model_name""", default="""roberta-large""", type=str)
parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_roberta_048131723.pth""", type=str)
parser.add_argument("""--vocab_transform""", action="""store_true""")
a_ = parser.parse_args()
if args.model_type == "roberta":
a_ = RobertaForMaskedLM.from_pretrained(args.model_name)
a_ = """roberta"""
elif args.model_type == "gpt2":
a_ = GPTaLMHeadModel.from_pretrained(args.model_name)
a_ = """transformer"""
a_ = model.state_dict()
a_ = {}
# Embeddings #
if args.model_type == "gpt2":
for param_name in ["wte.weight", "wpe.weight"]:
a_ = state_dict[f"{prefix}.{param_name}"]
else:
for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]:
a_ = f"{prefix}.embeddings.{w}.weight"
a_ = state_dict[param_name]
for w in ["weight", "bias"]:
a_ = f"{prefix}.embeddings.LayerNorm.{w}"
a_ = state_dict[param_name]
# Transformer Blocks #
a_ = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
if args.model_type == "gpt2":
for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]:
for w in ["weight", "bias"]:
a_ = state_dict[
f"{prefix}.h.{teacher_idx}.{layer}.{w}"
]
a_ = state_dict[f"{prefix}.h.{teacher_idx}.attn.bias"]
else:
for layer in [
"attention.self.query",
"attention.self.key",
"attention.self.value",
"attention.output.dense",
"attention.output.LayerNorm",
"intermediate.dense",
"output.dense",
"output.LayerNorm",
]:
for w in ["weight", "bias"]:
a_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}"
]
std_idx += 1
# Language Modeling Head ###s
if args.model_type == "roberta":
for layer in ["lm_head.decoder.weight", "lm_head.bias"]:
a_ = state_dict[f"{layer}"]
if args.vocab_transform:
for w in ["weight", "bias"]:
a_ = state_dict[f"lm_head.dense.{w}"]
a_ = state_dict[f"lm_head.layer_norm.{w}"]
elif args.model_type == "gpt2":
for w in ["weight", "bias"]:
a_ = state_dict[f"{prefix}.ln_f.{w}"]
a_ = state_dict["""lm_head.weight"""]
print(f"N layers selected for distillation: {std_idx}")
print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}")
print(f"Save transferred checkpoint to {args.dump_checkpoint}.")
torch.save(compressed_sd, args.dump_checkpoint)
| 330 |
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version(""">=""", FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
_SCREAMING_SNAKE_CASE = get_logger(__name__)
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ):
os.makedirs(__a , exist_ok=__a )
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
snake_case_ : Dict = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin"""
snake_case_ : Dict = os.path.join(__a , __a )
if accelerator.process_index == 0:
logger.info(f"""Saving model to {output_model_file}""" )
torch.save(__a , __a )
logger.info(f"""Model saved to {output_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
snake_case_ : Dict = (
f"""{MODEL_NAME}_rank{accelerator.process_index}.bin"""
if model_index == 0
else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"""
)
snake_case_ : Dict = os.path.join(__a , __a )
logger.info(f"""Saving model to {output_model_file}""" )
torch.save(__a , __a )
logger.info(f"""Model saved to {output_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" )
os.makedirs(__a , exist_ok=__a )
logger.info(f"""Saving model to {ckpt_dir}""" )
snake_case_ : int = {'model': state_dict}
dist_cp.save_state_dict(
state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , )
logger.info(f"""Model saved to {ckpt_dir}""" )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(__a ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
'Set the `sync_module_states` flag to `True` so that model states are synced across processes when '
'initializing FSDP object' )
return
snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin"""
snake_case_ : Optional[Any] = os.path.join(__a , __a )
logger.info(f"""Loading model from {input_model_file}""" )
snake_case_ : Optional[Any] = torch.load(__a )
logger.info(f"""Model loaded from {input_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
snake_case_ : Optional[Any] = (
f"""{MODEL_NAME}_rank{accelerator.process_index}.bin"""
if model_index == 0
else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"""
)
snake_case_ : Tuple = os.path.join(__a , __a )
logger.info(f"""Loading model from {input_model_file}""" )
snake_case_ : Optional[int] = torch.load(__a )
logger.info(f"""Model loaded from {input_model_file}""" )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
snake_case_ : Tuple = (
os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" )
if f"""{MODEL_NAME}""" not in input_dir
else input_dir
)
logger.info(f"""Loading model from {ckpt_dir}""" )
snake_case_ : List[Any] = {'model': model.state_dict()}
dist_cp.load_state_dict(
state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , )
snake_case_ : Any = state_dict['model']
logger.info(f"""Model loaded from {ckpt_dir}""" )
model.load_state_dict(__a )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ):
os.makedirs(__a , exist_ok=__a )
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
snake_case_ : str = (
f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin"""
)
snake_case_ : Any = os.path.join(__a , __a )
logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" )
torch.save(__a , __a )
logger.info(f"""Optimizer state saved in {output_optimizer_file}""" )
else:
snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" )
os.makedirs(__a , exist_ok=__a )
logger.info(f"""Saving Optimizer state to {ckpt_dir}""" )
dist_cp.save_state_dict(
state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , )
logger.info(f"""Optimizer state saved in {ckpt_dir}""" )
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
__a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
snake_case_ : Optional[Any] = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
snake_case_ : Union[str, Any] = (
f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin"""
)
snake_case_ : List[Any] = os.path.join(__a , __a )
logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" )
snake_case_ : Optional[int] = torch.load(__a )
logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" )
else:
snake_case_ : str = (
os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" )
if f"""{OPTIMIZER_NAME}""" not in input_dir
else input_dir
)
logger.info(f"""Loading Optimizer from {ckpt_dir}""" )
snake_case_ : Any = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , )
snake_case_ : Optional[int] = optim_state['optimizer']
logger.info(f"""Optimizer loaded from {ckpt_dir}""" )
snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a )
optimizer.load_state_dict(__a )
| 327 | 0 |
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
lowerCamelCase__ : int = [
'cross_validation.py',
'gradient_accumulation.py',
'local_sgd.py',
'multi_process_metrics.py',
'memory.py',
'automatic_gradient_accumulation.py',
'fsdp_with_peak_mem_tracking.py',
'deepspeed_with_config_support.py',
'megatron_lm_gpt_pretraining.py',
]
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : str , _lowerCAmelCase : str , _lowerCAmelCase : bool , _lowerCAmelCase : str = None , _lowerCAmelCase : list = None ):
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.join('examples' , 'by_feature' ) )
SCREAMING_SNAKE_CASE_ = os.path.abspath('examples' )
for item in os.listdir(_A ):
if item not in EXCLUDE_EXAMPLES:
SCREAMING_SNAKE_CASE_ = os.path.join(_A , _A )
if os.path.isfile(_A ) and ".py" in item_path:
with self.subTest(
tested_script=_A , feature_script=_A , tested_section='main()' if parser_only else 'training_function()' , ):
SCREAMING_SNAKE_CASE_ = compare_against_test(
os.path.join(_A , _A ) , _A , _A , _A )
SCREAMING_SNAKE_CASE_ = '\n'.join(_A )
if special_strings is not None:
for string in special_strings:
SCREAMING_SNAKE_CASE_ = diff.replace(_A , '' )
self.assertEqual(_A , '' )
def lowerCAmelCase_ ( self : Tuple ):
self.one_complete_example('complete_nlp_example.py' , _A )
self.one_complete_example('complete_nlp_example.py' , _A )
def lowerCAmelCase_ ( self : str ):
SCREAMING_SNAKE_CASE_ = os.path.abspath(os.path.join('examples' , 'cv_example.py' ) )
SCREAMING_SNAKE_CASE_ = [
' ' * 16 + '{\n\n',
' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n',
' ' * 20 + '"f1": eval_metric["f1"],\n\n',
' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n',
' ' * 20 + '"epoch": epoch,\n\n',
' ' * 16 + '},\n\n',
' ' * 16 + 'step=epoch,\n',
' ' * 12,
' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n',
]
self.one_complete_example('complete_cv_example.py' , _A , _A , _A )
self.one_complete_example('complete_cv_example.py' , _A , _A , _A )
@mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} )
class lowerCamelCase_ ( snake_case_ ):
'''simple docstring'''
lowercase_ = False
@classmethod
def lowerCAmelCase_ ( cls : Any ):
super().setUpClass()
SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE_ = os.path.join(cls._tmpdir , 'default_config.yml' )
write_basic_config(save_location=cls.configPath )
SCREAMING_SNAKE_CASE_ = ['accelerate', 'launch', '--config_file', cls.configPath]
@classmethod
def lowerCAmelCase_ ( cls : int ):
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def lowerCAmelCase_ ( self : List[str] ):
SCREAMING_SNAKE_CASE_ = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) )
def lowerCAmelCase_ ( self : int ):
SCREAMING_SNAKE_CASE_ = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split()
SCREAMING_SNAKE_CASE_ = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) )
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split()
SCREAMING_SNAKE_CASE_ = run_command(self._launch_args + testargs , return_stdout=_A )
self.assertNotIn('epoch 0:' , _A )
self.assertIn('epoch 1:' , _A )
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split()
SCREAMING_SNAKE_CASE_ = run_command(self._launch_args + testargs , return_stdout=_A )
if torch.cuda.is_available():
SCREAMING_SNAKE_CASE_ = torch.cuda.device_count()
else:
SCREAMING_SNAKE_CASE_ = 1
if num_processes > 1:
self.assertNotIn('epoch 0:' , _A )
self.assertIn('epoch 1:' , _A )
else:
self.assertIn('epoch 0:' , _A )
self.assertIn('epoch 1:' , _A )
@slow
def lowerCAmelCase_ ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE_ = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split()
with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ):
SCREAMING_SNAKE_CASE_ = run_command(self._launch_args + testargs , return_stdout=_A )
SCREAMING_SNAKE_CASE_ = re.findall('({.+})' , _A )
SCREAMING_SNAKE_CASE_ = [r for r in results if 'accuracy' in r][-1]
SCREAMING_SNAKE_CASE_ = ast.literal_eval(_A )
self.assertGreaterEqual(results['accuracy'] , 0.75 )
def lowerCAmelCase_ ( self : Any ):
SCREAMING_SNAKE_CASE_ = ['examples/by_feature/multi_process_metrics.py']
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )
def lowerCAmelCase_ ( self : List[str] ):
with tempfile.TemporaryDirectory() as tmpdir:
SCREAMING_SNAKE_CASE_ = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(_A , 'tracking' ) ) )
def lowerCAmelCase_ ( self : Optional[int] ):
SCREAMING_SNAKE_CASE_ = ['examples/by_feature/gradient_accumulation.py']
run_command(self._launch_args + testargs )
def lowerCAmelCase_ ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE_ = ['examples/by_feature/local_sgd.py']
run_command(self._launch_args + testargs ) | 225 |
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def __init__( self : List[str] , _A : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _A : bool = True , _A : Tuple=7 , _A : Tuple=30 , _A : int=400 , _A : Tuple=3 , ) -> Optional[int]:
"""simple docstring"""
snake_case_ : str = parent
snake_case_ : str = do_resize
snake_case_ : str = size if size is not None else {'shortest_edge': 288}
snake_case_ : Any = size_divisor
snake_case_ : Any = do_rescale
snake_case_ : Union[str, Any] = rescale_factor
snake_case_ : str = do_normalize
snake_case_ : int = do_center_crop
snake_case_ : str = image_mean
snake_case_ : int = image_std
snake_case_ : Any = do_pad
snake_case_ : Optional[int] = batch_size
snake_case_ : List[str] = num_channels
snake_case_ : Any = min_resolution
snake_case_ : str = max_resolution
def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def UpperCAmelCase_ ( self : Dict , _A : str , _A : Union[str, Any]=False ) -> int:
"""simple docstring"""
if not batched:
snake_case_ : Optional[int] = self.size['shortest_edge']
snake_case_ : List[Any] = image_inputs[0]
if isinstance(_A , Image.Image ):
snake_case_ ,snake_case_ : Optional[Any] = image.size
else:
snake_case_ ,snake_case_ : str = image.shape[1], image.shape[2]
snake_case_ : Dict = size / min(_A , _A )
if h < w:
snake_case_ ,snake_case_ : str = size, scale * w
else:
snake_case_ ,snake_case_ : Tuple = scale * h, size
snake_case_ : Dict = int((1333 / 800) * size )
if max(_A , _A ) > max_size:
snake_case_ : Union[str, Any] = max_size / max(_A , _A )
snake_case_ : Any = newh * scale
snake_case_ : Union[str, Any] = neww * scale
snake_case_ ,snake_case_ : Any = int(newh + 0.5 ), int(neww + 0.5 )
snake_case_ ,snake_case_ : int = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
snake_case_ : Optional[int] = []
for image in image_inputs:
snake_case_ ,snake_case_ : Optional[int] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case_ : str = max(_A , key=lambda _A : item[0] )[0]
snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ):
__magic_name__: List[Any] = BridgeTowerImageProcessor if is_vision_available() else None
def UpperCAmelCase_ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
snake_case_ : int = BridgeTowerImageProcessingTester(self )
@property
def UpperCAmelCase_ ( self : int ) -> Any:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , 'image_mean' ) )
self.assertTrue(hasattr(_A , 'image_std' ) )
self.assertTrue(hasattr(_A , 'do_normalize' ) )
self.assertTrue(hasattr(_A , 'do_resize' ) )
self.assertTrue(hasattr(_A , 'size' ) )
self.assertTrue(hasattr(_A , 'size_divisor' ) )
def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
pass
def UpperCAmelCase_ ( self : Tuple ) -> Tuple:
"""simple docstring"""
snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A , Image.Image )
# Test not batched input
snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : List[str] = image_processing(_A , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
snake_case_ : int = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A , np.ndarray )
# Test not batched input
snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : Any = image_processing(_A , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase_ ( self : Dict ) -> List[str]:
"""simple docstring"""
snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
# Test not batched input
snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case_ : str = image_processing(_A , return_tensors='pt' ).pixel_values
snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 327 | 0 |
"""simple docstring"""
import re
from filelock import FileLock
try:
import nltk
lowercase_ = True
except (ImportError, ModuleNotFoundError):
lowercase_ = False
if NLTK_AVAILABLE:
with FileLock('.lock') as lock:
nltk.download('punkt', quiet=True)
def lowerCAmelCase ( __UpperCamelCase ):
"""simple docstring"""
re.sub('''<n>''' , '''''' , __a ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(__a ) )
| 266 |
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
_SCREAMING_SNAKE_CASE = 50_00_00
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = os.path.split(__file__)
_SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json"""))
@get_duration
def SCREAMING_SNAKE_CASE__ ( __a , **__a ):
snake_case_ : int = dataset.map(**__a )
@get_duration
def SCREAMING_SNAKE_CASE__ ( __a , **__a ):
snake_case_ : Dict = dataset.filter(**__a )
def SCREAMING_SNAKE_CASE__ ( ):
snake_case_ : Tuple = {'num examples': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case_ : Dict = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} )
snake_case_ : List[Any] = generate_example_dataset(
os.path.join(__a , 'dataset.arrow' ) , __a , num_examples=__a )
snake_case_ : str = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__a )
def tokenize(__a ):
return tokenizer(examples['text'] )
snake_case_ : Any = map(__a )
snake_case_ : Tuple = map(__a , batched=__a )
snake_case_ : str = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='numpy' ):
snake_case_ : Optional[int] = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='pandas' ):
snake_case_ : str = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='torch' , columns='numbers' ):
snake_case_ : int = map(__a , function=lambda __a : None , batched=__a )
with dataset.formatted_as(type='tensorflow' , columns='numbers' ):
snake_case_ : List[Any] = map(__a , function=lambda __a : None , batched=__a )
snake_case_ : int = map(__a , function=__a , batched=__a )
snake_case_ : Optional[Any] = filter(__a )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(__a , 'wb' ) as f:
f.write(json.dumps(__a ).encode('utf-8' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 327 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
__lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
class UpperCAmelCase_ ( snake_case_ ):
'''simple docstring'''
a__ = ["pixel_values"]
def __init__( self : Dict , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Dict[str, int]] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , **UpperCamelCase__ : Tuple , ) -> None:
"""simple docstring"""
super().__init__(**_A )
__magic_name__ = size if size is not None else {'shortest_edge': 256}
__magic_name__ = get_size_dict(_A , default_to_square=_A )
__magic_name__ = crop_size if crop_size is not None else {'height': 224, 'width': 224}
__magic_name__ = get_size_dict(_A )
__magic_name__ = do_resize
__magic_name__ = size
__magic_name__ = resample
__magic_name__ = do_center_crop
__magic_name__ = crop_size
__magic_name__ = do_rescale
__magic_name__ = rescale_factor
__magic_name__ = do_normalize
__magic_name__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__magic_name__ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowercase ( self : int , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : int , ) -> np.ndarray:
"""simple docstring"""
__magic_name__ = get_size_dict(_A , default_to_square=_A )
if "shortest_edge" not in size:
raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
__magic_name__ = get_resize_output_image_size(_A , size=size["""shortest_edge"""] , default_to_square=_A )
return resize(_A , size=_A , resample=_A , data_format=_A , **_A )
def _lowercase ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : int , ) -> np.ndarray:
"""simple docstring"""
__magic_name__ = get_size_dict(_A )
return center_crop(_A , size=(size["""height"""], size["""width"""]) , data_format=_A , **_A )
def _lowercase ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Any ) -> np.ndarray:
"""simple docstring"""
return rescale(_A , scale=_A , data_format=_A , **_A )
def _lowercase ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Dict , ) -> np.ndarray:
"""simple docstring"""
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def _lowercase ( self : Any , UpperCamelCase__ : ImageInput , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase__ : Dict , ) -> int:
"""simple docstring"""
__magic_name__ = do_resize if do_resize is not None else self.do_resize
__magic_name__ = size if size is not None else self.size
__magic_name__ = get_size_dict(_A , default_to_square=_A )
__magic_name__ = resample if resample is not None else self.resample
__magic_name__ = do_center_crop if do_center_crop is not None else self.do_center_crop
__magic_name__ = crop_size if crop_size is not None else self.crop_size
__magic_name__ = get_size_dict(_A )
__magic_name__ = do_rescale if do_rescale is not None else self.do_rescale
__magic_name__ = rescale_factor if rescale_factor is not None else self.rescale_factor
__magic_name__ = do_normalize if do_normalize is not None else self.do_normalize
__magic_name__ = image_mean if image_mean is not None else self.image_mean
__magic_name__ = image_std if image_std is not None else self.image_std
__magic_name__ = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
__magic_name__ = [to_numpy_array(_A ) for image in images]
if do_resize:
__magic_name__ = [self.resize(image=_A , size=_A , resample=_A ) for image in images]
if do_center_crop:
__magic_name__ = [self.center_crop(image=_A , size=_A ) for image in images]
if do_rescale:
__magic_name__ = [self.rescale(image=_A , scale=_A ) for image in images]
if do_normalize:
__magic_name__ = [self.normalize(image=_A , mean=_A , std=_A ) for image in images]
__magic_name__ = [to_channel_dimension_format(_A , _A ) for image in images]
__magic_name__ = {'pixel_values': images}
return BatchFeature(data=_A , tensor_type=_A )
| 88 |
from collections import namedtuple
import requests
from lxml import html # type: ignore
_SCREAMING_SNAKE_CASE = namedtuple("""covid_data""", """cases deaths recovered""")
def SCREAMING_SNAKE_CASE__ ( __a = "https://www.worldometers.info/coronavirus/" ):
snake_case_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()'
return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) )
_SCREAMING_SNAKE_CASE = """Total COVID-19 cases in the world: {}
Total deaths due to COVID-19 in the world: {}
Total COVID-19 patients recovered in the world: {}"""
print(fmt.format(*covid_stats()))
| 327 | 0 |
"""simple docstring"""
import numpy as np
import qiskit
def __UpperCAmelCase ( __UpperCamelCase = 8 , __UpperCamelCase = None ):
__lowercase : str = np.random.default_rng(seed=__a )
# Roughly 25% of the qubits will contribute to the key.
# So we take more than we need.
__lowercase : Tuple = 6 * key_len
# Measurement basis for Alice's qubits.
__lowercase : Optional[Any] = rng.integers(2 , size=__a )
# The set of states Alice will prepare.
__lowercase : str = rng.integers(2 , size=__a )
# Measurement basis for Bob's qubits.
__lowercase : str = rng.integers(2 , size=__a )
# Quantum Circuit to simulate BB84
__lowercase : str = qiskit.QuantumCircuit(__a , name='''BB84''' )
# Alice prepares her qubits according to rules above.
for index, _ in enumerate(__a ):
if alice_state[index] == 1:
bbaa_circ.x(__a )
if alice_basis[index] == 1:
bbaa_circ.h(__a )
bbaa_circ.barrier()
# Bob measures the received qubits according to rules above.
for index, _ in enumerate(__a ):
if bob_basis[index] == 1:
bbaa_circ.h(__a )
bbaa_circ.barrier()
bbaa_circ.measure_all()
# Simulate the quantum circuit.
__lowercase : Optional[Any] = qiskit.Aer.get_backend('''aer_simulator''' )
# We only need to run one shot because the key is unique.
# Multiple shots will produce the same key.
__lowercase : List[str] = qiskit.execute(__a , __a , shots=1 , seed_simulator=__a )
# Returns the result of measurement.
__lowercase : Union[str, Any] = job.result().get_counts(__a ).most_frequent()
# Extracting the generated key from the simulation results.
# Only keep measurement results where Alice and Bob chose the same basis.
__lowercase : int = ''.join(
[
result_bit
for alice_basis_bit, bob_basis_bit, result_bit in zip(
__a , __a , __a )
if alice_basis_bit == bob_basis_bit
] )
# Get final key. Pad with 0 if too short, otherwise truncate.
__lowercase : Dict = gen_key[:key_len] if len(__a ) >= key_len else gen_key.ljust(__a , '''0''' )
return key
if __name__ == "__main__":
print(F"The generated key is : {bbaa(8, seed=0)}")
from doctest import testmod
testmod()
| 249 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_lxmert import LxmertTokenizer
_SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
_SCREAMING_SNAKE_CASE = {
"""vocab_file""": {
"""unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""",
},
"""tokenizer_file""": {
"""unc-nlp/lxmert-base-uncased""": (
"""https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json"""
),
},
}
_SCREAMING_SNAKE_CASE = {
"""unc-nlp/lxmert-base-uncased""": 5_12,
}
_SCREAMING_SNAKE_CASE = {
"""unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True},
}
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
__magic_name__: List[Any] = VOCAB_FILES_NAMES
__magic_name__: List[str] = PRETRAINED_VOCAB_FILES_MAP
__magic_name__: List[str] = PRETRAINED_INIT_CONFIGURATION
__magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__: Union[str, Any] = LxmertTokenizer
def __init__( self : List[str] , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=True , _A : Dict="[UNK]" , _A : Optional[int]="[SEP]" , _A : Dict="[PAD]" , _A : Union[str, Any]="[CLS]" , _A : str="[MASK]" , _A : Tuple=True , _A : Dict=None , **_A : List[Any] , ) -> Optional[int]:
"""simple docstring"""
super().__init__(
_A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , )
snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _A ) != do_lower_case
or normalizer_state.get('strip_accents' , _A ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars
):
snake_case_ : Tuple = getattr(_A , normalizer_state.pop('type' ) )
snake_case_ : Union[str, Any] = do_lower_case
snake_case_ : int = strip_accents
snake_case_ : Optional[Any] = tokenize_chinese_chars
snake_case_ : List[Any] = normalizer_class(**_A )
snake_case_ : Tuple = do_lower_case
def UpperCAmelCase_ ( self : Dict , _A : Any , _A : List[Any]=None ) -> Dict:
"""simple docstring"""
snake_case_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase_ ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
snake_case_ : str = [self.sep_token_id]
snake_case_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A )
return tuple(_A )
| 327 | 0 |
"""simple docstring"""
from __future__ import annotations
class lowerCAmelCase_ :
"""simple docstring"""
def __init__(self , SCREAMING_SNAKE_CASE__ ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = data
SCREAMING_SNAKE_CASE__ : Node | None = None
SCREAMING_SNAKE_CASE__ : Node | None = None
def lowercase_ ( _snake_case ): # In Order traversal of the tree
if tree:
display(tree.left )
print(tree.data )
display(tree.right )
def lowercase_ ( _snake_case ):
return 1 + max(depth_of_tree(tree.left ) ,depth_of_tree(tree.right ) ) if tree else 0
def lowercase_ ( _snake_case ):
if not tree:
return True
if tree.left and tree.right:
return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right )
else:
return not tree.left and not tree.right
def lowercase_ ( ): # Main function for testing.
SCREAMING_SNAKE_CASE__ : str = Node(1 )
SCREAMING_SNAKE_CASE__ : Dict = Node(2 )
SCREAMING_SNAKE_CASE__ : str = Node(3 )
SCREAMING_SNAKE_CASE__ : Any = Node(4 )
SCREAMING_SNAKE_CASE__ : List[Any] = Node(5 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = Node(6 )
SCREAMING_SNAKE_CASE__ : Tuple = Node(7 )
SCREAMING_SNAKE_CASE__ : int = Node(8 )
SCREAMING_SNAKE_CASE__ : Any = Node(9 )
print(is_full_binary_tree(__a ) )
print(depth_of_tree(__a ) )
print("""Tree is: """ )
display(__a )
if __name__ == "__main__":
main()
| 25 |
def SCREAMING_SNAKE_CASE__ ( __a ):
if not isinstance(__a , __a ):
snake_case_ : int = f"""Input value of [number={number}] must be an integer"""
raise TypeError(__a )
if number < 0:
return False
snake_case_ : Dict = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
import numpy as np
def UpperCAmelCase__ ( lowerCamelCase ):
return 1 / (1 + np.exp(-vector ))
def UpperCAmelCase__ ( lowerCamelCase ):
return vector * sigmoid(1.702 * vector )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 236 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_SCREAMING_SNAKE_CASE = {
"""configuration_autoformer""": [
"""AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AutoformerConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
"""AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AutoformerForPrediction""",
"""AutoformerModel""",
"""AutoformerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 327 | 0 |
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
# General docstring
_SCREAMING_SNAKE_CASE = 'MobileNetV1Config'
# Base docstring
_SCREAMING_SNAKE_CASE = 'google/mobilenet_v1_1.0_224'
_SCREAMING_SNAKE_CASE = [1, 1_024, 7, 7]
# Image classification docstring
_SCREAMING_SNAKE_CASE = 'google/mobilenet_v1_1.0_224'
_SCREAMING_SNAKE_CASE = 'tabby, tabby cat'
_SCREAMING_SNAKE_CASE = [
'google/mobilenet_v1_1.0_224',
'google/mobilenet_v1_0.75_192',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def snake_case ( snake_case__ :Tuple , snake_case__ :Tuple , snake_case__ :Any=None) -> Optional[Any]:
_A = {}
if isinstance(__a , __a):
_A = model.mobilenet_va
else:
_A = model
_A = 'MobilenetV1/Conv2d_0/'
_A = backbone.conv_stem.convolution.weight
_A = backbone.conv_stem.normalization.bias
_A = backbone.conv_stem.normalization.weight
_A = backbone.conv_stem.normalization.running_mean
_A = backbone.conv_stem.normalization.running_var
for i in range(13):
_A = i + 1
_A = i * 2
_A = backbone.layer[pt_index]
_A = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/'''
_A = pointer.convolution.weight
_A = pointer.normalization.bias
_A = pointer.normalization.weight
_A = pointer.normalization.running_mean
_A = pointer.normalization.running_var
_A = backbone.layer[pt_index + 1]
_A = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/'''
_A = pointer.convolution.weight
_A = pointer.normalization.bias
_A = pointer.normalization.weight
_A = pointer.normalization.running_mean
_A = pointer.normalization.running_var
if isinstance(__a , __a):
_A = 'MobilenetV1/Logits/Conv2d_1c_1x1/'
_A = model.classifier.weight
_A = model.classifier.bias
return tf_to_pt_map
def snake_case ( snake_case__ :Tuple , snake_case__ :Optional[int] , snake_case__ :Optional[Any]) -> Optional[int]:
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"""Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """
"""https://www.tensorflow.org/install/ for installation instructions.""")
raise
# Load weights from TF model
_A = tf.train.list_variables(__a)
_A = {}
for name, shape in init_vars:
logger.info(F'''Loading TF weight {name} with shape {shape}''')
_A = tf.train.load_variable(__a , __a)
_A = array
# Build TF to PyTorch weights loading map
_A = _build_tf_to_pytorch_map(__a , __a , __a)
for name, pointer in tf_to_pt_map.items():
logger.info(F'''Importing {name}''')
if name not in tf_weights:
logger.info(F'''{name} not in tf pre-trained weights, skipping''')
continue
_A = tf_weights[name]
if "depthwise_weights" in name:
logger.info("""Transposing depthwise""")
_A = np.transpose(__a , (2, 3, 0, 1))
elif "weights" in name:
logger.info("""Transposing""")
if len(pointer.shape) == 2: # copying into linear layer
_A = array.squeeze().transpose()
else:
_A = np.transpose(__a , (3, 2, 0, 1))
if pointer.shape != array.shape:
raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''')
logger.info(F'''Initialize PyTorch weight {name} {array.shape}''')
_A = torch.from_numpy(__a)
tf_weights.pop(__a , __a)
tf_weights.pop(name + """/RMSProp""" , __a)
tf_weights.pop(name + """/RMSProp_1""" , __a)
tf_weights.pop(name + """/ExponentialMovingAverage""" , __a)
logger.info(F'''Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}''')
return model
def snake_case ( snake_case__ :Union[str, Any] , snake_case__ :Dict) -> int:
_A = features.shape[-2:]
_A = conv_layer.stride
_A = conv_layer.kernel_size
if in_height % stride_height == 0:
_A = max(kernel_height - stride_height , 0)
else:
_A = max(kernel_height - (in_height % stride_height) , 0)
if in_width % stride_width == 0:
_A = max(kernel_width - stride_width , 0)
else:
_A = max(kernel_width - (in_width % stride_width) , 0)
_A = pad_along_width // 2
_A = pad_along_width - pad_left
_A = pad_along_height // 2
_A = pad_along_height - pad_top
_A = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(__a , __a , """constant""" , 0.0)
class a ( nn.Module ):
"""simple docstring"""
def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = False , lowerCAmelCase_ = True , lowerCAmelCase_ = True , ) -> None:
super().__init__()
_A = config
if in_channels % groups != 0:
raise ValueError(F'''Input channels ({in_channels}) are not divisible by {groups} groups.''' )
if out_channels % groups != 0:
raise ValueError(F'''Output channels ({out_channels}) are not divisible by {groups} groups.''' )
_A = 0 if config.tf_padding else int((kernel_size - 1) / 2 )
_A = nn.Convad(
in_channels=_A , out_channels=_A , kernel_size=_A , stride=_A , padding=_A , groups=_A , bias=_A , padding_mode="""zeros""" , )
if use_normalization:
_A = nn.BatchNormad(
num_features=_A , eps=config.layer_norm_eps , momentum=0.9997 , affine=_A , track_running_stats=_A , )
else:
_A = None
if use_activation:
if isinstance(_A , _A ):
_A = ACTaFN[use_activation]
elif isinstance(config.hidden_act , _A ):
_A = ACTaFN[config.hidden_act]
else:
_A = config.hidden_act
else:
_A = None
def UpperCAmelCase ( self , lowerCAmelCase_ ) -> torch.Tensor:
if self.config.tf_padding:
_A = apply_tf_padding(_A , self.convolution )
_A = self.convolution(_A )
if self.normalization is not None:
_A = self.normalization(_A )
if self.activation is not None:
_A = self.activation(_A )
return features
class a ( snake_case_ ):
"""simple docstring"""
lowerCamelCase :Tuple = MobileNetVaConfig
lowerCamelCase :Union[str, Any] = load_tf_weights_in_mobilenet_va
lowerCamelCase :int = "mobilenet_v1"
lowerCamelCase :int = "pixel_values"
lowerCamelCase :int = False
def UpperCAmelCase ( self , lowerCAmelCase_ ) -> None:
if isinstance(_A , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(_A , nn.BatchNormad ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
_SCREAMING_SNAKE_CASE = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
_SCREAMING_SNAKE_CASE = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
'''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , snake_case_ , )
class a ( snake_case_ ):
"""simple docstring"""
def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = True ) -> str:
super().__init__(_A )
_A = config
_A = 32
_A = max(int(depth * config.depth_multiplier ) , config.min_depth )
_A = MobileNetVaConvLayer(
_A , in_channels=config.num_channels , out_channels=_A , kernel_size=3 , stride=2 , )
_A = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
_A = nn.ModuleList()
for i in range(13 ):
_A = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
_A = max(int(depth * config.depth_multiplier ) , config.min_depth )
self.layer.append(
MobileNetVaConvLayer(
_A , in_channels=_A , out_channels=_A , kernel_size=3 , stride=strides[i] , groups=_A , ) )
self.layer.append(
MobileNetVaConvLayer(
_A , in_channels=_A , out_channels=_A , kernel_size=1 , ) )
_A = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def UpperCAmelCase ( self , lowerCAmelCase_ ) -> int:
raise NotImplementedError
@add_start_docstrings_to_model_forward(_A )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCAmelCase ( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
_A = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_A = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("""You have to specify pixel_values""" )
_A = self.conv_stem(_A )
_A = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer ):
_A = layer_module(_A )
if output_hidden_states:
_A = all_hidden_states + (hidden_states,)
_A = hidden_states
if self.pooler is not None:
_A = torch.flatten(self.pooler(_A ) , start_dim=1 )
else:
_A = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None )
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_A , pooler_output=_A , hidden_states=_A , )
@add_start_docstrings(
'''\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ''' , snake_case_ , )
class a ( snake_case_ ):
"""simple docstring"""
def __init__( self , lowerCAmelCase_ ) -> None:
super().__init__(_A )
_A = config.num_labels
_A = MobileNetVaModel(_A )
_A = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
_A = nn.Dropout(config.classifier_dropout_prob , inplace=_A )
_A = nn.Linear(_A , config.num_labels ) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_A )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCAmelCase ( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
_A = return_dict if return_dict is not None else self.config.use_return_dict
_A = self.mobilenet_va(_A , output_hidden_states=_A , return_dict=_A )
_A = outputs.pooler_output if return_dict else outputs[1]
_A = self.classifier(self.dropout(_A ) )
_A = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_A = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_A = 'single_label_classification'
else:
_A = 'multi_label_classification'
if self.config.problem_type == "regression":
_A = MSELoss()
if self.num_labels == 1:
_A = loss_fct(logits.squeeze() , labels.squeeze() )
else:
_A = loss_fct(_A , _A )
elif self.config.problem_type == "single_label_classification":
_A = CrossEntropyLoss()
_A = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_A = BCEWithLogitsLoss()
_A = loss_fct(_A , _A )
if not return_dict:
_A = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=_A , logits=_A , hidden_states=outputs.hidden_states , )
| 180 |
from typing import Dict
from .base import GenericTensor, Pipeline
class SCREAMING_SNAKE_CASE_ ( snake_case_ ):
def UpperCAmelCase_ ( self : str , _A : Optional[Any]=None , _A : List[str]=None , _A : Optional[Any]=None , **_A : List[str] ) -> Any:
"""simple docstring"""
if tokenize_kwargs is None:
snake_case_ : Optional[Any] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
snake_case_ : int = truncation
snake_case_ : Optional[int] = tokenize_kwargs
snake_case_ : Dict = {}
if return_tensors is not None:
snake_case_ : Union[str, Any] = return_tensors
return preprocess_params, {}, postprocess_params
def UpperCAmelCase_ ( self : Optional[int] , _A : int , **_A : Any ) -> Dict[str, GenericTensor]:
"""simple docstring"""
snake_case_ : Dict = self.framework
snake_case_ : Any = self.tokenizer(_A , return_tensors=_A , **_A )
return model_inputs
def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] ) -> int:
"""simple docstring"""
snake_case_ : Tuple = self.model(**_A )
return model_outputs
def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str=False ) -> Any:
"""simple docstring"""
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> List[str]:
"""simple docstring"""
return super().__call__(*_A , **_A )
| 327 | 0 |
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
lowercase__ : Tuple = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
"text-classification",
"language-modeling",
"summarization",
"token-classification",
"question-answering",
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
lowercase__ : List[Any] = logging.getLogger()
def A_ ( ) -> List[Any]:
'''simple docstring'''
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
__UpperCamelCase = parser.parse_args()
return args.f
def A_ ( snake_case : Tuple , snake_case : List[str]="eval" ) -> Optional[int]:
'''simple docstring'''
__UpperCamelCase = os.path.join(snake_case , f"{split}_results.json" )
if os.path.exists(snake_case ):
with open(snake_case , '''r''' ) as f:
return json.load(snake_case )
raise ValueError(f"can't find {path}" )
lowercase__ : List[Any] = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def A__ ( self )-> Dict:
'''simple docstring'''
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = F"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split()
with patch.object(SCREAMING_SNAKE_CASE_ , '''argv''' , SCREAMING_SNAKE_CASE_ ):
run_flax_glue.main()
__UpperCamelCase = get_results(SCREAMING_SNAKE_CASE_ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 )
@slow
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = F"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(SCREAMING_SNAKE_CASE_ , '''argv''' , SCREAMING_SNAKE_CASE_ ):
run_clm_flax.main()
__UpperCamelCase = get_results(SCREAMING_SNAKE_CASE_ )
self.assertLess(result['''eval_perplexity'''] , 100 )
@slow
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = F"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split()
with patch.object(SCREAMING_SNAKE_CASE_ , '''argv''' , SCREAMING_SNAKE_CASE_ ):
run_summarization_flax.main()
__UpperCamelCase = get_results(SCREAMING_SNAKE_CASE_ , split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] , 10 )
self.assertGreaterEqual(result['''test_rouge2'''] , 2 )
self.assertGreaterEqual(result['''test_rougeL'''] , 7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 )
@slow
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = F"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split()
with patch.object(SCREAMING_SNAKE_CASE_ , '''argv''' , SCREAMING_SNAKE_CASE_ ):
run_mlm_flax.main()
__UpperCamelCase = get_results(SCREAMING_SNAKE_CASE_ )
self.assertLess(result['''eval_perplexity'''] , 42 )
@slow
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = F"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split()
with patch.object(SCREAMING_SNAKE_CASE_ , '''argv''' , SCREAMING_SNAKE_CASE_ ):
run_ta_mlm_flax.main()
__UpperCamelCase = get_results(SCREAMING_SNAKE_CASE_ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.4_2 )
@slow
def A__ ( self )-> Dict:
'''simple docstring'''
__UpperCamelCase = 7 if get_gpu_count() > 1 else 2
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = F"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split()
with patch.object(SCREAMING_SNAKE_CASE_ , '''argv''' , SCREAMING_SNAKE_CASE_ ):
run_flax_ner.main()
__UpperCamelCase = get_results(SCREAMING_SNAKE_CASE_ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.7_5 )
self.assertGreaterEqual(result['''eval_f1'''] , 0.3 )
@slow
def A__ ( self )-> int:
'''simple docstring'''
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = F"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split()
with patch.object(SCREAMING_SNAKE_CASE_ , '''argv''' , SCREAMING_SNAKE_CASE_ ):
run_qa.main()
__UpperCamelCase = get_results(SCREAMING_SNAKE_CASE_ )
self.assertGreaterEqual(result['''eval_f1'''] , 30 )
self.assertGreaterEqual(result['''eval_exact'''] , 30 )
| 328 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__)
lowercase__ : Optional[Any] = ["names", "prefix"]
lowercase__ : List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"]
lowercase__ : Optional[Any] = ["encoding_errors", "on_bad_lines"]
lowercase__ : List[str] = ["date_format"]
@dataclass
class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ):
"""simple docstring"""
_snake_case = ","
_snake_case = None
_snake_case = "infer"
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = True
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = False
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = True
_snake_case = True
_snake_case = False
_snake_case = True
_snake_case = None
_snake_case = "."
_snake_case = None
_snake_case = '"'
_snake_case = 0
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = True
_snake_case = True
_snake_case = 0
_snake_case = True
_snake_case = False
_snake_case = None
_snake_case = 10000
_snake_case = None
_snake_case = "strict"
_snake_case = "error"
_snake_case = None
def A__ ( self )-> Any:
'''simple docstring'''
if self.delimiter is not None:
__UpperCamelCase = self.delimiter
if self.column_names is not None:
__UpperCamelCase = self.column_names
@property
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = {
'''sep''': self.sep,
'''header''': self.header,
'''names''': self.names,
'''index_col''': self.index_col,
'''usecols''': self.usecols,
'''prefix''': self.prefix,
'''mangle_dupe_cols''': self.mangle_dupe_cols,
'''engine''': self.engine,
'''converters''': self.converters,
'''true_values''': self.true_values,
'''false_values''': self.false_values,
'''skipinitialspace''': self.skipinitialspace,
'''skiprows''': self.skiprows,
'''nrows''': self.nrows,
'''na_values''': self.na_values,
'''keep_default_na''': self.keep_default_na,
'''na_filter''': self.na_filter,
'''verbose''': self.verbose,
'''skip_blank_lines''': self.skip_blank_lines,
'''thousands''': self.thousands,
'''decimal''': self.decimal,
'''lineterminator''': self.lineterminator,
'''quotechar''': self.quotechar,
'''quoting''': self.quoting,
'''escapechar''': self.escapechar,
'''comment''': self.comment,
'''encoding''': self.encoding,
'''dialect''': self.dialect,
'''error_bad_lines''': self.error_bad_lines,
'''warn_bad_lines''': self.warn_bad_lines,
'''skipfooter''': self.skipfooter,
'''doublequote''': self.doublequote,
'''memory_map''': self.memory_map,
'''float_precision''': self.float_precision,
'''chunksize''': self.chunksize,
'''encoding_errors''': self.encoding_errors,
'''on_bad_lines''': self.on_bad_lines,
'''date_format''': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE_ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
_snake_case = CsvConfig
def A__ ( self )-> Any:
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" )
__UpperCamelCase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ):
__UpperCamelCase = data_files
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = [files]
__UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
__UpperCamelCase = []
for split_name, files in data_files.items():
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = [files]
__UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files]
splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) )
return splits
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.Table:
'''simple docstring'''
if self.config.features is not None:
__UpperCamelCase = self.config.features.arrow_schema
if all(not require_storage_cast(SCREAMING_SNAKE_CASE_ ) for feature in self.config.features.values() ):
# cheaper cast
__UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE_ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
__UpperCamelCase = table_cast(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return pa_table
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
__UpperCamelCase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
__UpperCamelCase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE_ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ):
__UpperCamelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , iterator=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = pa.Table.from_pandas(SCREAMING_SNAKE_CASE_ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ )
except ValueError as e:
logger.error(F"Failed to read file '{file}' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}" )
raise
| 328 | 1 |
def A_ ( snake_case : int = 1000000 ) -> int:
'''simple docstring'''
__UpperCamelCase = set(range(3 , snake_case , 2 ) )
primes.add(2 )
for p in range(3 , snake_case , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , snake_case , snake_case ) ) )
__UpperCamelCase = [float(snake_case ) for n in range(limit + 1 )]
for p in primes:
for n in range(snake_case , limit + 1 , snake_case ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 328 |
from __future__ import annotations
import math
def A_ ( snake_case : int ) -> bool:
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)]
def A_ ( snake_case : int ) -> list[int]:
'''simple docstring'''
if not isinstance(snake_case , snake_case ):
raise ValueError('''n must be an integer''' )
if n <= 0:
raise ValueError('''n must be >= 0''' )
__UpperCamelCase = []
for num in range(len(snake_case ) ):
__UpperCamelCase = 0
while 2 * i * i <= odd_composites[num]:
__UpperCamelCase = odd_composites[num] - 2 * i * i
if is_prime(snake_case ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(snake_case ) == n:
return list_nums
return []
def A_ ( ) -> int:
'''simple docstring'''
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F"{solution() = }")
| 328 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import importlib.metadata
import json
import os
from dataclasses import dataclass
from typing import Any, Dict, Union
from packaging import version
from ..utils import is_torch_available, logging
if is_torch_available():
import torch
lowercase__ : Optional[Any] = logging.get_logger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=6.0 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="fp4" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , )-> int:
'''simple docstring'''
__UpperCamelCase = load_in_abit
__UpperCamelCase = load_in_abit
__UpperCamelCase = llm_inta_threshold
__UpperCamelCase = llm_inta_skip_modules
__UpperCamelCase = llm_inta_enable_fpaa_cpu_offload
__UpperCamelCase = llm_inta_has_fpaa_weight
__UpperCamelCase = bnb_abit_quant_type
__UpperCamelCase = bnb_abit_use_double_quant
if bnb_abit_compute_dtype is None:
__UpperCamelCase = torch.floataa
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , torch.dtype ):
__UpperCamelCase = bnb_abit_compute_dtype
else:
raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''' )
self.post_init()
def A__ ( self )-> List[str]:
'''simple docstring'''
if not isinstance(self.llm_inta_threshold , SCREAMING_SNAKE_CASE_ ):
raise ValueError('''llm_int8_threshold must be a float''' )
if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , SCREAMING_SNAKE_CASE_ ):
raise ValueError('''llm_int8_skip_modules must be a list of strings''' )
if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , SCREAMING_SNAKE_CASE_ ):
raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''' )
if not isinstance(self.llm_inta_has_fpaa_weight , SCREAMING_SNAKE_CASE_ ):
raise ValueError('''llm_int8_has_fp16_weight must be a boolean''' )
if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ):
raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''' )
if not isinstance(self.bnb_abit_quant_type , SCREAMING_SNAKE_CASE_ ):
raise ValueError('''bnb_4bit_quant_type must be a string''' )
if not isinstance(self.bnb_abit_use_double_quant , SCREAMING_SNAKE_CASE_ ):
raise ValueError('''bnb_4bit_use_double_quant must be a boolean''' )
if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''' ) ) >= version.parse(
'''0.39.0''' ):
raise ValueError(
'''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''' )
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
return self.load_in_abit or self.load_in_abit
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
if self.load_in_abit:
return "llm_int8"
elif self.load_in_abit and self.bnb_abit_quant_type == "fp4":
return "fp4"
elif self.load_in_abit and self.bnb_abit_quant_type == "nf4":
return "nf4"
else:
return None
@classmethod
def A__ ( cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
__UpperCamelCase = cls(**SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = []
for key, value in kwargs.items():
if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
to_remove.append(SCREAMING_SNAKE_CASE_ )
for key in to_remove:
kwargs.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if return_unused_kwargs:
return config, kwargs
else:
return config
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[Any]:
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer:
__UpperCamelCase = self.to_dict()
__UpperCamelCase = json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ ) + '''\n'''
writer.write(SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Dict[str, Any]:
'''simple docstring'''
__UpperCamelCase = copy.deepcopy(self.__dict__ )
__UpperCamelCase = str(output['''bnb_4bit_compute_dtype'''] ).split('''.''' )[1]
return output
def __repr__( self )-> Tuple:
'''simple docstring'''
return F"{self.__class__.__name__} {self.to_json_string()}"
def A__ ( self , SCREAMING_SNAKE_CASE_ = True )-> str:
'''simple docstring'''
if use_diff is True:
__UpperCamelCase = self.to_diff_dict()
else:
__UpperCamelCase = self.to_dict()
return json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ ) + "\n"
def A__ ( self )-> Dict[str, Any]:
'''simple docstring'''
__UpperCamelCase = self.to_dict()
# get the default config dict
__UpperCamelCase = BitsAndBytesConfig().to_dict()
__UpperCamelCase = {}
# only serialize values that differ from the default config
for key, value in config_dict.items():
if value != default_config_dict[key]:
__UpperCamelCase = value
return serializable_config_dict
| 328 |
from __future__ import annotations
from collections.abc import Callable
def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float:
'''simple docstring'''
__UpperCamelCase = x_start
__UpperCamelCase = fnc(snake_case )
__UpperCamelCase = 0.0
for _ in range(snake_case ):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
__UpperCamelCase = (x_end - x_start) / steps + xa
__UpperCamelCase = fnc(snake_case )
area += abs(fxa + fxa ) * (xa - xa) / 2
# Increment step
__UpperCamelCase = xa
__UpperCamelCase = fxa
return area
if __name__ == "__main__":
def A_ ( snake_case : Tuple ) -> Optional[Any]:
'''simple docstring'''
return x**3 + x**2
print("f(x) = x^3 + x^2")
print("The area between the curve, x = -5, x = 5 and the x axis is:")
lowercase__ : List[str] = 1_0
while i <= 1_0_0_0_0_0:
print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}")
i *= 1_0
| 328 | 1 |
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_tensorflow_text_available():
from transformers.models.bert import TFBertTokenizer
lowercase__ : int = ["bert-base-uncased", "bert-base-cased"]
lowercase__ : Dict = "hf-internal-testing/tiny-bert-tf-only"
if is_tf_available():
class SCREAMING_SNAKE_CASE__ ( tf.keras.Model ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
super().__init__()
__UpperCamelCase = tokenizer
__UpperCamelCase = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = TFAutoModel.from_config(SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
__UpperCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.bert(**SCREAMING_SNAKE_CASE_ )
return out["pooler_output"]
@require_tf
@require_tensorflow_text
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
super().setUp()
__UpperCamelCase = [
BertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2)
] # repeat for when fast_bert_tokenizer=false
__UpperCamelCase = [TFBertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [
TFBertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , use_fast_bert_tokenizer=SCREAMING_SNAKE_CASE_ )
for checkpoint in TOKENIZER_CHECKPOINTS
]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
__UpperCamelCase = [
'''This is a straightforward English test sentence.''',
'''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''',
'''Now we\'re going to add some Chinese: 一 二 三 一二三''',
'''And some much more rare Chinese: 齉 堃 齉堃''',
'''Je vais aussi écrire en français pour tester les accents''',
'''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''',
]
__UpperCamelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in (self.test_sentences, self.paired_sentences):
__UpperCamelCase = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='''tf''' , padding='''longest''' )
__UpperCamelCase = tf_tokenizer(SCREAMING_SNAKE_CASE_ )
for key in python_outputs.keys():
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) )
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) )
@slow
def A__ ( self )-> List[str]:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
__UpperCamelCase = tf_tokenizer(self.paired_sentences )
__UpperCamelCase = tf_tokenizer(
text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , )
for key in merged_outputs.keys():
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) )
@slow
def A__ ( self )-> Tuple:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
__UpperCamelCase = tf.function(SCREAMING_SNAKE_CASE_ )
for test_inputs in (self.test_sentences, self.paired_sentences):
__UpperCamelCase = tf.constant(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = compiled_tokenizer(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = tf_tokenizer(SCREAMING_SNAKE_CASE_ )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def A__ ( self )-> List[str]:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
__UpperCamelCase = ModelToSave(tokenizer=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = tf.convert_to_tensor(self.test_sentences )
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
__UpperCamelCase = Path(SCREAMING_SNAKE_CASE_ ) / '''saved.model'''
model.save(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = tf.keras.models.load_model(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = loaded_model(SCREAMING_SNAKE_CASE_ )
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
| 328 |
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : int = logging.get_logger(__name__)
lowercase__ : List[str] = ["model.decoder.embed_positions.weights"]
def A_ ( snake_case : Any ) -> List[Any]:
'''simple docstring'''
if "emb" in name:
__UpperCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' )
if "transformer" in name:
__UpperCamelCase = name.replace('''transformer''' , '''model.decoder''' )
if "cross_attention" in name:
__UpperCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' )
if "linear1" in name:
__UpperCamelCase = name.replace('''linear1''' , '''fc1''' )
if "linear2" in name:
__UpperCamelCase = name.replace('''linear2''' , '''fc2''' )
if "norm1" in name:
__UpperCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' )
if "norm_cross" in name:
__UpperCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' )
if "norm2" in name:
__UpperCamelCase = name.replace('''norm2''' , '''final_layer_norm''' )
if "out_norm" in name:
__UpperCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' )
if "linears" in name:
__UpperCamelCase = name.replace('''linears''' , '''lm_heads''' )
if "condition_provider.conditioners.description.output_proj" in name:
__UpperCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' )
return name
def A_ ( snake_case : OrderedDict , snake_case : int ) -> Tuple[Dict, Dict]:
'''simple docstring'''
__UpperCamelCase = list(state_dict.keys() )
__UpperCamelCase = {}
for key in keys:
__UpperCamelCase = state_dict.pop(snake_case )
__UpperCamelCase = rename_keys(snake_case )
if "in_proj_weight" in key:
# split fused qkv proj
__UpperCamelCase = val[:hidden_size, :]
__UpperCamelCase = val[hidden_size : 2 * hidden_size, :]
__UpperCamelCase = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
__UpperCamelCase = val
else:
__UpperCamelCase = val
return state_dict, enc_dec_proj_state_dict
def A_ ( snake_case : str ) -> MusicgenDecoderConfig:
'''simple docstring'''
if checkpoint == "small":
# default config values
__UpperCamelCase = 1024
__UpperCamelCase = 24
__UpperCamelCase = 16
elif checkpoint == "medium":
__UpperCamelCase = 1536
__UpperCamelCase = 48
__UpperCamelCase = 24
elif checkpoint == "large":
__UpperCamelCase = 2048
__UpperCamelCase = 48
__UpperCamelCase = 32
else:
raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." )
__UpperCamelCase = MusicgenDecoderConfig(
hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , )
return config
@torch.no_grad()
def A_ ( snake_case : Any , snake_case : str=None , snake_case : Any=None , snake_case : Union[str, Any]="cpu" ) -> List[Any]:
'''simple docstring'''
__UpperCamelCase = MusicGen.get_pretrained(snake_case , device=snake_case )
__UpperCamelCase = decoder_config_from_checkpoint(snake_case )
__UpperCamelCase = fairseq_model.lm.state_dict()
__UpperCamelCase , __UpperCamelCase = rename_state_dict(
snake_case , hidden_size=decoder_config.hidden_size )
__UpperCamelCase = TaEncoderModel.from_pretrained('''t5-base''' )
__UpperCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' )
__UpperCamelCase = MusicgenForCausalLM(snake_case ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
__UpperCamelCase , __UpperCamelCase = decoder.load_state_dict(snake_case , strict=snake_case )
for key in missing_keys.copy():
if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(snake_case )
if len(snake_case ) > 0:
raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" )
if len(snake_case ) > 0:
raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" )
# init the composite model
__UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(snake_case )
# check we can do a forward pass
__UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
__UpperCamelCase = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
__UpperCamelCase = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits
if logits.shape != (8, 1, 2048):
raise ValueError('''Incorrect shape for logits''' )
# now construct the processor
__UpperCamelCase = AutoTokenizer.from_pretrained('''t5-base''' )
__UpperCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' )
__UpperCamelCase = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case )
# set the appropriate bos/pad token ids
__UpperCamelCase = 2048
__UpperCamelCase = 2048
# set other default generation config params
__UpperCamelCase = int(30 * audio_encoder.config.frame_rate )
__UpperCamelCase = True
__UpperCamelCase = 3.0
if pytorch_dump_folder is not None:
Path(snake_case ).mkdir(exist_ok=snake_case )
logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" )
model.save_pretrained(snake_case )
processor.save_pretrained(snake_case )
if repo_id:
logger.info(f"Pushing model {checkpoint} to {repo_id}" )
model.push_to_hub(snake_case )
processor.push_to_hub(snake_case )
if __name__ == "__main__":
lowercase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
lowercase__ : Tuple = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 328 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : Union[str, Any] = {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json",
}
# fmt: off
lowercase__ : str = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5,
7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7,
1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1,
4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6,
1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1,
1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9,
3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1
]
lowercase__ : str = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3,
8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7,
3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7,
7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3,
1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5,
2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5,
4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2
]
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = 'whisper'
_snake_case = ['past_key_values']
_snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , SCREAMING_SNAKE_CASE_=51865 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=50257 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1500 , SCREAMING_SNAKE_CASE_=448 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[220, 50256] , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=7 , **SCREAMING_SNAKE_CASE_ , )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = vocab_size
__UpperCamelCase = num_mel_bins
__UpperCamelCase = d_model
__UpperCamelCase = encoder_layers
__UpperCamelCase = encoder_attention_heads
__UpperCamelCase = decoder_layers
__UpperCamelCase = decoder_attention_heads
__UpperCamelCase = decoder_ffn_dim
__UpperCamelCase = encoder_ffn_dim
__UpperCamelCase = dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = activation_dropout
__UpperCamelCase = activation_function
__UpperCamelCase = init_std
__UpperCamelCase = encoder_layerdrop
__UpperCamelCase = decoder_layerdrop
__UpperCamelCase = use_cache
__UpperCamelCase = encoder_layers
__UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True
__UpperCamelCase = max_source_positions
__UpperCamelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
__UpperCamelCase = classifier_proj_size
__UpperCamelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCamelCase = apply_spec_augment
__UpperCamelCase = mask_time_prob
__UpperCamelCase = mask_time_length
__UpperCamelCase = mask_time_min_masks
__UpperCamelCase = mask_feature_prob
__UpperCamelCase = mask_feature_length
__UpperCamelCase = mask_feature_min_masks
__UpperCamelCase = median_filter_width
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
@property
def A__ ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
__UpperCamelCase = OrderedDict(
[
('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}),
] )
if self.use_past:
__UpperCamelCase = {0: '''batch'''}
else:
__UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' )
return common_inputs
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 22050 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 220 , )-> Mapping[str, Any]:
'''simple docstring'''
__UpperCamelCase = OrderedDict()
__UpperCamelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , )
__UpperCamelCase = encoder_inputs['''input_features'''].shape[2]
__UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length
__UpperCamelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = encoder_inputs.pop('''input_features''' )
__UpperCamelCase = decoder_inputs.pop('''decoder_input_ids''' )
if "past_key_values" in decoder_inputs:
__UpperCamelCase = decoder_inputs.pop('''past_key_values''' )
return dummy_inputs
@property
def A__ ( self )-> float:
'''simple docstring'''
return 1E-3
| 328 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing the experiment tracking capability,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowercase__ : List[str] = 1_6
lowercase__ : str = 3_2
def A_ ( snake_case : Accelerator , snake_case : int = 16 ) -> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' )
__UpperCamelCase = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(snake_case : Union[str, Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
__UpperCamelCase = datasets.map(
snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__UpperCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(snake_case : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
__UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
__UpperCamelCase = 16
elif accelerator.mixed_precision != "no":
__UpperCamelCase = 8
else:
__UpperCamelCase = None
return tokenizer.pad(
snake_case , padding='''longest''' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='''pt''' , )
# Instantiate dataloaders.
__UpperCamelCase = DataLoader(
tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case )
__UpperCamelCase = DataLoader(
tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowercase__ : Union[str, Any] = mocked_dataloaders # noqa: F811
def A_ ( snake_case : List[str] , snake_case : List[Any] ) -> Tuple:
'''simple docstring'''
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case ) == "1":
__UpperCamelCase = 2
# Initialize Accelerator
# New Code #
# We pass in "all" to `log_with` to grab all available trackers in the environment
# Note: If using a custom `Tracker` class, should be passed in here such as:
# >>> log_with = ["all", MyCustomTrackerClassInstance()]
if args.with_tracking:
__UpperCamelCase = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir )
else:
__UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__UpperCamelCase = config['''lr''']
__UpperCamelCase = int(config['''num_epochs'''] )
__UpperCamelCase = int(config['''seed'''] )
__UpperCamelCase = int(config['''batch_size'''] )
set_seed(snake_case )
__UpperCamelCase , __UpperCamelCase = get_dataloaders(snake_case , snake_case )
__UpperCamelCase = evaluate.load('''glue''' , '''mrpc''' )
# If the batch size is too big we use gradient accumulation
__UpperCamelCase = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
__UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE
__UpperCamelCase = MAX_GPU_BATCH_SIZE
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__UpperCamelCase = model.to(accelerator.device )
# Instantiate optimizer
__UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case )
# Instantiate scheduler
__UpperCamelCase = get_linear_schedule_with_warmup(
optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
snake_case , snake_case , snake_case , snake_case , snake_case )
# New Code #
# We need to initialize the trackers we use. Overall configurations can also be stored
if args.with_tracking:
__UpperCamelCase = os.path.split(snake_case )[-1].split('''.''' )[0]
accelerator.init_trackers(snake_case , snake_case )
# Now we train the model
for epoch in range(snake_case ):
model.train()
# New Code #
# For our tracking example, we will log the total loss of each epoch
if args.with_tracking:
__UpperCamelCase = 0
for step, batch in enumerate(snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
__UpperCamelCase = model(**snake_case )
__UpperCamelCase = outputs.loss
# New Code #
if args.with_tracking:
total_loss += loss.detach().float()
__UpperCamelCase = loss / gradient_accumulation_steps
accelerator.backward(snake_case )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True` (the default).
batch.to(accelerator.device )
with torch.no_grad():
__UpperCamelCase = model(**snake_case )
__UpperCamelCase = outputs.logits.argmax(dim=-1 )
__UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=snake_case , references=snake_case , )
__UpperCamelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"epoch {epoch}:" , snake_case )
# New Code #
# To actually log, we call `Accelerator.log`
# The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int`
if args.with_tracking:
accelerator.log(
{
'''accuracy''': eval_metric['''accuracy'''],
'''f1''': eval_metric['''f1'''],
'''train_loss''': total_loss.item() / len(snake_case ),
'''epoch''': epoch,
} , step=snake_case , )
# New Code #
# When a run is finished, you should call `accelerator.end_training()`
# to close all of the open trackers
if args.with_tracking:
accelerator.end_training()
def A_ ( ) -> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=snake_case , default=snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
parser.add_argument(
'''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , )
parser.add_argument(
'''--project_dir''' , type=snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , )
__UpperCamelCase = parser.parse_args()
__UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(snake_case , snake_case )
if __name__ == "__main__":
main()
| 328 | 1 |
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
lowercase__ : int = pytest.mark.integration
lowercase__ : Dict = {"comet"}
lowercase__ : Optional[Any] = importlib.util.find_spec("fairseq") is not None
lowercase__ : str = {"code_eval"}
lowercase__ : int = os.name == "nt"
lowercase__ : int = {"bertscore", "frugalscore", "perplexity"}
lowercase__ : Optional[int] = importlib.util.find_spec("transformers") is not None
def A_ ( snake_case : int ) -> Optional[int]:
'''simple docstring'''
@wraps(snake_case )
def wrapper(self : Dict , snake_case : Any ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest('''"test requires Fairseq"''' )
else:
test_case(self , snake_case )
return wrapper
def A_ ( snake_case : Tuple ) -> Tuple:
'''simple docstring'''
@wraps(snake_case )
def wrapper(self : Optional[int] , snake_case : Dict ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest('''"test requires transformers"''' )
else:
test_case(self , snake_case )
return wrapper
def A_ ( snake_case : List[Any] ) -> Optional[int]:
'''simple docstring'''
@wraps(snake_case )
def wrapper(self : Optional[Any] , snake_case : Optional[Any] ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest('''"test not supported on Windows"''' )
else:
test_case(self , snake_case )
return wrapper
def A_ ( ) -> List[str]:
'''simple docstring'''
__UpperCamelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@local
class SCREAMING_SNAKE_CASE__ ( parameterized.TestCase ):
"""simple docstring"""
_snake_case = {}
_snake_case = None
@pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' )
@pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
__UpperCamelCase = '''[...]'''
__UpperCamelCase = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('''metrics''' , SCREAMING_SNAKE_CASE_ ) ).module_path )
__UpperCamelCase = datasets.load.import_main_class(metric_module.__name__ , dataset=SCREAMING_SNAKE_CASE_ )
# check parameters
__UpperCamelCase = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(SCREAMING_SNAKE_CASE_ , metric_module.__name__ ):
with self.use_local_metrics():
try:
__UpperCamelCase = doctest.testmod(SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , raise_on_error=SCREAMING_SNAKE_CASE_ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int:
'''simple docstring'''
__UpperCamelCase = '''[...]'''
__UpperCamelCase = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('''metrics''' , SCREAMING_SNAKE_CASE_ ) ).module_path )
# run doctest
with self.use_local_metrics():
__UpperCamelCase = doctest.testmod(SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , raise_on_error=SCREAMING_SNAKE_CASE_ )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](SCREAMING_SNAKE_CASE_ ):
yield
else:
yield
@contextmanager
def A__ ( self )-> List[str]:
'''simple docstring'''
def load_local_metric(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
return load_metric(os.path.join('''metrics''' , SCREAMING_SNAKE_CASE_ ) , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
with patch('''datasets.load_metric''' ) as mock_load_metric:
__UpperCamelCase = load_local_metric
yield
@classmethod
def A__ ( cls , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
def wrapper(SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = contextmanager(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher('''bleurt''' )
def A_ ( snake_case : Any ) -> Dict:
'''simple docstring'''
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[Any]:
'''simple docstring'''
assert len(input_dict['''input_ids'''] ) == 2
return np.array([1.0_3, 1.0_4] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor:
__UpperCamelCase = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher('''bertscore''' )
def A_ ( snake_case : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
import torch
def bert_cos_score_idf(snake_case : Tuple , snake_case : Any , *snake_case : Optional[int] , **snake_case : Optional[Any] ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(snake_case ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch('''bert_score.scorer.get_model''' ), patch(
'''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf:
__UpperCamelCase = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher('''comet''' )
def A_ ( snake_case : List[str] ) -> Optional[int]:
'''simple docstring'''
def load_from_checkpoint(snake_case : Dict ):
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def A__ ( self , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Optional[Any]:
'''simple docstring'''
assert len(SCREAMING_SNAKE_CASE_ ) == 2
__UpperCamelCase = [0.1_9, 0.9_2]
return scores, sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch('''comet.download_model''' ) as mock_download_model:
__UpperCamelCase = None
with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint:
__UpperCamelCase = load_from_checkpoint
yield
def A_ ( ) -> Dict:
'''simple docstring'''
__UpperCamelCase = load_metric(os.path.join('''metrics''' , '''seqeval''' ) )
__UpperCamelCase = '''ERROR'''
__UpperCamelCase = f"Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}"
with pytest.raises(snake_case , match=re.escape(snake_case ) ):
metric.compute(predictions=[] , references=[] , scheme=snake_case )
| 328 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : Union[str, Any] = {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json",
}
# fmt: off
lowercase__ : str = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5,
7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7,
1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1,
4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6,
1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1,
1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9,
3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1
]
lowercase__ : str = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3,
8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7,
3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7,
7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3,
1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5,
2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5,
4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2
]
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = 'whisper'
_snake_case = ['past_key_values']
_snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , SCREAMING_SNAKE_CASE_=51865 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=50257 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1500 , SCREAMING_SNAKE_CASE_=448 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[220, 50256] , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=7 , **SCREAMING_SNAKE_CASE_ , )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = vocab_size
__UpperCamelCase = num_mel_bins
__UpperCamelCase = d_model
__UpperCamelCase = encoder_layers
__UpperCamelCase = encoder_attention_heads
__UpperCamelCase = decoder_layers
__UpperCamelCase = decoder_attention_heads
__UpperCamelCase = decoder_ffn_dim
__UpperCamelCase = encoder_ffn_dim
__UpperCamelCase = dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = activation_dropout
__UpperCamelCase = activation_function
__UpperCamelCase = init_std
__UpperCamelCase = encoder_layerdrop
__UpperCamelCase = decoder_layerdrop
__UpperCamelCase = use_cache
__UpperCamelCase = encoder_layers
__UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True
__UpperCamelCase = max_source_positions
__UpperCamelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
__UpperCamelCase = classifier_proj_size
__UpperCamelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCamelCase = apply_spec_augment
__UpperCamelCase = mask_time_prob
__UpperCamelCase = mask_time_length
__UpperCamelCase = mask_time_min_masks
__UpperCamelCase = mask_feature_prob
__UpperCamelCase = mask_feature_length
__UpperCamelCase = mask_feature_min_masks
__UpperCamelCase = median_filter_width
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
@property
def A__ ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
__UpperCamelCase = OrderedDict(
[
('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}),
] )
if self.use_past:
__UpperCamelCase = {0: '''batch'''}
else:
__UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' )
return common_inputs
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 22050 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 220 , )-> Mapping[str, Any]:
'''simple docstring'''
__UpperCamelCase = OrderedDict()
__UpperCamelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , )
__UpperCamelCase = encoder_inputs['''input_features'''].shape[2]
__UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length
__UpperCamelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = encoder_inputs.pop('''input_features''' )
__UpperCamelCase = decoder_inputs.pop('''decoder_input_ids''' )
if "past_key_values" in decoder_inputs:
__UpperCamelCase = decoder_inputs.pop('''past_key_values''' )
return dummy_inputs
@property
def A__ ( self )-> float:
'''simple docstring'''
return 1E-3
| 328 | 1 |
import requests
from bsa import BeautifulSoup
def A_ ( snake_case : str , snake_case : dict ) -> str:
'''simple docstring'''
__UpperCamelCase = BeautifulSoup(requests.get(snake_case , params=snake_case ).content , '''html.parser''' )
__UpperCamelCase = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} )
__UpperCamelCase = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' )
return anchors[2].get_text()
if __name__ == "__main__":
lowercase__ : List[str] = {
"title": (
"Precisely geometry controlled microsupercapacitors for ultrahigh areal "
"capacitance, volumetric capacitance, and energy density"
),
"journal": "Chem. Mater.",
"volume": 3_0,
"pages": "3979-3990",
"year": 2_0_1_8,
"hl": "en",
}
print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
| 328 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : Any = logging.get_logger(__name__)
lowercase__ : Tuple = {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = 'xlnet'
_snake_case = ['mems']
_snake_case = {
'n_token': 'vocab_size', # Backward compatibility
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , SCREAMING_SNAKE_CASE_=32000 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="bi" , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=-1 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="tanh" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , )-> List[str]:
'''simple docstring'''
__UpperCamelCase = vocab_size
__UpperCamelCase = d_model
__UpperCamelCase = n_layer
__UpperCamelCase = n_head
if d_model % n_head != 0:
raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" )
__UpperCamelCase = d_model // n_head
__UpperCamelCase = ff_activation
__UpperCamelCase = d_inner
__UpperCamelCase = untie_r
__UpperCamelCase = attn_type
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = dropout
__UpperCamelCase = mem_len
__UpperCamelCase = reuse_len
__UpperCamelCase = bi_data
__UpperCamelCase = clamp_len
__UpperCamelCase = same_length
__UpperCamelCase = summary_type
__UpperCamelCase = summary_use_proj
__UpperCamelCase = summary_activation
__UpperCamelCase = summary_last_dropout
__UpperCamelCase = start_n_top
__UpperCamelCase = end_n_top
__UpperCamelCase = bos_token_id
__UpperCamelCase = pad_token_id
__UpperCamelCase = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'''
''' instead.''' , SCREAMING_SNAKE_CASE_ , )
__UpperCamelCase = kwargs['''use_cache''']
__UpperCamelCase = use_mems_eval
__UpperCamelCase = use_mems_train
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
@property
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." )
return -1
@max_position_embeddings.setter
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]:
'''simple docstring'''
raise NotImplementedError(
F"The model {self.model_type} is one of the few models that has no sequence length limit." )
| 328 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowercase__ : str = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None:
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = size if size is not None else {'''shortest_edge''': 224}
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' )
__UpperCamelCase = do_resize
__UpperCamelCase = size
__UpperCamelCase = crop_pct
__UpperCamelCase = resample
__UpperCamelCase = do_center_crop
__UpperCamelCase = crop_size
__UpperCamelCase = do_rescale
__UpperCamelCase = rescale_factor
__UpperCamelCase = do_normalize
__UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray:
'''simple docstring'''
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
if crop_pct is not None:
if "shortest_edge" in size:
__UpperCamelCase = int(size['''shortest_edge'''] / crop_pct )
elif "height" in size and "width" in size:
if size["height"] == size["width"]:
__UpperCamelCase = int(size['''height'''] / crop_pct )
else:
__UpperCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct ))
else:
raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
else:
if "shortest_edge" in size:
__UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ )
elif "height" in size and "width" in size:
__UpperCamelCase = (size['''height'''], size['''width'''])
else:
raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) )
return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray:
'''simple docstring'''
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ )
if "height" not in size or "width" not in size:
raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> str:
'''simple docstring'''
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray:
'''simple docstring'''
return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , )-> PIL.Image.Image:
'''simple docstring'''
__UpperCamelCase = do_resize if do_resize is not None else self.do_resize
__UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct
__UpperCamelCase = resample if resample is not None else self.resample
__UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
__UpperCamelCase = image_mean if image_mean is not None else self.image_mean
__UpperCamelCase = image_std if image_std is not None else self.image_std
__UpperCamelCase = size if size is not None else self.size
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = crop_size if crop_size is not None else self.crop_size
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' )
__UpperCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE_ )
if not valid_images(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_pct is None:
raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
__UpperCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images]
if do_resize:
__UpperCamelCase = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_center_crop:
__UpperCamelCase = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_rescale:
__UpperCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_normalize:
__UpperCamelCase = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images]
__UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images]
__UpperCamelCase = {'''pixel_values''': images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
| 328 |
from typing import Any
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = data
__UpperCamelCase = None
def __repr__( self )-> str:
'''simple docstring'''
return F"Node({self.data})"
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = None
def __iter__( self )-> Any:
'''simple docstring'''
__UpperCamelCase = self.head
while node:
yield node.data
__UpperCamelCase = node.next
def __len__( self )-> int:
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self )-> str:
'''simple docstring'''
return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] )
def __getitem__( self , SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('''list index out of range.''' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('''list index out of range.''' )
__UpperCamelCase = self.head
for _ in range(SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = current.next
__UpperCamelCase = data
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
self.insert_nth(0 , SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('''list index out of range''' )
__UpperCamelCase = Node(SCREAMING_SNAKE_CASE_ )
if self.head is None:
__UpperCamelCase = new_node
elif index == 0:
__UpperCamelCase = self.head # link new_node to head
__UpperCamelCase = new_node
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = new_node
def A__ ( self )-> None: # print every node data
'''simple docstring'''
print(self )
def A__ ( self )-> Any:
'''simple docstring'''
return self.delete_nth(0 )
def A__ ( self )-> Any: # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def A__ ( self , SCREAMING_SNAKE_CASE_ = 0 )-> Any:
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('''List index out of range.''' )
__UpperCamelCase = self.head # default first node
if index == 0:
__UpperCamelCase = self.head.next
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next.next
return delete_node.data
def A__ ( self )-> bool:
'''simple docstring'''
return self.head is None
def A__ ( self )-> None:
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = self.head
while current:
# Store the current node's next node.
__UpperCamelCase = current.next
# Make the current node's next point backwards
__UpperCamelCase = prev
# Make the previous node be the current node
__UpperCamelCase = current
# Make the current node the next node (to progress iteration)
__UpperCamelCase = next_node
# Return prev in order to put the head at the end
__UpperCamelCase = prev
def A_ ( ) -> None:
'''simple docstring'''
__UpperCamelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(snake_case ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(snake_case ) == i
linked_list.insert_nth(snake_case , i + 1 )
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(snake_case ) == 9
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
__UpperCamelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(-8 , 1 ) )
def A_ ( ) -> None:
'''simple docstring'''
__UpperCamelCase = [
-9,
100,
Node(77345112 ),
'''dlrow olleH''',
7,
5555,
0,
-192.55555,
'''Hello, world!''',
77.9,
Node(10 ),
None,
None,
12.20,
]
__UpperCamelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(snake_case )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
__UpperCamelCase = linked_list.delete_head()
assert result == -9
assert (
str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
__UpperCamelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
__UpperCamelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('''Hello again, world!''' ) )
assert (
str(snake_case )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(snake_case )
assert (
str(snake_case )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(snake_case )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def A_ ( ) -> Any:
'''simple docstring'''
from doctest import testmod
testmod()
__UpperCamelCase = LinkedList()
linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() )
linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() )
print('''\nPrint list:''' )
linked_list.print_list()
linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() )
linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() )
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nDelete head''' )
linked_list.delete_head()
print('''Delete tail''' )
linked_list.delete_tail()
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nReverse linked list''' )
linked_list.reverse()
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nString representation of linked list:''' )
print(snake_case )
print('''\nReading/changing Node data using indexing:''' )
print(f"Element at Position 1: {linked_list[1]}" )
__UpperCamelCase = input('''Enter New Value: ''' ).strip()
print('''New list:''' )
print(snake_case )
print(f"length of linked_list is : {len(snake_case )}" )
if __name__ == "__main__":
main()
| 328 | 1 |
from typing import List
import jiwer
import jiwer.transforms as tr
from packaging import version
import datasets
from datasets.config import PY_VERSION
if PY_VERSION < version.parse("3.8"):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
lowercase__ : Union[str, Any] = ""
if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"):
class SCREAMING_SNAKE_CASE__ ( tr.AbstractTransform ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ = " " )-> str:
'''simple docstring'''
__UpperCamelCase = sentence_delimiter
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[Any]:
'''simple docstring'''
return list(SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int:
'''simple docstring'''
__UpperCamelCase = []
for sent_idx, sentence in enumerate(SCREAMING_SNAKE_CASE_ ):
chars.extend(self.process_string(SCREAMING_SNAKE_CASE_ ) )
if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(SCREAMING_SNAKE_CASE_ ) - 1:
chars.append(self.sentence_delimiter )
return chars
lowercase__ : Optional[int] = tr.Compose(
[tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)]
)
else:
lowercase__ : Optional[Any] = tr.Compose(
[
tr.RemoveMultipleSpaces(),
tr.Strip(),
tr.ReduceToSingleSentence(SENTENCE_DELIMITER),
tr.ReduceToListOfListOfChars(),
]
)
lowercase__ : Optional[Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n"
lowercase__ : Optional[int] = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n"
lowercase__ : str = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
"""simple docstring"""
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/Word_error_rate''',
'''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''',
] , )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False )-> List[str]:
'''simple docstring'''
if concatenate_texts:
return jiwer.compute_measures(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , truth_transform=SCREAMING_SNAKE_CASE_ , hypothesis_transform=SCREAMING_SNAKE_CASE_ , )["wer"]
__UpperCamelCase = 0
__UpperCamelCase = 0
for prediction, reference in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = jiwer.compute_measures(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , truth_transform=SCREAMING_SNAKE_CASE_ , hypothesis_transform=SCREAMING_SNAKE_CASE_ , )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 328 |
import math
def A_ ( snake_case : int ) -> bool:
'''simple docstring'''
return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num
def A_ ( snake_case : int ) -> bool:
'''simple docstring'''
__UpperCamelCase = 0
__UpperCamelCase = n
while left <= right:
__UpperCamelCase = (left + right) // 2
if mid**2 == n:
return True
elif mid**2 > n:
__UpperCamelCase = mid - 1
else:
__UpperCamelCase = mid + 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 328 | 1 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
lowercase__ : Union[str, Any] = (7_2_0, 1_2_8_0) # Height, Width
lowercase__ : Optional[int] = (0.4, 0.6) # if height or width lower than this scale, drop it.
lowercase__ : List[Any] = 1 / 1_0_0
lowercase__ : str = ""
lowercase__ : str = ""
lowercase__ : List[Any] = ""
lowercase__ : List[str] = 2_5_0
def A_ ( ) -> None:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = get_dataset(snake_case , snake_case )
for index in range(snake_case ):
__UpperCamelCase = random.sample(range(len(snake_case ) ) , 4 )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = update_image_and_anno(
snake_case , snake_case , snake_case , snake_case , snake_case , filter_scale=snake_case , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
__UpperCamelCase = random_chars(32 )
__UpperCamelCase = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
__UpperCamelCase = f"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}"
cva.imwrite(f"{file_root}.jpg" , snake_case , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" )
__UpperCamelCase = []
for anno in new_annos:
__UpperCamelCase = anno[3] - anno[1]
__UpperCamelCase = anno[4] - anno[2]
__UpperCamelCase = anno[1] + width / 2
__UpperCamelCase = anno[2] + height / 2
__UpperCamelCase = f"{anno[0]} {x_center} {y_center} {width} {height}"
annos_list.append(snake_case )
with open(f"{file_root}.txt" , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def A_ ( snake_case : str , snake_case : str ) -> tuple[list, list]:
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = []
for label_file in glob.glob(os.path.join(snake_case , '''*.txt''' ) ):
__UpperCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(snake_case ) as in_file:
__UpperCamelCase = in_file.readlines()
__UpperCamelCase = os.path.join(snake_case , f"{label_name}.jpg" )
__UpperCamelCase = []
for obj_list in obj_lists:
__UpperCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' )
__UpperCamelCase = float(obj[1] ) - float(obj[3] ) / 2
__UpperCamelCase = float(obj[2] ) - float(obj[4] ) / 2
__UpperCamelCase = float(obj[1] ) + float(obj[3] ) / 2
__UpperCamelCase = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(snake_case )
labels.append(snake_case )
return img_paths, labels
def A_ ( snake_case : list , snake_case : list , snake_case : list[int] , snake_case : tuple[int, int] , snake_case : tuple[float, float] , snake_case : float = 0.0 , ) -> tuple[list, list, str]:
'''simple docstring'''
__UpperCamelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
__UpperCamelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
__UpperCamelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
__UpperCamelCase = int(scale_x * output_size[1] )
__UpperCamelCase = int(scale_y * output_size[0] )
__UpperCamelCase = []
__UpperCamelCase = []
for i, index in enumerate(snake_case ):
__UpperCamelCase = all_img_list[index]
path_list.append(snake_case )
__UpperCamelCase = all_annos[index]
__UpperCamelCase = cva.imread(snake_case )
if i == 0: # top-left
__UpperCamelCase = cva.resize(snake_case , (divid_point_x, divid_point_y) )
__UpperCamelCase = img
for bbox in img_annos:
__UpperCamelCase = bbox[1] * scale_x
__UpperCamelCase = bbox[2] * scale_y
__UpperCamelCase = bbox[3] * scale_x
__UpperCamelCase = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
__UpperCamelCase = cva.resize(snake_case , (output_size[1] - divid_point_x, divid_point_y) )
__UpperCamelCase = img
for bbox in img_annos:
__UpperCamelCase = scale_x + bbox[1] * (1 - scale_x)
__UpperCamelCase = bbox[2] * scale_y
__UpperCamelCase = scale_x + bbox[3] * (1 - scale_x)
__UpperCamelCase = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
__UpperCamelCase = cva.resize(snake_case , (divid_point_x, output_size[0] - divid_point_y) )
__UpperCamelCase = img
for bbox in img_annos:
__UpperCamelCase = bbox[1] * scale_x
__UpperCamelCase = scale_y + bbox[2] * (1 - scale_y)
__UpperCamelCase = bbox[3] * scale_x
__UpperCamelCase = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
__UpperCamelCase = cva.resize(
snake_case , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
__UpperCamelCase = img
for bbox in img_annos:
__UpperCamelCase = scale_x + bbox[1] * (1 - scale_x)
__UpperCamelCase = scale_y + bbox[2] * (1 - scale_y)
__UpperCamelCase = scale_x + bbox[3] * (1 - scale_x)
__UpperCamelCase = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
__UpperCamelCase = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def A_ ( snake_case : int ) -> str:
'''simple docstring'''
assert number_char > 1, "The number of character should greater than 1"
__UpperCamelCase = ascii_lowercase + digits
return "".join(random.choice(snake_case ) for _ in range(snake_case ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 328 |
def A_ ( ) -> list[list[int]]:
'''simple docstring'''
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
lowercase__ : List[str] = generate_large_matrix()
lowercase__ : Tuple = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def A_ ( snake_case : list[list[int]] ) -> None:
'''simple docstring'''
assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid )
assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) )
def A_ ( snake_case : list[int] ) -> int:
'''simple docstring'''
__UpperCamelCase = 0
__UpperCamelCase = len(snake_case ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
__UpperCamelCase = (left + right) // 2
__UpperCamelCase = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
__UpperCamelCase = mid + 1
else:
__UpperCamelCase = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(snake_case )
def A_ ( snake_case : list[list[int]] ) -> int:
'''simple docstring'''
__UpperCamelCase = 0
__UpperCamelCase = len(grid[0] )
for i in range(len(snake_case ) ):
__UpperCamelCase = find_negative_index(grid[i][:bound] )
total += bound
return (len(snake_case ) * len(grid[0] )) - total
def A_ ( snake_case : list[list[int]] ) -> int:
'''simple docstring'''
return len([number for row in grid for number in row if number < 0] )
def A_ ( snake_case : list[list[int]] ) -> int:
'''simple docstring'''
__UpperCamelCase = 0
for row in grid:
for i, number in enumerate(snake_case ):
if number < 0:
total += len(snake_case ) - i
break
return total
def A_ ( ) -> None:
'''simple docstring'''
from timeit import timeit
print('''Running benchmarks''' )
__UpperCamelCase = (
'''from __main__ import count_negatives_binary_search, '''
'''count_negatives_brute_force, count_negatives_brute_force_with_break, grid'''
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
__UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 )
print(f"{func}() took {time:0.4f} seconds" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 328 | 1 |
import numpy
# List of input, output pairs
lowercase__ : Union[str, Any] = (
((5, 2, 3), 1_5),
((6, 5, 9), 2_5),
((1_1, 1_2, 1_3), 4_1),
((1, 1, 1), 8),
((1_1, 1_2, 1_3), 4_1),
)
lowercase__ : Optional[int] = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0))
lowercase__ : int = [2, 4, 1, 5]
lowercase__ : Any = len(train_data)
lowercase__ : Optional[int] = 0.009
def A_ ( snake_case : Dict , snake_case : Optional[int]="train" ) -> Union[str, Any]:
'''simple docstring'''
return calculate_hypothesis_value(snake_case , snake_case ) - output(
snake_case , snake_case )
def A_ ( snake_case : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
__UpperCamelCase = 0
for i in range(len(snake_case ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def A_ ( snake_case : int , snake_case : Tuple ) -> Union[str, Any]:
'''simple docstring'''
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def A_ ( snake_case : Tuple , snake_case : str ) -> Dict:
'''simple docstring'''
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def A_ ( snake_case : List[Any] , snake_case : int=m ) -> int:
'''simple docstring'''
__UpperCamelCase = 0
for i in range(snake_case ):
if index == -1:
summation_value += _error(snake_case )
else:
summation_value += _error(snake_case ) * train_data[i][0][index]
return summation_value
def A_ ( snake_case : Optional[Any] ) -> Dict:
'''simple docstring'''
__UpperCamelCase = summation_of_cost_derivative(snake_case , snake_case ) / m
return cost_derivative_value
def A_ ( ) -> Union[str, Any]:
'''simple docstring'''
global parameter_vector
# Tune these values to set a tolerance value for predicted output
__UpperCamelCase = 0.000002
__UpperCamelCase = 0
__UpperCamelCase = 0
while True:
j += 1
__UpperCamelCase = [0, 0, 0, 0]
for i in range(0 , len(snake_case ) ):
__UpperCamelCase = get_cost_derivative(i - 1 )
__UpperCamelCase = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
snake_case , snake_case , atol=snake_case , rtol=snake_case , ):
break
__UpperCamelCase = temp_parameter_vector
print(('''Number of iterations:''', j) )
def A_ ( ) -> Union[str, Any]:
'''simple docstring'''
for i in range(len(snake_case ) ):
print(('''Actual output value:''', output(snake_case , '''test''' )) )
print(('''Hypothesis output:''', calculate_hypothesis_value(snake_case , '''test''' )) )
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| 328 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowercase__ : str = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None:
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = size if size is not None else {'''shortest_edge''': 224}
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' )
__UpperCamelCase = do_resize
__UpperCamelCase = size
__UpperCamelCase = crop_pct
__UpperCamelCase = resample
__UpperCamelCase = do_center_crop
__UpperCamelCase = crop_size
__UpperCamelCase = do_rescale
__UpperCamelCase = rescale_factor
__UpperCamelCase = do_normalize
__UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray:
'''simple docstring'''
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
if crop_pct is not None:
if "shortest_edge" in size:
__UpperCamelCase = int(size['''shortest_edge'''] / crop_pct )
elif "height" in size and "width" in size:
if size["height"] == size["width"]:
__UpperCamelCase = int(size['''height'''] / crop_pct )
else:
__UpperCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct ))
else:
raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
else:
if "shortest_edge" in size:
__UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ )
elif "height" in size and "width" in size:
__UpperCamelCase = (size['''height'''], size['''width'''])
else:
raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) )
return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray:
'''simple docstring'''
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ )
if "height" not in size or "width" not in size:
raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> str:
'''simple docstring'''
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray:
'''simple docstring'''
return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , )-> PIL.Image.Image:
'''simple docstring'''
__UpperCamelCase = do_resize if do_resize is not None else self.do_resize
__UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct
__UpperCamelCase = resample if resample is not None else self.resample
__UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
__UpperCamelCase = image_mean if image_mean is not None else self.image_mean
__UpperCamelCase = image_std if image_std is not None else self.image_std
__UpperCamelCase = size if size is not None else self.size
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = crop_size if crop_size is not None else self.crop_size
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' )
__UpperCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE_ )
if not valid_images(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_pct is None:
raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
__UpperCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images]
if do_resize:
__UpperCamelCase = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_center_crop:
__UpperCamelCase = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_rescale:
__UpperCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_normalize:
__UpperCamelCase = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images]
__UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images]
__UpperCamelCase = {'''pixel_values''': images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
| 328 | 1 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
@slow
@require_torch
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' )
__UpperCamelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' )
__UpperCamelCase = bertabert.config.encoder.vocab_size
__UpperCamelCase = tokenizer.sep_token_id
__UpperCamelCase = tokenizer.cls_token_id
__UpperCamelCase = 128
__UpperCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' )
__UpperCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' )
__UpperCamelCase = train_dataset.select(range(32 ) )
__UpperCamelCase = val_dataset.select(range(16 ) )
__UpperCamelCase = 4
def _map_to_encoder_decoder_inputs(SCREAMING_SNAKE_CASE_ ):
# Tokenizer will automatically set [BOS] <text> [EOS]
__UpperCamelCase = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=SCREAMING_SNAKE_CASE_ , max_length=512 )
__UpperCamelCase = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=SCREAMING_SNAKE_CASE_ , max_length=128 )
__UpperCamelCase = inputs.input_ids
__UpperCamelCase = inputs.attention_mask
__UpperCamelCase = outputs.input_ids
__UpperCamelCase = outputs.input_ids.copy()
__UpperCamelCase = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels''']
]
__UpperCamelCase = outputs.attention_mask
assert all(len(SCREAMING_SNAKE_CASE_ ) == 512 for x in inputs.input_ids )
assert all(len(SCREAMING_SNAKE_CASE_ ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = pred.label_ids
__UpperCamelCase = pred.predictions
# all unnecessary tokens are removed
__UpperCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(SCREAMING_SNAKE_CASE_ ) )] ) / len(SCREAMING_SNAKE_CASE_ )
return {"accuracy": accuracy}
# map train dataset
__UpperCamelCase = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , remove_columns=['''article''', '''highlights'''] , )
train_dataset.set_format(
type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , )
# same for validation dataset
__UpperCamelCase = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , remove_columns=['''article''', '''highlights'''] , )
val_dataset.set_format(
type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , )
__UpperCamelCase = self.get_auto_remove_tmp_dir()
__UpperCamelCase = SeqaSeqTrainingArguments(
output_dir=SCREAMING_SNAKE_CASE_ , per_device_train_batch_size=SCREAMING_SNAKE_CASE_ , per_device_eval_batch_size=SCREAMING_SNAKE_CASE_ , predict_with_generate=SCREAMING_SNAKE_CASE_ , evaluation_strategy='''steps''' , do_train=SCREAMING_SNAKE_CASE_ , do_eval=SCREAMING_SNAKE_CASE_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
__UpperCamelCase = SeqaSeqTrainer(
model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , compute_metrics=_compute_metrics , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , )
# start training
trainer.train()
| 328 |
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
lowercase__ : Any = getLogger(__name__)
lowercase__ : List[str] = "cuda" if torch.cuda.is_available() else "cpu"
def A_ ( snake_case : List[str] , snake_case : str , snake_case : str , snake_case : int = 8 , snake_case : str = DEFAULT_DEVICE , snake_case : List[str]=False , snake_case : Union[str, Any]="summarization" , snake_case : str=None , **snake_case : List[Any] , ) -> Dict:
'''simple docstring'''
__UpperCamelCase = Path(snake_case ).open('''w''' , encoding='''utf-8''' )
__UpperCamelCase = str(snake_case )
__UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case ).to(snake_case )
if fpaa:
__UpperCamelCase = model.half()
__UpperCamelCase = AutoTokenizer.from_pretrained(snake_case )
logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
__UpperCamelCase = time.time()
# update config with task specific params
use_task_specific_params(snake_case , snake_case )
if prefix is None:
__UpperCamelCase = prefix or getattr(model.config , '''prefix''' , '''''' ) or ''''''
for examples_chunk in tqdm(list(chunks(snake_case , snake_case ) ) ):
__UpperCamelCase = [prefix + text for text in examples_chunk]
__UpperCamelCase = tokenizer(snake_case , return_tensors='''pt''' , truncation=snake_case , padding='''longest''' ).to(snake_case )
__UpperCamelCase = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case , )
__UpperCamelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case )
for hypothesis in dec:
fout.write(hypothesis + '''\n''' )
fout.flush()
fout.close()
__UpperCamelCase = int(time.time() - start_time ) # seconds
__UpperCamelCase = len(snake_case )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def A_ ( ) -> Tuple:
'''simple docstring'''
return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' )
def A_ ( snake_case : str=True ) -> int:
'''simple docstring'''
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''model_name''' , type=snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' )
parser.add_argument('''input_path''' , type=snake_case , help='''like cnn_dm/test.source''' )
parser.add_argument('''save_path''' , type=snake_case , help='''where to save summaries''' )
parser.add_argument('''--reference_path''' , type=snake_case , required=snake_case , help='''like cnn_dm/test.target''' )
parser.add_argument('''--score_path''' , type=snake_case , required=snake_case , default='''metrics.json''' , help='''where to save metrics''' )
parser.add_argument('''--device''' , type=snake_case , required=snake_case , default=snake_case , help='''cuda, cuda:1, cpu etc.''' )
parser.add_argument(
'''--prefix''' , type=snake_case , required=snake_case , default=snake_case , help='''will be added to the begininng of src examples''' )
parser.add_argument('''--task''' , type=snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' )
parser.add_argument('''--bs''' , type=snake_case , default=8 , required=snake_case , help='''batch size''' )
parser.add_argument(
'''--n_obs''' , type=snake_case , default=-1 , required=snake_case , help='''How many observations. Defaults to all.''' )
parser.add_argument('''--fp16''' , action='''store_true''' )
parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' )
parser.add_argument(
'''--info''' , nargs='''?''' , type=snake_case , const=datetime_now() , help=(
'''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.'''
''' lang=en-ru. If no value is passed, the current datetime string will be used.'''
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
__UpperCamelCase , __UpperCamelCase = parser.parse_known_args()
__UpperCamelCase = parse_numeric_n_bool_cl_kwargs(snake_case )
if parsed_args and verbose:
print(f"parsed the following generate kwargs: {parsed_args}" )
__UpperCamelCase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
__UpperCamelCase = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=snake_case )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError('''Can\'t mix --fp16 and --device cpu''' )
__UpperCamelCase = generate_summaries_or_translations(
snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case , )
if args.reference_path is None:
return {}
# Compute scores
__UpperCamelCase = calculate_bleu if '''translation''' in args.task else calculate_rouge
__UpperCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()]
__UpperCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case )]
__UpperCamelCase = score_fn(snake_case , snake_case )
scores.update(snake_case )
if args.dump_args:
scores.update(snake_case )
if args.info:
__UpperCamelCase = args.info
if verbose:
print(snake_case )
if args.score_path is not None:
json.dump(snake_case , open(args.score_path , '''w''' ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 328 | 1 |
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def A_ ( snake_case : Any , snake_case : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = torch.load(snake_case , map_location='''cpu''' )
__UpperCamelCase = chkpt['''model''']
# We have the base model one level deeper than the original XLM repository
__UpperCamelCase = {}
for k, v in state_dict.items():
if "pred_layer" in k:
__UpperCamelCase = v
else:
__UpperCamelCase = v
__UpperCamelCase = chkpt['''params''']
__UpperCamelCase = {n: v for n, v in config.items() if not isinstance(snake_case , (torch.FloatTensor, numpy.ndarray) )}
__UpperCamelCase = chkpt['''dico_word2id''']
__UpperCamelCase = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()}
# Save pytorch-model
__UpperCamelCase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME
__UpperCamelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
__UpperCamelCase = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file''']
print(f"Save PyTorch model to {pytorch_weights_dump_path}" )
torch.save(snake_case , snake_case )
print(f"Save configuration file to {pytorch_config_dump_path}" )
with open(snake_case , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(snake_case , indent=2 ) + '''\n''' )
print(f"Save vocab file to {pytorch_config_dump_path}" )
with open(snake_case , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(snake_case , indent=2 ) + '''\n''' )
if __name__ == "__main__":
lowercase__ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 328 |
from math import factorial
def A_ ( snake_case : int = 100 ) -> int:
'''simple docstring'''
return sum(int(snake_case ) for x in str(factorial(snake_case ) ) )
if __name__ == "__main__":
print(solution(int(input("Enter the Number: ").strip())))
| 328 | 1 |
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def A_ ( snake_case : Tuple , snake_case : List[str] , snake_case : str=0 ) -> Optional[int]:
'''simple docstring'''
if name is None:
__UpperCamelCase = None
else:
__UpperCamelCase = '''.''' * max(0 , spaces - 2 ) + '''# {:''' + str(50 - spaces ) + '''s}'''
__UpperCamelCase = fmt.format(snake_case )
# Print and recurse (if needed).
if isinstance(snake_case , snake_case ):
if msg is not None:
print(snake_case )
for k in val.keys():
recursive_print(snake_case , val[k] , spaces + 2 )
elif isinstance(snake_case , torch.Tensor ):
print(snake_case , ''':''' , val.size() )
else:
print(snake_case , ''':''' , snake_case )
def A_ ( snake_case : int , snake_case : List[Any] , snake_case : Union[str, Any] , snake_case : Union[str, Any] , snake_case : List[str] ) -> int:
'''simple docstring'''
__UpperCamelCase = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
__UpperCamelCase = (num_heads, hidden_size, num_splits) + input_shape[1:]
__UpperCamelCase = param.view(*snake_case )
__UpperCamelCase = param.transpose(0 , 2 )
__UpperCamelCase = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
__UpperCamelCase = (num_heads, num_splits, hidden_size) + input_shape[1:]
__UpperCamelCase = param.view(*snake_case )
__UpperCamelCase = param.transpose(0 , 1 ).contiguous()
__UpperCamelCase = param.view(*snake_case )
return param
def A_ ( snake_case : List[Any] , snake_case : List[str] , snake_case : Tuple ) -> List[str]:
'''simple docstring'''
__UpperCamelCase = {}
# old versions did not store training args
__UpperCamelCase = input_state_dict.get('''args''' , snake_case )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
__UpperCamelCase = ds_args.padded_vocab_size
__UpperCamelCase = ds_args.max_position_embeddings
__UpperCamelCase = ds_args.hidden_size
__UpperCamelCase = ds_args.num_layers
__UpperCamelCase = ds_args.num_attention_heads
__UpperCamelCase = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
__UpperCamelCase = config.n_head
# The hidden_size per head.
__UpperCamelCase = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
__UpperCamelCase = input_state_dict['''checkpoint_version''']
else:
__UpperCamelCase = 0.0
# The model.
__UpperCamelCase = input_state_dict['''model''']
# The language model.
__UpperCamelCase = model['''language_model''']
# The embeddings.
__UpperCamelCase = lm['''embedding''']
# The word embeddings.
__UpperCamelCase = embeddings['''word_embeddings''']['''weight''']
# Truncate the embedding table to vocab_size rows.
__UpperCamelCase = word_embeddings[: config.vocab_size, :]
__UpperCamelCase = word_embeddings
# The position embeddings.
__UpperCamelCase = embeddings['''position_embeddings''']['''weight''']
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
__UpperCamelCase = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" )
# Store the position embeddings.
__UpperCamelCase = pos_embeddings
# The transformer.
__UpperCamelCase = lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder''']
# The regex to extract layer names.
__UpperCamelCase = re.compile(r'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' )
# The simple map of names for "automated" rules.
__UpperCamelCase = {
'''attention.dense''': '''.attn.c_proj.''',
'''self_attention.dense''': '''.attn.c_proj.''',
'''mlp.dense_h_to_4h''': '''.mlp.c_fc.''',
'''mlp.dense_4h_to_h''': '''.mlp.c_proj.''',
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
__UpperCamelCase = layer_re.match(snake_case )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
__UpperCamelCase = int(m.group(1 ) )
# The name of the operation.
__UpperCamelCase = m.group(2 )
# Is it a weight or a bias?
__UpperCamelCase = m.group(3 )
# The name of the layer.
__UpperCamelCase = f"transformer.h.{layer_idx}"
# For layernorm(s), simply store the layer norm.
if op_name.endswith('''layernorm''' ):
__UpperCamelCase = '''ln_1''' if op_name.startswith('''input''' ) else '''ln_2'''
__UpperCamelCase = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
__UpperCamelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , snake_case , snake_case )
__UpperCamelCase = causal_mask
# Insert a "dummy" tensor for masked_bias.
__UpperCamelCase = torch.tensor(-1e4 , dtype=torch.floataa )
__UpperCamelCase = masked_bias
__UpperCamelCase = fix_query_key_value_ordering(snake_case , snake_case , 3 , snake_case , snake_case )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
__UpperCamelCase = out_val.transpose(0 , 1 ).contiguous()
# Store.
__UpperCamelCase = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
__UpperCamelCase = fix_query_key_value_ordering(snake_case , snake_case , 3 , snake_case , snake_case )
# Store. No change of shape.
__UpperCamelCase = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
__UpperCamelCase = megatron_to_transformers[op_name]
__UpperCamelCase = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
__UpperCamelCase = megatron_to_transformers[op_name]
__UpperCamelCase = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
__UpperCamelCase = transformer['''final_layernorm.weight''']
__UpperCamelCase = transformer['''final_layernorm.bias''']
# For LM head, transformers' wants the matrix to weight embeddings.
__UpperCamelCase = word_embeddings
# It should be done!
return output_state_dict
def A_ ( ) -> int:
'''simple docstring'''
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--print-checkpoint-structure''' , action='''store_true''' )
parser.add_argument(
'''path_to_checkpoint''' , type=snake_case , help='''Path to the checkpoint file (.zip archive or direct .pt file)''' , )
parser.add_argument(
'''--config_file''' , default='''''' , type=snake_case , help='''An optional config json file describing the pre-trained model.''' , )
__UpperCamelCase = parser.parse_args()
# Extract the basename.
__UpperCamelCase = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" )
if args.path_to_checkpoint.endswith('''.zip''' ):
with zipfile.ZipFile(args.path_to_checkpoint , '''r''' ) as checkpoint:
with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict:
__UpperCamelCase = torch.load(snake_case , map_location='''cpu''' )
else:
__UpperCamelCase = torch.load(args.path_to_checkpoint , map_location='''cpu''' )
__UpperCamelCase = input_state_dict.get('''args''' , snake_case )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
__UpperCamelCase = '''gelu_fast'''
elif ds_args.openai_gelu:
__UpperCamelCase = '''gelu_new'''
else:
__UpperCamelCase = '''gelu'''
else:
# in the very early days this used to be "gelu_new"
__UpperCamelCase = '''gelu_new'''
# Spell out all parameters in case the defaults change.
__UpperCamelCase = GPTaConfig(
vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=snake_case , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type='''cls_index''' , summary_use_proj=snake_case , summary_activation=snake_case , summary_proj_to_labels=snake_case , summary_first_dropout=0.1 , scale_attn_weights=snake_case , use_cache=snake_case , bos_token_id=50256 , eos_token_id=50256 , )
else:
__UpperCamelCase = GPTaConfig.from_json_file(args.config_file )
__UpperCamelCase = ['''GPT2LMHeadModel''']
# Convert.
print('''Converting''' )
__UpperCamelCase = convert_megatron_checkpoint(snake_case , snake_case , snake_case )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(snake_case , snake_case )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
__UpperCamelCase = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
__UpperCamelCase = '''gpt2'''
elif tokenizer_type == "PretrainedFromHF":
__UpperCamelCase = ds_args.tokenizer_name_or_path
else:
raise ValueError(f"Unrecognized tokenizer_type {tokenizer_type}" )
else:
__UpperCamelCase = '''gpt2'''
__UpperCamelCase = AutoTokenizer.from_pretrained(snake_case )
__UpperCamelCase = type(snake_case ).__name__
__UpperCamelCase = tokenizer_class
# Store the config to file.
print('''Saving config''' )
config.save_pretrained(snake_case )
# Save tokenizer based on args
print(f"Adding {tokenizer_class} tokenizer files" )
tokenizer.save_pretrained(snake_case )
# Store the state_dict to file.
__UpperCamelCase = os.path.join(snake_case , '''pytorch_model.bin''' )
print(f"Saving checkpoint to \"{output_checkpoint_file}\"" )
torch.save(snake_case , snake_case )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 328 |
def A_ ( snake_case : list ) -> list:
'''simple docstring'''
__UpperCamelCase = len(snake_case )
for i in range(1 , snake_case ):
__UpperCamelCase = collection[i]
__UpperCamelCase = 0
__UpperCamelCase = i - 1
while low <= high:
__UpperCamelCase = (low + high) // 2
if val < collection[mid]:
__UpperCamelCase = mid - 1
else:
__UpperCamelCase = mid + 1
for j in range(snake_case , snake_case , -1 ):
__UpperCamelCase = collection[j - 1]
__UpperCamelCase = val
return collection
if __name__ == "__main__":
lowercase__ : List[Any] = input("Enter numbers separated by a comma:\n").strip()
lowercase__ : str = [int(item) for item in user_input.split(",")]
print(binary_insertion_sort(unsorted))
| 328 | 1 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
@register_to_config
def __init__( self , *,
SCREAMING_SNAKE_CASE_ = 4 , SCREAMING_SNAKE_CASE_ = 768 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )-> Optional[int]:
'''simple docstring'''
super().__init__()
__UpperCamelCase = nn.Parameter(torch.zeros(SCREAMING_SNAKE_CASE_ ) )
# parameters for additional clip time embeddings
__UpperCamelCase = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# parameters for encoder hidden states
__UpperCamelCase = clip_extra_context_tokens
__UpperCamelCase = nn.Linear(
SCREAMING_SNAKE_CASE_ , self.clip_extra_context_tokens * cross_attention_dim )
__UpperCamelCase = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = nn.LayerNorm(SCREAMING_SNAKE_CASE_ )
def A__ ( self , *, SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]:
'''simple docstring'''
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
__UpperCamelCase = image_embeddings.shape[0]
__UpperCamelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
__UpperCamelCase = classifier_free_guidance_embeddings.expand(
SCREAMING_SNAKE_CASE_ , -1 )
__UpperCamelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
__UpperCamelCase = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
__UpperCamelCase = self.embedding_proj(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.clip_image_embeddings_project_to_time_embeddings(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
__UpperCamelCase = self.clip_extra_context_tokens_proj(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = clip_extra_context_tokens.reshape(SCREAMING_SNAKE_CASE_ , -1 , self.clip_extra_context_tokens )
__UpperCamelCase = clip_extra_context_tokens.permute(0 , 2 , 1 )
__UpperCamelCase = self.encoder_hidden_states_proj(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.text_encoder_hidden_states_norm(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings
| 328 |
from __future__ import annotations
from collections import deque
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ )-> int:
'''simple docstring'''
__UpperCamelCase = []
self.adlist.append(
{'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} )
for keyword in keywords:
self.add_keyword(SCREAMING_SNAKE_CASE_ )
self.set_fail_transitions()
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int | None:
'''simple docstring'''
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
__UpperCamelCase = 0
for character in keyword:
__UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if next_state is None:
self.adlist.append(
{
'''value''': character,
'''next_states''': [],
'''fail_state''': 0,
'''output''': [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
__UpperCamelCase = len(self.adlist ) - 1
else:
__UpperCamelCase = next_state
self.adlist[current_state]["output"].append(SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> None:
'''simple docstring'''
__UpperCamelCase = deque()
for node in self.adlist[0]["next_states"]:
q.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = 0
while q:
__UpperCamelCase = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.adlist[r]['''fail_state''']
while (
self.find_next_state(SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) is None
and state != 0
):
__UpperCamelCase = self.adlist[state]['''fail_state''']
__UpperCamelCase = self.find_next_state(
SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] )
if self.adlist[child]["fail_state"] is None:
__UpperCamelCase = 0
__UpperCamelCase = (
self.adlist[child]['''output''']
+ self.adlist[self.adlist[child]['''fail_state''']]['''output''']
)
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> dict[str, list[int]]:
'''simple docstring'''
__UpperCamelCase = {} # returns a dict with keywords and list of its occurrences
__UpperCamelCase = 0
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
while (
self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) is None
and current_state != 0
):
__UpperCamelCase = self.adlist[current_state]['''fail_state''']
__UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] )
if next_state is None:
__UpperCamelCase = 0
else:
__UpperCamelCase = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
__UpperCamelCase = []
result[key].append(i - len(SCREAMING_SNAKE_CASE_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 328 | 1 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
lowercase__ : List[str] = ""
lowercase__ : Optional[Any] = ""
lowercase__ : str = ""
lowercase__ : Tuple = 1 # (0 is vertical, 1 is horizontal)
def A_ ( ) -> None:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = get_dataset(snake_case , snake_case )
print('''Processing...''' )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = update_image_and_anno(snake_case , snake_case , snake_case )
for index, image in enumerate(snake_case ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
__UpperCamelCase = random_chars(32 )
__UpperCamelCase = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0]
__UpperCamelCase = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(f"/{file_root}.jpg" , snake_case , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f"Success {index+1}/{len(snake_case )} with {file_name}" )
__UpperCamelCase = []
for anno in new_annos[index]:
__UpperCamelCase = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(snake_case )
with open(f"/{file_root}.txt" , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def A_ ( snake_case : str , snake_case : str ) -> tuple[list, list]:
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = []
for label_file in glob.glob(os.path.join(snake_case , '''*.txt''' ) ):
__UpperCamelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(snake_case ) as in_file:
__UpperCamelCase = in_file.readlines()
__UpperCamelCase = os.path.join(snake_case , f"{label_name}.jpg" )
__UpperCamelCase = []
for obj_list in obj_lists:
__UpperCamelCase = obj_list.rstrip('''\n''' ).split(''' ''' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(snake_case )
labels.append(snake_case )
return img_paths, labels
def A_ ( snake_case : list , snake_case : list , snake_case : int = 1 ) -> tuple[list, list, list]:
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = []
__UpperCamelCase = []
for idx in range(len(snake_case ) ):
__UpperCamelCase = []
__UpperCamelCase = img_list[idx]
path_list.append(snake_case )
__UpperCamelCase = anno_list[idx]
__UpperCamelCase = cva.imread(snake_case )
if flip_type == 1:
__UpperCamelCase = cva.flip(snake_case , snake_case )
for bbox in img_annos:
__UpperCamelCase = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
__UpperCamelCase = cva.flip(snake_case , snake_case )
for bbox in img_annos:
__UpperCamelCase = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(snake_case )
new_imgs_list.append(snake_case )
return new_imgs_list, new_annos_lists, path_list
def A_ ( snake_case : int = 32 ) -> str:
'''simple docstring'''
assert number_char > 1, "The number of character should greater than 1"
__UpperCamelCase = ascii_lowercase + digits
return "".join(random.choice(snake_case ) for _ in range(snake_case ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 328 |
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> Dict:
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_input_mask
__UpperCamelCase = use_token_type_ids
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = type_sequence_label_size
__UpperCamelCase = initializer_range
__UpperCamelCase = num_labels
__UpperCamelCase = num_choices
__UpperCamelCase = scope
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCamelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def A__ ( self )-> str:
'''simple docstring'''
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
__UpperCamelCase = DistilBertModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple:
'''simple docstring'''
__UpperCamelCase = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
__UpperCamelCase = self.num_choices
__UpperCamelCase = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCamelCase = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs
__UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
_snake_case = (
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
_snake_case = (
{
'feature-extraction': DistilBertModel,
'fill-mask': DistilBertForMaskedLM,
'question-answering': DistilBertForQuestionAnswering,
'text-classification': DistilBertForSequenceClassification,
'token-classification': DistilBertForTokenClassification,
'zero-shot': DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
_snake_case = True
_snake_case = True
_snake_case = True
_snake_case = True
def A__ ( self )-> Dict:
'''simple docstring'''
__UpperCamelCase = DistilBertModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 )
def A__ ( self )-> Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> int:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Tuple:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
@slow
def A__ ( self )-> List[str]:
'''simple docstring'''
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@slow
@require_torch_gpu
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
__UpperCamelCase = True
__UpperCamelCase = model_class(config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = torch.jit.trace(
SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) )
__UpperCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ )
loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) )
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A__ ( self )-> Tuple:
'''simple docstring'''
__UpperCamelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' )
__UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
__UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0]
__UpperCamelCase = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = torch.tensor(
[[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
| 328 | 1 |
import itertools
import random
import unittest
import numpy as np
from transformers import ASTFeatureExtractor
from transformers.testing_utils import require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
lowercase__ : Any = random.Random()
if is_torch_available():
import torch
def A_ ( snake_case : List[Any] , snake_case : str=1.0 , snake_case : Tuple=None , snake_case : Any=None ) -> Optional[Any]:
'''simple docstring'''
if rng is None:
__UpperCamelCase = global_rng
__UpperCamelCase = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=400 , SCREAMING_SNAKE_CASE_=2000 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=16000 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , )-> Tuple:
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = min_seq_length
__UpperCamelCase = max_seq_length
__UpperCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
__UpperCamelCase = feature_size
__UpperCamelCase = padding_value
__UpperCamelCase = sampling_rate
__UpperCamelCase = return_attention_mask
__UpperCamelCase = do_normalize
def A__ ( self )-> List[Any]:
'''simple docstring'''
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def A__ ( self , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False )-> Union[str, Any]:
'''simple docstring'''
def _flatten(SCREAMING_SNAKE_CASE_ ):
return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) )
if equal_length:
__UpperCamelCase = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
__UpperCamelCase = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
__UpperCamelCase = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
_snake_case = ASTFeatureExtractor
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase = ASTFeatureExtractionTester(self )
def A__ ( self )-> Dict:
'''simple docstring'''
__UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
__UpperCamelCase = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
__UpperCamelCase = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs]
# Test not batched input
__UpperCamelCase = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values
__UpperCamelCase = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) )
# Test batched
__UpperCamelCase = feat_extract(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ).input_values
__UpperCamelCase = feat_extract(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ).input_values
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
__UpperCamelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)]
__UpperCamelCase = np.asarray(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = feat_extract(SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ).input_values
__UpperCamelCase = feat_extract(SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ).input_values
for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) )
@require_torch
def A__ ( self )-> str:
'''simple docstring'''
import torch
__UpperCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__UpperCamelCase = np.random.rand(100 ).astype(np.floataa )
__UpperCamelCase = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
__UpperCamelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
__UpperCamelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]:
'''simple docstring'''
from datasets import load_dataset
__UpperCamelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' )
# automatic decoding with librispeech
__UpperCamelCase = ds.sort('''id''' ).select(range(SCREAMING_SNAKE_CASE_ ) )[:num_samples]['''audio''']
return [x["array"] for x in speech_samples]
@require_torch
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = torch.tensor(
[-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6,
-1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3,
-1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6,
-0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] )
# fmt: on
__UpperCamelCase = self._load_datasamples(1 )
__UpperCamelCase = ASTFeatureExtractor()
__UpperCamelCase = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).input_values
self.assertEquals(input_values.shape , (1, 1024, 128) )
self.assertTrue(torch.allclose(input_values[0, 0, :30] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
| 328 |
import inspect
import logging
import os
import random
import shutil
import tempfile
import unittest
import pytest
import torch
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_cuda
from accelerate.utils import ProjectConfiguration, set_seed
lowercase__ : Optional[Any] = logging.getLogger(__name__)
def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int:
'''simple docstring'''
def get_dataset(snake_case : Optional[int] ):
__UpperCamelCase = torch.randn(batch_size * n_batches , 1 )
return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) )
__UpperCamelCase = get_dataset(snake_case )
__UpperCamelCase = get_dataset(snake_case )
__UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 )
__UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 )
return (train_dataloader, valid_dataloader)
def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any:
'''simple docstring'''
__UpperCamelCase = []
for epoch in range(snake_case ):
# Train quickly
model.train()
for batch in dataloader:
__UpperCamelCase , __UpperCamelCase = batch
__UpperCamelCase = model(snake_case )
__UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case )
accelerator.backward(snake_case )
optimizer.step()
optimizer.zero_grad()
rands.append(random.random() ) # Introduce some randomness
if scheduler is not None:
scheduler.step()
return rands
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
"""simple docstring"""
def __init__( self )-> Tuple:
'''simple docstring'''
super().__init__()
__UpperCamelCase = nn.Parameter(torch.randn(1 ) )
__UpperCamelCase = nn.Parameter(torch.randn(1 ) )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
return x * self.a + self.b
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self )-> Tuple:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__UpperCamelCase , __UpperCamelCase = dummy_dataloaders()
__UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ )
# Train baseline
__UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save initial
accelerator.save_state()
# Save second state
accelerator.save_state()
self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 )
def A__ ( self )-> Optional[int]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__UpperCamelCase , __UpperCamelCase = dummy_dataloaders()
# Train baseline
__UpperCamelCase = Accelerator()
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save initial
__UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' )
accelerator.save_state(SCREAMING_SNAKE_CASE_ )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
__UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
# Train partially
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__UpperCamelCase , __UpperCamelCase = dummy_dataloaders()
__UpperCamelCase = Accelerator()
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
accelerator.load_state(SCREAMING_SNAKE_CASE_ )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save everything
__UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' )
accelerator.save_state(SCREAMING_SNAKE_CASE_ )
# Load everything back in and make sure all states work
accelerator.load_state(SCREAMING_SNAKE_CASE_ )
test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> List[str]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__UpperCamelCase , __UpperCamelCase = dummy_dataloaders()
__UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ )
# Train baseline
__UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save initial
accelerator.save_state()
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
__UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
# Train partially
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__UpperCamelCase , __UpperCamelCase = dummy_dataloaders()
__UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save everything
accelerator.save_state()
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) )
test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Tuple:
'''simple docstring'''
__UpperCamelCase = torch.tensor([1, 2, 3] )
__UpperCamelCase = torch.tensor([2, 3, 4] )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(net.parameters() )
__UpperCamelCase = Accelerator()
with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve:
accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = str(ve.exception )
self.assertTrue('''Item at index 0''' in message )
self.assertTrue('''Item at index 1''' in message )
self.assertFalse('''Item at index 2''' in message )
self.assertFalse('''Item at index 3''' in message )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 )
__UpperCamelCase , __UpperCamelCase = dummy_dataloaders()
__UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ )
# Train baseline
__UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save initial
accelerator.save_state()
__UpperCamelCase = scheduler.state_dict()
train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() )
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() )
def A__ ( self )-> List[str]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 )
# Train baseline
__UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ )
# Save 3 states:
for _ in range(11 ):
accelerator.save_state()
self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) )
self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) )
@require_cuda
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )]
execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() )
if __name__ == "__main__":
lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing"
lowercase__ : List[Any] = DummyModel()
lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3)
lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99)
lowercase__ , lowercase__ : str = dummy_dataloaders()
lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True)
# Train baseline
lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no")
if accelerator.process_index == 0:
if os.path.exists(savedir):
shutil.rmtree(savedir)
os.makedirs(savedir)
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader, scheduler
)
lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer)
train(3, model, train_dataloader, optimizer, accelerator, scheduler)
# Check that the intial optimizer is loaded on the GPU
for group in optimizer.param_groups:
lowercase__ : int = group["params"][0].device
break
assert param_device.type == accelerator.device.type
lowercase__ : Union[str, Any] = model.cpu()
accelerator.wait_for_everyone()
accelerator.save_state()
accelerator.wait_for_everyone()
# Check CPU state
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu")
for group in optimizer.param_groups:
lowercase__ : Any = group["params"][0].device
break
assert (
param_device.type == torch.device("cpu").type
), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}"
# Check device state
model.to(accelerator.device)
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device")
for group in optimizer.param_groups:
lowercase__ : List[Any] = group["params"][0].device
break
assert (
param_device.type == accelerator.device.type
), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}"
# Check error
with pytest.raises(TypeError, match="Unsupported optimizer map location passed"):
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid")
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
shutil.rmtree(savedir)
accelerator.wait_for_everyone()
| 328 | 1 |
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
lowercase__ : str = logging.getLogger(__name__)
require_version("pytorch_lightning>=1.0.4")
lowercase__ : Union[str, Any] = {
"base": AutoModel,
"sequence-classification": AutoModelForSequenceClassification,
"question-answering": AutoModelForQuestionAnswering,
"pretraining": AutoModelForPreTraining,
"token-classification": AutoModelForTokenClassification,
"language-modeling": AutoModelWithLMHead,
"summarization": AutoModelForSeqaSeqLM,
"translation": AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
lowercase__ : Optional[Any] = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
lowercase__ : Optional[int] = sorted(arg_to_scheduler.keys())
lowercase__ : Dict = "{" + ", ".join(arg_to_scheduler_choices) + "}"
class SCREAMING_SNAKE_CASE__ ( pl.LightningModule ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="base" , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , )-> List[Any]:
'''simple docstring'''
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = 0
__UpperCamelCase = Path(self.hparams.output_dir )
__UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
__UpperCamelCase = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
else:
__UpperCamelCase = config
__UpperCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(self.hparams , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
assert hasattr(self.config , SCREAMING_SNAKE_CASE_ ), F"model config doesn't have a `{p}` attribute"
setattr(self.config , SCREAMING_SNAKE_CASE_ , getattr(self.hparams , SCREAMING_SNAKE_CASE_ ) )
if tokenizer is None:
__UpperCamelCase = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=SCREAMING_SNAKE_CASE_ , )
else:
__UpperCamelCase = tokenizer
__UpperCamelCase = MODEL_MODES[mode]
if model is None:
__UpperCamelCase = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=SCREAMING_SNAKE_CASE_ , )
else:
__UpperCamelCase = model
def A__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = self.model_type.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler]
__UpperCamelCase = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
__UpperCamelCase = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1}
return scheduler
def A__ ( self )-> int:
'''simple docstring'''
__UpperCamelCase = self.model
__UpperCamelCase = ['''bias''', '''LayerNorm.weight''']
__UpperCamelCase = [
{
'''params''': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'''weight_decay''': self.hparams.weight_decay,
},
{
'''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'''weight_decay''': 0.0,
},
]
if self.hparams.adafactor:
__UpperCamelCase = Adafactor(
SCREAMING_SNAKE_CASE_ , lr=self.hparams.learning_rate , scale_parameter=SCREAMING_SNAKE_CASE_ , relative_step=SCREAMING_SNAKE_CASE_ )
else:
__UpperCamelCase = AdamW(
SCREAMING_SNAKE_CASE_ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
__UpperCamelCase = optimizer
__UpperCamelCase = self.get_lr_scheduler()
return [optimizer], [scheduler]
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
return self.validation_step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
return self.validation_end(SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> int:
'''simple docstring'''
__UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
__UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int:
'''simple docstring'''
if stage == "test":
__UpperCamelCase = len(self.test_dataloader().dataset )
else:
__UpperCamelCase = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = len(self.train_dataloader().dataset )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False )-> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError('''You must implement this for your task''' )
def A__ ( self )-> int:
'''simple docstring'''
return self.train_loader
def A__ ( self )-> List[Any]:
'''simple docstring'''
return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]:
'''simple docstring'''
return os.path.join(
self.hparams.data_dir , '''cached_{}_{}_{}'''.format(
SCREAMING_SNAKE_CASE_ , list(filter(SCREAMING_SNAKE_CASE_ , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
__UpperCamelCase = self.output_dir.joinpath('''best_tfmr''' )
__UpperCamelCase = self.step_count
self.model.save_pretrained(SCREAMING_SNAKE_CASE_ )
self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ )
@staticmethod
def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple:
'''simple docstring'''
parser.add_argument(
'''--model_name_or_path''' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--config_name''' , default='''''' , type=SCREAMING_SNAKE_CASE_ , help='''Pretrained config name or path if not the same as model_name''' )
parser.add_argument(
'''--tokenizer_name''' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument(
'''--cache_dir''' , default=str(Path(SCREAMING_SNAKE_CASE_ ).parent / '''test_run''' / '''cache''' ) , type=SCREAMING_SNAKE_CASE_ , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , )
parser.add_argument(
'''--encoder_layerdrop''' , type=SCREAMING_SNAKE_CASE_ , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--decoder_layerdrop''' , type=SCREAMING_SNAKE_CASE_ , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--dropout''' , type=SCREAMING_SNAKE_CASE_ , help='''Dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--attention_dropout''' , type=SCREAMING_SNAKE_CASE_ , help='''Attention dropout probability (Optional). Goes into model.config''' , )
parser.add_argument('''--learning_rate''' , default=5E-5 , type=SCREAMING_SNAKE_CASE_ , help='''The initial learning rate for Adam.''' )
parser.add_argument(
'''--lr_scheduler''' , default='''linear''' , choices=SCREAMING_SNAKE_CASE_ , metavar=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , help='''Learning rate scheduler''' , )
parser.add_argument('''--weight_decay''' , default=0.0 , type=SCREAMING_SNAKE_CASE_ , help='''Weight decay if we apply some.''' )
parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=SCREAMING_SNAKE_CASE_ , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--warmup_steps''' , default=0 , type=SCREAMING_SNAKE_CASE_ , help='''Linear warmup over warmup_steps.''' )
parser.add_argument('''--num_workers''' , default=4 , type=SCREAMING_SNAKE_CASE_ , help='''kwarg passed to DataLoader''' )
parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=SCREAMING_SNAKE_CASE_ )
parser.add_argument('''--train_batch_size''' , default=32 , type=SCREAMING_SNAKE_CASE_ )
parser.add_argument('''--eval_batch_size''' , default=32 , type=SCREAMING_SNAKE_CASE_ )
parser.add_argument('''--adafactor''' , action='''store_true''' )
class SCREAMING_SNAKE_CASE__ ( pl.Callback ):
"""simple docstring"""
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]:
'''simple docstring'''
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class SCREAMING_SNAKE_CASE__ ( pl.Callback ):
"""simple docstring"""
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> List[str]:
'''simple docstring'''
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(SCREAMING_SNAKE_CASE_ )
class SCREAMING_SNAKE_CASE__ ( pl.Callback ):
"""simple docstring"""
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = trainer.lr_schedulers[0]['''scheduler''']
__UpperCamelCase = {F"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
rank_zero_info('''***** Validation results *****''' )
__UpperCamelCase = trainer.callback_metrics
# Log results
for key in sorted(SCREAMING_SNAKE_CASE_ ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(SCREAMING_SNAKE_CASE_ , str(metrics[key] ) ) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
rank_zero_info('''***** Test results *****''' )
__UpperCamelCase = trainer.callback_metrics
# Log and save results to file
__UpperCamelCase = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' )
with open(SCREAMING_SNAKE_CASE_ , '''w''' ) as writer:
for key in sorted(SCREAMING_SNAKE_CASE_ ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(SCREAMING_SNAKE_CASE_ , str(metrics[key] ) ) )
writer.write('''{} = {}\n'''.format(SCREAMING_SNAKE_CASE_ , str(metrics[key] ) ) )
def A_ ( snake_case : str , snake_case : Optional[Any] ) -> None:
'''simple docstring'''
parser.add_argument(
'''--output_dir''' , default=str(Path(snake_case ).parent / '''test_run''' / '''model_checkpoints''' ) , type=snake_case , help='''The output directory where the model predictions and checkpoints will be written.''' , )
parser.add_argument(
'''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , )
parser.add_argument(
'''--fp16_opt_level''' , type=snake_case , default='''O2''' , help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
) , )
parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=snake_case )
parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=snake_case , help='''Max gradient norm''' )
parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' )
parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' )
parser.add_argument(
'''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=snake_case , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , )
parser.add_argument('''--seed''' , type=snake_case , default=42 , help='''random seed for initialization''' )
parser.add_argument(
'''--data_dir''' , default=str(Path(snake_case ).parent / '''test_run''' / '''dummy-train-data''' ) , type=snake_case , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , )
def A_ ( snake_case : BaseTransformer , snake_case : argparse.Namespace , snake_case : int=None , snake_case : List[Any]=True , snake_case : List[str]=[] , snake_case : int=None , snake_case : List[str]=None , **snake_case : List[Any] , ) -> Optional[int]:
'''simple docstring'''
pl.seed_everything(args.seed )
# init model
__UpperCamelCase = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=snake_case )
# add custom checkpoints
if checkpoint_callback is None:
__UpperCamelCase = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(snake_case )
if logging_callback is None:
__UpperCamelCase = LoggingCallback()
__UpperCamelCase = {}
if args.fpaa:
__UpperCamelCase = 16
if args.gpus > 1:
__UpperCamelCase = '''auto'''
__UpperCamelCase = '''ddp'''
__UpperCamelCase = args.accumulate_grad_batches
__UpperCamelCase = None
__UpperCamelCase = '''auto'''
__UpperCamelCase = pl.Trainer.from_argparse_args(
snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , )
if args.do_train:
trainer.fit(snake_case )
else:
print('''RAG modeling tests with new set functions successfuly executed!''' )
return trainer
| 328 |
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]:
'''simple docstring'''
super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = Sql(
cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
self.builder.download_and_prepare(
download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , )
# Build dataset for splits
__UpperCamelCase = self.builder.as_dataset(
split='''train''' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory )
return dataset
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> List[str]:
'''simple docstring'''
if num_proc is not None and num_proc <= 0:
raise ValueError(F"num_proc {num_proc} must be an integer > 0." )
__UpperCamelCase = dataset
__UpperCamelCase = name
__UpperCamelCase = con
__UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
__UpperCamelCase = num_proc
__UpperCamelCase = to_sql_kwargs
def A__ ( self )-> int:
'''simple docstring'''
__UpperCamelCase = self.to_sql_kwargs.pop('''sql''' , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.to_sql_kwargs.pop('''con''' , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.to_sql_kwargs.pop('''index''' , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs )
return written
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args
__UpperCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs
__UpperCamelCase = query_table(
table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , )
__UpperCamelCase = batch.to_pandas()
__UpperCamelCase = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
return num_rows or len(SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int:
'''simple docstring'''
__UpperCamelCase = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
__UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += num_rows
return written
| 328 | 1 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 328 |
def A_ ( snake_case : str ) -> int:
'''simple docstring'''
assert column_title.isupper()
__UpperCamelCase = 0
__UpperCamelCase = len(snake_case ) - 1
__UpperCamelCase = 0
while index >= 0:
__UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , snake_case )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 328 | 1 |
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
__UpperCamelCase = 3
__UpperCamelCase = 250
__UpperCamelCase = ids_tensor((batch_size, length) , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = torch.ones((batch_size, length) , device=SCREAMING_SNAKE_CASE_ , dtype=torch.float ) / length
return input_ids, scores
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self._get_tensors(5 )
__UpperCamelCase = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase , __UpperCamelCase = self._get_tensors(9 )
self.assertFalse(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase , __UpperCamelCase = self._get_tensors(10 )
self.assertTrue(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = MaxLengthCriteria(max_length=10 )
__UpperCamelCase , __UpperCamelCase = self._get_tensors(5 )
self.assertFalse(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase , __UpperCamelCase = self._get_tensors(9 )
self.assertFalse(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase , __UpperCamelCase = self._get_tensors(10 )
self.assertTrue(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
__UpperCamelCase , __UpperCamelCase = self._get_tensors(5 )
self.assertFalse(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase , __UpperCamelCase = self._get_tensors(9 )
self.assertFalse(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase , __UpperCamelCase = self._get_tensors(10 )
self.assertTrue(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 10 )
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self._get_tensors(5 )
__UpperCamelCase = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 )
with self.assertWarns(SCREAMING_SNAKE_CASE_ ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 )
__UpperCamelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1 )
| 328 |
def A_ ( snake_case : int ) -> None:
'''simple docstring'''
__UpperCamelCase = generate_pascal_triangle(snake_case )
for row_idx in range(snake_case ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=''' ''' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=''' ''' )
else:
print(triangle[row_idx][col_idx] , end='''''' )
print()
def A_ ( snake_case : int ) -> list[list[int]]:
'''simple docstring'''
if not isinstance(snake_case , snake_case ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
__UpperCamelCase = []
for current_row_idx in range(snake_case ):
__UpperCamelCase = populate_current_row(snake_case , snake_case )
triangle.append(snake_case )
return triangle
def A_ ( snake_case : list[list[int]] , snake_case : int ) -> list[int]:
'''simple docstring'''
__UpperCamelCase = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
__UpperCamelCase , __UpperCamelCase = 1, 1
for current_col_idx in range(1 , snake_case ):
calculate_current_element(
snake_case , snake_case , snake_case , snake_case )
return current_row
def A_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , ) -> None:
'''simple docstring'''
__UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1]
__UpperCamelCase = triangle[current_row_idx - 1][current_col_idx]
__UpperCamelCase = above_to_left_elt + above_to_right_elt
def A_ ( snake_case : int ) -> list[list[int]]:
'''simple docstring'''
if not isinstance(snake_case , snake_case ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
__UpperCamelCase = [[1]]
for row_index in range(1 , snake_case ):
__UpperCamelCase = [0] + result[-1] + [0]
__UpperCamelCase = row_index + 1
# Calculate the number of distinct elements in a row
__UpperCamelCase = sum(divmod(snake_case , 2 ) )
__UpperCamelCase = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
__UpperCamelCase = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
__UpperCamelCase = row_first_half + row_second_half
result.append(snake_case )
return result
def A_ ( ) -> None:
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None:
__UpperCamelCase = f"{func.__name__}({value})"
__UpperCamelCase = timeit(f"__main__.{call}" , setup='''import __main__''' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f"{call:38} -- {timing:.4f} seconds" )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(snake_case , snake_case )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 328 | 1 |
import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
lowercase__ : Optional[List[str]] = None
lowercase__ : List[str] = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
lowercase__ : Union[str, Any] = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
_snake_case = True
_snake_case = None
# Automatically constructed
_snake_case = "PIL.Image.Image"
_snake_case = pa.struct({'bytes': pa.binary(), 'path': pa.string()} )
_snake_case = field(default='Image' , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ )
def __call__( self )-> List[str]:
'''simple docstring'''
return self.pa_type
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> dict:
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support encoding images, please install \'Pillow\'.''' )
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ )
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return {"path": value, "bytes": None}
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return {"path": None, "bytes": value}
elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(SCREAMING_SNAKE_CASE_ )
elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get('''path''' )}
elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )}
else:
raise ValueError(
F"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None )-> "PIL.Image.Image":
'''simple docstring'''
if not self.decode:
raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support decoding images, please install \'Pillow\'.''' )
if token_per_repo_id is None:
__UpperCamelCase = {}
__UpperCamelCase , __UpperCamelCase = value['''path'''], value['''bytes''']
if bytes_ is None:
if path is None:
raise ValueError(F"An image should have one of 'path' or 'bytes' but both are None in {value}." )
else:
if is_local_path(SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = PIL.Image.open(SCREAMING_SNAKE_CASE_ )
else:
__UpperCamelCase = path.split('''::''' )[-1]
try:
__UpperCamelCase = string_to_dict(SCREAMING_SNAKE_CASE_ , config.HUB_DATASETS_URL )['''repo_id''']
__UpperCamelCase = token_per_repo_id.get(SCREAMING_SNAKE_CASE_ )
except ValueError:
__UpperCamelCase = None
with xopen(SCREAMING_SNAKE_CASE_ , '''rb''' , use_auth_token=SCREAMING_SNAKE_CASE_ ) as f:
__UpperCamelCase = BytesIO(f.read() )
__UpperCamelCase = PIL.Image.open(bytes_ )
else:
__UpperCamelCase = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def A__ ( self )-> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Value
return (
self
if self.decode
else {
"bytes": Value('''binary''' ),
"path": Value('''string''' ),
}
)
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.StructArray:
'''simple docstring'''
if pa.types.is_string(storage.type ):
__UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.binary() )
__UpperCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
__UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.string() )
__UpperCamelCase = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index('''bytes''' ) >= 0:
__UpperCamelCase = storage.field('''bytes''' )
else:
__UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.binary() )
if storage.type.get_field_index('''path''' ) >= 0:
__UpperCamelCase = storage.field('''path''' )
else:
__UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.string() )
__UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
__UpperCamelCase = pa.array(
[encode_np_array(np.array(SCREAMING_SNAKE_CASE_ ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
__UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.string() )
__UpperCamelCase = pa.StructArray.from_arrays(
[bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() )
return array_cast(SCREAMING_SNAKE_CASE_ , self.pa_type )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.StructArray:
'''simple docstring'''
@no_op_if_value_is_null
def path_to_bytes(SCREAMING_SNAKE_CASE_ ):
with xopen(SCREAMING_SNAKE_CASE_ , '''rb''' ) as f:
__UpperCamelCase = f.read()
return bytes_
__UpperCamelCase = pa.array(
[
(path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
__UpperCamelCase = pa.array(
[os.path.basename(SCREAMING_SNAKE_CASE_ ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , )
__UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() )
return array_cast(SCREAMING_SNAKE_CASE_ , self.pa_type )
def A_ ( ) -> List[str]:
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support encoding images, please install \'Pillow\'.''' )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
__UpperCamelCase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def A_ ( snake_case : "PIL.Image.Image" ) -> bytes:
'''simple docstring'''
__UpperCamelCase = BytesIO()
if image.format in list_image_compression_formats():
__UpperCamelCase = image.format
else:
__UpperCamelCase = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF'''
image.save(snake_case , format=snake_case )
return buffer.getvalue()
def A_ ( snake_case : "PIL.Image.Image" ) -> dict:
'''simple docstring'''
if hasattr(snake_case , '''filename''' ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(snake_case )}
def A_ ( snake_case : np.ndarray ) -> dict:
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support encoding images, please install \'Pillow\'.''' )
__UpperCamelCase = array.dtype
__UpperCamelCase = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER
__UpperCamelCase = dtype.kind
__UpperCamelCase = dtype.itemsize
__UpperCamelCase = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
__UpperCamelCase = np.dtype('''|u1''' )
if dtype_kind not in ["u", "i"]:
raise TypeError(
f"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." )
if dtype is not dest_dtype:
warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
__UpperCamelCase = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
__UpperCamelCase = dtype_byteorder + dtype_kind + str(snake_case )
__UpperCamelCase = np.dtype(snake_case )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
f"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" )
__UpperCamelCase = PIL.Image.fromarray(array.astype(snake_case ) )
return {"path": None, "bytes": image_to_bytes(snake_case )}
def A_ ( snake_case : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]:
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support encoding images, please install \'Pillow\'.''' )
if objs:
__UpperCamelCase , __UpperCamelCase = first_non_null_value(snake_case )
if isinstance(snake_case , snake_case ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(snake_case , np.ndarray ):
__UpperCamelCase = no_op_if_value_is_null(snake_case )
return [obj_to_image_dict_func(snake_case ) for obj in objs]
elif isinstance(snake_case , PIL.Image.Image ):
__UpperCamelCase = no_op_if_value_is_null(snake_case )
return [obj_to_image_dict_func(snake_case ) for obj in objs]
else:
return objs
else:
return objs
| 328 |
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
lowercase__ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--txt2img_unclip",
default="kakaobrain/karlo-v1-alpha",
type=str,
required=False,
help="The pretrained txt2img unclip.",
)
lowercase__ : Any = parser.parse_args()
lowercase__ : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
lowercase__ : List[str] = CLIPImageProcessor()
lowercase__ : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
lowercase__ : Optional[Any] = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 328 | 1 |
from typing import Any
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ )-> List[str]:
'''simple docstring'''
__UpperCamelCase = data
__UpperCamelCase = None
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self )-> Dict:
'''simple docstring'''
__UpperCamelCase = None
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = self.head
while temp is not None:
print(temp.data , end=''' ''' )
__UpperCamelCase = temp.next
print()
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
__UpperCamelCase = Node(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.head
__UpperCamelCase = new_node
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
if node_data_a == node_data_a:
return
else:
__UpperCamelCase = self.head
while node_a is not None and node_a.data != node_data_a:
__UpperCamelCase = node_a.next
__UpperCamelCase = self.head
while node_a is not None and node_a.data != node_data_a:
__UpperCamelCase = node_a.next
if node_a is None or node_a is None:
return
__UpperCamelCase , __UpperCamelCase = node_a.data, node_a.data
if __name__ == "__main__":
lowercase__ : int = LinkedList()
for i in range(5, 0, -1):
ll.push(i)
ll.print_list()
ll.swap_nodes(1, 4)
print("After swapping")
ll.print_list()
| 328 |
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
lowercase__ : Union[str, Any] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n"
lowercase__ : Optional[Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n"
lowercase__ : Any = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n"
lowercase__ : Optional[int] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n"
lowercase__ : Optional[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE."
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
"""simple docstring"""
def A__ ( self )-> Tuple:
'''simple docstring'''
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' ) ),
'''references''': datasets.Value('''string''' ),
} ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[1, 10, 100] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3.0 )-> Union[str, Any]:
'''simple docstring'''
if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError('''This metric is currently not supported on Windows.''' )
with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE_ ) as executor:
__UpperCamelCase = []
__UpperCamelCase = Counter()
__UpperCamelCase = 0
__UpperCamelCase = defaultdict(SCREAMING_SNAKE_CASE_ )
for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ):
for candidate in candidates:
__UpperCamelCase = candidate + '''\n''' + test_case
__UpperCamelCase = (test_program, timeout, task_id, completion_id[task_id])
__UpperCamelCase = executor.submit(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ )
futures.append(SCREAMING_SNAKE_CASE_ )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = future.result()
results[result["task_id"]].append((result['''completion_id'''], result) )
__UpperCamelCase , __UpperCamelCase = [], []
for result in results.values():
result.sort()
__UpperCamelCase = [r[1]['''passed'''] for r in result]
total.append(len(SCREAMING_SNAKE_CASE_ ) )
correct.append(sum(SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = k
__UpperCamelCase = {F"pass@{k}": estimate_pass_at_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def A_ ( snake_case : Tuple , snake_case : Union[str, Any] , snake_case : List[Any] ) -> Optional[Any]:
'''simple docstring'''
def estimator(snake_case : int , snake_case : int , snake_case : int ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(snake_case , snake_case ):
__UpperCamelCase = itertools.repeat(snake_case , len(snake_case ) )
else:
assert len(snake_case ) == len(snake_case )
__UpperCamelCase = iter(snake_case )
return np.array([estimator(int(snake_case ) , int(snake_case ) , snake_case ) for n, c in zip(snake_case , snake_case )] )
| 328 | 1 |
def A_ ( snake_case : list ) -> list:
'''simple docstring'''
__UpperCamelCase = len(snake_case )
for i in range(1 , snake_case ):
__UpperCamelCase = collection[i]
__UpperCamelCase = 0
__UpperCamelCase = i - 1
while low <= high:
__UpperCamelCase = (low + high) // 2
if val < collection[mid]:
__UpperCamelCase = mid - 1
else:
__UpperCamelCase = mid + 1
for j in range(snake_case , snake_case , -1 ):
__UpperCamelCase = collection[j - 1]
__UpperCamelCase = val
return collection
if __name__ == "__main__":
lowercase__ : List[Any] = input("Enter numbers separated by a comma:\n").strip()
lowercase__ : str = [int(item) for item in user_input.split(",")]
print(binary_insertion_sort(unsorted))
| 328 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__)
lowercase__ : Optional[Any] = ["names", "prefix"]
lowercase__ : List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"]
lowercase__ : Optional[Any] = ["encoding_errors", "on_bad_lines"]
lowercase__ : List[str] = ["date_format"]
@dataclass
class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ):
"""simple docstring"""
_snake_case = ","
_snake_case = None
_snake_case = "infer"
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = True
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = False
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = True
_snake_case = True
_snake_case = False
_snake_case = True
_snake_case = None
_snake_case = "."
_snake_case = None
_snake_case = '"'
_snake_case = 0
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = True
_snake_case = True
_snake_case = 0
_snake_case = True
_snake_case = False
_snake_case = None
_snake_case = 10000
_snake_case = None
_snake_case = "strict"
_snake_case = "error"
_snake_case = None
def A__ ( self )-> Any:
'''simple docstring'''
if self.delimiter is not None:
__UpperCamelCase = self.delimiter
if self.column_names is not None:
__UpperCamelCase = self.column_names
@property
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = {
'''sep''': self.sep,
'''header''': self.header,
'''names''': self.names,
'''index_col''': self.index_col,
'''usecols''': self.usecols,
'''prefix''': self.prefix,
'''mangle_dupe_cols''': self.mangle_dupe_cols,
'''engine''': self.engine,
'''converters''': self.converters,
'''true_values''': self.true_values,
'''false_values''': self.false_values,
'''skipinitialspace''': self.skipinitialspace,
'''skiprows''': self.skiprows,
'''nrows''': self.nrows,
'''na_values''': self.na_values,
'''keep_default_na''': self.keep_default_na,
'''na_filter''': self.na_filter,
'''verbose''': self.verbose,
'''skip_blank_lines''': self.skip_blank_lines,
'''thousands''': self.thousands,
'''decimal''': self.decimal,
'''lineterminator''': self.lineterminator,
'''quotechar''': self.quotechar,
'''quoting''': self.quoting,
'''escapechar''': self.escapechar,
'''comment''': self.comment,
'''encoding''': self.encoding,
'''dialect''': self.dialect,
'''error_bad_lines''': self.error_bad_lines,
'''warn_bad_lines''': self.warn_bad_lines,
'''skipfooter''': self.skipfooter,
'''doublequote''': self.doublequote,
'''memory_map''': self.memory_map,
'''float_precision''': self.float_precision,
'''chunksize''': self.chunksize,
'''encoding_errors''': self.encoding_errors,
'''on_bad_lines''': self.on_bad_lines,
'''date_format''': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE_ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
_snake_case = CsvConfig
def A__ ( self )-> Any:
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" )
__UpperCamelCase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ):
__UpperCamelCase = data_files
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = [files]
__UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
__UpperCamelCase = []
for split_name, files in data_files.items():
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = [files]
__UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files]
splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) )
return splits
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.Table:
'''simple docstring'''
if self.config.features is not None:
__UpperCamelCase = self.config.features.arrow_schema
if all(not require_storage_cast(SCREAMING_SNAKE_CASE_ ) for feature in self.config.features.values() ):
# cheaper cast
__UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE_ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
__UpperCamelCase = table_cast(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return pa_table
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
__UpperCamelCase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
__UpperCamelCase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE_ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ):
__UpperCamelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , iterator=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = pa.Table.from_pandas(SCREAMING_SNAKE_CASE_ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ )
except ValueError as e:
logger.error(F"Failed to read file '{file}' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}" )
raise
| 328 | 1 |
import re
from filelock import FileLock
try:
import nltk
lowercase__ : List[str] = True
except (ImportError, ModuleNotFoundError):
lowercase__ : Union[str, Any] = False
if NLTK_AVAILABLE:
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
def A_ ( snake_case : str ) -> str:
'''simple docstring'''
re.sub('''<n>''' , '''''' , snake_case ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(snake_case ) )
| 328 |
from __future__ import annotations
import math
def A_ ( snake_case : int ) -> bool:
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)]
def A_ ( snake_case : int ) -> list[int]:
'''simple docstring'''
if not isinstance(snake_case , snake_case ):
raise ValueError('''n must be an integer''' )
if n <= 0:
raise ValueError('''n must be >= 0''' )
__UpperCamelCase = []
for num in range(len(snake_case ) ):
__UpperCamelCase = 0
while 2 * i * i <= odd_composites[num]:
__UpperCamelCase = odd_composites[num] - 2 * i * i
if is_prime(snake_case ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(snake_case ) == n:
return list_nums
return []
def A_ ( ) -> int:
'''simple docstring'''
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F"{solution() = }")
| 328 | 1 |
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase = 10
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase = [1, 2, 3, 4]
__UpperCamelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(SCREAMING_SNAKE_CASE_ , self.block_size , 0 ) , SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Tuple:
'''simple docstring'''
__UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
__UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(SCREAMING_SNAKE_CASE_ , self.block_size , 0 ) , SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> List[Any]:
'''simple docstring'''
__UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
__UpperCamelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(SCREAMING_SNAKE_CASE_ , self.block_size , 0 ) , SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Dict:
'''simple docstring'''
__UpperCamelCase = '''It was the year of Our Lord one thousand seven hundred and
seventy-five.\n\nSpiritual revelations were conceded to England at that
favoured period, as at this.'''
__UpperCamelCase , __UpperCamelCase = process_story(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , [] )
def A__ ( self )-> Dict:
'''simple docstring'''
__UpperCamelCase = ''''''
__UpperCamelCase , __UpperCamelCase = process_story(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , [] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , [] )
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = (
'''It was the year of Our Lord one thousand seven hundred and '''
'''seventy-five\n\nSpiritual revelations were conceded to England '''
'''at that favoured period, as at this.\n@highlight\n\nIt was the best of times'''
)
__UpperCamelCase , __UpperCamelCase = process_story(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = [
'''It was the year of Our Lord one thousand seven hundred and seventy-five.''',
'''Spiritual revelations were conceded to England at that favoured period, as at this.''',
]
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = ['''It was the best of times.''']
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = torch.tensor([1, 2, 3, 4] )
__UpperCamelCase = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(SCREAMING_SNAKE_CASE_ , 0 ).numpy() , expected.numpy() )
def A__ ( self )-> str:
'''simple docstring'''
__UpperCamelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] )
__UpperCamelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(SCREAMING_SNAKE_CASE_ , 23 ).numpy() , expected.numpy() )
def A__ ( self )-> str:
'''simple docstring'''
__UpperCamelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
__UpperCamelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(SCREAMING_SNAKE_CASE_ , 1 ).numpy() , expected.numpy() )
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = 101
__UpperCamelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] )
__UpperCamelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
__UpperCamelCase = compute_token_type_ids(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
np.testing.assert_array_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
| 328 |
from __future__ import annotations
from collections.abc import Callable
def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float:
'''simple docstring'''
__UpperCamelCase = x_start
__UpperCamelCase = fnc(snake_case )
__UpperCamelCase = 0.0
for _ in range(snake_case ):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
__UpperCamelCase = (x_end - x_start) / steps + xa
__UpperCamelCase = fnc(snake_case )
area += abs(fxa + fxa ) * (xa - xa) / 2
# Increment step
__UpperCamelCase = xa
__UpperCamelCase = fxa
return area
if __name__ == "__main__":
def A_ ( snake_case : Tuple ) -> Optional[Any]:
'''simple docstring'''
return x**3 + x**2
print("f(x) = x^3 + x^2")
print("The area between the curve, x = -5, x = 5 and the x axis is:")
lowercase__ : List[str] = 1_0
while i <= 1_0_0_0_0_0:
print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}")
i *= 1_0
| 328 | 1 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ = "▁" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = "<unk>" , SCREAMING_SNAKE_CASE_ = "</s>" , SCREAMING_SNAKE_CASE_ = "<pad>" , )-> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = {
'''pad''': {'''id''': 0, '''token''': pad_token},
'''eos''': {'''id''': 1, '''token''': eos_token},
'''unk''': {'''id''': 2, '''token''': unk_token},
}
__UpperCamelCase = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
__UpperCamelCase = token_dict['''token''']
__UpperCamelCase = Tokenizer(Unigram() )
__UpperCamelCase = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(''' {2,}''' ) , ''' ''' ),
normalizers.Lowercase(),
] )
__UpperCamelCase = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ),
pre_tokenizers.Digits(individual_digits=SCREAMING_SNAKE_CASE_ ),
pre_tokenizers.Punctuation(),
] )
__UpperCamelCase = decoders.Metaspace(replacement=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = TemplateProcessing(
single=F"$A {self.special_tokens['eos']['token']}" , special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] , )
__UpperCamelCase = {
'''model''': '''SentencePieceUnigram''',
'''replacement''': replacement,
'''add_prefix_space''': add_prefix_space,
}
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 8000 , SCREAMING_SNAKE_CASE_ = True , )-> Dict:
'''simple docstring'''
__UpperCamelCase = trainers.UnigramTrainer(
vocab_size=SCREAMING_SNAKE_CASE_ , special_tokens=self.special_tokens_list , show_progress=SCREAMING_SNAKE_CASE_ , )
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = [files]
self._tokenizer.train(SCREAMING_SNAKE_CASE_ , trainer=SCREAMING_SNAKE_CASE_ )
self.add_unk_id()
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 8000 , SCREAMING_SNAKE_CASE_ = True , )-> List[str]:
'''simple docstring'''
__UpperCamelCase = trainers.UnigramTrainer(
vocab_size=SCREAMING_SNAKE_CASE_ , special_tokens=self.special_tokens_list , show_progress=SCREAMING_SNAKE_CASE_ , )
self._tokenizer.train_from_iterator(SCREAMING_SNAKE_CASE_ , trainer=SCREAMING_SNAKE_CASE_ )
self.add_unk_id()
def A__ ( self )-> List[Any]:
'''simple docstring'''
__UpperCamelCase = json.loads(self._tokenizer.to_str() )
__UpperCamelCase = self.special_tokens['''unk''']['''id''']
__UpperCamelCase = Tokenizer.from_str(json.dumps(SCREAMING_SNAKE_CASE_ ) )
| 328 |
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : int = logging.get_logger(__name__)
lowercase__ : List[str] = ["model.decoder.embed_positions.weights"]
def A_ ( snake_case : Any ) -> List[Any]:
'''simple docstring'''
if "emb" in name:
__UpperCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' )
if "transformer" in name:
__UpperCamelCase = name.replace('''transformer''' , '''model.decoder''' )
if "cross_attention" in name:
__UpperCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' )
if "linear1" in name:
__UpperCamelCase = name.replace('''linear1''' , '''fc1''' )
if "linear2" in name:
__UpperCamelCase = name.replace('''linear2''' , '''fc2''' )
if "norm1" in name:
__UpperCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' )
if "norm_cross" in name:
__UpperCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' )
if "norm2" in name:
__UpperCamelCase = name.replace('''norm2''' , '''final_layer_norm''' )
if "out_norm" in name:
__UpperCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' )
if "linears" in name:
__UpperCamelCase = name.replace('''linears''' , '''lm_heads''' )
if "condition_provider.conditioners.description.output_proj" in name:
__UpperCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' )
return name
def A_ ( snake_case : OrderedDict , snake_case : int ) -> Tuple[Dict, Dict]:
'''simple docstring'''
__UpperCamelCase = list(state_dict.keys() )
__UpperCamelCase = {}
for key in keys:
__UpperCamelCase = state_dict.pop(snake_case )
__UpperCamelCase = rename_keys(snake_case )
if "in_proj_weight" in key:
# split fused qkv proj
__UpperCamelCase = val[:hidden_size, :]
__UpperCamelCase = val[hidden_size : 2 * hidden_size, :]
__UpperCamelCase = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
__UpperCamelCase = val
else:
__UpperCamelCase = val
return state_dict, enc_dec_proj_state_dict
def A_ ( snake_case : str ) -> MusicgenDecoderConfig:
'''simple docstring'''
if checkpoint == "small":
# default config values
__UpperCamelCase = 1024
__UpperCamelCase = 24
__UpperCamelCase = 16
elif checkpoint == "medium":
__UpperCamelCase = 1536
__UpperCamelCase = 48
__UpperCamelCase = 24
elif checkpoint == "large":
__UpperCamelCase = 2048
__UpperCamelCase = 48
__UpperCamelCase = 32
else:
raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." )
__UpperCamelCase = MusicgenDecoderConfig(
hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , )
return config
@torch.no_grad()
def A_ ( snake_case : Any , snake_case : str=None , snake_case : Any=None , snake_case : Union[str, Any]="cpu" ) -> List[Any]:
'''simple docstring'''
__UpperCamelCase = MusicGen.get_pretrained(snake_case , device=snake_case )
__UpperCamelCase = decoder_config_from_checkpoint(snake_case )
__UpperCamelCase = fairseq_model.lm.state_dict()
__UpperCamelCase , __UpperCamelCase = rename_state_dict(
snake_case , hidden_size=decoder_config.hidden_size )
__UpperCamelCase = TaEncoderModel.from_pretrained('''t5-base''' )
__UpperCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' )
__UpperCamelCase = MusicgenForCausalLM(snake_case ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
__UpperCamelCase , __UpperCamelCase = decoder.load_state_dict(snake_case , strict=snake_case )
for key in missing_keys.copy():
if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(snake_case )
if len(snake_case ) > 0:
raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" )
if len(snake_case ) > 0:
raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" )
# init the composite model
__UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(snake_case )
# check we can do a forward pass
__UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
__UpperCamelCase = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
__UpperCamelCase = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits
if logits.shape != (8, 1, 2048):
raise ValueError('''Incorrect shape for logits''' )
# now construct the processor
__UpperCamelCase = AutoTokenizer.from_pretrained('''t5-base''' )
__UpperCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' )
__UpperCamelCase = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case )
# set the appropriate bos/pad token ids
__UpperCamelCase = 2048
__UpperCamelCase = 2048
# set other default generation config params
__UpperCamelCase = int(30 * audio_encoder.config.frame_rate )
__UpperCamelCase = True
__UpperCamelCase = 3.0
if pytorch_dump_folder is not None:
Path(snake_case ).mkdir(exist_ok=snake_case )
logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" )
model.save_pretrained(snake_case )
processor.save_pretrained(snake_case )
if repo_id:
logger.info(f"Pushing model {checkpoint} to {repo_id}" )
model.push_to_hub(snake_case )
processor.push_to_hub(snake_case )
if __name__ == "__main__":
lowercase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
lowercase__ : Tuple = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 328 | 1 |
import unittest
from transformers import AutoTokenizer, FalconConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
)
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> List[str]:
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_input_mask
__UpperCamelCase = use_token_type_ids
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = type_sequence_label_size
__UpperCamelCase = initializer_range
__UpperCamelCase = num_labels
__UpperCamelCase = num_choices
__UpperCamelCase = scope
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCamelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A__ ( self )-> Dict:
'''simple docstring'''
return FalconConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=SCREAMING_SNAKE_CASE_ , )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
__UpperCamelCase = FalconModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )-> str:
'''simple docstring'''
__UpperCamelCase = True
__UpperCamelCase = FalconModel(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , )
__UpperCamelCase = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , )
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )-> List[Any]:
'''simple docstring'''
__UpperCamelCase = FalconForCausalLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )-> str:
'''simple docstring'''
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = FalconForCausalLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
# first forward pass
__UpperCamelCase = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ , )
__UpperCamelCase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCamelCase = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , )['''hidden_states'''][0]
__UpperCamelCase = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , )['''hidden_states'''][0]
# select random slice
__UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCamelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) )
def A__ ( self )-> Dict:
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) = config_and_inputs
__UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
_snake_case = (
(
FalconModel,
FalconForCausalLM,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconForQuestionAnswering,
)
if is_torch_available()
else ()
)
_snake_case = (FalconForCausalLM,) if is_torch_available() else ()
_snake_case = (
{
'feature-extraction': FalconModel,
'text-classification': FalconForSequenceClassification,
'text-generation': FalconForCausalLM,
'question-answering': FalconForQuestionAnswering,
'token-classification': FalconForTokenClassification,
'zero-shot': FalconForSequenceClassification,
}
if is_torch_available()
else {}
)
_snake_case = False
_snake_case = False
def A__ ( self )-> str:
'''simple docstring'''
__UpperCamelCase = FalconModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 )
def A__ ( self )-> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self )-> List[Any]:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase , *__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
for alibi in [True, False]:
__UpperCamelCase = alibi
self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = 3
__UpperCamelCase = input_dict['''input_ids''']
__UpperCamelCase = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCamelCase = FalconForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = 3
__UpperCamelCase = '''single_label_classification'''
__UpperCamelCase = input_dict['''input_ids''']
__UpperCamelCase = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCamelCase = FalconForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def A__ ( self )-> List[Any]:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = input_dict['''input_ids''']
__UpperCamelCase = FalconForCausalLM(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = input_ids.shape[0]
__UpperCamelCase = model._convert_to_rw_cache(result.past_key_values )
__UpperCamelCase = model._convert_cache_to_standard_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for layer in range(len(SCREAMING_SNAKE_CASE_ ) ):
for tensor_idx in range(2 ):
self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 )
self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 )
self.assertTrue(
torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) )
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = 3
__UpperCamelCase = '''multi_label_classification'''
__UpperCamelCase = input_dict['''input_ids''']
__UpperCamelCase = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCamelCase = FalconForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
for model_class in self.all_generative_model_classes:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
# If it doesn't support cache, pass the test
if not hasattr(SCREAMING_SNAKE_CASE_ , '''use_cache''' ):
return
__UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
if "use_cache" not in inputs:
__UpperCamelCase = True
__UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ )
# If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format)
if "past_key_values" not in outputs:
return
__UpperCamelCase = (
getattr(SCREAMING_SNAKE_CASE_ , '''decoder_layers''' , SCREAMING_SNAKE_CASE_ )
or getattr(SCREAMING_SNAKE_CASE_ , '''num_decoder_layers''' , SCREAMING_SNAKE_CASE_ )
or config.num_hidden_layers
)
__UpperCamelCase = getattr(SCREAMING_SNAKE_CASE_ , '''num_kv_heads''' , config.num_attention_heads )
__UpperCamelCase = getattr(SCREAMING_SNAKE_CASE_ , '''d_model''' , config.hidden_size )
__UpperCamelCase = embed_dim // num_attention_heads
__UpperCamelCase = outputs['''past_key_values''']
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase , __UpperCamelCase = inputs['''input_ids'''].shape
for i in range(SCREAMING_SNAKE_CASE_ ):
if config.new_decoder_architecture:
__UpperCamelCase = config.num_attention_heads
elif config.multi_query:
__UpperCamelCase = 1
self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2
self.assertEqual(
past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) )
self.assertEqual(
past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) )
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A__ ( self )-> Dict:
'''simple docstring'''
__UpperCamelCase = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' )
__UpperCamelCase = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' )
model.eval()
model.to(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = (
'''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.'''
)
__UpperCamelCase = model.generate(**SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , max_new_tokens=19 )
__UpperCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )[0]
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@slow
def A__ ( self )-> int:
'''simple docstring'''
for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]:
__UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = FalconForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE_ )
model.eval()
model.to(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ )
# We just test that these run without errors - the models are randomly initialized
# and so the actual text outputs will be garbage
model.generate(**SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , max_new_tokens=4 )
model.generate(**SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , max_new_tokens=4 )
model.generate(**SCREAMING_SNAKE_CASE_ , num_beams=2 , max_new_tokens=4 )
@slow
def A__ ( self )-> str:
'''simple docstring'''
with torch.no_grad():
for repo in [
"Rocketknight1/falcon-rw-1b",
"Rocketknight1/tiny-random-falcon-7b",
"Rocketknight1/tiny-random-falcon-40b",
]:
__UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = FalconForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE_ )
model.eval()
model.to(device=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ )
# Test results are the same with and without cache
__UpperCamelCase = model.generate(**SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , max_new_tokens=20 , use_cache=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = model.generate(**SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , max_new_tokens=20 , use_cache=SCREAMING_SNAKE_CASE_ )
self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
| 328 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing the experiment tracking capability,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowercase__ : List[str] = 1_6
lowercase__ : str = 3_2
def A_ ( snake_case : Accelerator , snake_case : int = 16 ) -> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' )
__UpperCamelCase = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(snake_case : Union[str, Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
__UpperCamelCase = datasets.map(
snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__UpperCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(snake_case : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
__UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
__UpperCamelCase = 16
elif accelerator.mixed_precision != "no":
__UpperCamelCase = 8
else:
__UpperCamelCase = None
return tokenizer.pad(
snake_case , padding='''longest''' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='''pt''' , )
# Instantiate dataloaders.
__UpperCamelCase = DataLoader(
tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case )
__UpperCamelCase = DataLoader(
tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowercase__ : Union[str, Any] = mocked_dataloaders # noqa: F811
def A_ ( snake_case : List[str] , snake_case : List[Any] ) -> Tuple:
'''simple docstring'''
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case ) == "1":
__UpperCamelCase = 2
# Initialize Accelerator
# New Code #
# We pass in "all" to `log_with` to grab all available trackers in the environment
# Note: If using a custom `Tracker` class, should be passed in here such as:
# >>> log_with = ["all", MyCustomTrackerClassInstance()]
if args.with_tracking:
__UpperCamelCase = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir )
else:
__UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__UpperCamelCase = config['''lr''']
__UpperCamelCase = int(config['''num_epochs'''] )
__UpperCamelCase = int(config['''seed'''] )
__UpperCamelCase = int(config['''batch_size'''] )
set_seed(snake_case )
__UpperCamelCase , __UpperCamelCase = get_dataloaders(snake_case , snake_case )
__UpperCamelCase = evaluate.load('''glue''' , '''mrpc''' )
# If the batch size is too big we use gradient accumulation
__UpperCamelCase = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
__UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE
__UpperCamelCase = MAX_GPU_BATCH_SIZE
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__UpperCamelCase = model.to(accelerator.device )
# Instantiate optimizer
__UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case )
# Instantiate scheduler
__UpperCamelCase = get_linear_schedule_with_warmup(
optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
snake_case , snake_case , snake_case , snake_case , snake_case )
# New Code #
# We need to initialize the trackers we use. Overall configurations can also be stored
if args.with_tracking:
__UpperCamelCase = os.path.split(snake_case )[-1].split('''.''' )[0]
accelerator.init_trackers(snake_case , snake_case )
# Now we train the model
for epoch in range(snake_case ):
model.train()
# New Code #
# For our tracking example, we will log the total loss of each epoch
if args.with_tracking:
__UpperCamelCase = 0
for step, batch in enumerate(snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
__UpperCamelCase = model(**snake_case )
__UpperCamelCase = outputs.loss
# New Code #
if args.with_tracking:
total_loss += loss.detach().float()
__UpperCamelCase = loss / gradient_accumulation_steps
accelerator.backward(snake_case )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True` (the default).
batch.to(accelerator.device )
with torch.no_grad():
__UpperCamelCase = model(**snake_case )
__UpperCamelCase = outputs.logits.argmax(dim=-1 )
__UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=snake_case , references=snake_case , )
__UpperCamelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"epoch {epoch}:" , snake_case )
# New Code #
# To actually log, we call `Accelerator.log`
# The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int`
if args.with_tracking:
accelerator.log(
{
'''accuracy''': eval_metric['''accuracy'''],
'''f1''': eval_metric['''f1'''],
'''train_loss''': total_loss.item() / len(snake_case ),
'''epoch''': epoch,
} , step=snake_case , )
# New Code #
# When a run is finished, you should call `accelerator.end_training()`
# to close all of the open trackers
if args.with_tracking:
accelerator.end_training()
def A_ ( ) -> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=snake_case , default=snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
parser.add_argument(
'''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , )
parser.add_argument(
'''--project_dir''' , type=snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , )
__UpperCamelCase = parser.parse_args()
__UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(snake_case , snake_case )
if __name__ == "__main__":
main()
| 328 | 1 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = 1
__UpperCamelCase = 3
__UpperCamelCase = (32, 32)
__UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ )
return image
@property
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
return model
@property
def A__ ( self )-> List[Any]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def A__ ( self )-> int:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(SCREAMING_SNAKE_CASE_ )
@property
def A__ ( self )-> Optional[int]:
'''simple docstring'''
def extract(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self )-> str:
'''simple docstring'''
__UpperCamelCase = torch.ones([0] )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]:
'''simple docstring'''
self.pixel_values.to(SCREAMING_SNAKE_CASE_ )
return self
return Out()
return extract
def A__ ( self )-> int:
'''simple docstring'''
__UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.dummy_cond_unet
__UpperCamelCase = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , )
__UpperCamelCase = self.dummy_vae
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
# make sure here that pndm scheduler skips prk
__UpperCamelCase = StableDiffusionPipeline(
unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=self.dummy_extractor , )
__UpperCamelCase = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = '''A painting of a squirrel eating a burger'''
__UpperCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 )
__UpperCamelCase = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' )
__UpperCamelCase = output.images
__UpperCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 )
__UpperCamelCase = sd_pipe(
[prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__UpperCamelCase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self )-> List[Any]:
'''simple docstring'''
__UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.dummy_cond_unet
__UpperCamelCase = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.dummy_vae
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
# make sure here that pndm scheduler skips prk
__UpperCamelCase = StableDiffusionPipeline(
unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=self.dummy_extractor , )
__UpperCamelCase = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = '''A painting of a squirrel eating a burger'''
__UpperCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 )
__UpperCamelCase = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' )
__UpperCamelCase = output.images
__UpperCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 )
__UpperCamelCase = sd_pipe(
[prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=SCREAMING_SNAKE_CASE_ , )[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__UpperCamelCase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self )-> str:
'''simple docstring'''
__UpperCamelCase = StableDiffusionPipeline.from_pretrained(
'''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=SCREAMING_SNAKE_CASE_ )
assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
assert isinstance(pipe.scheduler , SCREAMING_SNAKE_CASE_ )
assert pipe.safety_checker is None
__UpperCamelCase = pipe('''example prompt''' , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
__UpperCamelCase = pipe('''example prompt''' , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = self.dummy_cond_unet
__UpperCamelCase = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.dummy_vae
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
# put models in fp16
__UpperCamelCase = unet.half()
__UpperCamelCase = vae.half()
__UpperCamelCase = bert.half()
# make sure here that pndm scheduler skips prk
__UpperCamelCase = StableDiffusionPipeline(
unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=self.dummy_extractor , )
__UpperCamelCase = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = '''A painting of a squirrel eating a burger'''
__UpperCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self )-> Any:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
__UpperCamelCase = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = (
'''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle'''
''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with'''
''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and'''
''' children from bahnhof zoo, detailed '''
)
__UpperCamelCase = 4003660346
__UpperCamelCase = 7
# without safety guidance (sld_guidance_scale = 0)
__UpperCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = sd_pipe(
[prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
__UpperCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = sd_pipe(
[prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
__UpperCamelCase = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = '''padme amidala taking a bath artwork, safe for work, no nudity'''
__UpperCamelCase = 2734971755
__UpperCamelCase = 7
__UpperCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = sd_pipe(
[prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
__UpperCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = sd_pipe(
[prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' )
__UpperCamelCase = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = (
'''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.'''
''' leyendecker'''
)
__UpperCamelCase = 1044355234
__UpperCamelCase = 12
__UpperCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = sd_pipe(
[prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
__UpperCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = sd_pipe(
[prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 328 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : Union[str, Any] = {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json",
}
# fmt: off
lowercase__ : str = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5,
7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7,
1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1,
4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6,
1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1,
1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9,
3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1
]
lowercase__ : str = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3,
8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7,
3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7,
7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3,
1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5,
2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5,
4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2
]
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = 'whisper'
_snake_case = ['past_key_values']
_snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , SCREAMING_SNAKE_CASE_=51865 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=50257 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1500 , SCREAMING_SNAKE_CASE_=448 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[220, 50256] , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=7 , **SCREAMING_SNAKE_CASE_ , )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = vocab_size
__UpperCamelCase = num_mel_bins
__UpperCamelCase = d_model
__UpperCamelCase = encoder_layers
__UpperCamelCase = encoder_attention_heads
__UpperCamelCase = decoder_layers
__UpperCamelCase = decoder_attention_heads
__UpperCamelCase = decoder_ffn_dim
__UpperCamelCase = encoder_ffn_dim
__UpperCamelCase = dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = activation_dropout
__UpperCamelCase = activation_function
__UpperCamelCase = init_std
__UpperCamelCase = encoder_layerdrop
__UpperCamelCase = decoder_layerdrop
__UpperCamelCase = use_cache
__UpperCamelCase = encoder_layers
__UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True
__UpperCamelCase = max_source_positions
__UpperCamelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
__UpperCamelCase = classifier_proj_size
__UpperCamelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCamelCase = apply_spec_augment
__UpperCamelCase = mask_time_prob
__UpperCamelCase = mask_time_length
__UpperCamelCase = mask_time_min_masks
__UpperCamelCase = mask_feature_prob
__UpperCamelCase = mask_feature_length
__UpperCamelCase = mask_feature_min_masks
__UpperCamelCase = median_filter_width
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
@property
def A__ ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
__UpperCamelCase = OrderedDict(
[
('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}),
] )
if self.use_past:
__UpperCamelCase = {0: '''batch'''}
else:
__UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' )
return common_inputs
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 22050 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 220 , )-> Mapping[str, Any]:
'''simple docstring'''
__UpperCamelCase = OrderedDict()
__UpperCamelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , )
__UpperCamelCase = encoder_inputs['''input_features'''].shape[2]
__UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length
__UpperCamelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = encoder_inputs.pop('''input_features''' )
__UpperCamelCase = decoder_inputs.pop('''decoder_input_ids''' )
if "past_key_values" in decoder_inputs:
__UpperCamelCase = decoder_inputs.pop('''past_key_values''' )
return dummy_inputs
@property
def A__ ( self )-> float:
'''simple docstring'''
return 1E-3
| 328 | 1 |
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def A_ ( snake_case : str , snake_case : str , snake_case : str ) -> List[str]:
'''simple docstring'''
def get_masked_lm_array(snake_case : str ):
__UpperCamelCase = f"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE"
__UpperCamelCase = tf.train.load_variable(snake_case , snake_case )
if "kernel" in name:
__UpperCamelCase = array.transpose()
return torch.from_numpy(snake_case )
def get_encoder_array(snake_case : str ):
__UpperCamelCase = f"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE"
__UpperCamelCase = tf.train.load_variable(snake_case , snake_case )
if "kernel" in name:
__UpperCamelCase = array.transpose()
return torch.from_numpy(snake_case )
def get_encoder_layer_array(snake_case : int , snake_case : str ):
__UpperCamelCase = f"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE"
__UpperCamelCase = tf.train.load_variable(snake_case , snake_case )
if "kernel" in name:
__UpperCamelCase = array.transpose()
return torch.from_numpy(snake_case )
def get_encoder_attention_layer_array(snake_case : int , snake_case : str , snake_case : Optional[Any] ):
__UpperCamelCase = f"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE"
__UpperCamelCase = tf.train.load_variable(snake_case , snake_case )
__UpperCamelCase = array.reshape(snake_case )
if "kernel" in name:
__UpperCamelCase = array.transpose()
return torch.from_numpy(snake_case )
print(f"Loading model based on config from {config_path}..." )
__UpperCamelCase = BertConfig.from_json_file(snake_case )
__UpperCamelCase = BertForMaskedLM(snake_case )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
__UpperCamelCase = model.bert.encoder.layer[layer_index]
# Self-attention
__UpperCamelCase = layer.attention.self
__UpperCamelCase = get_encoder_attention_layer_array(
snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape )
__UpperCamelCase = get_encoder_attention_layer_array(
snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape )
__UpperCamelCase = get_encoder_attention_layer_array(
snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape )
__UpperCamelCase = get_encoder_attention_layer_array(
snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape )
__UpperCamelCase = get_encoder_attention_layer_array(
snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape )
__UpperCamelCase = get_encoder_attention_layer_array(
snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape )
# Self-attention Output
__UpperCamelCase = layer.attention.output
__UpperCamelCase = get_encoder_attention_layer_array(
snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape )
__UpperCamelCase = get_encoder_attention_layer_array(
snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape )
__UpperCamelCase = get_encoder_layer_array(snake_case , '''_attention_layer_norm/gamma''' )
__UpperCamelCase = get_encoder_layer_array(snake_case , '''_attention_layer_norm/beta''' )
# Intermediate
__UpperCamelCase = layer.intermediate
__UpperCamelCase = get_encoder_layer_array(snake_case , '''_intermediate_dense/kernel''' )
__UpperCamelCase = get_encoder_layer_array(snake_case , '''_intermediate_dense/bias''' )
# Output
__UpperCamelCase = layer.output
__UpperCamelCase = get_encoder_layer_array(snake_case , '''_output_dense/kernel''' )
__UpperCamelCase = get_encoder_layer_array(snake_case , '''_output_dense/bias''' )
__UpperCamelCase = get_encoder_layer_array(snake_case , '''_output_layer_norm/gamma''' )
__UpperCamelCase = get_encoder_layer_array(snake_case , '''_output_layer_norm/beta''' )
# Embeddings
__UpperCamelCase = get_encoder_array('''_position_embedding_layer/embeddings''' )
__UpperCamelCase = get_encoder_array('''_type_embedding_layer/embeddings''' )
__UpperCamelCase = get_encoder_array('''_embedding_norm_layer/gamma''' )
__UpperCamelCase = get_encoder_array('''_embedding_norm_layer/beta''' )
# LM Head
__UpperCamelCase = model.cls.predictions.transform
__UpperCamelCase = get_masked_lm_array('''dense/kernel''' )
__UpperCamelCase = get_masked_lm_array('''dense/bias''' )
__UpperCamelCase = get_masked_lm_array('''layer_norm/gamma''' )
__UpperCamelCase = get_masked_lm_array('''layer_norm/beta''' )
__UpperCamelCase = get_masked_lm_array('''embedding_table''' )
# Pooling
__UpperCamelCase = BertPooler(config=snake_case )
__UpperCamelCase = get_encoder_array('''_pooler_layer/kernel''' )
__UpperCamelCase = get_encoder_array('''_pooler_layer/bias''' )
# Export final model
model.save_pretrained(snake_case )
# Integration test - should load without any errors ;)
__UpperCamelCase = BertForMaskedLM.from_pretrained(snake_case )
print(new_model.eval() )
print('''Model conversion was done sucessfully!''' )
if __name__ == "__main__":
lowercase__ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model.",
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 328 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : Any = logging.get_logger(__name__)
lowercase__ : Tuple = {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = 'xlnet'
_snake_case = ['mems']
_snake_case = {
'n_token': 'vocab_size', # Backward compatibility
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , SCREAMING_SNAKE_CASE_=32000 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="bi" , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=-1 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="tanh" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , )-> List[str]:
'''simple docstring'''
__UpperCamelCase = vocab_size
__UpperCamelCase = d_model
__UpperCamelCase = n_layer
__UpperCamelCase = n_head
if d_model % n_head != 0:
raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" )
__UpperCamelCase = d_model // n_head
__UpperCamelCase = ff_activation
__UpperCamelCase = d_inner
__UpperCamelCase = untie_r
__UpperCamelCase = attn_type
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = dropout
__UpperCamelCase = mem_len
__UpperCamelCase = reuse_len
__UpperCamelCase = bi_data
__UpperCamelCase = clamp_len
__UpperCamelCase = same_length
__UpperCamelCase = summary_type
__UpperCamelCase = summary_use_proj
__UpperCamelCase = summary_activation
__UpperCamelCase = summary_last_dropout
__UpperCamelCase = start_n_top
__UpperCamelCase = end_n_top
__UpperCamelCase = bos_token_id
__UpperCamelCase = pad_token_id
__UpperCamelCase = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'''
''' instead.''' , SCREAMING_SNAKE_CASE_ , )
__UpperCamelCase = kwargs['''use_cache''']
__UpperCamelCase = use_mems_eval
__UpperCamelCase = use_mems_train
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
@property
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." )
return -1
@max_position_embeddings.setter
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]:
'''simple docstring'''
raise NotImplementedError(
F"The model {self.model_type} is one of the few models that has no sequence length limit." )
| 328 | 1 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
lowercase__ : int = 0
lowercase__ : Dict = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
lowercase__ : int = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
lowercase__ : Dict = tuple[int, int]
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )-> None:
'''simple docstring'''
__UpperCamelCase = pos_x
__UpperCamelCase = pos_y
__UpperCamelCase = (pos_y, pos_x)
__UpperCamelCase = goal_x
__UpperCamelCase = goal_y
__UpperCamelCase = g_cost
__UpperCamelCase = parent
__UpperCamelCase = self.calculate_heuristic()
__UpperCamelCase = self.g_cost + self.h_cost
def A__ ( self )-> float:
'''simple docstring'''
__UpperCamelCase = self.pos_x - self.goal_x
__UpperCamelCase = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(SCREAMING_SNAKE_CASE_ ) + abs(SCREAMING_SNAKE_CASE_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self , SCREAMING_SNAKE_CASE_ )-> bool:
'''simple docstring'''
return self.f_cost < other.f_cost
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> List[Any]:
'''simple docstring'''
__UpperCamelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = [self.start]
__UpperCamelCase = []
__UpperCamelCase = False
def A__ ( self )-> list[TPosition]:
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
__UpperCamelCase = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(SCREAMING_SNAKE_CASE_ )
self.closed_nodes.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.get_successors(SCREAMING_SNAKE_CASE_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(SCREAMING_SNAKE_CASE_ )
else:
# retrieve the best current path
__UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(SCREAMING_SNAKE_CASE_ )
else:
self.open_nodes.append(SCREAMING_SNAKE_CASE_ )
return [self.start.pos]
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> list[Node]:
'''simple docstring'''
__UpperCamelCase = []
for action in delta:
__UpperCamelCase = parent.pos_x + action[1]
__UpperCamelCase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE_ , ) )
return successors
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> list[TPosition]:
'''simple docstring'''
__UpperCamelCase = node
__UpperCamelCase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__UpperCamelCase = current_node.parent
path.reverse()
return path
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
__UpperCamelCase = AStar(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = AStar(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = False
def A__ ( self )-> list[TPosition]:
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
__UpperCamelCase = self.fwd_astar.open_nodes.pop(0 )
__UpperCamelCase = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.fwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE_ )
self.bwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = current_bwd_node
__UpperCamelCase = current_fwd_node
__UpperCamelCase = {
self.fwd_astar: self.fwd_astar.get_successors(SCREAMING_SNAKE_CASE_ ),
self.bwd_astar: self.bwd_astar.get_successors(SCREAMING_SNAKE_CASE_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(SCREAMING_SNAKE_CASE_ )
else:
# retrieve the best current path
__UpperCamelCase = astar.open_nodes.pop(
astar.open_nodes.index(SCREAMING_SNAKE_CASE_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(SCREAMING_SNAKE_CASE_ )
else:
astar.open_nodes.append(SCREAMING_SNAKE_CASE_ )
return [self.fwd_astar.start.pos]
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> list[TPosition]:
'''simple docstring'''
__UpperCamelCase = self.fwd_astar.retrace_path(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.bwd_astar.retrace_path(SCREAMING_SNAKE_CASE_ )
bwd_path.pop()
bwd_path.reverse()
__UpperCamelCase = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
lowercase__ : Union[str, Any] = (0, 0)
lowercase__ : Optional[Any] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
lowercase__ : Optional[int] = time.time()
lowercase__ : List[str] = AStar(init, goal)
lowercase__ : Optional[Any] = a_star.search()
lowercase__ : Dict = time.time() - start_time
print(F"AStar execution time = {end_time:f} seconds")
lowercase__ : Dict = time.time()
lowercase__ : Dict = BidirectionalAStar(init, goal)
lowercase__ : Tuple = time.time() - bd_start_time
print(F"BidirectionalAStar execution time = {bd_end_time:f} seconds")
| 328 |
from typing import Any
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = data
__UpperCamelCase = None
def __repr__( self )-> str:
'''simple docstring'''
return F"Node({self.data})"
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = None
def __iter__( self )-> Any:
'''simple docstring'''
__UpperCamelCase = self.head
while node:
yield node.data
__UpperCamelCase = node.next
def __len__( self )-> int:
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self )-> str:
'''simple docstring'''
return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] )
def __getitem__( self , SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('''list index out of range.''' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('''list index out of range.''' )
__UpperCamelCase = self.head
for _ in range(SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = current.next
__UpperCamelCase = data
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
self.insert_nth(0 , SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('''list index out of range''' )
__UpperCamelCase = Node(SCREAMING_SNAKE_CASE_ )
if self.head is None:
__UpperCamelCase = new_node
elif index == 0:
__UpperCamelCase = self.head # link new_node to head
__UpperCamelCase = new_node
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = new_node
def A__ ( self )-> None: # print every node data
'''simple docstring'''
print(self )
def A__ ( self )-> Any:
'''simple docstring'''
return self.delete_nth(0 )
def A__ ( self )-> Any: # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def A__ ( self , SCREAMING_SNAKE_CASE_ = 0 )-> Any:
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('''List index out of range.''' )
__UpperCamelCase = self.head # default first node
if index == 0:
__UpperCamelCase = self.head.next
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next.next
return delete_node.data
def A__ ( self )-> bool:
'''simple docstring'''
return self.head is None
def A__ ( self )-> None:
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = self.head
while current:
# Store the current node's next node.
__UpperCamelCase = current.next
# Make the current node's next point backwards
__UpperCamelCase = prev
# Make the previous node be the current node
__UpperCamelCase = current
# Make the current node the next node (to progress iteration)
__UpperCamelCase = next_node
# Return prev in order to put the head at the end
__UpperCamelCase = prev
def A_ ( ) -> None:
'''simple docstring'''
__UpperCamelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(snake_case ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(snake_case ) == i
linked_list.insert_nth(snake_case , i + 1 )
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(snake_case ) == 9
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
__UpperCamelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(-8 , 1 ) )
def A_ ( ) -> None:
'''simple docstring'''
__UpperCamelCase = [
-9,
100,
Node(77345112 ),
'''dlrow olleH''',
7,
5555,
0,
-192.55555,
'''Hello, world!''',
77.9,
Node(10 ),
None,
None,
12.20,
]
__UpperCamelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(snake_case )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
__UpperCamelCase = linked_list.delete_head()
assert result == -9
assert (
str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
__UpperCamelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
__UpperCamelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('''Hello again, world!''' ) )
assert (
str(snake_case )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(snake_case )
assert (
str(snake_case )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(snake_case )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def A_ ( ) -> Any:
'''simple docstring'''
from doctest import testmod
testmod()
__UpperCamelCase = LinkedList()
linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() )
linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() )
print('''\nPrint list:''' )
linked_list.print_list()
linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() )
linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() )
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nDelete head''' )
linked_list.delete_head()
print('''Delete tail''' )
linked_list.delete_tail()
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nReverse linked list''' )
linked_list.reverse()
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nString representation of linked list:''' )
print(snake_case )
print('''\nReading/changing Node data using indexing:''' )
print(f"Element at Position 1: {linked_list[1]}" )
__UpperCamelCase = input('''Enter New Value: ''' ).strip()
print('''New list:''' )
print(snake_case )
print(f"length of linked_list is : {len(snake_case )}" )
if __name__ == "__main__":
main()
| 328 | 1 |
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
lowercase__ : List[str] = [
"python",
"tqdm",
"regex",
"requests",
"packaging",
"filelock",
"numpy",
"tokenizers",
"huggingface-hub",
"safetensors",
"accelerate",
"pyyaml",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
def A_ ( snake_case : Optional[Any] , snake_case : Any=None ) -> Union[str, Any]:
'''simple docstring'''
require_version(deps[pkg] , snake_case )
| 328 |
import math
def A_ ( snake_case : int ) -> bool:
'''simple docstring'''
return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num
def A_ ( snake_case : int ) -> bool:
'''simple docstring'''
__UpperCamelCase = 0
__UpperCamelCase = n
while left <= right:
__UpperCamelCase = (left + right) // 2
if mid**2 == n:
return True
elif mid**2 > n:
__UpperCamelCase = mid - 1
else:
__UpperCamelCase = mid + 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 328 | 1 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : Optional[int] = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"adapter_layer": "encoder.layers.*.adapter_layer",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
"pooling_layer.linear": "projector",
"pooling_layer.projection": "classifier",
}
lowercase__ : List[Any] = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"projector",
"classifier",
]
def A_ ( snake_case : str ) -> str:
'''simple docstring'''
__UpperCamelCase = {}
with open(snake_case , '''r''' ) as file:
for line_number, line in enumerate(snake_case ):
__UpperCamelCase = line.strip()
if line:
__UpperCamelCase = line.split()
__UpperCamelCase = line_number
__UpperCamelCase = words[0]
__UpperCamelCase = value
return result
def A_ ( snake_case : int , snake_case : Union[str, Any] , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : str ) -> Union[str, Any]:
'''simple docstring'''
for attribute in key.split('''.''' ):
__UpperCamelCase = getattr(snake_case , snake_case )
__UpperCamelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(snake_case ):
__UpperCamelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]]
__UpperCamelCase = '''param'''
if weight_type is not None and weight_type != "param":
__UpperCamelCase = getattr(snake_case , snake_case ).shape
elif weight_type is not None and weight_type == "param":
__UpperCamelCase = hf_pointer
for attribute in hf_param_name.split('''.''' ):
__UpperCamelCase = getattr(snake_case , snake_case )
__UpperCamelCase = shape_pointer.shape
# let's reduce dimension
__UpperCamelCase = value[0]
else:
__UpperCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}" )
if weight_type == "weight":
__UpperCamelCase = value
elif weight_type == "weight_g":
__UpperCamelCase = value
elif weight_type == "weight_v":
__UpperCamelCase = value
elif weight_type == "bias":
__UpperCamelCase = value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
__UpperCamelCase = getattr(snake_case , snake_case )
__UpperCamelCase = value
else:
__UpperCamelCase = value
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def A_ ( snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : List[str] ) -> Optional[int]:
'''simple docstring'''
__UpperCamelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(snake_case ):
__UpperCamelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]]
__UpperCamelCase = '''param'''
if weight_type is not None and weight_type != "param":
__UpperCamelCase = '''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__UpperCamelCase = '''.'''.join([key, hf_param_name] )
else:
__UpperCamelCase = key
__UpperCamelCase = value if '''lm_head''' in full_key else value[0]
lowercase__ : Dict = {
"W_a": "linear_1.weight",
"W_b": "linear_2.weight",
"b_a": "linear_1.bias",
"b_b": "linear_2.bias",
"ln_W": "norm.weight",
"ln_b": "norm.bias",
}
def A_ ( snake_case : Tuple , snake_case : Any , snake_case : List[Any]=None , snake_case : Optional[int]=None ) -> List[Any]:
'''simple docstring'''
__UpperCamelCase = False
for key, mapped_key in MAPPING.items():
__UpperCamelCase = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
__UpperCamelCase = True
if "*" in mapped_key:
__UpperCamelCase = name.split(snake_case )[0].split('''.''' )[-2]
__UpperCamelCase = mapped_key.replace('''*''' , snake_case )
if "weight_g" in name:
__UpperCamelCase = '''weight_g'''
elif "weight_v" in name:
__UpperCamelCase = '''weight_v'''
elif "bias" in name:
__UpperCamelCase = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__UpperCamelCase = '''weight'''
else:
__UpperCamelCase = None
if hf_dict is not None:
rename_dict(snake_case , snake_case , snake_case , snake_case , snake_case )
else:
set_recursively(snake_case , snake_case , snake_case , snake_case , snake_case )
return is_used
return is_used
def A_ ( snake_case : List[Any] , snake_case : Union[str, Any] , snake_case : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = fairseq_model.state_dict()
__UpperCamelCase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__UpperCamelCase = False
if "conv_layers" in name:
load_conv_layer(
snake_case , snake_case , snake_case , snake_case , hf_model.config.feat_extract_norm == '''group''' , )
__UpperCamelCase = True
else:
__UpperCamelCase = load_wavaveca_layer(snake_case , snake_case , snake_case )
if not is_used:
unused_weights.append(snake_case )
logger.warning(f"Unused weights: {unused_weights}" )
def A_ ( snake_case : Optional[int] , snake_case : int , snake_case : List[Any] , snake_case : Dict , snake_case : int ) -> str:
'''simple docstring'''
__UpperCamelCase = full_name.split('''conv_layers.''' )[-1]
__UpperCamelCase = name.split('''.''' )
__UpperCamelCase = int(items[0] )
__UpperCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(snake_case )
@torch.no_grad()
def A_ ( snake_case : str , snake_case : int , snake_case : Dict=None , snake_case : List[Any]=None , snake_case : List[str]=True , snake_case : Optional[Any]=False ) -> Tuple:
'''simple docstring'''
if config_path is not None:
__UpperCamelCase = WavaVecaConfig.from_pretrained(snake_case )
else:
__UpperCamelCase = WavaVecaConfig()
if is_seq_class:
__UpperCamelCase = read_txt_into_dict(snake_case )
__UpperCamelCase = idalabel
__UpperCamelCase = WavaVecaForSequenceClassification(snake_case )
__UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=snake_case , return_attention_mask=snake_case , )
feature_extractor.save_pretrained(snake_case )
elif is_finetuned:
if dict_path:
__UpperCamelCase = Dictionary.load(snake_case )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__UpperCamelCase = target_dict.pad_index
__UpperCamelCase = target_dict.bos_index
__UpperCamelCase = target_dict.eos_index
__UpperCamelCase = len(target_dict.symbols )
__UpperCamelCase = os.path.join(snake_case , '''vocab.json''' )
if not os.path.isdir(snake_case ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(snake_case ) )
return
os.makedirs(snake_case , exist_ok=snake_case )
__UpperCamelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
__UpperCamelCase = 0
__UpperCamelCase = 1
with open(snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(snake_case , snake_case )
__UpperCamelCase = WavaVecaCTCTokenizer(
snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=snake_case , )
__UpperCamelCase = True if config.feat_extract_norm == '''layer''' else False
__UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=snake_case , return_attention_mask=snake_case , )
__UpperCamelCase = WavaVecaProcessor(feature_extractor=snake_case , tokenizer=snake_case )
processor.save_pretrained(snake_case )
__UpperCamelCase = WavaVecaForCTC(snake_case )
else:
__UpperCamelCase = WavaVecaForPreTraining(snake_case )
if is_finetuned or is_seq_class:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
__UpperCamelCase = argparse.Namespace(task='''audio_pretraining''' )
__UpperCamelCase = fairseq.tasks.setup_task(snake_case )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=snake_case )
__UpperCamelCase = model[0].eval()
recursively_load_weights(snake_case , snake_case , not is_finetuned )
hf_wavavec.save_pretrained(snake_case )
if __name__ == "__main__":
lowercase__ : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
parser.add_argument(
"--is_seq_class",
action="store_true",
help="Whether the model to convert is a fine-tuned sequence classification model or not",
)
lowercase__ : List[Any] = parser.parse_args()
lowercase__ : int = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 328 |
def A_ ( ) -> list[list[int]]:
'''simple docstring'''
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
lowercase__ : List[str] = generate_large_matrix()
lowercase__ : Tuple = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def A_ ( snake_case : list[list[int]] ) -> None:
'''simple docstring'''
assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid )
assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) )
def A_ ( snake_case : list[int] ) -> int:
'''simple docstring'''
__UpperCamelCase = 0
__UpperCamelCase = len(snake_case ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
__UpperCamelCase = (left + right) // 2
__UpperCamelCase = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
__UpperCamelCase = mid + 1
else:
__UpperCamelCase = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(snake_case )
def A_ ( snake_case : list[list[int]] ) -> int:
'''simple docstring'''
__UpperCamelCase = 0
__UpperCamelCase = len(grid[0] )
for i in range(len(snake_case ) ):
__UpperCamelCase = find_negative_index(grid[i][:bound] )
total += bound
return (len(snake_case ) * len(grid[0] )) - total
def A_ ( snake_case : list[list[int]] ) -> int:
'''simple docstring'''
return len([number for row in grid for number in row if number < 0] )
def A_ ( snake_case : list[list[int]] ) -> int:
'''simple docstring'''
__UpperCamelCase = 0
for row in grid:
for i, number in enumerate(snake_case ):
if number < 0:
total += len(snake_case ) - i
break
return total
def A_ ( ) -> None:
'''simple docstring'''
from timeit import timeit
print('''Running benchmarks''' )
__UpperCamelCase = (
'''from __main__ import count_negatives_binary_search, '''
'''count_negatives_brute_force, count_negatives_brute_force_with_break, grid'''
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
__UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 )
print(f"{func}() took {time:0.4f} seconds" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 328 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
_snake_case = ShapEImgaImgPipeline
_snake_case = ['image']
_snake_case = ['image']
_snake_case = [
'num_images_per_prompt',
'num_inference_steps',
'generator',
'latents',
'guidance_scale',
'frame_size',
'output_type',
'return_dict',
]
_snake_case = False
@property
def A__ ( self )-> Any:
'''simple docstring'''
return 32
@property
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
return 32
@property
def A__ ( self )-> Any:
'''simple docstring'''
return self.time_input_dim * 4
@property
def A__ ( self )-> Any:
'''simple docstring'''
return 8
@property
def A__ ( self )-> Any:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
__UpperCamelCase = CLIPVisionModel(SCREAMING_SNAKE_CASE_ )
return model
@property
def A__ ( self )-> Tuple:
'''simple docstring'''
__UpperCamelCase = CLIPImageProcessor(
crop_size=224 , do_center_crop=SCREAMING_SNAKE_CASE_ , do_normalize=SCREAMING_SNAKE_CASE_ , do_resize=SCREAMING_SNAKE_CASE_ , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=224 , )
return image_processor
@property
def A__ ( self )-> Dict:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 16,
'''embedding_dim''': self.time_input_dim,
'''num_embeddings''': 32,
'''embedding_proj_dim''': self.text_embedder_hidden_size,
'''time_embed_dim''': self.time_embed_dim,
'''num_layers''': 1,
'''clip_embed_dim''': self.time_input_dim * 2,
'''additional_embeddings''': 0,
'''time_embed_act_fn''': '''gelu''',
'''norm_in_type''': '''layer''',
'''embedding_proj_norm_type''': '''layer''',
'''encoder_hid_proj_type''': None,
'''added_emb_type''': None,
}
__UpperCamelCase = PriorTransformer(**SCREAMING_SNAKE_CASE_ )
return model
@property
def A__ ( self )-> List[Any]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = {
'''param_shapes''': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'''d_latent''': self.time_input_dim,
'''d_hidden''': self.renderer_dim,
'''n_output''': 12,
'''background''': (
0.1,
0.1,
0.1,
),
}
__UpperCamelCase = ShapERenderer(**SCREAMING_SNAKE_CASE_ )
return model
def A__ ( self )-> str:
'''simple docstring'''
__UpperCamelCase = self.dummy_prior
__UpperCamelCase = self.dummy_image_encoder
__UpperCamelCase = self.dummy_image_processor
__UpperCamelCase = self.dummy_renderer
__UpperCamelCase = HeunDiscreteScheduler(
beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=1.0 , )
__UpperCamelCase = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''image_processor''': image_processor,
'''renderer''': renderer,
'''scheduler''': scheduler,
}
return components
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ )
if str(SCREAMING_SNAKE_CASE_ ).startswith('''mps''' ):
__UpperCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
__UpperCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = {
'''image''': input_image,
'''generator''': generator,
'''num_inference_steps''': 1,
'''frame_size''': 32,
'''output_type''': '''np''',
}
return inputs
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = '''cpu'''
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase = output.images[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__UpperCamelCase = np.array(
[
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
0.0_0_0_3_9_2_1_6,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self )-> str:
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def A__ ( self )-> int:
'''simple docstring'''
__UpperCamelCase = torch_device == '''cpu'''
__UpperCamelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=SCREAMING_SNAKE_CASE_ , relax_max_difference=SCREAMING_SNAKE_CASE_ , )
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = 1
__UpperCamelCase = 2
__UpperCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
for key in inputs.keys():
if key in self.batch_params:
__UpperCamelCase = batch_size * [inputs[key]]
__UpperCamelCase = pipe(**SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self )-> Optional[int]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self )-> List[Any]:
'''simple docstring'''
__UpperCamelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' )
__UpperCamelCase = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/shap_e/test_shap_e_img2img_out.npy''' )
__UpperCamelCase = ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' )
__UpperCamelCase = pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 )
__UpperCamelCase = pipe(
SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
| 328 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowercase__ : str = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None:
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = size if size is not None else {'''shortest_edge''': 224}
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' )
__UpperCamelCase = do_resize
__UpperCamelCase = size
__UpperCamelCase = crop_pct
__UpperCamelCase = resample
__UpperCamelCase = do_center_crop
__UpperCamelCase = crop_size
__UpperCamelCase = do_rescale
__UpperCamelCase = rescale_factor
__UpperCamelCase = do_normalize
__UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray:
'''simple docstring'''
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
if crop_pct is not None:
if "shortest_edge" in size:
__UpperCamelCase = int(size['''shortest_edge'''] / crop_pct )
elif "height" in size and "width" in size:
if size["height"] == size["width"]:
__UpperCamelCase = int(size['''height'''] / crop_pct )
else:
__UpperCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct ))
else:
raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
else:
if "shortest_edge" in size:
__UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ )
elif "height" in size and "width" in size:
__UpperCamelCase = (size['''height'''], size['''width'''])
else:
raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) )
return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray:
'''simple docstring'''
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ )
if "height" not in size or "width" not in size:
raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> str:
'''simple docstring'''
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray:
'''simple docstring'''
return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , )-> PIL.Image.Image:
'''simple docstring'''
__UpperCamelCase = do_resize if do_resize is not None else self.do_resize
__UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct
__UpperCamelCase = resample if resample is not None else self.resample
__UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
__UpperCamelCase = image_mean if image_mean is not None else self.image_mean
__UpperCamelCase = image_std if image_std is not None else self.image_std
__UpperCamelCase = size if size is not None else self.size
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = crop_size if crop_size is not None else self.crop_size
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' )
__UpperCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE_ )
if not valid_images(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_pct is None:
raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
__UpperCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images]
if do_resize:
__UpperCamelCase = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_center_crop:
__UpperCamelCase = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_rescale:
__UpperCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_normalize:
__UpperCamelCase = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images]
__UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images]
__UpperCamelCase = {'''pixel_values''': images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
| 328 | 1 |
from typing import Any
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = data
__UpperCamelCase = None
def __repr__( self )-> str:
'''simple docstring'''
return F"Node({self.data})"
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = None
def __iter__( self )-> Any:
'''simple docstring'''
__UpperCamelCase = self.head
while node:
yield node.data
__UpperCamelCase = node.next
def __len__( self )-> int:
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self )-> str:
'''simple docstring'''
return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] )
def __getitem__( self , SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('''list index out of range.''' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('''list index out of range.''' )
__UpperCamelCase = self.head
for _ in range(SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = current.next
__UpperCamelCase = data
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
self.insert_nth(0 , SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('''list index out of range''' )
__UpperCamelCase = Node(SCREAMING_SNAKE_CASE_ )
if self.head is None:
__UpperCamelCase = new_node
elif index == 0:
__UpperCamelCase = self.head # link new_node to head
__UpperCamelCase = new_node
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = new_node
def A__ ( self )-> None: # print every node data
'''simple docstring'''
print(self )
def A__ ( self )-> Any:
'''simple docstring'''
return self.delete_nth(0 )
def A__ ( self )-> Any: # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def A__ ( self , SCREAMING_SNAKE_CASE_ = 0 )-> Any:
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('''List index out of range.''' )
__UpperCamelCase = self.head # default first node
if index == 0:
__UpperCamelCase = self.head.next
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next.next
return delete_node.data
def A__ ( self )-> bool:
'''simple docstring'''
return self.head is None
def A__ ( self )-> None:
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = self.head
while current:
# Store the current node's next node.
__UpperCamelCase = current.next
# Make the current node's next point backwards
__UpperCamelCase = prev
# Make the previous node be the current node
__UpperCamelCase = current
# Make the current node the next node (to progress iteration)
__UpperCamelCase = next_node
# Return prev in order to put the head at the end
__UpperCamelCase = prev
def A_ ( ) -> None:
'''simple docstring'''
__UpperCamelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(snake_case ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(snake_case ) == i
linked_list.insert_nth(snake_case , i + 1 )
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(snake_case ) == 9
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
__UpperCamelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(-8 , 1 ) )
def A_ ( ) -> None:
'''simple docstring'''
__UpperCamelCase = [
-9,
100,
Node(77345112 ),
'''dlrow olleH''',
7,
5555,
0,
-192.55555,
'''Hello, world!''',
77.9,
Node(10 ),
None,
None,
12.20,
]
__UpperCamelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(snake_case )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
__UpperCamelCase = linked_list.delete_head()
assert result == -9
assert (
str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
__UpperCamelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
__UpperCamelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('''Hello again, world!''' ) )
assert (
str(snake_case )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(snake_case )
assert (
str(snake_case )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(snake_case )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def A_ ( ) -> Any:
'''simple docstring'''
from doctest import testmod
testmod()
__UpperCamelCase = LinkedList()
linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() )
linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() )
print('''\nPrint list:''' )
linked_list.print_list()
linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() )
linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() )
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nDelete head''' )
linked_list.delete_head()
print('''Delete tail''' )
linked_list.delete_tail()
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nReverse linked list''' )
linked_list.reverse()
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nString representation of linked list:''' )
print(snake_case )
print('''\nReading/changing Node data using indexing:''' )
print(f"Element at Position 1: {linked_list[1]}" )
__UpperCamelCase = input('''Enter New Value: ''' ).strip()
print('''New list:''' )
print(snake_case )
print(f"length of linked_list is : {len(snake_case )}" )
if __name__ == "__main__":
main()
| 328 |
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
lowercase__ : Any = getLogger(__name__)
lowercase__ : List[str] = "cuda" if torch.cuda.is_available() else "cpu"
def A_ ( snake_case : List[str] , snake_case : str , snake_case : str , snake_case : int = 8 , snake_case : str = DEFAULT_DEVICE , snake_case : List[str]=False , snake_case : Union[str, Any]="summarization" , snake_case : str=None , **snake_case : List[Any] , ) -> Dict:
'''simple docstring'''
__UpperCamelCase = Path(snake_case ).open('''w''' , encoding='''utf-8''' )
__UpperCamelCase = str(snake_case )
__UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case ).to(snake_case )
if fpaa:
__UpperCamelCase = model.half()
__UpperCamelCase = AutoTokenizer.from_pretrained(snake_case )
logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
__UpperCamelCase = time.time()
# update config with task specific params
use_task_specific_params(snake_case , snake_case )
if prefix is None:
__UpperCamelCase = prefix or getattr(model.config , '''prefix''' , '''''' ) or ''''''
for examples_chunk in tqdm(list(chunks(snake_case , snake_case ) ) ):
__UpperCamelCase = [prefix + text for text in examples_chunk]
__UpperCamelCase = tokenizer(snake_case , return_tensors='''pt''' , truncation=snake_case , padding='''longest''' ).to(snake_case )
__UpperCamelCase = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case , )
__UpperCamelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case )
for hypothesis in dec:
fout.write(hypothesis + '''\n''' )
fout.flush()
fout.close()
__UpperCamelCase = int(time.time() - start_time ) # seconds
__UpperCamelCase = len(snake_case )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def A_ ( ) -> Tuple:
'''simple docstring'''
return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' )
def A_ ( snake_case : str=True ) -> int:
'''simple docstring'''
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''model_name''' , type=snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' )
parser.add_argument('''input_path''' , type=snake_case , help='''like cnn_dm/test.source''' )
parser.add_argument('''save_path''' , type=snake_case , help='''where to save summaries''' )
parser.add_argument('''--reference_path''' , type=snake_case , required=snake_case , help='''like cnn_dm/test.target''' )
parser.add_argument('''--score_path''' , type=snake_case , required=snake_case , default='''metrics.json''' , help='''where to save metrics''' )
parser.add_argument('''--device''' , type=snake_case , required=snake_case , default=snake_case , help='''cuda, cuda:1, cpu etc.''' )
parser.add_argument(
'''--prefix''' , type=snake_case , required=snake_case , default=snake_case , help='''will be added to the begininng of src examples''' )
parser.add_argument('''--task''' , type=snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' )
parser.add_argument('''--bs''' , type=snake_case , default=8 , required=snake_case , help='''batch size''' )
parser.add_argument(
'''--n_obs''' , type=snake_case , default=-1 , required=snake_case , help='''How many observations. Defaults to all.''' )
parser.add_argument('''--fp16''' , action='''store_true''' )
parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' )
parser.add_argument(
'''--info''' , nargs='''?''' , type=snake_case , const=datetime_now() , help=(
'''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.'''
''' lang=en-ru. If no value is passed, the current datetime string will be used.'''
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
__UpperCamelCase , __UpperCamelCase = parser.parse_known_args()
__UpperCamelCase = parse_numeric_n_bool_cl_kwargs(snake_case )
if parsed_args and verbose:
print(f"parsed the following generate kwargs: {parsed_args}" )
__UpperCamelCase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
__UpperCamelCase = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=snake_case )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError('''Can\'t mix --fp16 and --device cpu''' )
__UpperCamelCase = generate_summaries_or_translations(
snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case , )
if args.reference_path is None:
return {}
# Compute scores
__UpperCamelCase = calculate_bleu if '''translation''' in args.task else calculate_rouge
__UpperCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()]
__UpperCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case )]
__UpperCamelCase = score_fn(snake_case , snake_case )
scores.update(snake_case )
if args.dump_args:
scores.update(snake_case )
if args.info:
__UpperCamelCase = args.info
if verbose:
print(snake_case )
if args.score_path is not None:
json.dump(snake_case , open(args.score_path , '''w''' ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 328 | 1 |
lowercase__ : Optional[int] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
lowercase__ : Tuple = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5]
lowercase__ : str = {
0: "Sunday",
1: "Monday",
2: "Tuesday",
3: "Wednesday",
4: "Thursday",
5: "Friday",
6: "Saturday",
}
def A_ ( snake_case : int , snake_case : int , snake_case : int ) -> str:
'''simple docstring'''
assert len(str(snake_case ) ) > 2, "year should be in YYYY format"
assert 1 <= month <= 12, "month should be between 1 to 12"
assert 1 <= day <= 31, "day should be between 1 to 31"
# Doomsday algorithm:
__UpperCamelCase = year // 100
__UpperCamelCase = (5 * (century % 4) + 2) % 7
__UpperCamelCase = year % 100
__UpperCamelCase = centurian % 12
__UpperCamelCase = (
(centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor
) % 7
__UpperCamelCase = (
DOOMSDAY_NOT_LEAP[month - 1]
if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0)
else DOOMSDAY_LEAP[month - 1]
)
__UpperCamelCase = (dooms_day + day - day_anchor) % 7
return WEEK_DAY_NAMES[week_day]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 328 |
from math import factorial
def A_ ( snake_case : int = 100 ) -> int:
'''simple docstring'''
return sum(int(snake_case ) for x in str(factorial(snake_case ) ) )
if __name__ == "__main__":
print(solution(int(input("Enter the Number: ").strip())))
| 328 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase__ : Dict = logging.get_logger(__name__)
lowercase__ : Union[str, Any] = {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json"
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = 'roformer'
def __init__( self , SCREAMING_SNAKE_CASE_=50000 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , )-> List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size if embedding_size is None else embedding_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = rotary_value
__UpperCamelCase = use_cache
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
@property
def A__ ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__UpperCamelCase = {0: '''batch''', 1: '''sequence'''}
__UpperCamelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 328 |
def A_ ( snake_case : list ) -> list:
'''simple docstring'''
__UpperCamelCase = len(snake_case )
for i in range(1 , snake_case ):
__UpperCamelCase = collection[i]
__UpperCamelCase = 0
__UpperCamelCase = i - 1
while low <= high:
__UpperCamelCase = (low + high) // 2
if val < collection[mid]:
__UpperCamelCase = mid - 1
else:
__UpperCamelCase = mid + 1
for j in range(snake_case , snake_case , -1 ):
__UpperCamelCase = collection[j - 1]
__UpperCamelCase = val
return collection
if __name__ == "__main__":
lowercase__ : List[Any] = input("Enter numbers separated by a comma:\n").strip()
lowercase__ : str = [int(item) for item in user_input.split(",")]
print(binary_insertion_sort(unsorted))
| 328 | 1 |
def A_ ( snake_case : str ) -> bool:
'''simple docstring'''
return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') )
def A_ ( snake_case : str ) -> bool:
'''simple docstring'''
__UpperCamelCase = credit_card_number
__UpperCamelCase = 0
__UpperCamelCase = len(snake_case ) - 2
for i in range(snake_case , -1 , -2 ):
# double the value of every second digit
__UpperCamelCase = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 10
digit += 1
__UpperCamelCase = cc_number[:i] + str(snake_case ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(snake_case ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 10 == 0
def A_ ( snake_case : str ) -> bool:
'''simple docstring'''
__UpperCamelCase = f"{credit_card_number} is an invalid credit card number because"
if not credit_card_number.isdigit():
print(f"{error_message} it has nonnumerical characters." )
return False
if not 13 <= len(snake_case ) <= 16:
print(f"{error_message} of its length." )
return False
if not validate_initial_digits(snake_case ):
print(f"{error_message} of its first two digits." )
return False
if not luhn_validation(snake_case ):
print(f"{error_message} it fails the Luhn check." )
return False
print(f"{credit_card_number} is a valid credit card number." )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number("4111111111111111")
validate_credit_card_number("32323")
| 328 |
from __future__ import annotations
from collections import deque
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ )-> int:
'''simple docstring'''
__UpperCamelCase = []
self.adlist.append(
{'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} )
for keyword in keywords:
self.add_keyword(SCREAMING_SNAKE_CASE_ )
self.set_fail_transitions()
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int | None:
'''simple docstring'''
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
__UpperCamelCase = 0
for character in keyword:
__UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if next_state is None:
self.adlist.append(
{
'''value''': character,
'''next_states''': [],
'''fail_state''': 0,
'''output''': [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
__UpperCamelCase = len(self.adlist ) - 1
else:
__UpperCamelCase = next_state
self.adlist[current_state]["output"].append(SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> None:
'''simple docstring'''
__UpperCamelCase = deque()
for node in self.adlist[0]["next_states"]:
q.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = 0
while q:
__UpperCamelCase = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.adlist[r]['''fail_state''']
while (
self.find_next_state(SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) is None
and state != 0
):
__UpperCamelCase = self.adlist[state]['''fail_state''']
__UpperCamelCase = self.find_next_state(
SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] )
if self.adlist[child]["fail_state"] is None:
__UpperCamelCase = 0
__UpperCamelCase = (
self.adlist[child]['''output''']
+ self.adlist[self.adlist[child]['''fail_state''']]['''output''']
)
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> dict[str, list[int]]:
'''simple docstring'''
__UpperCamelCase = {} # returns a dict with keywords and list of its occurrences
__UpperCamelCase = 0
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
while (
self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) is None
and current_state != 0
):
__UpperCamelCase = self.adlist[current_state]['''fail_state''']
__UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] )
if next_state is None:
__UpperCamelCase = 0
else:
__UpperCamelCase = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
__UpperCamelCase = []
result[key].append(i - len(SCREAMING_SNAKE_CASE_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 328 | 1 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
lowercase__ : str = logging.get_logger(__name__)
@add_end_docstrings(SCREAMING_SNAKE_CASE_ )
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
requires_backends(self , '''vision''' )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def A__ ( self , SCREAMING_SNAKE_CASE_=None )-> List[Any]:
'''simple docstring'''
__UpperCamelCase = {}
if top_k is not None:
__UpperCamelCase = top_k
return {}, {}, postprocess_params
def __call__( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> List[Any]:
'''simple docstring'''
return super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Tuple:
'''simple docstring'''
__UpperCamelCase = load_image(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors=self.framework )
return model_inputs
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[Any]:
'''simple docstring'''
__UpperCamelCase = self.model(**SCREAMING_SNAKE_CASE_ )
return model_outputs
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=5 )-> int:
'''simple docstring'''
if top_k > self.model.config.num_labels:
__UpperCamelCase = self.model.config.num_labels
if self.framework == "pt":
__UpperCamelCase = model_outputs.logits.softmax(-1 )[0]
__UpperCamelCase , __UpperCamelCase = probs.topk(SCREAMING_SNAKE_CASE_ )
elif self.framework == "tf":
__UpperCamelCase = stable_softmax(model_outputs.logits , axis=-1 )[0]
__UpperCamelCase = tf.math.top_k(SCREAMING_SNAKE_CASE_ , k=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase , __UpperCamelCase = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(F"Unsupported framework: {self.framework}" )
__UpperCamelCase = scores.tolist()
__UpperCamelCase = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
| 328 |
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> Dict:
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_input_mask
__UpperCamelCase = use_token_type_ids
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = type_sequence_label_size
__UpperCamelCase = initializer_range
__UpperCamelCase = num_labels
__UpperCamelCase = num_choices
__UpperCamelCase = scope
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCamelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def A__ ( self )-> str:
'''simple docstring'''
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
__UpperCamelCase = DistilBertModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple:
'''simple docstring'''
__UpperCamelCase = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
__UpperCamelCase = self.num_choices
__UpperCamelCase = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCamelCase = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs
__UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
_snake_case = (
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
_snake_case = (
{
'feature-extraction': DistilBertModel,
'fill-mask': DistilBertForMaskedLM,
'question-answering': DistilBertForQuestionAnswering,
'text-classification': DistilBertForSequenceClassification,
'token-classification': DistilBertForTokenClassification,
'zero-shot': DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
_snake_case = True
_snake_case = True
_snake_case = True
_snake_case = True
def A__ ( self )-> Dict:
'''simple docstring'''
__UpperCamelCase = DistilBertModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 )
def A__ ( self )-> Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> int:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Tuple:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
@slow
def A__ ( self )-> List[str]:
'''simple docstring'''
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@slow
@require_torch_gpu
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
__UpperCamelCase = True
__UpperCamelCase = model_class(config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = torch.jit.trace(
SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) )
__UpperCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ )
loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) )
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A__ ( self )-> Tuple:
'''simple docstring'''
__UpperCamelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' )
__UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
__UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0]
__UpperCamelCase = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = torch.tensor(
[[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
| 328 | 1 |
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
lowercase__ : Optional[int] = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n"
lowercase__ : Union[str, Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n"
lowercase__ : List[str] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
"""simple docstring"""
def A__ ( self )-> MetricInfo:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ),
'''references''': datasets.Sequence(
datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ),
} ) , )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 4 , )-> Dict[str, float]:
'''simple docstring'''
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=SCREAMING_SNAKE_CASE_ , hypotheses=SCREAMING_SNAKE_CASE_ , min_len=SCREAMING_SNAKE_CASE_ , max_len=SCREAMING_SNAKE_CASE_ )
}
| 328 |
import inspect
import logging
import os
import random
import shutil
import tempfile
import unittest
import pytest
import torch
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_cuda
from accelerate.utils import ProjectConfiguration, set_seed
lowercase__ : Optional[Any] = logging.getLogger(__name__)
def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int:
'''simple docstring'''
def get_dataset(snake_case : Optional[int] ):
__UpperCamelCase = torch.randn(batch_size * n_batches , 1 )
return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) )
__UpperCamelCase = get_dataset(snake_case )
__UpperCamelCase = get_dataset(snake_case )
__UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 )
__UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 )
return (train_dataloader, valid_dataloader)
def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any:
'''simple docstring'''
__UpperCamelCase = []
for epoch in range(snake_case ):
# Train quickly
model.train()
for batch in dataloader:
__UpperCamelCase , __UpperCamelCase = batch
__UpperCamelCase = model(snake_case )
__UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case )
accelerator.backward(snake_case )
optimizer.step()
optimizer.zero_grad()
rands.append(random.random() ) # Introduce some randomness
if scheduler is not None:
scheduler.step()
return rands
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
"""simple docstring"""
def __init__( self )-> Tuple:
'''simple docstring'''
super().__init__()
__UpperCamelCase = nn.Parameter(torch.randn(1 ) )
__UpperCamelCase = nn.Parameter(torch.randn(1 ) )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
return x * self.a + self.b
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self )-> Tuple:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__UpperCamelCase , __UpperCamelCase = dummy_dataloaders()
__UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ )
# Train baseline
__UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save initial
accelerator.save_state()
# Save second state
accelerator.save_state()
self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 )
def A__ ( self )-> Optional[int]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__UpperCamelCase , __UpperCamelCase = dummy_dataloaders()
# Train baseline
__UpperCamelCase = Accelerator()
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save initial
__UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' )
accelerator.save_state(SCREAMING_SNAKE_CASE_ )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
__UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
# Train partially
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__UpperCamelCase , __UpperCamelCase = dummy_dataloaders()
__UpperCamelCase = Accelerator()
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
accelerator.load_state(SCREAMING_SNAKE_CASE_ )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save everything
__UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' )
accelerator.save_state(SCREAMING_SNAKE_CASE_ )
# Load everything back in and make sure all states work
accelerator.load_state(SCREAMING_SNAKE_CASE_ )
test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> List[str]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__UpperCamelCase , __UpperCamelCase = dummy_dataloaders()
__UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ )
# Train baseline
__UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save initial
accelerator.save_state()
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
__UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
# Train partially
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__UpperCamelCase , __UpperCamelCase = dummy_dataloaders()
__UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save everything
accelerator.save_state()
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) )
test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Tuple:
'''simple docstring'''
__UpperCamelCase = torch.tensor([1, 2, 3] )
__UpperCamelCase = torch.tensor([2, 3, 4] )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(net.parameters() )
__UpperCamelCase = Accelerator()
with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve:
accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = str(ve.exception )
self.assertTrue('''Item at index 0''' in message )
self.assertTrue('''Item at index 1''' in message )
self.assertFalse('''Item at index 2''' in message )
self.assertFalse('''Item at index 3''' in message )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 )
__UpperCamelCase , __UpperCamelCase = dummy_dataloaders()
__UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ )
# Train baseline
__UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save initial
accelerator.save_state()
__UpperCamelCase = scheduler.state_dict()
train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() )
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() )
def A__ ( self )-> List[str]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 )
# Train baseline
__UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ )
# Save 3 states:
for _ in range(11 ):
accelerator.save_state()
self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) )
self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) )
@require_cuda
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )]
execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() )
if __name__ == "__main__":
lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing"
lowercase__ : List[Any] = DummyModel()
lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3)
lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99)
lowercase__ , lowercase__ : str = dummy_dataloaders()
lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True)
# Train baseline
lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no")
if accelerator.process_index == 0:
if os.path.exists(savedir):
shutil.rmtree(savedir)
os.makedirs(savedir)
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader, scheduler
)
lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer)
train(3, model, train_dataloader, optimizer, accelerator, scheduler)
# Check that the intial optimizer is loaded on the GPU
for group in optimizer.param_groups:
lowercase__ : int = group["params"][0].device
break
assert param_device.type == accelerator.device.type
lowercase__ : Union[str, Any] = model.cpu()
accelerator.wait_for_everyone()
accelerator.save_state()
accelerator.wait_for_everyone()
# Check CPU state
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu")
for group in optimizer.param_groups:
lowercase__ : Any = group["params"][0].device
break
assert (
param_device.type == torch.device("cpu").type
), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}"
# Check device state
model.to(accelerator.device)
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device")
for group in optimizer.param_groups:
lowercase__ : List[Any] = group["params"][0].device
break
assert (
param_device.type == accelerator.device.type
), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}"
# Check error
with pytest.raises(TypeError, match="Unsupported optimizer map location passed"):
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid")
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
shutil.rmtree(savedir)
accelerator.wait_for_everyone()
| 328 | 1 |
from PIL import Image
def A_ ( snake_case : Image ) -> Image:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = image.size
__UpperCamelCase = 0
__UpperCamelCase = image.load()
for i in range(snake_case ):
for j in range(snake_case ):
__UpperCamelCase = pixels[j, i]
mean += pixel
mean //= width * height
for j in range(snake_case ):
for i in range(snake_case ):
__UpperCamelCase = 255 if pixels[i, j] > mean else 0
return image
if __name__ == "__main__":
lowercase__ : Optional[Any] = mean_threshold(Image.open("path_to_image").convert("L"))
image.save("output_image_path")
| 328 |
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]:
'''simple docstring'''
super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = Sql(
cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
self.builder.download_and_prepare(
download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , )
# Build dataset for splits
__UpperCamelCase = self.builder.as_dataset(
split='''train''' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory )
return dataset
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> List[str]:
'''simple docstring'''
if num_proc is not None and num_proc <= 0:
raise ValueError(F"num_proc {num_proc} must be an integer > 0." )
__UpperCamelCase = dataset
__UpperCamelCase = name
__UpperCamelCase = con
__UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
__UpperCamelCase = num_proc
__UpperCamelCase = to_sql_kwargs
def A__ ( self )-> int:
'''simple docstring'''
__UpperCamelCase = self.to_sql_kwargs.pop('''sql''' , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.to_sql_kwargs.pop('''con''' , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.to_sql_kwargs.pop('''index''' , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs )
return written
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args
__UpperCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs
__UpperCamelCase = query_table(
table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , )
__UpperCamelCase = batch.to_pandas()
__UpperCamelCase = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
return num_rows or len(SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int:
'''simple docstring'''
__UpperCamelCase = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
__UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += num_rows
return written
| 328 | 1 |
import argparse
import torch
from transformers import YosoConfig, YosoForMaskedLM
def A_ ( snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
if "model" in orig_key:
__UpperCamelCase = orig_key.replace('''model.''' , '''''' )
if "norm1" in orig_key:
__UpperCamelCase = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' )
if "norm2" in orig_key:
__UpperCamelCase = orig_key.replace('''norm2''' , '''output.LayerNorm''' )
if "norm" in orig_key:
__UpperCamelCase = orig_key.replace('''norm''' , '''LayerNorm''' )
if "transformer" in orig_key:
__UpperCamelCase = orig_key.split('''.''' )[0].split('''_''' )[-1]
__UpperCamelCase = orig_key.replace(f"transformer_{layer_num}" , f"encoder.layer.{layer_num}" )
if "mha.attn" in orig_key:
__UpperCamelCase = orig_key.replace('''mha.attn''' , '''attention.self''' )
if "mha" in orig_key:
__UpperCamelCase = orig_key.replace('''mha''' , '''attention''' )
if "W_q" in orig_key:
__UpperCamelCase = orig_key.replace('''W_q''' , '''self.query''' )
if "W_k" in orig_key:
__UpperCamelCase = orig_key.replace('''W_k''' , '''self.key''' )
if "W_v" in orig_key:
__UpperCamelCase = orig_key.replace('''W_v''' , '''self.value''' )
if "ff1" in orig_key:
__UpperCamelCase = orig_key.replace('''ff1''' , '''intermediate.dense''' )
if "ff2" in orig_key:
__UpperCamelCase = orig_key.replace('''ff2''' , '''output.dense''' )
if "ff" in orig_key:
__UpperCamelCase = orig_key.replace('''ff''' , '''output.dense''' )
if "mlm_class" in orig_key:
__UpperCamelCase = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' )
if "mlm" in orig_key:
__UpperCamelCase = orig_key.replace('''mlm''' , '''cls.predictions.transform''' )
if "cls" not in orig_key:
__UpperCamelCase = '''yoso.''' + orig_key
return orig_key
def A_ ( snake_case : Union[str, Any] , snake_case : List[str] ) -> Any:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
__UpperCamelCase = orig_state_dict.pop(snake_case )
if ("pooler" in key) or ("sen_class" in key):
continue
else:
__UpperCamelCase = val
__UpperCamelCase = orig_state_dict['''cls.predictions.decoder.bias''']
__UpperCamelCase = torch.arange(snake_case ).expand((1, -1) ) + 2
return orig_state_dict
def A_ ( snake_case : Dict , snake_case : Optional[int] , snake_case : Any ) -> int:
'''simple docstring'''
__UpperCamelCase = torch.load(snake_case , map_location='''cpu''' )['''model_state_dict''']
__UpperCamelCase = YosoConfig.from_json_file(snake_case )
__UpperCamelCase = YosoForMaskedLM(snake_case )
__UpperCamelCase = convert_checkpoint_helper(config.max_position_embeddings , snake_case )
print(model.load_state_dict(snake_case ) )
model.eval()
model.save_pretrained(snake_case )
print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" )
if __name__ == "__main__":
lowercase__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The json file for YOSO model config.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowercase__ : List[str] = parser.parse_args()
convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
| 328 |
def A_ ( snake_case : str ) -> int:
'''simple docstring'''
assert column_title.isupper()
__UpperCamelCase = 0
__UpperCamelCase = len(snake_case ) - 1
__UpperCamelCase = 0
while index >= 0:
__UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , snake_case )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 328 | 1 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE_=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , )-> int:
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = image_size
__UpperCamelCase = num_channels
__UpperCamelCase = embeddings_size
__UpperCamelCase = hidden_sizes
__UpperCamelCase = depths
__UpperCamelCase = is_training
__UpperCamelCase = use_labels
__UpperCamelCase = hidden_act
__UpperCamelCase = num_labels
__UpperCamelCase = scope
__UpperCamelCase = len(SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> str:
'''simple docstring'''
__UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels )
__UpperCamelCase = self.get_config()
return config, pixel_values, labels
def A__ ( self )-> str:
'''simple docstring'''
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = TFResNetModel(config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = TFResNetForImageClassification(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs
__UpperCamelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
_snake_case = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
_snake_case = (
{'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification}
if is_tf_available()
else {}
)
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
def A__ ( self )-> int:
'''simple docstring'''
__UpperCamelCase = TFResNetModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A__ ( self )-> Any:
'''simple docstring'''
return
@unittest.skip(reason='''ResNet does not use inputs_embeds''' )
def A__ ( self )-> int:
'''simple docstring'''
pass
@unittest.skip(reason='''ResNet does not support input and output embeddings''' )
def A__ ( self )-> Optional[int]:
'''simple docstring'''
pass
def A__ ( self )-> int:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCamelCase = [*signature.parameters.keys()]
__UpperCamelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> str:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Any:
'''simple docstring'''
def check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__UpperCamelCase = self.model_tester.num_stages
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = ['''basic''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
__UpperCamelCase = layer_type
__UpperCamelCase = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCamelCase = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> List[Any]:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
@slow
def A__ ( self )-> Tuple:
'''simple docstring'''
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = TFResNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
def A_ ( ) -> Optional[int]:
'''simple docstring'''
__UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def A__ ( self )-> List[Any]:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
__UpperCamelCase = self.default_image_processor
__UpperCamelCase = prepare_img()
__UpperCamelCase = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''tf''' )
# forward pass
__UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ )
# verify the logits
__UpperCamelCase = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
| 328 |
def A_ ( snake_case : int ) -> None:
'''simple docstring'''
__UpperCamelCase = generate_pascal_triangle(snake_case )
for row_idx in range(snake_case ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=''' ''' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=''' ''' )
else:
print(triangle[row_idx][col_idx] , end='''''' )
print()
def A_ ( snake_case : int ) -> list[list[int]]:
'''simple docstring'''
if not isinstance(snake_case , snake_case ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
__UpperCamelCase = []
for current_row_idx in range(snake_case ):
__UpperCamelCase = populate_current_row(snake_case , snake_case )
triangle.append(snake_case )
return triangle
def A_ ( snake_case : list[list[int]] , snake_case : int ) -> list[int]:
'''simple docstring'''
__UpperCamelCase = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
__UpperCamelCase , __UpperCamelCase = 1, 1
for current_col_idx in range(1 , snake_case ):
calculate_current_element(
snake_case , snake_case , snake_case , snake_case )
return current_row
def A_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , ) -> None:
'''simple docstring'''
__UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1]
__UpperCamelCase = triangle[current_row_idx - 1][current_col_idx]
__UpperCamelCase = above_to_left_elt + above_to_right_elt
def A_ ( snake_case : int ) -> list[list[int]]:
'''simple docstring'''
if not isinstance(snake_case , snake_case ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
__UpperCamelCase = [[1]]
for row_index in range(1 , snake_case ):
__UpperCamelCase = [0] + result[-1] + [0]
__UpperCamelCase = row_index + 1
# Calculate the number of distinct elements in a row
__UpperCamelCase = sum(divmod(snake_case , 2 ) )
__UpperCamelCase = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
__UpperCamelCase = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
__UpperCamelCase = row_first_half + row_second_half
result.append(snake_case )
return result
def A_ ( ) -> None:
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None:
__UpperCamelCase = f"{func.__name__}({value})"
__UpperCamelCase = timeit(f"__main__.{call}" , setup='''import __main__''' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f"{call:38} -- {timing:.4f} seconds" )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(snake_case , snake_case )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 328 | 1 |
def A_ ( snake_case : int ) -> None:
'''simple docstring'''
__UpperCamelCase = generate_pascal_triangle(snake_case )
for row_idx in range(snake_case ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=''' ''' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=''' ''' )
else:
print(triangle[row_idx][col_idx] , end='''''' )
print()
def A_ ( snake_case : int ) -> list[list[int]]:
'''simple docstring'''
if not isinstance(snake_case , snake_case ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
__UpperCamelCase = []
for current_row_idx in range(snake_case ):
__UpperCamelCase = populate_current_row(snake_case , snake_case )
triangle.append(snake_case )
return triangle
def A_ ( snake_case : list[list[int]] , snake_case : int ) -> list[int]:
'''simple docstring'''
__UpperCamelCase = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
__UpperCamelCase , __UpperCamelCase = 1, 1
for current_col_idx in range(1 , snake_case ):
calculate_current_element(
snake_case , snake_case , snake_case , snake_case )
return current_row
def A_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , ) -> None:
'''simple docstring'''
__UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1]
__UpperCamelCase = triangle[current_row_idx - 1][current_col_idx]
__UpperCamelCase = above_to_left_elt + above_to_right_elt
def A_ ( snake_case : int ) -> list[list[int]]:
'''simple docstring'''
if not isinstance(snake_case , snake_case ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
__UpperCamelCase = [[1]]
for row_index in range(1 , snake_case ):
__UpperCamelCase = [0] + result[-1] + [0]
__UpperCamelCase = row_index + 1
# Calculate the number of distinct elements in a row
__UpperCamelCase = sum(divmod(snake_case , 2 ) )
__UpperCamelCase = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
__UpperCamelCase = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
__UpperCamelCase = row_first_half + row_second_half
result.append(snake_case )
return result
def A_ ( ) -> None:
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None:
__UpperCamelCase = f"{func.__name__}({value})"
__UpperCamelCase = timeit(f"__main__.{call}" , setup='''import __main__''' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f"{call:38} -- {timing:.4f} seconds" )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(snake_case , snake_case )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 328 |
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
lowercase__ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--txt2img_unclip",
default="kakaobrain/karlo-v1-alpha",
type=str,
required=False,
help="The pretrained txt2img unclip.",
)
lowercase__ : Any = parser.parse_args()
lowercase__ : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
lowercase__ : List[str] = CLIPImageProcessor()
lowercase__ : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
lowercase__ : Optional[Any] = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 328 | 1 |
import os
import sys
import unittest
lowercase__ : int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
lowercase__ : Optional[int] = os.path.join(git_repo_path, "src", "diffusers")
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self )-> str:
'''simple docstring'''
__UpperCamelCase = find_backend(''' if not is_torch_available():''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''torch''' )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
__UpperCamelCase = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''torch_and_transformers''' )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
__UpperCamelCase = find_backend(
''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''torch_and_transformers_and_onnx''' )
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('''torch''' , SCREAMING_SNAKE_CASE_ )
self.assertIn('''torch_and_transformers''' , SCREAMING_SNAKE_CASE_ )
self.assertIn('''flax_and_transformers''' , SCREAMING_SNAKE_CASE_ )
self.assertIn('''torch_and_transformers_and_onnx''' , SCREAMING_SNAKE_CASE_ )
# Likewise, we can't assert on the exact content of a key
self.assertIn('''UNet2DModel''' , objects['''torch'''] )
self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] )
self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] )
self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] )
self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] )
self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] )
def A__ ( self )-> str:
'''simple docstring'''
__UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''\nCONSTANT = None\n''' )
__UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''' )
self.assertEqual(
SCREAMING_SNAKE_CASE_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' )
__UpperCamelCase = '''
class FakeClass(metaclass=DummyObject):
_backends = \'torch\'
def __init__(self, *args, **kwargs):
requires_backends(self, \'torch\')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, \'torch\')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, \'torch\')
'''
__UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, ["torch"])
class FakeClass(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
'''
__UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} )
self.assertEqual(dummy_files['''torch'''] , SCREAMING_SNAKE_CASE_ )
| 328 |
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
lowercase__ : Union[str, Any] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n"
lowercase__ : Optional[Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n"
lowercase__ : Any = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n"
lowercase__ : Optional[int] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n"
lowercase__ : Optional[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE."
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
"""simple docstring"""
def A__ ( self )-> Tuple:
'''simple docstring'''
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' ) ),
'''references''': datasets.Value('''string''' ),
} ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[1, 10, 100] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3.0 )-> Union[str, Any]:
'''simple docstring'''
if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError('''This metric is currently not supported on Windows.''' )
with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE_ ) as executor:
__UpperCamelCase = []
__UpperCamelCase = Counter()
__UpperCamelCase = 0
__UpperCamelCase = defaultdict(SCREAMING_SNAKE_CASE_ )
for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ):
for candidate in candidates:
__UpperCamelCase = candidate + '''\n''' + test_case
__UpperCamelCase = (test_program, timeout, task_id, completion_id[task_id])
__UpperCamelCase = executor.submit(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ )
futures.append(SCREAMING_SNAKE_CASE_ )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = future.result()
results[result["task_id"]].append((result['''completion_id'''], result) )
__UpperCamelCase , __UpperCamelCase = [], []
for result in results.values():
result.sort()
__UpperCamelCase = [r[1]['''passed'''] for r in result]
total.append(len(SCREAMING_SNAKE_CASE_ ) )
correct.append(sum(SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = k
__UpperCamelCase = {F"pass@{k}": estimate_pass_at_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def A_ ( snake_case : Tuple , snake_case : Union[str, Any] , snake_case : List[Any] ) -> Optional[Any]:
'''simple docstring'''
def estimator(snake_case : int , snake_case : int , snake_case : int ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(snake_case , snake_case ):
__UpperCamelCase = itertools.repeat(snake_case , len(snake_case ) )
else:
assert len(snake_case ) == len(snake_case )
__UpperCamelCase = iter(snake_case )
return np.array([estimator(int(snake_case ) , int(snake_case ) , snake_case ) for n, c in zip(snake_case , snake_case )] )
| 328 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : Tuple = {
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = 'convnextv2'
def __init__( self , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=224 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , )-> Dict:
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = num_channels
__UpperCamelCase = patch_size
__UpperCamelCase = num_stages
__UpperCamelCase = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes
__UpperCamelCase = [3, 3, 9, 3] if depths is None else depths
__UpperCamelCase = hidden_act
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = drop_path_rate
__UpperCamelCase = image_size
__UpperCamelCase = ['''stem'''] + [F"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )]
__UpperCamelCase , __UpperCamelCase = get_aligned_output_features_output_indices(
out_features=SCREAMING_SNAKE_CASE_ , out_indices=SCREAMING_SNAKE_CASE_ , stage_names=self.stage_names )
| 328 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__)
lowercase__ : Optional[Any] = ["names", "prefix"]
lowercase__ : List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"]
lowercase__ : Optional[Any] = ["encoding_errors", "on_bad_lines"]
lowercase__ : List[str] = ["date_format"]
@dataclass
class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ):
"""simple docstring"""
_snake_case = ","
_snake_case = None
_snake_case = "infer"
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = True
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = False
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = True
_snake_case = True
_snake_case = False
_snake_case = True
_snake_case = None
_snake_case = "."
_snake_case = None
_snake_case = '"'
_snake_case = 0
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = True
_snake_case = True
_snake_case = 0
_snake_case = True
_snake_case = False
_snake_case = None
_snake_case = 10000
_snake_case = None
_snake_case = "strict"
_snake_case = "error"
_snake_case = None
def A__ ( self )-> Any:
'''simple docstring'''
if self.delimiter is not None:
__UpperCamelCase = self.delimiter
if self.column_names is not None:
__UpperCamelCase = self.column_names
@property
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = {
'''sep''': self.sep,
'''header''': self.header,
'''names''': self.names,
'''index_col''': self.index_col,
'''usecols''': self.usecols,
'''prefix''': self.prefix,
'''mangle_dupe_cols''': self.mangle_dupe_cols,
'''engine''': self.engine,
'''converters''': self.converters,
'''true_values''': self.true_values,
'''false_values''': self.false_values,
'''skipinitialspace''': self.skipinitialspace,
'''skiprows''': self.skiprows,
'''nrows''': self.nrows,
'''na_values''': self.na_values,
'''keep_default_na''': self.keep_default_na,
'''na_filter''': self.na_filter,
'''verbose''': self.verbose,
'''skip_blank_lines''': self.skip_blank_lines,
'''thousands''': self.thousands,
'''decimal''': self.decimal,
'''lineterminator''': self.lineterminator,
'''quotechar''': self.quotechar,
'''quoting''': self.quoting,
'''escapechar''': self.escapechar,
'''comment''': self.comment,
'''encoding''': self.encoding,
'''dialect''': self.dialect,
'''error_bad_lines''': self.error_bad_lines,
'''warn_bad_lines''': self.warn_bad_lines,
'''skipfooter''': self.skipfooter,
'''doublequote''': self.doublequote,
'''memory_map''': self.memory_map,
'''float_precision''': self.float_precision,
'''chunksize''': self.chunksize,
'''encoding_errors''': self.encoding_errors,
'''on_bad_lines''': self.on_bad_lines,
'''date_format''': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE_ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
_snake_case = CsvConfig
def A__ ( self )-> Any:
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" )
__UpperCamelCase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ):
__UpperCamelCase = data_files
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = [files]
__UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
__UpperCamelCase = []
for split_name, files in data_files.items():
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = [files]
__UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files]
splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) )
return splits
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.Table:
'''simple docstring'''
if self.config.features is not None:
__UpperCamelCase = self.config.features.arrow_schema
if all(not require_storage_cast(SCREAMING_SNAKE_CASE_ ) for feature in self.config.features.values() ):
# cheaper cast
__UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE_ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
__UpperCamelCase = table_cast(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return pa_table
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
__UpperCamelCase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
__UpperCamelCase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE_ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ):
__UpperCamelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , iterator=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = pa.Table.from_pandas(SCREAMING_SNAKE_CASE_ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ )
except ValueError as e:
logger.error(F"Failed to read file '{file}' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}" )
raise
| 328 | 1 |
import string
def A_ ( snake_case : str ) -> None:
'''simple docstring'''
for key in range(len(string.ascii_uppercase ) ):
__UpperCamelCase = ''''''
for symbol in message:
if symbol in string.ascii_uppercase:
__UpperCamelCase = string.ascii_uppercase.find(snake_case )
__UpperCamelCase = num - key
if num < 0:
__UpperCamelCase = num + len(string.ascii_uppercase )
__UpperCamelCase = translated + string.ascii_uppercase[num]
else:
__UpperCamelCase = translated + symbol
print(f"Decryption using Key #{key}: {translated}" )
def A_ ( ) -> None:
'''simple docstring'''
__UpperCamelCase = input('''Encrypted message: ''' )
__UpperCamelCase = message.upper()
decrypt(snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 328 |
from __future__ import annotations
import math
def A_ ( snake_case : int ) -> bool:
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)]
def A_ ( snake_case : int ) -> list[int]:
'''simple docstring'''
if not isinstance(snake_case , snake_case ):
raise ValueError('''n must be an integer''' )
if n <= 0:
raise ValueError('''n must be >= 0''' )
__UpperCamelCase = []
for num in range(len(snake_case ) ):
__UpperCamelCase = 0
while 2 * i * i <= odd_composites[num]:
__UpperCamelCase = odd_composites[num] - 2 * i * i
if is_prime(snake_case ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(snake_case ) == n:
return list_nums
return []
def A_ ( ) -> int:
'''simple docstring'''
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F"{solution() = }")
| 328 | 1 |
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
_snake_case = LEDTokenizer
_snake_case = LEDTokenizerFast
_snake_case = True
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
super().setUp()
__UpperCamelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
__UpperCamelCase = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
__UpperCamelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__UpperCamelCase = {'''unk_token''': '''<unk>'''}
__UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) )
def A__ ( self , **SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , **SCREAMING_SNAKE_CASE_ )-> List[str]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
return "lower newer", "lower newer"
@cached_property
def A__ ( self )-> Tuple:
'''simple docstring'''
return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' )
@cached_property
def A__ ( self )-> List[Any]:
'''simple docstring'''
return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' )
@require_torch
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
__UpperCamelCase = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCamelCase = tokenizer(SCREAMING_SNAKE_CASE_ , max_length=len(SCREAMING_SNAKE_CASE_ ) , padding=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
__UpperCamelCase = batch.input_ids.tolist()[0]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@require_torch
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCamelCase = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' )
self.assertIn('''input_ids''' , SCREAMING_SNAKE_CASE_ )
self.assertIn('''attention_mask''' , SCREAMING_SNAKE_CASE_ )
self.assertNotIn('''labels''' , SCREAMING_SNAKE_CASE_ )
self.assertNotIn('''decoder_attention_mask''' , SCREAMING_SNAKE_CASE_ )
@require_torch
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase = [
'''Summary of the text.''',
'''Another summary.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCamelCase = tokenizer(text_target=SCREAMING_SNAKE_CASE_ , max_length=32 , padding='''max_length''' , return_tensors='''pt''' )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
@require_torch
def A__ ( self )-> Dict:
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCamelCase = tokenizer(
['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(batch.input_ids.shape , (2, 5122) )
@require_torch
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase = ['''A long paragraph for summarization.''']
__UpperCamelCase = [
'''Summary of the text.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCamelCase = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' )
__UpperCamelCase = tokenizer(text_target=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' )
__UpperCamelCase = inputs['''input_ids''']
__UpperCamelCase = targets['''input_ids''']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def A__ ( self )-> Dict:
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
__UpperCamelCase = ['''Summary of the text.''', '''Another summary.''']
__UpperCamelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
__UpperCamelCase = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = [[0] * len(SCREAMING_SNAKE_CASE_ ) for x in encoded_output['''input_ids''']]
__UpperCamelCase = tokenizer.pad(SCREAMING_SNAKE_CASE_ )
self.assertSequenceEqual(outputs['''global_attention_mask'''] , SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Any:
'''simple docstring'''
pass
def A__ ( self )-> Tuple:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ):
__UpperCamelCase = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = '''A, <mask> AllenNLP sentence.'''
__UpperCamelCase = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ )
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
__UpperCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
__UpperCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(
SCREAMING_SNAKE_CASE_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
SCREAMING_SNAKE_CASE_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
| 328 |
from __future__ import annotations
from collections.abc import Callable
def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float:
'''simple docstring'''
__UpperCamelCase = x_start
__UpperCamelCase = fnc(snake_case )
__UpperCamelCase = 0.0
for _ in range(snake_case ):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
__UpperCamelCase = (x_end - x_start) / steps + xa
__UpperCamelCase = fnc(snake_case )
area += abs(fxa + fxa ) * (xa - xa) / 2
# Increment step
__UpperCamelCase = xa
__UpperCamelCase = fxa
return area
if __name__ == "__main__":
def A_ ( snake_case : Tuple ) -> Optional[Any]:
'''simple docstring'''
return x**3 + x**2
print("f(x) = x^3 + x^2")
print("The area between the curve, x = -5, x = 5 and the x axis is:")
lowercase__ : List[str] = 1_0
while i <= 1_0_0_0_0_0:
print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}")
i *= 1_0
| 328 | 1 |
from datetime import datetime
import requests
def A_ ( snake_case : str ) -> bytes:
'''simple docstring'''
__UpperCamelCase = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url='''
__UpperCamelCase = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src''']
return requests.get(snake_case ).content
if __name__ == "__main__":
lowercase__ : List[Any] = input("Enter Video/IGTV url: ").strip()
lowercase__ : List[Any] = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4"
with open(file_name, "wb") as fp:
fp.write(download_video(url))
print(F"Done. Video saved to disk as {file_name}.")
| 328 |
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : int = logging.get_logger(__name__)
lowercase__ : List[str] = ["model.decoder.embed_positions.weights"]
def A_ ( snake_case : Any ) -> List[Any]:
'''simple docstring'''
if "emb" in name:
__UpperCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' )
if "transformer" in name:
__UpperCamelCase = name.replace('''transformer''' , '''model.decoder''' )
if "cross_attention" in name:
__UpperCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' )
if "linear1" in name:
__UpperCamelCase = name.replace('''linear1''' , '''fc1''' )
if "linear2" in name:
__UpperCamelCase = name.replace('''linear2''' , '''fc2''' )
if "norm1" in name:
__UpperCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' )
if "norm_cross" in name:
__UpperCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' )
if "norm2" in name:
__UpperCamelCase = name.replace('''norm2''' , '''final_layer_norm''' )
if "out_norm" in name:
__UpperCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' )
if "linears" in name:
__UpperCamelCase = name.replace('''linears''' , '''lm_heads''' )
if "condition_provider.conditioners.description.output_proj" in name:
__UpperCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' )
return name
def A_ ( snake_case : OrderedDict , snake_case : int ) -> Tuple[Dict, Dict]:
'''simple docstring'''
__UpperCamelCase = list(state_dict.keys() )
__UpperCamelCase = {}
for key in keys:
__UpperCamelCase = state_dict.pop(snake_case )
__UpperCamelCase = rename_keys(snake_case )
if "in_proj_weight" in key:
# split fused qkv proj
__UpperCamelCase = val[:hidden_size, :]
__UpperCamelCase = val[hidden_size : 2 * hidden_size, :]
__UpperCamelCase = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
__UpperCamelCase = val
else:
__UpperCamelCase = val
return state_dict, enc_dec_proj_state_dict
def A_ ( snake_case : str ) -> MusicgenDecoderConfig:
'''simple docstring'''
if checkpoint == "small":
# default config values
__UpperCamelCase = 1024
__UpperCamelCase = 24
__UpperCamelCase = 16
elif checkpoint == "medium":
__UpperCamelCase = 1536
__UpperCamelCase = 48
__UpperCamelCase = 24
elif checkpoint == "large":
__UpperCamelCase = 2048
__UpperCamelCase = 48
__UpperCamelCase = 32
else:
raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." )
__UpperCamelCase = MusicgenDecoderConfig(
hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , )
return config
@torch.no_grad()
def A_ ( snake_case : Any , snake_case : str=None , snake_case : Any=None , snake_case : Union[str, Any]="cpu" ) -> List[Any]:
'''simple docstring'''
__UpperCamelCase = MusicGen.get_pretrained(snake_case , device=snake_case )
__UpperCamelCase = decoder_config_from_checkpoint(snake_case )
__UpperCamelCase = fairseq_model.lm.state_dict()
__UpperCamelCase , __UpperCamelCase = rename_state_dict(
snake_case , hidden_size=decoder_config.hidden_size )
__UpperCamelCase = TaEncoderModel.from_pretrained('''t5-base''' )
__UpperCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' )
__UpperCamelCase = MusicgenForCausalLM(snake_case ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
__UpperCamelCase , __UpperCamelCase = decoder.load_state_dict(snake_case , strict=snake_case )
for key in missing_keys.copy():
if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(snake_case )
if len(snake_case ) > 0:
raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" )
if len(snake_case ) > 0:
raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" )
# init the composite model
__UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(snake_case )
# check we can do a forward pass
__UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
__UpperCamelCase = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
__UpperCamelCase = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits
if logits.shape != (8, 1, 2048):
raise ValueError('''Incorrect shape for logits''' )
# now construct the processor
__UpperCamelCase = AutoTokenizer.from_pretrained('''t5-base''' )
__UpperCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' )
__UpperCamelCase = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case )
# set the appropriate bos/pad token ids
__UpperCamelCase = 2048
__UpperCamelCase = 2048
# set other default generation config params
__UpperCamelCase = int(30 * audio_encoder.config.frame_rate )
__UpperCamelCase = True
__UpperCamelCase = 3.0
if pytorch_dump_folder is not None:
Path(snake_case ).mkdir(exist_ok=snake_case )
logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" )
model.save_pretrained(snake_case )
processor.save_pretrained(snake_case )
if repo_id:
logger.info(f"Pushing model {checkpoint} to {repo_id}" )
model.push_to_hub(snake_case )
processor.push_to_hub(snake_case )
if __name__ == "__main__":
lowercase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
lowercase__ : Tuple = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 328 | 1 |
import importlib
import math
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Tuple, Union
import flax
import jax.numpy as jnp
from ..utils import BaseOutput
lowercase__ : str = "scheduler_config.json"
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = 1
_snake_case = 2
_snake_case = 3
_snake_case = 4
_snake_case = 5
@dataclass
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = 42
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
_snake_case = SCHEDULER_CONFIG_NAME
_snake_case = ['dtype']
_snake_case = []
_snake_case = True
@classmethod
def A__ ( cls , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , )-> str:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = cls.load_config(
pretrained_model_name_or_path=SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ , return_unused_kwargs=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
__UpperCamelCase , __UpperCamelCase = cls.from_config(SCREAMING_SNAKE_CASE_ , return_unused_kwargs=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if hasattr(SCREAMING_SNAKE_CASE_ , '''create_state''' ) and getattr(SCREAMING_SNAKE_CASE_ , '''has_state''' , SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = scheduler.create_state()
if return_unused_kwargs:
return scheduler, state, unused_kwargs
return scheduler, state
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ )-> Tuple:
'''simple docstring'''
self.save_config(save_directory=SCREAMING_SNAKE_CASE_ , push_to_hub=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
@property
def A__ ( self )-> Dict:
'''simple docstring'''
return self._get_compatibles()
@classmethod
def A__ ( cls )-> str:
'''simple docstring'''
__UpperCamelCase = list(set([cls.__name__] + cls._compatibles ) )
__UpperCamelCase = importlib.import_module(__name__.split('''.''' )[0] )
__UpperCamelCase = [
getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for c in compatible_classes_str if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
]
return compatible_classes
def A_ ( snake_case : jnp.ndarray , snake_case : Tuple[int] ) -> jnp.ndarray:
'''simple docstring'''
assert len(snake_case ) >= x.ndim
return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(snake_case ) - x.ndim) ) , snake_case )
def A_ ( snake_case : int , snake_case : Optional[Any]=0.999 , snake_case : Dict=jnp.floataa ) -> jnp.ndarray:
'''simple docstring'''
def alpha_bar(snake_case : Optional[Any] ):
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2
__UpperCamelCase = []
for i in range(snake_case ):
__UpperCamelCase = i / num_diffusion_timesteps
__UpperCamelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(snake_case ) / alpha_bar(snake_case ) , snake_case ) )
return jnp.array(snake_case , dtype=snake_case )
@flax.struct.dataclass
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
_snake_case = 42
_snake_case = 42
_snake_case = 42
@classmethod
def A__ ( cls , SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = scheduler.config
if config.trained_betas is not None:
__UpperCamelCase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype )
elif config.beta_schedule == "linear":
__UpperCamelCase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype )
elif config.beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__UpperCamelCase = (
jnp.linspace(
config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype )
** 2
)
elif config.beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__UpperCamelCase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype )
else:
raise NotImplementedError(
F"beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}" )
__UpperCamelCase = 1.0 - betas
__UpperCamelCase = jnp.cumprod(SCREAMING_SNAKE_CASE_ , axis=0 )
return cls(
alphas=SCREAMING_SNAKE_CASE_ , betas=SCREAMING_SNAKE_CASE_ , alphas_cumprod=SCREAMING_SNAKE_CASE_ , )
def A_ ( snake_case : CommonSchedulerState , snake_case : jnp.ndarray , snake_case : jnp.ndarray , snake_case : jnp.ndarray ) -> Optional[int]:
'''simple docstring'''
__UpperCamelCase = state.alphas_cumprod
__UpperCamelCase = alphas_cumprod[timesteps] ** 0.5
__UpperCamelCase = sqrt_alpha_prod.flatten()
__UpperCamelCase = broadcast_to_shape_from_left(snake_case , original_samples.shape )
__UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5
__UpperCamelCase = sqrt_one_minus_alpha_prod.flatten()
__UpperCamelCase = broadcast_to_shape_from_left(snake_case , original_samples.shape )
return sqrt_alpha_prod, sqrt_one_minus_alpha_prod
def A_ ( snake_case : CommonSchedulerState , snake_case : jnp.ndarray , snake_case : jnp.ndarray , snake_case : jnp.ndarray ) -> str:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = get_sqrt_alpha_prod(snake_case , snake_case , snake_case , snake_case )
__UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def A_ ( snake_case : CommonSchedulerState , snake_case : jnp.ndarray , snake_case : jnp.ndarray , snake_case : jnp.ndarray ) -> List[Any]:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = get_sqrt_alpha_prod(snake_case , snake_case , snake_case , snake_case )
__UpperCamelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
| 328 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing the experiment tracking capability,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowercase__ : List[str] = 1_6
lowercase__ : str = 3_2
def A_ ( snake_case : Accelerator , snake_case : int = 16 ) -> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' )
__UpperCamelCase = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(snake_case : Union[str, Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
__UpperCamelCase = datasets.map(
snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__UpperCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(snake_case : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
__UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
__UpperCamelCase = 16
elif accelerator.mixed_precision != "no":
__UpperCamelCase = 8
else:
__UpperCamelCase = None
return tokenizer.pad(
snake_case , padding='''longest''' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='''pt''' , )
# Instantiate dataloaders.
__UpperCamelCase = DataLoader(
tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case )
__UpperCamelCase = DataLoader(
tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowercase__ : Union[str, Any] = mocked_dataloaders # noqa: F811
def A_ ( snake_case : List[str] , snake_case : List[Any] ) -> Tuple:
'''simple docstring'''
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case ) == "1":
__UpperCamelCase = 2
# Initialize Accelerator
# New Code #
# We pass in "all" to `log_with` to grab all available trackers in the environment
# Note: If using a custom `Tracker` class, should be passed in here such as:
# >>> log_with = ["all", MyCustomTrackerClassInstance()]
if args.with_tracking:
__UpperCamelCase = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir )
else:
__UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__UpperCamelCase = config['''lr''']
__UpperCamelCase = int(config['''num_epochs'''] )
__UpperCamelCase = int(config['''seed'''] )
__UpperCamelCase = int(config['''batch_size'''] )
set_seed(snake_case )
__UpperCamelCase , __UpperCamelCase = get_dataloaders(snake_case , snake_case )
__UpperCamelCase = evaluate.load('''glue''' , '''mrpc''' )
# If the batch size is too big we use gradient accumulation
__UpperCamelCase = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
__UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE
__UpperCamelCase = MAX_GPU_BATCH_SIZE
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__UpperCamelCase = model.to(accelerator.device )
# Instantiate optimizer
__UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case )
# Instantiate scheduler
__UpperCamelCase = get_linear_schedule_with_warmup(
optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
snake_case , snake_case , snake_case , snake_case , snake_case )
# New Code #
# We need to initialize the trackers we use. Overall configurations can also be stored
if args.with_tracking:
__UpperCamelCase = os.path.split(snake_case )[-1].split('''.''' )[0]
accelerator.init_trackers(snake_case , snake_case )
# Now we train the model
for epoch in range(snake_case ):
model.train()
# New Code #
# For our tracking example, we will log the total loss of each epoch
if args.with_tracking:
__UpperCamelCase = 0
for step, batch in enumerate(snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
__UpperCamelCase = model(**snake_case )
__UpperCamelCase = outputs.loss
# New Code #
if args.with_tracking:
total_loss += loss.detach().float()
__UpperCamelCase = loss / gradient_accumulation_steps
accelerator.backward(snake_case )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True` (the default).
batch.to(accelerator.device )
with torch.no_grad():
__UpperCamelCase = model(**snake_case )
__UpperCamelCase = outputs.logits.argmax(dim=-1 )
__UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=snake_case , references=snake_case , )
__UpperCamelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"epoch {epoch}:" , snake_case )
# New Code #
# To actually log, we call `Accelerator.log`
# The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int`
if args.with_tracking:
accelerator.log(
{
'''accuracy''': eval_metric['''accuracy'''],
'''f1''': eval_metric['''f1'''],
'''train_loss''': total_loss.item() / len(snake_case ),
'''epoch''': epoch,
} , step=snake_case , )
# New Code #
# When a run is finished, you should call `accelerator.end_training()`
# to close all of the open trackers
if args.with_tracking:
accelerator.end_training()
def A_ ( ) -> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=snake_case , default=snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
parser.add_argument(
'''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , )
parser.add_argument(
'''--project_dir''' , type=snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , )
__UpperCamelCase = parser.parse_args()
__UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(snake_case , snake_case )
if __name__ == "__main__":
main()
| 328 | 1 |
from __future__ import annotations
lowercase__ : Dict = "#"
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self )-> None:
'''simple docstring'''
__UpperCamelCase = {}
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
__UpperCamelCase = self._trie
for char in text:
if char not in trie:
__UpperCamelCase = {}
__UpperCamelCase = trie[char]
__UpperCamelCase = True
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> tuple | list:
'''simple docstring'''
__UpperCamelCase = self._trie
for char in prefix:
if char in trie:
__UpperCamelCase = trie[char]
else:
return []
return self._elements(SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> tuple:
'''simple docstring'''
__UpperCamelCase = []
for c, v in d.items():
__UpperCamelCase = [''' '''] if c == END else [(c + s) for s in self._elements(SCREAMING_SNAKE_CASE_ )]
result.extend(SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
lowercase__ : Optional[int] = Trie()
lowercase__ : Union[str, Any] = ("depart", "detergent", "daring", "dog", "deer", "deal")
for word in words:
trie.insert_word(word)
def A_ ( snake_case : str ) -> tuple:
'''simple docstring'''
__UpperCamelCase = trie.find_word(snake_case )
return tuple(string + word for word in suffixes )
def A_ ( ) -> None:
'''simple docstring'''
print(autocomplete_using_trie('''de''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 328 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : Union[str, Any] = {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json",
}
# fmt: off
lowercase__ : str = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5,
7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7,
1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1,
4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6,
1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1,
1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9,
3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1
]
lowercase__ : str = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3,
8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7,
3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7,
7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3,
1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5,
2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5,
4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2
]
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = 'whisper'
_snake_case = ['past_key_values']
_snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , SCREAMING_SNAKE_CASE_=51865 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=50257 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1500 , SCREAMING_SNAKE_CASE_=448 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[220, 50256] , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=7 , **SCREAMING_SNAKE_CASE_ , )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = vocab_size
__UpperCamelCase = num_mel_bins
__UpperCamelCase = d_model
__UpperCamelCase = encoder_layers
__UpperCamelCase = encoder_attention_heads
__UpperCamelCase = decoder_layers
__UpperCamelCase = decoder_attention_heads
__UpperCamelCase = decoder_ffn_dim
__UpperCamelCase = encoder_ffn_dim
__UpperCamelCase = dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = activation_dropout
__UpperCamelCase = activation_function
__UpperCamelCase = init_std
__UpperCamelCase = encoder_layerdrop
__UpperCamelCase = decoder_layerdrop
__UpperCamelCase = use_cache
__UpperCamelCase = encoder_layers
__UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True
__UpperCamelCase = max_source_positions
__UpperCamelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
__UpperCamelCase = classifier_proj_size
__UpperCamelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCamelCase = apply_spec_augment
__UpperCamelCase = mask_time_prob
__UpperCamelCase = mask_time_length
__UpperCamelCase = mask_time_min_masks
__UpperCamelCase = mask_feature_prob
__UpperCamelCase = mask_feature_length
__UpperCamelCase = mask_feature_min_masks
__UpperCamelCase = median_filter_width
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
@property
def A__ ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
__UpperCamelCase = OrderedDict(
[
('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}),
] )
if self.use_past:
__UpperCamelCase = {0: '''batch'''}
else:
__UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' )
return common_inputs
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 22050 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 220 , )-> Mapping[str, Any]:
'''simple docstring'''
__UpperCamelCase = OrderedDict()
__UpperCamelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , )
__UpperCamelCase = encoder_inputs['''input_features'''].shape[2]
__UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length
__UpperCamelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = encoder_inputs.pop('''input_features''' )
__UpperCamelCase = decoder_inputs.pop('''decoder_input_ids''' )
if "past_key_values" in decoder_inputs:
__UpperCamelCase = decoder_inputs.pop('''past_key_values''' )
return dummy_inputs
@property
def A__ ( self )-> float:
'''simple docstring'''
return 1E-3
| 328 | 1 |
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
lowercase__ : str = "\\n\n"
lowercase__ : Union[str, Any] = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n"
lowercase__ : List[Any] = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
"""simple docstring"""
def A__ ( self )-> Tuple:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''input_texts''': datasets.Value('''string''' ),
} ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 16 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_=None )-> Any:
'''simple docstring'''
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
__UpperCamelCase = '''cuda'''
else:
__UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu'''
__UpperCamelCase = AutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = model.to(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
__UpperCamelCase = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(SCREAMING_SNAKE_CASE_ ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
__UpperCamelCase = model.config.max_length - 1
else:
__UpperCamelCase = model.config.max_length
__UpperCamelCase = tokenizer(
SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , return_attention_mask=SCREAMING_SNAKE_CASE_ , ).to(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = encodings['''input_ids''']
__UpperCamelCase = encodings['''attention_mask''']
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
__UpperCamelCase = []
__UpperCamelCase = CrossEntropyLoss(reduction='''none''' )
for start_index in logging.tqdm(range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ):
__UpperCamelCase = min(start_index + batch_size , len(SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase = encoded_texts[start_index:end_index]
__UpperCamelCase = attn_masks[start_index:end_index]
if add_start_token:
__UpperCamelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
__UpperCamelCase = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(SCREAMING_SNAKE_CASE_ ), attn_mask] , dim=1 )
__UpperCamelCase = encoded_batch
with torch.no_grad():
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).logits
__UpperCamelCase = out_logits[..., :-1, :].contiguous()
__UpperCamelCase = labels[..., 1:].contiguous()
__UpperCamelCase = attn_mask[..., 1:].contiguous()
__UpperCamelCase = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , SCREAMING_SNAKE_CASE_ ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(SCREAMING_SNAKE_CASE_ )}
| 328 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : Any = logging.get_logger(__name__)
lowercase__ : Tuple = {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = 'xlnet'
_snake_case = ['mems']
_snake_case = {
'n_token': 'vocab_size', # Backward compatibility
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , SCREAMING_SNAKE_CASE_=32000 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="bi" , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=-1 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="tanh" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , )-> List[str]:
'''simple docstring'''
__UpperCamelCase = vocab_size
__UpperCamelCase = d_model
__UpperCamelCase = n_layer
__UpperCamelCase = n_head
if d_model % n_head != 0:
raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" )
__UpperCamelCase = d_model // n_head
__UpperCamelCase = ff_activation
__UpperCamelCase = d_inner
__UpperCamelCase = untie_r
__UpperCamelCase = attn_type
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = dropout
__UpperCamelCase = mem_len
__UpperCamelCase = reuse_len
__UpperCamelCase = bi_data
__UpperCamelCase = clamp_len
__UpperCamelCase = same_length
__UpperCamelCase = summary_type
__UpperCamelCase = summary_use_proj
__UpperCamelCase = summary_activation
__UpperCamelCase = summary_last_dropout
__UpperCamelCase = start_n_top
__UpperCamelCase = end_n_top
__UpperCamelCase = bos_token_id
__UpperCamelCase = pad_token_id
__UpperCamelCase = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'''
''' instead.''' , SCREAMING_SNAKE_CASE_ , )
__UpperCamelCase = kwargs['''use_cache''']
__UpperCamelCase = use_mems_eval
__UpperCamelCase = use_mems_train
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
@property
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." )
return -1
@max_position_embeddings.setter
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]:
'''simple docstring'''
raise NotImplementedError(
F"The model {self.model_type} is one of the few models that has no sequence length limit." )
| 328 | 1 |
from statistics import mean, stdev
def A_ ( snake_case : list , snake_case : int = 3 ) -> list:
'''simple docstring'''
__UpperCamelCase = min(snake_case )
__UpperCamelCase = max(snake_case )
# normalize data
return [round((x - x_min) / (x_max - x_min) , snake_case ) for x in data]
def A_ ( snake_case : list , snake_case : int = 3 ) -> list:
'''simple docstring'''
__UpperCamelCase = mean(snake_case )
__UpperCamelCase = stdev(snake_case )
# standardize data
return [round((x - mu) / (sigma) , snake_case ) for x in data]
| 328 |
from typing import Any
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = data
__UpperCamelCase = None
def __repr__( self )-> str:
'''simple docstring'''
return F"Node({self.data})"
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = None
def __iter__( self )-> Any:
'''simple docstring'''
__UpperCamelCase = self.head
while node:
yield node.data
__UpperCamelCase = node.next
def __len__( self )-> int:
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self )-> str:
'''simple docstring'''
return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] )
def __getitem__( self , SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('''list index out of range.''' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('''list index out of range.''' )
__UpperCamelCase = self.head
for _ in range(SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = current.next
__UpperCamelCase = data
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
self.insert_nth(0 , SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('''list index out of range''' )
__UpperCamelCase = Node(SCREAMING_SNAKE_CASE_ )
if self.head is None:
__UpperCamelCase = new_node
elif index == 0:
__UpperCamelCase = self.head # link new_node to head
__UpperCamelCase = new_node
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = new_node
def A__ ( self )-> None: # print every node data
'''simple docstring'''
print(self )
def A__ ( self )-> Any:
'''simple docstring'''
return self.delete_nth(0 )
def A__ ( self )-> Any: # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def A__ ( self , SCREAMING_SNAKE_CASE_ = 0 )-> Any:
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('''List index out of range.''' )
__UpperCamelCase = self.head # default first node
if index == 0:
__UpperCamelCase = self.head.next
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next.next
return delete_node.data
def A__ ( self )-> bool:
'''simple docstring'''
return self.head is None
def A__ ( self )-> None:
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = self.head
while current:
# Store the current node's next node.
__UpperCamelCase = current.next
# Make the current node's next point backwards
__UpperCamelCase = prev
# Make the previous node be the current node
__UpperCamelCase = current
# Make the current node the next node (to progress iteration)
__UpperCamelCase = next_node
# Return prev in order to put the head at the end
__UpperCamelCase = prev
def A_ ( ) -> None:
'''simple docstring'''
__UpperCamelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(snake_case ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(snake_case ) == i
linked_list.insert_nth(snake_case , i + 1 )
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(snake_case ) == 9
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
__UpperCamelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(-8 , 1 ) )
def A_ ( ) -> None:
'''simple docstring'''
__UpperCamelCase = [
-9,
100,
Node(77345112 ),
'''dlrow olleH''',
7,
5555,
0,
-192.55555,
'''Hello, world!''',
77.9,
Node(10 ),
None,
None,
12.20,
]
__UpperCamelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(snake_case )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
__UpperCamelCase = linked_list.delete_head()
assert result == -9
assert (
str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
__UpperCamelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
__UpperCamelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('''Hello again, world!''' ) )
assert (
str(snake_case )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(snake_case )
assert (
str(snake_case )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(snake_case )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def A_ ( ) -> Any:
'''simple docstring'''
from doctest import testmod
testmod()
__UpperCamelCase = LinkedList()
linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() )
linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() )
print('''\nPrint list:''' )
linked_list.print_list()
linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() )
linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() )
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nDelete head''' )
linked_list.delete_head()
print('''Delete tail''' )
linked_list.delete_tail()
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nReverse linked list''' )
linked_list.reverse()
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nString representation of linked list:''' )
print(snake_case )
print('''\nReading/changing Node data using indexing:''' )
print(f"Element at Position 1: {linked_list[1]}" )
__UpperCamelCase = input('''Enter New Value: ''' ).strip()
print('''New list:''' )
print(snake_case )
print(f"length of linked_list is : {len(snake_case )}" )
if __name__ == "__main__":
main()
| 328 | 1 |
from __future__ import annotations
from collections.abc import Callable
lowercase__ : Tuple = list[list[float | int]]
def A_ ( snake_case : Matrix , snake_case : Matrix ) -> Matrix:
'''simple docstring'''
__UpperCamelCase = len(snake_case )
__UpperCamelCase = [[0 for _ in range(size + 1 )] for _ in range(snake_case )]
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
for row in range(snake_case ):
for col in range(snake_case ):
__UpperCamelCase = matrix[row][col]
__UpperCamelCase = vector[row][0]
__UpperCamelCase = 0
__UpperCamelCase = 0
while row < size and col < size:
# pivoting
__UpperCamelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case , snake_case ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
__UpperCamelCase , __UpperCamelCase = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , snake_case ):
__UpperCamelCase = augmented[rowa][col] / augmented[row][col]
__UpperCamelCase = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , snake_case ):
for row in range(snake_case ):
__UpperCamelCase = augmented[row][col] / augmented[col][col]
for cola in range(snake_case , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(snake_case )
]
def A_ ( snake_case : list[int] ) -> Callable[[int], int]:
'''simple docstring'''
__UpperCamelCase = len(snake_case )
__UpperCamelCase = [[0 for _ in range(snake_case )] for _ in range(snake_case )]
__UpperCamelCase = [[0] for _ in range(snake_case )]
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
for x_val, y_val in enumerate(snake_case ):
for col in range(snake_case ):
__UpperCamelCase = (x_val + 1) ** (size - col - 1)
__UpperCamelCase = y_val
__UpperCamelCase = solve(snake_case , snake_case )
def interpolated_func(snake_case : int ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(snake_case ) )
return interpolated_func
def A_ ( snake_case : int ) -> int:
'''simple docstring'''
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def A_ ( snake_case : Callable[[int], int] = question_function , snake_case : int = 10 ) -> int:
'''simple docstring'''
__UpperCamelCase = [func(snake_case ) for x_val in range(1 , order + 1 )]
__UpperCamelCase = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
__UpperCamelCase = 0
__UpperCamelCase = 42
__UpperCamelCase = 42
for poly in polynomials:
__UpperCamelCase = 1
while func(snake_case ) == poly(snake_case ):
x_val += 1
ret += poly(snake_case )
return ret
if __name__ == "__main__":
print(F"{solution() = }")
| 328 |
import math
def A_ ( snake_case : int ) -> bool:
'''simple docstring'''
return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num
def A_ ( snake_case : int ) -> bool:
'''simple docstring'''
__UpperCamelCase = 0
__UpperCamelCase = n
while left <= right:
__UpperCamelCase = (left + right) // 2
if mid**2 == n:
return True
elif mid**2 > n:
__UpperCamelCase = mid - 1
else:
__UpperCamelCase = mid + 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 328 | 1 |
from ..utils import DummyObject, requires_backends
class SCREAMING_SNAKE_CASE__ ( metaclass=SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = ['flax', 'transformers']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Tuple:
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Optional[Any]:
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
class SCREAMING_SNAKE_CASE__ ( metaclass=SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = ['flax', 'transformers']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Tuple:
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
class SCREAMING_SNAKE_CASE__ ( metaclass=SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = ['flax', 'transformers']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Union[str, Any]:
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> List[str]:
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Tuple:
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
class SCREAMING_SNAKE_CASE__ ( metaclass=SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = ['flax', 'transformers']
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
requires_backends(self , ['''flax''', '''transformers'''] )
@classmethod
def A__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
@classmethod
def A__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
requires_backends(cls , ['''flax''', '''transformers'''] )
| 328 |
def A_ ( ) -> list[list[int]]:
'''simple docstring'''
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
lowercase__ : List[str] = generate_large_matrix()
lowercase__ : Tuple = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def A_ ( snake_case : list[list[int]] ) -> None:
'''simple docstring'''
assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid )
assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) )
def A_ ( snake_case : list[int] ) -> int:
'''simple docstring'''
__UpperCamelCase = 0
__UpperCamelCase = len(snake_case ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
__UpperCamelCase = (left + right) // 2
__UpperCamelCase = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
__UpperCamelCase = mid + 1
else:
__UpperCamelCase = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(snake_case )
def A_ ( snake_case : list[list[int]] ) -> int:
'''simple docstring'''
__UpperCamelCase = 0
__UpperCamelCase = len(grid[0] )
for i in range(len(snake_case ) ):
__UpperCamelCase = find_negative_index(grid[i][:bound] )
total += bound
return (len(snake_case ) * len(grid[0] )) - total
def A_ ( snake_case : list[list[int]] ) -> int:
'''simple docstring'''
return len([number for row in grid for number in row if number < 0] )
def A_ ( snake_case : list[list[int]] ) -> int:
'''simple docstring'''
__UpperCamelCase = 0
for row in grid:
for i, number in enumerate(snake_case ):
if number < 0:
total += len(snake_case ) - i
break
return total
def A_ ( ) -> None:
'''simple docstring'''
from timeit import timeit
print('''Running benchmarks''' )
__UpperCamelCase = (
'''from __main__ import count_negatives_binary_search, '''
'''count_negatives_brute_force, count_negatives_brute_force_with_break, grid'''
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
__UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 )
print(f"{func}() took {time:0.4f} seconds" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 328 | 1 |
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
lowercase__ : str = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
lowercase__ : list[int] = [ord(letter) for letter in string.ascii_lowercase]
lowercase__ : set[int] = {ord(char) for char in VALID_CHARS}
lowercase__ : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"]
def A_ ( snake_case : list[int] , snake_case : tuple[int, ...] ) -> str | None:
'''simple docstring'''
__UpperCamelCase = ""
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ):
__UpperCamelCase = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(snake_case )
return decoded
def A_ ( snake_case : list[int] ) -> list[str]:
'''simple docstring'''
__UpperCamelCase = []
for key in product(snake_case , repeat=3 ):
__UpperCamelCase = try_key(snake_case , snake_case )
if encoded is not None:
possibles.append(snake_case )
return possibles
def A_ ( snake_case : list[str] , snake_case : str ) -> list[str]:
'''simple docstring'''
return [possible for possible in possibles if common_word in possible.lower()]
def A_ ( snake_case : str = "p059_cipher.txt" ) -> int:
'''simple docstring'''
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='''utf-8''' )
__UpperCamelCase = [int(snake_case ) for number in data.strip().split(''',''' )]
__UpperCamelCase = filter_valid_chars(snake_case )
for common_word in COMMON_WORDS:
__UpperCamelCase = filter_common_word(snake_case , snake_case )
if len(snake_case ) == 1:
break
__UpperCamelCase = possibles[0]
return sum(ord(snake_case ) for char in decoded_text )
if __name__ == "__main__":
print(F"{solution() = }")
| 328 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowercase__ : str = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None:
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = size if size is not None else {'''shortest_edge''': 224}
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' )
__UpperCamelCase = do_resize
__UpperCamelCase = size
__UpperCamelCase = crop_pct
__UpperCamelCase = resample
__UpperCamelCase = do_center_crop
__UpperCamelCase = crop_size
__UpperCamelCase = do_rescale
__UpperCamelCase = rescale_factor
__UpperCamelCase = do_normalize
__UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray:
'''simple docstring'''
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
if crop_pct is not None:
if "shortest_edge" in size:
__UpperCamelCase = int(size['''shortest_edge'''] / crop_pct )
elif "height" in size and "width" in size:
if size["height"] == size["width"]:
__UpperCamelCase = int(size['''height'''] / crop_pct )
else:
__UpperCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct ))
else:
raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
else:
if "shortest_edge" in size:
__UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ )
elif "height" in size and "width" in size:
__UpperCamelCase = (size['''height'''], size['''width'''])
else:
raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) )
return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray:
'''simple docstring'''
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ )
if "height" not in size or "width" not in size:
raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> str:
'''simple docstring'''
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray:
'''simple docstring'''
return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , )-> PIL.Image.Image:
'''simple docstring'''
__UpperCamelCase = do_resize if do_resize is not None else self.do_resize
__UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct
__UpperCamelCase = resample if resample is not None else self.resample
__UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
__UpperCamelCase = image_mean if image_mean is not None else self.image_mean
__UpperCamelCase = image_std if image_std is not None else self.image_std
__UpperCamelCase = size if size is not None else self.size
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = crop_size if crop_size is not None else self.crop_size
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' )
__UpperCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE_ )
if not valid_images(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_pct is None:
raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
__UpperCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images]
if do_resize:
__UpperCamelCase = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_center_crop:
__UpperCamelCase = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_rescale:
__UpperCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_normalize:
__UpperCamelCase = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images]
__UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images]
__UpperCamelCase = {'''pixel_values''': images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
| 328 | 1 |
# flake8: noqa
# Lint as: python3
lowercase__ : Union[str, Any] = [
"VerificationMode",
"Version",
"disable_progress_bar",
"enable_progress_bar",
"is_progress_bar_enabled",
"experimental",
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 328 |
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
lowercase__ : Any = getLogger(__name__)
lowercase__ : List[str] = "cuda" if torch.cuda.is_available() else "cpu"
def A_ ( snake_case : List[str] , snake_case : str , snake_case : str , snake_case : int = 8 , snake_case : str = DEFAULT_DEVICE , snake_case : List[str]=False , snake_case : Union[str, Any]="summarization" , snake_case : str=None , **snake_case : List[Any] , ) -> Dict:
'''simple docstring'''
__UpperCamelCase = Path(snake_case ).open('''w''' , encoding='''utf-8''' )
__UpperCamelCase = str(snake_case )
__UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case ).to(snake_case )
if fpaa:
__UpperCamelCase = model.half()
__UpperCamelCase = AutoTokenizer.from_pretrained(snake_case )
logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
__UpperCamelCase = time.time()
# update config with task specific params
use_task_specific_params(snake_case , snake_case )
if prefix is None:
__UpperCamelCase = prefix or getattr(model.config , '''prefix''' , '''''' ) or ''''''
for examples_chunk in tqdm(list(chunks(snake_case , snake_case ) ) ):
__UpperCamelCase = [prefix + text for text in examples_chunk]
__UpperCamelCase = tokenizer(snake_case , return_tensors='''pt''' , truncation=snake_case , padding='''longest''' ).to(snake_case )
__UpperCamelCase = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case , )
__UpperCamelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case )
for hypothesis in dec:
fout.write(hypothesis + '''\n''' )
fout.flush()
fout.close()
__UpperCamelCase = int(time.time() - start_time ) # seconds
__UpperCamelCase = len(snake_case )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def A_ ( ) -> Tuple:
'''simple docstring'''
return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' )
def A_ ( snake_case : str=True ) -> int:
'''simple docstring'''
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''model_name''' , type=snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' )
parser.add_argument('''input_path''' , type=snake_case , help='''like cnn_dm/test.source''' )
parser.add_argument('''save_path''' , type=snake_case , help='''where to save summaries''' )
parser.add_argument('''--reference_path''' , type=snake_case , required=snake_case , help='''like cnn_dm/test.target''' )
parser.add_argument('''--score_path''' , type=snake_case , required=snake_case , default='''metrics.json''' , help='''where to save metrics''' )
parser.add_argument('''--device''' , type=snake_case , required=snake_case , default=snake_case , help='''cuda, cuda:1, cpu etc.''' )
parser.add_argument(
'''--prefix''' , type=snake_case , required=snake_case , default=snake_case , help='''will be added to the begininng of src examples''' )
parser.add_argument('''--task''' , type=snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' )
parser.add_argument('''--bs''' , type=snake_case , default=8 , required=snake_case , help='''batch size''' )
parser.add_argument(
'''--n_obs''' , type=snake_case , default=-1 , required=snake_case , help='''How many observations. Defaults to all.''' )
parser.add_argument('''--fp16''' , action='''store_true''' )
parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' )
parser.add_argument(
'''--info''' , nargs='''?''' , type=snake_case , const=datetime_now() , help=(
'''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.'''
''' lang=en-ru. If no value is passed, the current datetime string will be used.'''
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
__UpperCamelCase , __UpperCamelCase = parser.parse_known_args()
__UpperCamelCase = parse_numeric_n_bool_cl_kwargs(snake_case )
if parsed_args and verbose:
print(f"parsed the following generate kwargs: {parsed_args}" )
__UpperCamelCase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
__UpperCamelCase = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=snake_case )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError('''Can\'t mix --fp16 and --device cpu''' )
__UpperCamelCase = generate_summaries_or_translations(
snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case , )
if args.reference_path is None:
return {}
# Compute scores
__UpperCamelCase = calculate_bleu if '''translation''' in args.task else calculate_rouge
__UpperCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()]
__UpperCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case )]
__UpperCamelCase = score_fn(snake_case , snake_case )
scores.update(snake_case )
if args.dump_args:
scores.update(snake_case )
if args.info:
__UpperCamelCase = args.info
if verbose:
print(snake_case )
if args.score_path is not None:
json.dump(snake_case , open(args.score_path , '''w''' ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 328 | 1 |
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
lowercase__ : Any = "src/diffusers"
# Matches is_xxx_available()
lowercase__ : Union[str, Any] = re.compile(R"is\_([a-z_]*)_available\(\)")
# Matches from xxx import bla
lowercase__ : Dict = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
lowercase__ : str = "\n{0} = None\n"
lowercase__ : str = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n"
lowercase__ : int = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
def A_ ( snake_case : Optional[int] ) -> Tuple:
'''simple docstring'''
__UpperCamelCase = _re_backend.findall(snake_case )
if len(snake_case ) == 0:
return None
return "_and_".join(snake_case )
def A_ ( ) -> Optional[Any]:
'''simple docstring'''
with open(os.path.join(snake_case , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__UpperCamelCase = f.readlines()
# Get to the point we do the actual imports for type checking
__UpperCamelCase = 0
__UpperCamelCase = {}
# Go through the end of the file
while line_index < len(snake_case ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
__UpperCamelCase = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('''else:''' ):
line_index += 1
line_index += 1
__UpperCamelCase = []
# Until we unindent, add backend objects to the list
while line_index < len(snake_case ) and len(lines[line_index] ) > 1:
__UpperCamelCase = lines[line_index]
__UpperCamelCase = _re_single_line_import.search(snake_case )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(snake_case ) > 0:
__UpperCamelCase = objects
else:
line_index += 1
return backend_specific_objects
def A_ ( snake_case : List[Any] , snake_case : Dict ) -> Dict:
'''simple docstring'''
if name.isupper():
return DUMMY_CONSTANT.format(snake_case )
elif name.islower():
return DUMMY_FUNCTION.format(snake_case , snake_case )
else:
return DUMMY_CLASS.format(snake_case , snake_case )
def A_ ( snake_case : str=None ) -> List[str]:
'''simple docstring'''
if backend_specific_objects is None:
__UpperCamelCase = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
__UpperCamelCase = {}
for backend, objects in backend_specific_objects.items():
__UpperCamelCase = '''[''' + ''', '''.join(f"\"{b}\"" for b in backend.split('''_and_''' ) ) + ''']'''
__UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n'''
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(snake_case , snake_case ) for o in objects] )
__UpperCamelCase = dummy_file
return dummy_files
def A_ ( snake_case : str=False ) -> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
__UpperCamelCase = {'''torch''': '''pt'''}
# Locate actual dummy modules and read their content.
__UpperCamelCase = os.path.join(snake_case , '''utils''' )
__UpperCamelCase = {
backend: os.path.join(snake_case , f"dummy_{short_names.get(snake_case , snake_case )}_objects.py" )
for backend in dummy_files.keys()
}
__UpperCamelCase = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(snake_case ):
with open(snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__UpperCamelCase = f.read()
else:
__UpperCamelCase = ''''''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f"Updating diffusers.utils.dummy_{short_names.get(snake_case , snake_case )}_objects.py as the main "
'''__init__ has new objects.''' )
with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'''The main __init__ has objects that are not present in '''
f"diffusers.utils.dummy_{short_names.get(snake_case , snake_case )}_objects.py. Run `make fix-copies` "
'''to fix this.''' )
if __name__ == "__main__":
lowercase__ : Tuple = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
lowercase__ : Union[str, Any] = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 328 |
from math import factorial
def A_ ( snake_case : int = 100 ) -> int:
'''simple docstring'''
return sum(int(snake_case ) for x in str(factorial(snake_case ) ) )
if __name__ == "__main__":
print(solution(int(input("Enter the Number: ").strip())))
| 328 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowercase__ : Tuple = {
"configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"],
"tokenization_tapas": ["TapasTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Optional[Any] = [
"TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST",
"TapasForMaskedLM",
"TapasForQuestionAnswering",
"TapasForSequenceClassification",
"TapasModel",
"TapasPreTrainedModel",
"load_tf_weights_in_tapas",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : int = [
"TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFTapasForMaskedLM",
"TFTapasForQuestionAnswering",
"TFTapasForSequenceClassification",
"TFTapasModel",
"TFTapasPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig
from .tokenization_tapas import TapasTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tapas import (
TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasPreTrainedModel,
load_tf_weights_in_tapas,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_tapas import (
TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTapasForMaskedLM,
TFTapasForQuestionAnswering,
TFTapasForSequenceClassification,
TFTapasModel,
TFTapasPreTrainedModel,
)
else:
import sys
lowercase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 328 |
def A_ ( snake_case : list ) -> list:
'''simple docstring'''
__UpperCamelCase = len(snake_case )
for i in range(1 , snake_case ):
__UpperCamelCase = collection[i]
__UpperCamelCase = 0
__UpperCamelCase = i - 1
while low <= high:
__UpperCamelCase = (low + high) // 2
if val < collection[mid]:
__UpperCamelCase = mid - 1
else:
__UpperCamelCase = mid + 1
for j in range(snake_case , snake_case , -1 ):
__UpperCamelCase = collection[j - 1]
__UpperCamelCase = val
return collection
if __name__ == "__main__":
lowercase__ : List[Any] = input("Enter numbers separated by a comma:\n").strip()
lowercase__ : str = [int(item) for item in user_input.split(",")]
print(binary_insertion_sort(unsorted))
| 328 | 1 |
def A_ ( snake_case : Optional[Any] ) -> str:
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = set({'''(''', '''[''', '''{'''} )
__UpperCamelCase = set({''')''', ''']''', '''}'''} )
__UpperCamelCase = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''}
for i in range(len(snake_case ) ):
if s[i] in open_brackets:
stack.append(s[i] )
elif s[i] in closed_brackets and (
len(snake_case ) == 0 or (len(snake_case ) > 0 and open_to_closed[stack.pop()] != s[i])
):
return False
return len(snake_case ) == 0
def A_ ( ) -> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = input('''Enter sequence of brackets: ''' )
if is_balanced(snake_case ):
print(snake_case , '''is balanced''' )
else:
print(snake_case , '''is not balanced''' )
if __name__ == "__main__":
main()
| 328 |
from __future__ import annotations
from collections import deque
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ )-> int:
'''simple docstring'''
__UpperCamelCase = []
self.adlist.append(
{'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} )
for keyword in keywords:
self.add_keyword(SCREAMING_SNAKE_CASE_ )
self.set_fail_transitions()
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int | None:
'''simple docstring'''
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
__UpperCamelCase = 0
for character in keyword:
__UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if next_state is None:
self.adlist.append(
{
'''value''': character,
'''next_states''': [],
'''fail_state''': 0,
'''output''': [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
__UpperCamelCase = len(self.adlist ) - 1
else:
__UpperCamelCase = next_state
self.adlist[current_state]["output"].append(SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> None:
'''simple docstring'''
__UpperCamelCase = deque()
for node in self.adlist[0]["next_states"]:
q.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = 0
while q:
__UpperCamelCase = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.adlist[r]['''fail_state''']
while (
self.find_next_state(SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) is None
and state != 0
):
__UpperCamelCase = self.adlist[state]['''fail_state''']
__UpperCamelCase = self.find_next_state(
SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] )
if self.adlist[child]["fail_state"] is None:
__UpperCamelCase = 0
__UpperCamelCase = (
self.adlist[child]['''output''']
+ self.adlist[self.adlist[child]['''fail_state''']]['''output''']
)
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> dict[str, list[int]]:
'''simple docstring'''
__UpperCamelCase = {} # returns a dict with keywords and list of its occurrences
__UpperCamelCase = 0
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
while (
self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) is None
and current_state != 0
):
__UpperCamelCase = self.adlist[current_state]['''fail_state''']
__UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] )
if next_state is None:
__UpperCamelCase = 0
else:
__UpperCamelCase = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
__UpperCamelCase = []
result[key].append(i - len(SCREAMING_SNAKE_CASE_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 328 | 1 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
lowercase__ : Dict = {
"vocab_file": {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json",
"allenai/longformer-large-4096": (
"https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json"
),
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json"
),
},
"merges_file": {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt",
"allenai/longformer-large-4096": (
"https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt"
),
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt"
),
},
}
lowercase__ : List[Any] = {
"allenai/longformer-base-4096": 4_0_9_6,
"allenai/longformer-large-4096": 4_0_9_6,
"allenai/longformer-large-4096-finetuned-triviaqa": 4_0_9_6,
"allenai/longformer-base-4096-extra.pos.embd.only": 4_0_9_6,
"allenai/longformer-large-4096-extra.pos.embd.only": 4_0_9_6,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def A_ ( ) -> Dict:
'''simple docstring'''
__UpperCamelCase = (
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
__UpperCamelCase = bs[:]
__UpperCamelCase = 0
for b in range(2**8 ):
if b not in bs:
bs.append(snake_case )
cs.append(2**8 + n )
n += 1
__UpperCamelCase = [chr(snake_case ) for n in cs]
return dict(zip(snake_case , snake_case ) )
def A_ ( snake_case : List[str] ) -> Tuple:
'''simple docstring'''
__UpperCamelCase = set()
__UpperCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCamelCase = char
return pairs
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = VOCAB_FILES_NAMES
_snake_case = PRETRAINED_VOCAB_FILES_MAP
_snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case = ['input_ids', 'attention_mask']
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="replace" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , )-> List[str]:
'''simple docstring'''
__UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token
__UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token
__UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token
__UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token
__UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token
__UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token
super().__init__(
errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle:
__UpperCamelCase = json.load(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = {v: k for k, v in self.encoder.items()}
__UpperCamelCase = errors # how to handle errors in decoding
__UpperCamelCase = bytes_to_unicode()
__UpperCamelCase = {v: k for k, v in self.byte_encoder.items()}
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle:
__UpperCamelCase = merges_handle.read().split('''\n''' )[1:-1]
__UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges]
__UpperCamelCase = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
__UpperCamelCase = {}
__UpperCamelCase = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__UpperCamelCase = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
return len(self.encoder )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
__UpperCamelCase = tuple(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = get_pairs(SCREAMING_SNAKE_CASE_ )
if not pairs:
return token
while True:
__UpperCamelCase = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
__UpperCamelCase , __UpperCamelCase = bigram
__UpperCamelCase = []
__UpperCamelCase = 0
while i < len(SCREAMING_SNAKE_CASE_ ):
try:
__UpperCamelCase = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__UpperCamelCase = j
if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__UpperCamelCase = tuple(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = new_word
if len(SCREAMING_SNAKE_CASE_ ) == 1:
break
else:
__UpperCamelCase = get_pairs(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = ''' '''.join(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = word
return word
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
__UpperCamelCase = []
for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) )
return bpe_tokens
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]:
'''simple docstring'''
return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
return self.decoder.get(SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
__UpperCamelCase = ''''''.join(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
__UpperCamelCase = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
__UpperCamelCase = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' )
__UpperCamelCase = 0
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ):
if index != token_index:
logger.warning(
F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
''' Please check that the tokenizer is not corrupted!''' )
__UpperCamelCase = token_index
writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
index += 1
return vocab_file, merge_file
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCamelCase = [self.cls_token_id]
__UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False )-> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> List[int]:
'''simple docstring'''
__UpperCamelCase = [self.sep_token_id]
__UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
__UpperCamelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()):
__UpperCamelCase = ''' ''' + text
return (text, kwargs)
| 328 |
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> Dict:
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_input_mask
__UpperCamelCase = use_token_type_ids
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = type_sequence_label_size
__UpperCamelCase = initializer_range
__UpperCamelCase = num_labels
__UpperCamelCase = num_choices
__UpperCamelCase = scope
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCamelCase = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def A__ ( self )-> str:
'''simple docstring'''
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
__UpperCamelCase = DistilBertModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple:
'''simple docstring'''
__UpperCamelCase = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
__UpperCamelCase = self.num_choices
__UpperCamelCase = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCamelCase = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs
__UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
_snake_case = (
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
_snake_case = (
{
'feature-extraction': DistilBertModel,
'fill-mask': DistilBertForMaskedLM,
'question-answering': DistilBertForQuestionAnswering,
'text-classification': DistilBertForSequenceClassification,
'token-classification': DistilBertForTokenClassification,
'zero-shot': DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
_snake_case = True
_snake_case = True
_snake_case = True
_snake_case = True
def A__ ( self )-> Dict:
'''simple docstring'''
__UpperCamelCase = DistilBertModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 )
def A__ ( self )-> Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> int:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Tuple:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
@slow
def A__ ( self )-> List[str]:
'''simple docstring'''
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@slow
@require_torch_gpu
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
__UpperCamelCase = True
__UpperCamelCase = model_class(config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = torch.jit.trace(
SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) )
__UpperCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ )
loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) )
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def A__ ( self )-> Tuple:
'''simple docstring'''
__UpperCamelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' )
__UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
__UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0]
__UpperCamelCase = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = torch.tensor(
[[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
| 328 | 1 |
def A_ ( snake_case : int = 4000000 ) -> int:
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase , __UpperCamelCase = 0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(snake_case )
__UpperCamelCase , __UpperCamelCase = b, a + b
return sum(snake_case )
if __name__ == "__main__":
print(F"{solution() = }")
| 328 |
import inspect
import logging
import os
import random
import shutil
import tempfile
import unittest
import pytest
import torch
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_cuda
from accelerate.utils import ProjectConfiguration, set_seed
lowercase__ : Optional[Any] = logging.getLogger(__name__)
def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int:
'''simple docstring'''
def get_dataset(snake_case : Optional[int] ):
__UpperCamelCase = torch.randn(batch_size * n_batches , 1 )
return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) )
__UpperCamelCase = get_dataset(snake_case )
__UpperCamelCase = get_dataset(snake_case )
__UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 )
__UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 )
return (train_dataloader, valid_dataloader)
def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any:
'''simple docstring'''
__UpperCamelCase = []
for epoch in range(snake_case ):
# Train quickly
model.train()
for batch in dataloader:
__UpperCamelCase , __UpperCamelCase = batch
__UpperCamelCase = model(snake_case )
__UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case )
accelerator.backward(snake_case )
optimizer.step()
optimizer.zero_grad()
rands.append(random.random() ) # Introduce some randomness
if scheduler is not None:
scheduler.step()
return rands
class SCREAMING_SNAKE_CASE__ ( nn.Module ):
"""simple docstring"""
def __init__( self )-> Tuple:
'''simple docstring'''
super().__init__()
__UpperCamelCase = nn.Parameter(torch.randn(1 ) )
__UpperCamelCase = nn.Parameter(torch.randn(1 ) )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
return x * self.a + self.b
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self )-> Tuple:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__UpperCamelCase , __UpperCamelCase = dummy_dataloaders()
__UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ )
# Train baseline
__UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save initial
accelerator.save_state()
# Save second state
accelerator.save_state()
self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 )
def A__ ( self )-> Optional[int]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__UpperCamelCase , __UpperCamelCase = dummy_dataloaders()
# Train baseline
__UpperCamelCase = Accelerator()
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save initial
__UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' )
accelerator.save_state(SCREAMING_SNAKE_CASE_ )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
__UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
# Train partially
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__UpperCamelCase , __UpperCamelCase = dummy_dataloaders()
__UpperCamelCase = Accelerator()
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
accelerator.load_state(SCREAMING_SNAKE_CASE_ )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save everything
__UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' )
accelerator.save_state(SCREAMING_SNAKE_CASE_ )
# Load everything back in and make sure all states work
accelerator.load_state(SCREAMING_SNAKE_CASE_ )
test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> List[str]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__UpperCamelCase , __UpperCamelCase = dummy_dataloaders()
__UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ )
# Train baseline
__UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save initial
accelerator.save_state()
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
__UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
# Train partially
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__UpperCamelCase , __UpperCamelCase = dummy_dataloaders()
__UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save everything
accelerator.save_state()
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) )
test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item()
__UpperCamelCase = optimizer.state_dict()
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Tuple:
'''simple docstring'''
__UpperCamelCase = torch.tensor([1, 2, 3] )
__UpperCamelCase = torch.tensor([2, 3, 4] )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(net.parameters() )
__UpperCamelCase = Accelerator()
with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve:
accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = str(ve.exception )
self.assertTrue('''Item at index 0''' in message )
self.assertTrue('''Item at index 1''' in message )
self.assertFalse('''Item at index 2''' in message )
self.assertFalse('''Item at index 3''' in message )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 )
__UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 )
__UpperCamelCase , __UpperCamelCase = dummy_dataloaders()
__UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ )
# Train baseline
__UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Save initial
accelerator.save_state()
__UpperCamelCase = scheduler.state_dict()
train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() )
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() )
def A__ ( self )-> List[str]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
__UpperCamelCase = DummyModel()
__UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 )
# Train baseline
__UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ )
# Save 3 states:
for _ in range(11 ):
accelerator.save_state()
self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) )
self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) )
@require_cuda
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )]
execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() )
if __name__ == "__main__":
lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing"
lowercase__ : List[Any] = DummyModel()
lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3)
lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99)
lowercase__ , lowercase__ : str = dummy_dataloaders()
lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True)
# Train baseline
lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no")
if accelerator.process_index == 0:
if os.path.exists(savedir):
shutil.rmtree(savedir)
os.makedirs(savedir)
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader, scheduler
)
lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer)
train(3, model, train_dataloader, optimizer, accelerator, scheduler)
# Check that the intial optimizer is loaded on the GPU
for group in optimizer.param_groups:
lowercase__ : int = group["params"][0].device
break
assert param_device.type == accelerator.device.type
lowercase__ : Union[str, Any] = model.cpu()
accelerator.wait_for_everyone()
accelerator.save_state()
accelerator.wait_for_everyone()
# Check CPU state
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu")
for group in optimizer.param_groups:
lowercase__ : Any = group["params"][0].device
break
assert (
param_device.type == torch.device("cpu").type
), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}"
# Check device state
model.to(accelerator.device)
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device")
for group in optimizer.param_groups:
lowercase__ : List[Any] = group["params"][0].device
break
assert (
param_device.type == accelerator.device.type
), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}"
# Check error
with pytest.raises(TypeError, match="Unsupported optimizer map location passed"):
accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid")
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
shutil.rmtree(savedir)
accelerator.wait_for_everyone()
| 328 | 1 |
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
lowercase__ : Any = logging.getLogger(__name__)
lowercase__ : Union[str, Any] = 5_0 # max width of layer names
lowercase__ : Dict = 7_0 # max width of quantizer names
def A_ ( snake_case : List[Any] ) -> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = parser.add_argument_group('''quant_trainer arguments''' )
group.add_argument('''--wprec''' , type=snake_case , default=8 , help='''weight precision''' )
group.add_argument('''--aprec''' , type=snake_case , default=8 , help='''activation precision''' )
group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' )
group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' )
group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' )
group.add_argument('''--quant-disable-keyword''' , type=snake_case , nargs='''+''' , help='''disable quantizers by keyword''' )
group.add_argument('''--quant-disable-layer-module''' , type=snake_case , help='''disable quantizers by keyword under layer.''' )
group.add_argument('''--quant-enable-layer-module''' , type=snake_case , help='''enable quantizers by keyword under layer''' )
group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' )
group.add_argument('''--percentile''' , default=snake_case , type=snake_case , help='''percentile for PercentileCalibrator''' )
group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' )
group.add_argument('''--clip-gelu''' , metavar='''N''' , type=snake_case , help='''clip gelu output maximum value to N''' )
group.add_argument(
'''--recalibrate-weights''' , action='''store_true''' , help=(
'''recalibrate weight amaxes by taking the max of the weights.'''
''' amaxes will be computed with the current quantization granularity (axis).'''
) , )
def A_ ( snake_case : int ) -> Any:
'''simple docstring'''
if args.calibrator == "max":
__UpperCamelCase = '''max'''
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('''Specify --percentile when using percentile calibrator''' )
__UpperCamelCase = '''histogram'''
elif args.calibrator == "mse":
__UpperCamelCase = '''histogram'''
else:
raise ValueError(f"Invalid calibrator {args.calibrator}" )
__UpperCamelCase = QuantDescriptor(num_bits=args.aprec , calib_method=snake_case )
__UpperCamelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(snake_case )
quant_nn.QuantLinear.set_default_quant_desc_weight(snake_case )
def A_ ( snake_case : Dict , snake_case : str , snake_case : List[str]=False , snake_case : Any=False ) -> Optional[int]:
'''simple docstring'''
logger.info('''Configuring Model for Quantization''' )
logger.info(f"using quantization package {pytorch_quantization.__file__}" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(snake_case , ['''embeddings'''] , which='''weight''' , _disabled=snake_case )
if args.quant_disable:
set_quantizer_by_name(snake_case , [''''''] , _disabled=snake_case )
if args.quant_disable_keyword:
set_quantizer_by_name(snake_case , args.quant_disable_keyword , _disabled=snake_case )
if args.quant_disable_layer_module:
set_quantizer_by_name(snake_case , [r'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=snake_case )
if args.quant_enable_layer_module:
set_quantizer_by_name(snake_case , [r'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=snake_case )
if args.recalibrate_weights:
recalibrate_weights(snake_case )
if args.fuse_qkv:
fuse_qkv(snake_case , snake_case )
if args.clip_gelu:
clip_gelu(snake_case , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(snake_case )
def A_ ( snake_case : str ) -> List[str]:
'''simple docstring'''
logger.info('''Enabling Calibration''' )
for name, module in model.named_modules():
if name.endswith('''_quantizer''' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(f"{name:80}: {module}" )
def A_ ( snake_case : Optional[int] , snake_case : int ) -> List[str]:
'''simple docstring'''
logger.info('''Loading calibrated amax''' )
for name, module in model.named_modules():
if name.endswith('''_quantizer''' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('''percentile''' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(snake_case )
def A_ ( snake_case : Union[str, Any] , snake_case : List[Any] ) -> Any:
'''simple docstring'''
def fusea(snake_case : Dict , snake_case : Optional[int] , snake_case : Tuple ):
for mod in [qq, qk, qv]:
if not hasattr(snake_case , '''_amax''' ):
print(''' WARNING: NO AMAX BUFFER''' )
return
__UpperCamelCase = qq._amax.detach().item()
__UpperCamelCase = qk._amax.detach().item()
__UpperCamelCase = qv._amax.detach().item()
__UpperCamelCase = max(snake_case , snake_case , snake_case )
qq._amax.fill_(snake_case )
qk._amax.fill_(snake_case )
qv._amax.fill_(snake_case )
logger.info(f" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" )
for name, mod in model.named_modules():
if name.endswith('''.attention.self''' ):
logger.info(f"FUSE_QKV: {name:{name_width}}" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def A_ ( snake_case : Any , snake_case : int ) -> Optional[Any]:
'''simple docstring'''
for name, mod in model.named_modules():
if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ):
__UpperCamelCase = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=snake_case )
__UpperCamelCase = mod._input_quantizer._amax.data.detach().item()
logger.info(f"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" )
def A_ ( snake_case : int ) -> Any:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(snake_case , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None:
__UpperCamelCase = mod.weight.shape[0]
__UpperCamelCase = mod._weight_quantizer._amax.detach()
__UpperCamelCase = torch.ones(snake_case , dtype=amax.dtype , device=amax.device ) * amax
print(f"expanding {name} {amax} -> {mod._weight_quantizer._amax}" )
def A_ ( snake_case : Union[str, Any] ) -> Any:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(snake_case , '''_weight_quantizer''' ):
if not hasattr(mod.weight_quantizer , '''_amax''' ):
print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
__UpperCamelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
__UpperCamelCase = set(range(len(mod.weight.size() ) ) ) - axis_set
__UpperCamelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=snake_case , keepdims=snake_case ).detach()
logger.info(f"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" )
__UpperCamelCase = amax
def A_ ( snake_case : str , snake_case : int=25 , snake_case : Optional[int]=180 , snake_case : int=None ) -> List[Any]:
'''simple docstring'''
if ignore is None:
__UpperCamelCase = []
elif not isinstance(snake_case , snake_case ):
__UpperCamelCase = [ignore]
__UpperCamelCase = 0
for name, mod in model.named_modules():
if not hasattr(snake_case , '''weight''' ):
continue
__UpperCamelCase = max(snake_case , len(snake_case ) )
for name, mod in model.named_modules():
__UpperCamelCase = getattr(snake_case , '''_input_quantizer''' , snake_case )
__UpperCamelCase = getattr(snake_case , '''_weight_quantizer''' , snake_case )
if not hasattr(snake_case , '''weight''' ):
continue
if type(snake_case ) in ignore:
continue
if [True for s in ignore if type(snake_case ) is str and s in name]:
continue
__UpperCamelCase = f"Act:{input_q.extra_repr()}"
__UpperCamelCase = f"Wgt:{weight_q.extra_repr()}"
__UpperCamelCase = f"{name:{name_width}} {act_str} {wgt_str}"
if len(snake_case ) <= line_width:
logger.info(snake_case )
else:
logger.info(f"{name:{name_width}} {act_str}" )
logger.info(f"{' ':{name_width}} {wgt_str}" )
def A_ ( snake_case : Dict ) -> List[Any]:
'''simple docstring'''
__UpperCamelCase = 0
for name, mod in model.named_modules():
if isinstance(snake_case , pytorch_quantization.nn.TensorQuantizer ):
print(f"{name:80} {mod}" )
count += 1
print(f"{count} TensorQuantizers found in model" )
def A_ ( snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : str ) -> Dict:
'''simple docstring'''
__UpperCamelCase = getattr(snake_case , snake_case , snake_case )
if quantizer_mod is not None:
assert hasattr(snake_case , snake_case )
setattr(snake_case , snake_case , snake_case )
else:
logger.warning(f"{name} has no {quantizer}" )
def A_ ( snake_case : Dict , snake_case : List[Any] , snake_case : Optional[int]="both" , **snake_case : int ) -> int:
'''simple docstring'''
__UpperCamelCase = f"Warning: changing {which} quantizers of {name:{qname_width}}"
for k, v in kwargs.items():
s += f" {k}={v}"
if which in ["input", "both"]:
set_quantizer(snake_case , snake_case , '''_input_quantizer''' , snake_case , snake_case )
if which in ["weight", "both"]:
set_quantizer(snake_case , snake_case , '''_weight_quantizer''' , snake_case , snake_case )
logger.info(snake_case )
def A_ ( snake_case : Dict , snake_case : Union[str, Any] , **snake_case : Tuple ) -> Tuple:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(snake_case , '''_input_quantizer''' ) or hasattr(snake_case , '''_weight_quantizer''' ):
for n in names:
if re.search(snake_case , snake_case ):
set_quantizers(snake_case , snake_case , **snake_case )
elif name.endswith('''_quantizer''' ):
for n in names:
if re.search(snake_case , snake_case ):
__UpperCamelCase = f"Warning: changing {name:{name_width}}"
for k, v in kwargs.items():
s += f" {k}={v}"
setattr(snake_case , snake_case , snake_case )
logger.info(snake_case )
| 328 |
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]:
'''simple docstring'''
super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = Sql(
cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
self.builder.download_and_prepare(
download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , )
# Build dataset for splits
__UpperCamelCase = self.builder.as_dataset(
split='''train''' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory )
return dataset
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> List[str]:
'''simple docstring'''
if num_proc is not None and num_proc <= 0:
raise ValueError(F"num_proc {num_proc} must be an integer > 0." )
__UpperCamelCase = dataset
__UpperCamelCase = name
__UpperCamelCase = con
__UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
__UpperCamelCase = num_proc
__UpperCamelCase = to_sql_kwargs
def A__ ( self )-> int:
'''simple docstring'''
__UpperCamelCase = self.to_sql_kwargs.pop('''sql''' , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.to_sql_kwargs.pop('''con''' , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.to_sql_kwargs.pop('''index''' , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs )
return written
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args
__UpperCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs
__UpperCamelCase = query_table(
table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , )
__UpperCamelCase = batch.to_pandas()
__UpperCamelCase = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
return num_rows or len(SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int:
'''simple docstring'''
__UpperCamelCase = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
__UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += num_rows
return written
| 328 | 1 |
def A_ ( snake_case : int ) -> int:
'''simple docstring'''
__UpperCamelCase = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def A_ ( snake_case : int = 100 ) -> int:
'''simple docstring'''
__UpperCamelCase = 1
__UpperCamelCase = 2
for i in range(2 , max_n + 1 ):
__UpperCamelCase = pre_numerator
__UpperCamelCase = 2 * i // 3 if i % 3 == 0 else 1
__UpperCamelCase = cur_numerator
__UpperCamelCase = e_cont * pre_numerator + temp
return sum_digits(snake_case )
if __name__ == "__main__":
print(F"{solution() = }")
| 328 |
def A_ ( snake_case : str ) -> int:
'''simple docstring'''
assert column_title.isupper()
__UpperCamelCase = 0
__UpperCamelCase = len(snake_case ) - 1
__UpperCamelCase = 0
while index >= 0:
__UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , snake_case )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 328 | 1 |
def A_ ( snake_case : str = "The quick brown fox jumps over the lazy dog" , ) -> bool:
'''simple docstring'''
__UpperCamelCase = set()
# Replace all the whitespace in our sentence
__UpperCamelCase = input_str.replace(''' ''' , '''''' )
for alpha in input_str:
if "a" <= alpha.lower() <= "z":
frequency.add(alpha.lower() )
return len(snake_case ) == 26
def A_ ( snake_case : str = "The quick brown fox jumps over the lazy dog" , ) -> bool:
'''simple docstring'''
__UpperCamelCase = [False] * 26
for char in input_str:
if char.islower():
__UpperCamelCase = True
elif char.isupper():
__UpperCamelCase = True
return all(snake_case )
def A_ ( snake_case : str = "The quick brown fox jumps over the lazy dog" , ) -> bool:
'''simple docstring'''
return len({char for char in input_str.lower() if char.isalpha()} ) == 26
def A_ ( ) -> None:
'''simple docstring'''
from timeit import timeit
__UpperCamelCase = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest'''
print(timeit('''is_pangram()''' , setup=snake_case ) )
print(timeit('''is_pangram_faster()''' , setup=snake_case ) )
print(timeit('''is_pangram_fastest()''' , setup=snake_case ) )
# 5.348480500048026, 2.6477354579837993, 1.8470395830227062
# 5.036091582966037, 2.644472333951853, 1.8869528750656173
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 328 |
def A_ ( snake_case : int ) -> None:
'''simple docstring'''
__UpperCamelCase = generate_pascal_triangle(snake_case )
for row_idx in range(snake_case ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=''' ''' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=''' ''' )
else:
print(triangle[row_idx][col_idx] , end='''''' )
print()
def A_ ( snake_case : int ) -> list[list[int]]:
'''simple docstring'''
if not isinstance(snake_case , snake_case ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
__UpperCamelCase = []
for current_row_idx in range(snake_case ):
__UpperCamelCase = populate_current_row(snake_case , snake_case )
triangle.append(snake_case )
return triangle
def A_ ( snake_case : list[list[int]] , snake_case : int ) -> list[int]:
'''simple docstring'''
__UpperCamelCase = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
__UpperCamelCase , __UpperCamelCase = 1, 1
for current_col_idx in range(1 , snake_case ):
calculate_current_element(
snake_case , snake_case , snake_case , snake_case )
return current_row
def A_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , ) -> None:
'''simple docstring'''
__UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1]
__UpperCamelCase = triangle[current_row_idx - 1][current_col_idx]
__UpperCamelCase = above_to_left_elt + above_to_right_elt
def A_ ( snake_case : int ) -> list[list[int]]:
'''simple docstring'''
if not isinstance(snake_case , snake_case ):
raise TypeError('''The input value of \'num_rows\' should be \'int\'''' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'''The input value of \'num_rows\' should be greater than or equal to 0''' )
__UpperCamelCase = [[1]]
for row_index in range(1 , snake_case ):
__UpperCamelCase = [0] + result[-1] + [0]
__UpperCamelCase = row_index + 1
# Calculate the number of distinct elements in a row
__UpperCamelCase = sum(divmod(snake_case , 2 ) )
__UpperCamelCase = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
__UpperCamelCase = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
__UpperCamelCase = row_first_half + row_second_half
result.append(snake_case )
return result
def A_ ( ) -> None:
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None:
__UpperCamelCase = f"{func.__name__}({value})"
__UpperCamelCase = timeit(f"__main__.{call}" , setup='''import __main__''' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f"{call:38} -- {timing:.4f} seconds" )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(snake_case , snake_case )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 328 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : int = {
"alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = 'mgp-str'
def __init__( self , SCREAMING_SNAKE_CASE_=[32, 128] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=27 , SCREAMING_SNAKE_CASE_=38 , SCREAMING_SNAKE_CASE_=50257 , SCREAMING_SNAKE_CASE_=30522 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=4.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_2 , **SCREAMING_SNAKE_CASE_ , )-> Tuple:
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = image_size
__UpperCamelCase = patch_size
__UpperCamelCase = num_channels
__UpperCamelCase = max_token_length
__UpperCamelCase = num_character_labels
__UpperCamelCase = num_bpe_labels
__UpperCamelCase = num_wordpiece_labels
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = mlp_ratio
__UpperCamelCase = distilled
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = drop_rate
__UpperCamelCase = qkv_bias
__UpperCamelCase = attn_drop_rate
__UpperCamelCase = drop_path_rate
__UpperCamelCase = output_aa_attentions
__UpperCamelCase = initializer_range
| 328 |
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
lowercase__ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--txt2img_unclip",
default="kakaobrain/karlo-v1-alpha",
type=str,
required=False,
help="The pretrained txt2img unclip.",
)
lowercase__ : Any = parser.parse_args()
lowercase__ : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
lowercase__ : List[str] = CLIPImageProcessor()
lowercase__ : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14")
lowercase__ : Optional[Any] = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 328 | 1 |
from collections.abc import Generator
from math import sin
def A_ ( snake_case : bytes ) -> bytes:
'''simple docstring'''
if len(snake_case ) != 32:
raise ValueError('''Input must be of length 32''' )
__UpperCamelCase = B''''''
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def A_ ( snake_case : int ) -> bytes:
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
__UpperCamelCase = format(snake_case , '''08x''' )[-8:]
__UpperCamelCase = B''''''
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' )
return little_endian_hex
def A_ ( snake_case : bytes ) -> bytes:
'''simple docstring'''
__UpperCamelCase = B''''''
for char in message:
bit_string += format(snake_case , '''08b''' ).encode('''utf-8''' )
__UpperCamelCase = format(len(snake_case ) , '''064b''' ).encode('''utf-8''' )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(snake_case ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def A_ ( snake_case : bytes ) -> Generator[list[int], None, None]:
'''simple docstring'''
if len(snake_case ) % 512 != 0:
raise ValueError('''Input must have length that\'s a multiple of 512''' )
for pos in range(0 , len(snake_case ) , 512 ):
__UpperCamelCase = bit_string[pos : pos + 512]
__UpperCamelCase = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def A_ ( snake_case : int ) -> int:
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
__UpperCamelCase = format(snake_case , '''032b''' )
__UpperCamelCase = ''''''
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(snake_case , 2 )
def A_ ( snake_case : int , snake_case : int ) -> int:
'''simple docstring'''
return (a + b) % 2**32
def A_ ( snake_case : int , snake_case : int ) -> int:
'''simple docstring'''
if i < 0:
raise ValueError('''Input must be non-negative''' )
if shift < 0:
raise ValueError('''Shift must be non-negative''' )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def A_ ( snake_case : bytes ) -> bytes:
'''simple docstring'''
__UpperCamelCase = preprocess(snake_case )
__UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
__UpperCamelCase = 0x67452301
__UpperCamelCase = 0xEFCDAB89
__UpperCamelCase = 0x98BADCFE
__UpperCamelCase = 0x10325476
__UpperCamelCase = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(snake_case ):
__UpperCamelCase = aa
__UpperCamelCase = ba
__UpperCamelCase = ca
__UpperCamelCase = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
__UpperCamelCase = d ^ (b & (c ^ d))
__UpperCamelCase = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
__UpperCamelCase = c ^ (d & (b ^ c))
__UpperCamelCase = (5 * i + 1) % 16
elif i <= 47:
__UpperCamelCase = b ^ c ^ d
__UpperCamelCase = (3 * i + 5) % 16
else:
__UpperCamelCase = c ^ (b | not_aa(snake_case ))
__UpperCamelCase = (7 * i) % 16
__UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32
__UpperCamelCase = d
__UpperCamelCase = c
__UpperCamelCase = b
__UpperCamelCase = sum_aa(snake_case , left_rotate_aa(snake_case , shift_amounts[i] ) )
# Add hashed chunk to running total
__UpperCamelCase = sum_aa(snake_case , snake_case )
__UpperCamelCase = sum_aa(snake_case , snake_case )
__UpperCamelCase = sum_aa(snake_case , snake_case )
__UpperCamelCase = sum_aa(snake_case , snake_case )
__UpperCamelCase = reformat_hex(snake_case ) + reformat_hex(snake_case ) + reformat_hex(snake_case ) + reformat_hex(snake_case )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 328 |
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
lowercase__ : Union[str, Any] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n"
lowercase__ : Optional[Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n"
lowercase__ : Any = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n"
lowercase__ : Optional[int] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n"
lowercase__ : Optional[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE."
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
"""simple docstring"""
def A__ ( self )-> Tuple:
'''simple docstring'''
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' ) ),
'''references''': datasets.Value('''string''' ),
} ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[1, 10, 100] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3.0 )-> Union[str, Any]:
'''simple docstring'''
if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError('''This metric is currently not supported on Windows.''' )
with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE_ ) as executor:
__UpperCamelCase = []
__UpperCamelCase = Counter()
__UpperCamelCase = 0
__UpperCamelCase = defaultdict(SCREAMING_SNAKE_CASE_ )
for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ):
for candidate in candidates:
__UpperCamelCase = candidate + '''\n''' + test_case
__UpperCamelCase = (test_program, timeout, task_id, completion_id[task_id])
__UpperCamelCase = executor.submit(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ )
futures.append(SCREAMING_SNAKE_CASE_ )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = future.result()
results[result["task_id"]].append((result['''completion_id'''], result) )
__UpperCamelCase , __UpperCamelCase = [], []
for result in results.values():
result.sort()
__UpperCamelCase = [r[1]['''passed'''] for r in result]
total.append(len(SCREAMING_SNAKE_CASE_ ) )
correct.append(sum(SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = k
__UpperCamelCase = {F"pass@{k}": estimate_pass_at_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def A_ ( snake_case : Tuple , snake_case : Union[str, Any] , snake_case : List[Any] ) -> Optional[Any]:
'''simple docstring'''
def estimator(snake_case : int , snake_case : int , snake_case : int ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(snake_case , snake_case ):
__UpperCamelCase = itertools.repeat(snake_case , len(snake_case ) )
else:
assert len(snake_case ) == len(snake_case )
__UpperCamelCase = iter(snake_case )
return np.array([estimator(int(snake_case ) , int(snake_case ) , snake_case ) for n, c in zip(snake_case , snake_case )] )
| 328 | 1 |
from __future__ import annotations
from collections.abc import Callable
def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float:
'''simple docstring'''
__UpperCamelCase = x_start
__UpperCamelCase = fnc(snake_case )
__UpperCamelCase = 0.0
for _ in range(snake_case ):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
__UpperCamelCase = (x_end - x_start) / steps + xa
__UpperCamelCase = fnc(snake_case )
area += abs(fxa + fxa ) * (xa - xa) / 2
# Increment step
__UpperCamelCase = xa
__UpperCamelCase = fxa
return area
if __name__ == "__main__":
def A_ ( snake_case : Tuple ) -> Optional[Any]:
'''simple docstring'''
return x**3 + x**2
print("f(x) = x^3 + x^2")
print("The area between the curve, x = -5, x = 5 and the x axis is:")
lowercase__ : List[str] = 1_0
while i <= 1_0_0_0_0_0:
print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}")
i *= 1_0
| 328 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__)
lowercase__ : Optional[Any] = ["names", "prefix"]
lowercase__ : List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"]
lowercase__ : Optional[Any] = ["encoding_errors", "on_bad_lines"]
lowercase__ : List[str] = ["date_format"]
@dataclass
class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ):
"""simple docstring"""
_snake_case = ","
_snake_case = None
_snake_case = "infer"
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = True
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = False
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = True
_snake_case = True
_snake_case = False
_snake_case = True
_snake_case = None
_snake_case = "."
_snake_case = None
_snake_case = '"'
_snake_case = 0
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = True
_snake_case = True
_snake_case = 0
_snake_case = True
_snake_case = False
_snake_case = None
_snake_case = 10000
_snake_case = None
_snake_case = "strict"
_snake_case = "error"
_snake_case = None
def A__ ( self )-> Any:
'''simple docstring'''
if self.delimiter is not None:
__UpperCamelCase = self.delimiter
if self.column_names is not None:
__UpperCamelCase = self.column_names
@property
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = {
'''sep''': self.sep,
'''header''': self.header,
'''names''': self.names,
'''index_col''': self.index_col,
'''usecols''': self.usecols,
'''prefix''': self.prefix,
'''mangle_dupe_cols''': self.mangle_dupe_cols,
'''engine''': self.engine,
'''converters''': self.converters,
'''true_values''': self.true_values,
'''false_values''': self.false_values,
'''skipinitialspace''': self.skipinitialspace,
'''skiprows''': self.skiprows,
'''nrows''': self.nrows,
'''na_values''': self.na_values,
'''keep_default_na''': self.keep_default_na,
'''na_filter''': self.na_filter,
'''verbose''': self.verbose,
'''skip_blank_lines''': self.skip_blank_lines,
'''thousands''': self.thousands,
'''decimal''': self.decimal,
'''lineterminator''': self.lineterminator,
'''quotechar''': self.quotechar,
'''quoting''': self.quoting,
'''escapechar''': self.escapechar,
'''comment''': self.comment,
'''encoding''': self.encoding,
'''dialect''': self.dialect,
'''error_bad_lines''': self.error_bad_lines,
'''warn_bad_lines''': self.warn_bad_lines,
'''skipfooter''': self.skipfooter,
'''doublequote''': self.doublequote,
'''memory_map''': self.memory_map,
'''float_precision''': self.float_precision,
'''chunksize''': self.chunksize,
'''encoding_errors''': self.encoding_errors,
'''on_bad_lines''': self.on_bad_lines,
'''date_format''': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE_ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
_snake_case = CsvConfig
def A__ ( self )-> Any:
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" )
__UpperCamelCase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ):
__UpperCamelCase = data_files
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = [files]
__UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
__UpperCamelCase = []
for split_name, files in data_files.items():
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = [files]
__UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files]
splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) )
return splits
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.Table:
'''simple docstring'''
if self.config.features is not None:
__UpperCamelCase = self.config.features.arrow_schema
if all(not require_storage_cast(SCREAMING_SNAKE_CASE_ ) for feature in self.config.features.values() ):
# cheaper cast
__UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE_ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
__UpperCamelCase = table_cast(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return pa_table
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
__UpperCamelCase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
__UpperCamelCase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE_ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ):
__UpperCamelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , iterator=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = pa.Table.from_pandas(SCREAMING_SNAKE_CASE_ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ )
except ValueError as e:
logger.error(F"Failed to read file '{file}' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}" )
raise
| 328 | 1 |
def A_ ( snake_case : str ) -> int:
'''simple docstring'''
assert column_title.isupper()
__UpperCamelCase = 0
__UpperCamelCase = len(snake_case ) - 1
__UpperCamelCase = 0
while index >= 0:
__UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , snake_case )
answer += value
power += 1
index -= 1
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 328 |
from __future__ import annotations
import math
def A_ ( snake_case : int ) -> bool:
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)]
def A_ ( snake_case : int ) -> list[int]:
'''simple docstring'''
if not isinstance(snake_case , snake_case ):
raise ValueError('''n must be an integer''' )
if n <= 0:
raise ValueError('''n must be >= 0''' )
__UpperCamelCase = []
for num in range(len(snake_case ) ):
__UpperCamelCase = 0
while 2 * i * i <= odd_composites[num]:
__UpperCamelCase = odd_composites[num] - 2 * i * i
if is_prime(snake_case ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(snake_case ) == n:
return list_nums
return []
def A_ ( ) -> int:
'''simple docstring'''
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F"{solution() = }")
| 328 | 1 |
def A_ ( snake_case : int , snake_case : int ) -> int:
'''simple docstring'''
return 1 if input_a == input_a else 0
def A_ ( ) -> None:
'''simple docstring'''
assert xnor_gate(0 , 0 ) == 1
assert xnor_gate(0 , 1 ) == 0
assert xnor_gate(1 , 0 ) == 0
assert xnor_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(xnor_gate(0, 0))
print(xnor_gate(0, 1))
print(xnor_gate(1, 0))
print(xnor_gate(1, 1))
| 328 |
from __future__ import annotations
from collections.abc import Callable
def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float:
'''simple docstring'''
__UpperCamelCase = x_start
__UpperCamelCase = fnc(snake_case )
__UpperCamelCase = 0.0
for _ in range(snake_case ):
# Approximates small segments of curve as linear and solve
# for trapezoidal area
__UpperCamelCase = (x_end - x_start) / steps + xa
__UpperCamelCase = fnc(snake_case )
area += abs(fxa + fxa ) * (xa - xa) / 2
# Increment step
__UpperCamelCase = xa
__UpperCamelCase = fxa
return area
if __name__ == "__main__":
def A_ ( snake_case : Tuple ) -> Optional[Any]:
'''simple docstring'''
return x**3 + x**2
print("f(x) = x^3 + x^2")
print("The area between the curve, x = -5, x = 5 and the x axis is:")
lowercase__ : List[str] = 1_0
while i <= 1_0_0_0_0_0:
print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}")
i *= 1_0
| 328 | 1 |
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0_0_2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , )-> Dict:
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = encoder_seq_length
__UpperCamelCase = decoder_seq_length
# For common tests
__UpperCamelCase = self.decoder_seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_attention_mask
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = d_ff
__UpperCamelCase = relative_attention_num_buckets
__UpperCamelCase = dropout_rate
__UpperCamelCase = initializer_factor
__UpperCamelCase = eos_token_id
__UpperCamelCase = pad_token_id
__UpperCamelCase = decoder_start_token_id
__UpperCamelCase = None
__UpperCamelCase = decoder_layers
def A__ ( self )-> Tuple:
'''simple docstring'''
return TaConfig.from_pretrained('''google/umt5-base''' )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , )-> Optional[int]:
'''simple docstring'''
if attention_mask is None:
__UpperCamelCase = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
__UpperCamelCase = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
__UpperCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE_ )
if decoder_head_mask is None:
__UpperCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE_ )
if cross_attn_head_mask is None:
__UpperCamelCase = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE_ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def A__ ( self )-> Dict:
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
__UpperCamelCase = input_ids.clamp(self.pad_token_id + 1 )
__UpperCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 )
__UpperCamelCase = self.get_config()
__UpperCamelCase = config.num_attention_heads
__UpperCamelCase = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return config, input_dict
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def A__ ( self )-> List[Any]:
'''simple docstring'''
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def A__ ( self )-> str:
'''simple docstring'''
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )-> Dict:
'''simple docstring'''
__UpperCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
__UpperCamelCase = model(
input_ids=SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , )
__UpperCamelCase = model(input_ids=SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = result.last_hidden_state
__UpperCamelCase = result.past_key_values
__UpperCamelCase = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )-> int:
'''simple docstring'''
__UpperCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE_ ).get_decoder().to(SCREAMING_SNAKE_CASE_ ).eval()
# first forward pass
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) + 1 )
__UpperCamelCase , __UpperCamelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__UpperCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
__UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ )['''last_hidden_state''']
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ )['''last_hidden_state''']
# select random slice
__UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCamelCase = output_from_no_past[:, -1, random_slice_idx].detach()
__UpperCamelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )-> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ).half().eval()
__UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE_ ).any().item() )
@require_torch
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
_snake_case = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
_snake_case = (UMTaForConditionalGeneration,) if is_torch_available() else ()
_snake_case = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
_snake_case = True
_snake_case = False
_snake_case = False
_snake_case = True
_snake_case = True
# The small UMT5 model needs higher percentages for CPU/MP tests
_snake_case = [0.8, 0.9]
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def A__ ( self )-> List[Any]:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
__UpperCamelCase = UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE_ )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
SCREAMING_SNAKE_CASE_ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"{tmpdirname}/t5_test.onnx" , export_params=SCREAMING_SNAKE_CASE_ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
__UpperCamelCase = config_and_inputs[0]
__UpperCamelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ).eval()
model.to(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE_ ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE_ ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE_ ),
}
for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE_ , head_masking.items() ):
__UpperCamelCase = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
__UpperCamelCase = torch.ones(
config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE_ , return_dict_in_generate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
# We check the state of decoder_attentions and cross_attentions just from the last step
__UpperCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def A__ ( self )-> Any:
'''simple docstring'''
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def A__ ( self )-> str:
'''simple docstring'''
__UpperCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=SCREAMING_SNAKE_CASE_ , legacy=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
__UpperCamelCase = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE_ ).input_ids
# fmt: off
__UpperCamelCase = torch.tensor(
[
[ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = model.generate(input_ids.to(SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
__UpperCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
| 328 |
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : int = logging.get_logger(__name__)
lowercase__ : List[str] = ["model.decoder.embed_positions.weights"]
def A_ ( snake_case : Any ) -> List[Any]:
'''simple docstring'''
if "emb" in name:
__UpperCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' )
if "transformer" in name:
__UpperCamelCase = name.replace('''transformer''' , '''model.decoder''' )
if "cross_attention" in name:
__UpperCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' )
if "linear1" in name:
__UpperCamelCase = name.replace('''linear1''' , '''fc1''' )
if "linear2" in name:
__UpperCamelCase = name.replace('''linear2''' , '''fc2''' )
if "norm1" in name:
__UpperCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' )
if "norm_cross" in name:
__UpperCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' )
if "norm2" in name:
__UpperCamelCase = name.replace('''norm2''' , '''final_layer_norm''' )
if "out_norm" in name:
__UpperCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' )
if "linears" in name:
__UpperCamelCase = name.replace('''linears''' , '''lm_heads''' )
if "condition_provider.conditioners.description.output_proj" in name:
__UpperCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' )
return name
def A_ ( snake_case : OrderedDict , snake_case : int ) -> Tuple[Dict, Dict]:
'''simple docstring'''
__UpperCamelCase = list(state_dict.keys() )
__UpperCamelCase = {}
for key in keys:
__UpperCamelCase = state_dict.pop(snake_case )
__UpperCamelCase = rename_keys(snake_case )
if "in_proj_weight" in key:
# split fused qkv proj
__UpperCamelCase = val[:hidden_size, :]
__UpperCamelCase = val[hidden_size : 2 * hidden_size, :]
__UpperCamelCase = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
__UpperCamelCase = val
else:
__UpperCamelCase = val
return state_dict, enc_dec_proj_state_dict
def A_ ( snake_case : str ) -> MusicgenDecoderConfig:
'''simple docstring'''
if checkpoint == "small":
# default config values
__UpperCamelCase = 1024
__UpperCamelCase = 24
__UpperCamelCase = 16
elif checkpoint == "medium":
__UpperCamelCase = 1536
__UpperCamelCase = 48
__UpperCamelCase = 24
elif checkpoint == "large":
__UpperCamelCase = 2048
__UpperCamelCase = 48
__UpperCamelCase = 32
else:
raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." )
__UpperCamelCase = MusicgenDecoderConfig(
hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , )
return config
@torch.no_grad()
def A_ ( snake_case : Any , snake_case : str=None , snake_case : Any=None , snake_case : Union[str, Any]="cpu" ) -> List[Any]:
'''simple docstring'''
__UpperCamelCase = MusicGen.get_pretrained(snake_case , device=snake_case )
__UpperCamelCase = decoder_config_from_checkpoint(snake_case )
__UpperCamelCase = fairseq_model.lm.state_dict()
__UpperCamelCase , __UpperCamelCase = rename_state_dict(
snake_case , hidden_size=decoder_config.hidden_size )
__UpperCamelCase = TaEncoderModel.from_pretrained('''t5-base''' )
__UpperCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' )
__UpperCamelCase = MusicgenForCausalLM(snake_case ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
__UpperCamelCase , __UpperCamelCase = decoder.load_state_dict(snake_case , strict=snake_case )
for key in missing_keys.copy():
if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(snake_case )
if len(snake_case ) > 0:
raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" )
if len(snake_case ) > 0:
raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" )
# init the composite model
__UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(snake_case )
# check we can do a forward pass
__UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
__UpperCamelCase = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
__UpperCamelCase = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits
if logits.shape != (8, 1, 2048):
raise ValueError('''Incorrect shape for logits''' )
# now construct the processor
__UpperCamelCase = AutoTokenizer.from_pretrained('''t5-base''' )
__UpperCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' )
__UpperCamelCase = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case )
# set the appropriate bos/pad token ids
__UpperCamelCase = 2048
__UpperCamelCase = 2048
# set other default generation config params
__UpperCamelCase = int(30 * audio_encoder.config.frame_rate )
__UpperCamelCase = True
__UpperCamelCase = 3.0
if pytorch_dump_folder is not None:
Path(snake_case ).mkdir(exist_ok=snake_case )
logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" )
model.save_pretrained(snake_case )
processor.save_pretrained(snake_case )
if repo_id:
logger.info(f"Pushing model {checkpoint} to {repo_id}" )
model.push_to_hub(snake_case )
processor.push_to_hub(snake_case )
if __name__ == "__main__":
lowercase__ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
lowercase__ : Tuple = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 328 | 1 |
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
lowercase__ : Tuple = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def __init__( self , *SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ )-> List[Any]:
'''simple docstring'''
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = eval_examples
__UpperCamelCase = post_process_function
__UpperCamelCase = quant_trainer_args
__UpperCamelCase = 128 # default number of calibration samples
def A__ ( self , SCREAMING_SNAKE_CASE_=None )-> Optional[int]:
'''simple docstring'''
if calib_dataset is None and self.calib_dataset is None:
raise ValueError('''Trainer: calibration requires an calib_dataset.''' )
__UpperCamelCase = calib_dataset if calib_dataset is not None else self.calib_dataset
__UpperCamelCase = self._remove_unused_columns(SCREAMING_SNAKE_CASE_ , description='''Calibration''' )
return DataLoader(
SCREAMING_SNAKE_CASE_ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=SCREAMING_SNAKE_CASE_ , )
def A__ ( self , SCREAMING_SNAKE_CASE_=None )-> Any:
'''simple docstring'''
__UpperCamelCase = self.train_dataset if calib_dataset is None else calib_dataset
__UpperCamelCase = self.get_calib_dataloader(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.model
quant_trainer.configure_model(SCREAMING_SNAKE_CASE_ , self.quant_trainer_args , calib=SCREAMING_SNAKE_CASE_ )
model.eval()
quant_trainer.enable_calibration(SCREAMING_SNAKE_CASE_ )
logger.info('''***** Running calibration *****''' )
logger.info(F" Num examples = {self.calib_num}" )
logger.info(F" Batch size = {calib_dataloader.batch_size}" )
for step, inputs in enumerate(SCREAMING_SNAKE_CASE_ ):
# Prediction step
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.prediction_step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prediction_loss_only=SCREAMING_SNAKE_CASE_ )
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(SCREAMING_SNAKE_CASE_ , self.quant_trainer_args )
__UpperCamelCase = model
def A__ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = "eval" )-> str:
'''simple docstring'''
__UpperCamelCase = self.eval_dataset if eval_dataset is None else eval_dataset
__UpperCamelCase = self.get_eval_dataloader(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
__UpperCamelCase = self.compute_metrics
__UpperCamelCase = None
__UpperCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__UpperCamelCase = eval_loop(
SCREAMING_SNAKE_CASE_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=SCREAMING_SNAKE_CASE_ , )
finally:
__UpperCamelCase = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
__UpperCamelCase = self.post_process_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , output.predictions )
__UpperCamelCase = self.compute_metrics(SCREAMING_SNAKE_CASE_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"{metric_key_prefix}_" ):
__UpperCamelCase = metrics.pop(SCREAMING_SNAKE_CASE_ )
self.log(SCREAMING_SNAKE_CASE_ )
else:
__UpperCamelCase = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
__UpperCamelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , SCREAMING_SNAKE_CASE_ )
return metrics
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = "test" )-> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = self.get_test_dataloader(SCREAMING_SNAKE_CASE_ )
# Temporarily disable metric computation, we will do it in the loop here.
__UpperCamelCase = self.compute_metrics
__UpperCamelCase = None
__UpperCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__UpperCamelCase = eval_loop(
SCREAMING_SNAKE_CASE_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=SCREAMING_SNAKE_CASE_ , )
finally:
__UpperCamelCase = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
__UpperCamelCase = self.post_process_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , output.predictions , '''predict''' )
__UpperCamelCase = self.compute_metrics(SCREAMING_SNAKE_CASE_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"{metric_key_prefix}_" ):
__UpperCamelCase = metrics.pop(SCREAMING_SNAKE_CASE_ )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_="./" )-> str:
'''simple docstring'''
__UpperCamelCase = self.eval_dataset
__UpperCamelCase = self.get_eval_dataloader(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = next(iter(SCREAMING_SNAKE_CASE_ ) )
# saving device - to make it consistent
__UpperCamelCase = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' )
# convert to tuple
__UpperCamelCase = tuple(v.to(SCREAMING_SNAKE_CASE_ ) for k, v in batch.items() )
logger.info('''Converting model to be onnx compatible''' )
from pytorch_quantization.nn import TensorQuantizer
__UpperCamelCase = True
__UpperCamelCase = self.model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
model.float()
__UpperCamelCase = model.module if hasattr(SCREAMING_SNAKE_CASE_ , '''module''' ) else model
quant_trainer.configure_model(SCREAMING_SNAKE_CASE_ , self.quant_trainer_args )
__UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''model.onnx''' )
logger.info(F"exporting model to {output_model_file}" )
__UpperCamelCase = {0: '''batch_size''', 1: '''seq_len'''}
torch.onnx.export(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , export_params=SCREAMING_SNAKE_CASE_ , opset_version=13 , do_constant_folding=SCREAMING_SNAKE_CASE_ , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={
'''input_ids''': axes,
'''attention_mask''': axes,
'''token_type_ids''': axes,
'''output_start_logits''': axes,
'''output_end_logits''': axes,
} , verbose=SCREAMING_SNAKE_CASE_ , )
logger.info('''onnx export finished''' )
| 328 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing the experiment tracking capability,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowercase__ : List[str] = 1_6
lowercase__ : str = 3_2
def A_ ( snake_case : Accelerator , snake_case : int = 16 ) -> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' )
__UpperCamelCase = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(snake_case : Union[str, Any] ):
# max_length=None => use the model max length (it's actually the default)
__UpperCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
__UpperCamelCase = datasets.map(
snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__UpperCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(snake_case : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
__UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
__UpperCamelCase = 16
elif accelerator.mixed_precision != "no":
__UpperCamelCase = 8
else:
__UpperCamelCase = None
return tokenizer.pad(
snake_case , padding='''longest''' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='''pt''' , )
# Instantiate dataloaders.
__UpperCamelCase = DataLoader(
tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case )
__UpperCamelCase = DataLoader(
tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowercase__ : Union[str, Any] = mocked_dataloaders # noqa: F811
def A_ ( snake_case : List[str] , snake_case : List[Any] ) -> Tuple:
'''simple docstring'''
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case ) == "1":
__UpperCamelCase = 2
# Initialize Accelerator
# New Code #
# We pass in "all" to `log_with` to grab all available trackers in the environment
# Note: If using a custom `Tracker` class, should be passed in here such as:
# >>> log_with = ["all", MyCustomTrackerClassInstance()]
if args.with_tracking:
__UpperCamelCase = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir )
else:
__UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__UpperCamelCase = config['''lr''']
__UpperCamelCase = int(config['''num_epochs'''] )
__UpperCamelCase = int(config['''seed'''] )
__UpperCamelCase = int(config['''batch_size'''] )
set_seed(snake_case )
__UpperCamelCase , __UpperCamelCase = get_dataloaders(snake_case , snake_case )
__UpperCamelCase = evaluate.load('''glue''' , '''mrpc''' )
# If the batch size is too big we use gradient accumulation
__UpperCamelCase = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
__UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE
__UpperCamelCase = MAX_GPU_BATCH_SIZE
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__UpperCamelCase = model.to(accelerator.device )
# Instantiate optimizer
__UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case )
# Instantiate scheduler
__UpperCamelCase = get_linear_schedule_with_warmup(
optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(
snake_case , snake_case , snake_case , snake_case , snake_case )
# New Code #
# We need to initialize the trackers we use. Overall configurations can also be stored
if args.with_tracking:
__UpperCamelCase = os.path.split(snake_case )[-1].split('''.''' )[0]
accelerator.init_trackers(snake_case , snake_case )
# Now we train the model
for epoch in range(snake_case ):
model.train()
# New Code #
# For our tracking example, we will log the total loss of each epoch
if args.with_tracking:
__UpperCamelCase = 0
for step, batch in enumerate(snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
__UpperCamelCase = model(**snake_case )
__UpperCamelCase = outputs.loss
# New Code #
if args.with_tracking:
total_loss += loss.detach().float()
__UpperCamelCase = loss / gradient_accumulation_steps
accelerator.backward(snake_case )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True` (the default).
batch.to(accelerator.device )
with torch.no_grad():
__UpperCamelCase = model(**snake_case )
__UpperCamelCase = outputs.logits.argmax(dim=-1 )
__UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=snake_case , references=snake_case , )
__UpperCamelCase = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"epoch {epoch}:" , snake_case )
# New Code #
# To actually log, we call `Accelerator.log`
# The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int`
if args.with_tracking:
accelerator.log(
{
'''accuracy''': eval_metric['''accuracy'''],
'''f1''': eval_metric['''f1'''],
'''train_loss''': total_loss.item() / len(snake_case ),
'''epoch''': epoch,
} , step=snake_case , )
# New Code #
# When a run is finished, you should call `accelerator.end_training()`
# to close all of the open trackers
if args.with_tracking:
accelerator.end_training()
def A_ ( ) -> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=snake_case , default=snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
parser.add_argument(
'''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , )
parser.add_argument(
'''--project_dir''' , type=snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , )
__UpperCamelCase = parser.parse_args()
__UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(snake_case , snake_case )
if __name__ == "__main__":
main()
| 328 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
lowercase__ : int = "Create a default config file for Accelerate with only a few flags set."
def A_ ( snake_case : int="no" , snake_case : str = default_json_config_file , snake_case : bool = False ) -> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = Path(snake_case )
path.parent.mkdir(parents=snake_case , exist_ok=snake_case )
if path.exists():
print(
f"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`." )
return False
__UpperCamelCase = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
f"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}" )
__UpperCamelCase = {
'''compute_environment''': '''LOCAL_MACHINE''',
'''mixed_precision''': mixed_precision,
}
if torch.cuda.is_available():
__UpperCamelCase = torch.cuda.device_count()
__UpperCamelCase = num_gpus
__UpperCamelCase = False
if num_gpus > 1:
__UpperCamelCase = '''MULTI_GPU'''
else:
__UpperCamelCase = '''NO'''
elif is_xpu_available() and use_xpu:
__UpperCamelCase = torch.xpu.device_count()
__UpperCamelCase = num_xpus
__UpperCamelCase = False
if num_xpus > 1:
__UpperCamelCase = '''MULTI_XPU'''
else:
__UpperCamelCase = '''NO'''
elif is_npu_available():
__UpperCamelCase = torch.npu.device_count()
__UpperCamelCase = num_npus
__UpperCamelCase = False
if num_npus > 1:
__UpperCamelCase = '''MULTI_NPU'''
else:
__UpperCamelCase = '''NO'''
else:
__UpperCamelCase = 0
__UpperCamelCase = True
__UpperCamelCase = 1
__UpperCamelCase = '''NO'''
__UpperCamelCase = ClusterConfig(**snake_case )
config.to_json_file(snake_case )
return path
def A_ ( snake_case : Dict , snake_case : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
__UpperCamelCase = parser.add_parser('''default''' , parents=snake_case , help=snake_case , formatter_class=snake_case )
parser.add_argument(
'''--config_file''' , default=snake_case , help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) , dest='''save_location''' , )
parser.add_argument(
'''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=snake_case , help='''Whether or not to use mixed precision training. '''
'''Choose between FP16 and BF16 (bfloat16) training. '''
'''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , )
parser.set_defaults(func=snake_case )
return parser
def A_ ( snake_case : Optional[int] ) -> int:
'''simple docstring'''
__UpperCamelCase = write_basic_config(args.mixed_precision , args.save_location )
if config_file:
print(f"accelerate configuration saved at {config_file}" )
| 328 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : Union[str, Any] = {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json",
}
# fmt: off
lowercase__ : str = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5,
7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7,
1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1,
4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6,
1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1,
1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9,
3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1
]
lowercase__ : str = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3,
8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7,
3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7,
7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3,
1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5,
2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5,
4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2
]
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = 'whisper'
_snake_case = ['past_key_values']
_snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , SCREAMING_SNAKE_CASE_=51865 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=50257 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1500 , SCREAMING_SNAKE_CASE_=448 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[220, 50256] , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=7 , **SCREAMING_SNAKE_CASE_ , )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = vocab_size
__UpperCamelCase = num_mel_bins
__UpperCamelCase = d_model
__UpperCamelCase = encoder_layers
__UpperCamelCase = encoder_attention_heads
__UpperCamelCase = decoder_layers
__UpperCamelCase = decoder_attention_heads
__UpperCamelCase = decoder_ffn_dim
__UpperCamelCase = encoder_ffn_dim
__UpperCamelCase = dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = activation_dropout
__UpperCamelCase = activation_function
__UpperCamelCase = init_std
__UpperCamelCase = encoder_layerdrop
__UpperCamelCase = decoder_layerdrop
__UpperCamelCase = use_cache
__UpperCamelCase = encoder_layers
__UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True
__UpperCamelCase = max_source_positions
__UpperCamelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
__UpperCamelCase = classifier_proj_size
__UpperCamelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__UpperCamelCase = apply_spec_augment
__UpperCamelCase = mask_time_prob
__UpperCamelCase = mask_time_length
__UpperCamelCase = mask_time_min_masks
__UpperCamelCase = mask_feature_prob
__UpperCamelCase = mask_feature_length
__UpperCamelCase = mask_feature_min_masks
__UpperCamelCase = median_filter_width
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
@property
def A__ ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
__UpperCamelCase = OrderedDict(
[
('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}),
] )
if self.use_past:
__UpperCamelCase = {0: '''batch'''}
else:
__UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' )
return common_inputs
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 22050 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 220 , )-> Mapping[str, Any]:
'''simple docstring'''
__UpperCamelCase = OrderedDict()
__UpperCamelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , )
__UpperCamelCase = encoder_inputs['''input_features'''].shape[2]
__UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length
__UpperCamelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = encoder_inputs.pop('''input_features''' )
__UpperCamelCase = decoder_inputs.pop('''decoder_input_ids''' )
if "past_key_values" in decoder_inputs:
__UpperCamelCase = decoder_inputs.pop('''past_key_values''' )
return dummy_inputs
@property
def A__ ( self )-> float:
'''simple docstring'''
return 1E-3
| 328 | 1 |
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@parameterized.expand([(None,), ('''foo.json''',)] )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
__UpperCamelCase = GenerationConfig(
do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(SCREAMING_SNAKE_CASE_ , config_name=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = GenerationConfig.from_pretrained(SCREAMING_SNAKE_CASE_ , config_name=SCREAMING_SNAKE_CASE_ )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , SCREAMING_SNAKE_CASE_ )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50 )
self.assertEqual(loaded_config.max_length , 20 )
self.assertEqual(loaded_config.max_time , SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> List[str]:
'''simple docstring'''
__UpperCamelCase = AutoConfig.from_pretrained('''gpt2''' )
__UpperCamelCase = GenerationConfig.from_model_config(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = GenerationConfig()
__UpperCamelCase = {
'''max_new_tokens''': 1024,
'''foo''': '''bar''',
}
__UpperCamelCase = copy.deepcopy(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = generation_config.update(**SCREAMING_SNAKE_CASE_ )
# update_kwargs was not modified (no side effects)
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1024 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(SCREAMING_SNAKE_CASE_ , {'''foo''': '''bar'''} )
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = GenerationConfig()
__UpperCamelCase = '''bar'''
with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir:
generation_config.save_pretrained(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = GenerationConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , '''bar''' )
__UpperCamelCase = GenerationConfig.from_model_config(SCREAMING_SNAKE_CASE_ )
assert not hasattr(SCREAMING_SNAKE_CASE_ , '''foo''' ) # no new kwargs should be initialized if from config
def A__ ( self )-> str:
'''simple docstring'''
__UpperCamelCase = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , SCREAMING_SNAKE_CASE_ )
self.assertEqual(default_config.num_beams , 1 )
__UpperCamelCase = GenerationConfig(
do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , SCREAMING_SNAKE_CASE_ )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = GenerationConfig.from_pretrained(SCREAMING_SNAKE_CASE_ , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , SCREAMING_SNAKE_CASE_ )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def A__ ( cls )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = TOKEN
HfFolder.save_token(SCREAMING_SNAKE_CASE_ )
@classmethod
def A__ ( cls )-> List[str]:
'''simple docstring'''
try:
delete_repo(token=cls._token , repo_id='''test-generation-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' )
except HTTPError:
pass
def A__ ( self )-> str:
'''simple docstring'''
__UpperCamelCase = GenerationConfig(
do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''test-generation-config''' , use_auth_token=self._token )
__UpperCamelCase = GenerationConfig.from_pretrained(F"{USER}/test-generation-config" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-generation-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
SCREAMING_SNAKE_CASE_ , repo_id='''test-generation-config''' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token )
__UpperCamelCase = GenerationConfig.from_pretrained(F"{USER}/test-generation-config" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def A__ ( self )-> int:
'''simple docstring'''
__UpperCamelCase = GenerationConfig(
do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token )
__UpperCamelCase = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
SCREAMING_SNAKE_CASE_ , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token )
__UpperCamelCase = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
| 328 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : Any = logging.get_logger(__name__)
lowercase__ : Tuple = {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = 'xlnet'
_snake_case = ['mems']
_snake_case = {
'n_token': 'vocab_size', # Backward compatibility
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , SCREAMING_SNAKE_CASE_=32000 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="bi" , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=-1 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="tanh" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , )-> List[str]:
'''simple docstring'''
__UpperCamelCase = vocab_size
__UpperCamelCase = d_model
__UpperCamelCase = n_layer
__UpperCamelCase = n_head
if d_model % n_head != 0:
raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" )
__UpperCamelCase = d_model // n_head
__UpperCamelCase = ff_activation
__UpperCamelCase = d_inner
__UpperCamelCase = untie_r
__UpperCamelCase = attn_type
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = dropout
__UpperCamelCase = mem_len
__UpperCamelCase = reuse_len
__UpperCamelCase = bi_data
__UpperCamelCase = clamp_len
__UpperCamelCase = same_length
__UpperCamelCase = summary_type
__UpperCamelCase = summary_use_proj
__UpperCamelCase = summary_activation
__UpperCamelCase = summary_last_dropout
__UpperCamelCase = start_n_top
__UpperCamelCase = end_n_top
__UpperCamelCase = bos_token_id
__UpperCamelCase = pad_token_id
__UpperCamelCase = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'''
''' instead.''' , SCREAMING_SNAKE_CASE_ , )
__UpperCamelCase = kwargs['''use_cache''']
__UpperCamelCase = use_mems_eval
__UpperCamelCase = use_mems_train
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
@property
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." )
return -1
@max_position_embeddings.setter
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]:
'''simple docstring'''
raise NotImplementedError(
F"The model {self.model_type} is one of the few models that has no sequence length limit." )
| 328 | 1 |
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : List[str] = logging.get_logger(__name__)
def A_ ( snake_case : Optional[Any] ) -> Dict:
'''simple docstring'''
__UpperCamelCase = MobileNetVaConfig(layer_norm_eps=0.001 )
if "_quant" in model_name:
raise ValueError('''Quantized models are not supported.''' )
__UpperCamelCase = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , snake_case )
if matches:
__UpperCamelCase = float(matches[1] )
__UpperCamelCase = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
__UpperCamelCase = 1001
__UpperCamelCase = '''imagenet-1k-id2label.json'''
__UpperCamelCase = '''huggingface/label-files'''
__UpperCamelCase = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='''dataset''' ) , '''r''' ) )
__UpperCamelCase = {int(snake_case ) + 1: v for k, v in idalabel.items()}
__UpperCamelCase = '''background'''
__UpperCamelCase = idalabel
__UpperCamelCase = {v: k for k, v in idalabel.items()}
return config
def A_ ( ) -> int:
'''simple docstring'''
__UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__UpperCamelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw )
return im
@torch.no_grad()
def A_ ( snake_case : int , snake_case : Dict , snake_case : List[str] , snake_case : Optional[int]=False ) -> int:
'''simple docstring'''
__UpperCamelCase = get_mobilenet_va_config(snake_case )
# Load 🤗 model
__UpperCamelCase = MobileNetVaForImageClassification(snake_case ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(snake_case , snake_case , snake_case )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
__UpperCamelCase = MobileNetVaImageProcessor(
crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , )
__UpperCamelCase = image_processor(images=prepare_img() , return_tensors='''pt''' )
__UpperCamelCase = model(**snake_case )
__UpperCamelCase = outputs.logits
assert logits.shape == (1, 1001)
if model_name == "mobilenet_v1_1.0_224":
__UpperCamelCase = torch.tensor([-4.1739, -1.1233, 3.1205] )
elif model_name == "mobilenet_v1_0.75_192":
__UpperCamelCase = torch.tensor([-3.9440, -2.3141, -0.3333] )
else:
__UpperCamelCase = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3] , snake_case , atol=1e-4 )
Path(snake_case ).mkdir(exist_ok=snake_case )
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(snake_case )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(snake_case )
if push_to_hub:
print('''Pushing to the hub...''' )
__UpperCamelCase = '''google/''' + model_name
image_processor.push_to_hub(snake_case )
model.push_to_hub(snake_case )
if __name__ == "__main__":
lowercase__ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="mobilenet_v1_1.0_224",
type=str,
help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.",
)
parser.add_argument(
"--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowercase__ : Tuple = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 328 |
from typing import Any
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = data
__UpperCamelCase = None
def __repr__( self )-> str:
'''simple docstring'''
return F"Node({self.data})"
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = None
def __iter__( self )-> Any:
'''simple docstring'''
__UpperCamelCase = self.head
while node:
yield node.data
__UpperCamelCase = node.next
def __len__( self )-> int:
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self )-> str:
'''simple docstring'''
return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] )
def __getitem__( self , SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('''list index out of range.''' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('''list index out of range.''' )
__UpperCamelCase = self.head
for _ in range(SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = current.next
__UpperCamelCase = data
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
self.insert_nth(0 , SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('''list index out of range''' )
__UpperCamelCase = Node(SCREAMING_SNAKE_CASE_ )
if self.head is None:
__UpperCamelCase = new_node
elif index == 0:
__UpperCamelCase = self.head # link new_node to head
__UpperCamelCase = new_node
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = new_node
def A__ ( self )-> None: # print every node data
'''simple docstring'''
print(self )
def A__ ( self )-> Any:
'''simple docstring'''
return self.delete_nth(0 )
def A__ ( self )-> Any: # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def A__ ( self , SCREAMING_SNAKE_CASE_ = 0 )-> Any:
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('''List index out of range.''' )
__UpperCamelCase = self.head # default first node
if index == 0:
__UpperCamelCase = self.head.next
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next.next
return delete_node.data
def A__ ( self )-> bool:
'''simple docstring'''
return self.head is None
def A__ ( self )-> None:
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = self.head
while current:
# Store the current node's next node.
__UpperCamelCase = current.next
# Make the current node's next point backwards
__UpperCamelCase = prev
# Make the previous node be the current node
__UpperCamelCase = current
# Make the current node the next node (to progress iteration)
__UpperCamelCase = next_node
# Return prev in order to put the head at the end
__UpperCamelCase = prev
def A_ ( ) -> None:
'''simple docstring'''
__UpperCamelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(snake_case ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(snake_case ) == i
linked_list.insert_nth(snake_case , i + 1 )
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(snake_case ) == 9
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
__UpperCamelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(-8 , 1 ) )
def A_ ( ) -> None:
'''simple docstring'''
__UpperCamelCase = [
-9,
100,
Node(77345112 ),
'''dlrow olleH''',
7,
5555,
0,
-192.55555,
'''Hello, world!''',
77.9,
Node(10 ),
None,
None,
12.20,
]
__UpperCamelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(snake_case )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
__UpperCamelCase = linked_list.delete_head()
assert result == -9
assert (
str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
__UpperCamelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
__UpperCamelCase = linked_list.delete_nth(10 )
assert result is None
assert (
str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('''Hello again, world!''' ) )
assert (
str(snake_case )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(snake_case )
assert (
str(snake_case )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(snake_case )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def A_ ( ) -> Any:
'''simple docstring'''
from doctest import testmod
testmod()
__UpperCamelCase = LinkedList()
linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() )
linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() )
print('''\nPrint list:''' )
linked_list.print_list()
linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() )
linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() )
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nDelete head''' )
linked_list.delete_head()
print('''Delete tail''' )
linked_list.delete_tail()
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nReverse linked list''' )
linked_list.reverse()
print('''\nPrint list:''' )
linked_list.print_list()
print('''\nString representation of linked list:''' )
print(snake_case )
print('''\nReading/changing Node data using indexing:''' )
print(f"Element at Position 1: {linked_list[1]}" )
__UpperCamelCase = input('''Enter New Value: ''' ).strip()
print('''New list:''' )
print(snake_case )
print(f"length of linked_list is : {len(snake_case )}" )
if __name__ == "__main__":
main()
| 328 | 1 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def A_ ( snake_case : Dict , snake_case : Tuple , snake_case : List[Any] , snake_case : Any ) -> int:
'''simple docstring'''
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), f"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), f"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"
def A_ ( snake_case : Optional[Any] , snake_case : int , snake_case : List[Any] , snake_case : str , snake_case : List[Any]=True ) -> Optional[Any]:
'''simple docstring'''
model.train()
__UpperCamelCase = model(snake_case )
__UpperCamelCase = F.mse_loss(snake_case , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(snake_case )
def A_ ( snake_case : Optional[Any] , snake_case : str=False ) -> Tuple:
'''simple docstring'''
set_seed(42 )
__UpperCamelCase = RegressionModel()
__UpperCamelCase = deepcopy(snake_case )
__UpperCamelCase = RegressionDataset(length=80 )
__UpperCamelCase = DataLoader(snake_case , batch_size=16 )
model.to(accelerator.device )
if sched:
__UpperCamelCase = AdamW(params=model.parameters() , lr=1e-3 )
__UpperCamelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 )
__UpperCamelCase = LambdaLR(snake_case , lr_lambda=lambda snake_case : epoch**0.65 )
__UpperCamelCase = LambdaLR(snake_case , lr_lambda=lambda snake_case : epoch**0.65 )
# Make a copy of `model`
if sched:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare(snake_case , snake_case , snake_case , snake_case )
else:
__UpperCamelCase , __UpperCamelCase = accelerator.prepare(snake_case , snake_case )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def A_ ( snake_case : str ) -> List[str]:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = get_training_setup(snake_case )
# Use a single batch
__UpperCamelCase , __UpperCamelCase = next(iter(snake_case ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__UpperCamelCase , __UpperCamelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCamelCase , __UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(snake_case , snake_case , snake_case , snake_case )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(snake_case ):
step_model(snake_case , snake_case , snake_case , snake_case )
else:
# Sync grads
step_model(snake_case , snake_case , snake_case , snake_case )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(snake_case , snake_case , snake_case , snake_case )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
__UpperCamelCase = ddp_input[torch.randperm(len(snake_case ) )]
def A_ ( snake_case : str ) -> Any:
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = get_training_setup(snake_case )
# Use a single batch
__UpperCamelCase , __UpperCamelCase = next(iter(snake_case ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
__UpperCamelCase , __UpperCamelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCamelCase , __UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(snake_case , snake_case , snake_case , snake_case )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(snake_case ):
step_model(snake_case , snake_case , snake_case , snake_case )
else:
# Sync grads
step_model(snake_case , snake_case , snake_case , snake_case )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
__UpperCamelCase = ddp_input[torch.randperm(len(snake_case ) )]
def A_ ( snake_case : Optional[int]=False , snake_case : Tuple=False ) -> Tuple:
'''simple docstring'''
__UpperCamelCase = Accelerator(
split_batches=snake_case , dispatch_batches=snake_case , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = get_training_setup(snake_case )
for iteration, batch in enumerate(snake_case ):
__UpperCamelCase , __UpperCamelCase = batch.values()
# Gather the distributed inputs and targs for the base model
__UpperCamelCase , __UpperCamelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCamelCase , __UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(snake_case , snake_case , snake_case , snake_case , snake_case )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(snake_case ):
step_model(snake_case , snake_case , snake_case , snake_case )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(snake_case ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
__UpperCamelCase = ddp_input[torch.randperm(len(snake_case ) )]
GradientState._reset_state()
def A_ ( snake_case : str=False , snake_case : Tuple=False ) -> List[Any]:
'''simple docstring'''
__UpperCamelCase = Accelerator(
split_batches=snake_case , dispatch_batches=snake_case , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = get_training_setup(snake_case , snake_case )
for iteration, batch in enumerate(snake_case ):
__UpperCamelCase , __UpperCamelCase = batch.values()
# Gather the distributed inputs and targs for the base model
__UpperCamelCase , __UpperCamelCase = accelerator.gather((ddp_input, ddp_target) )
__UpperCamelCase , __UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(snake_case , snake_case , snake_case , snake_case , snake_case )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(snake_case )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(snake_case ):
step_model(snake_case , snake_case , snake_case , snake_case )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n"
__UpperCamelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(snake_case ))
if accelerator.num_processes > 1:
check_model_parameters(snake_case , snake_case , snake_case , snake_case )
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
GradientState._reset_state()
def A_ ( ) -> int:
'''simple docstring'''
__UpperCamelCase = Accelerator()
__UpperCamelCase = RegressionDataset(length=80 )
__UpperCamelCase = DataLoader(snake_case , batch_size=16 )
__UpperCamelCase = RegressionDataset(length=96 )
__UpperCamelCase = DataLoader(snake_case , batch_size=16 )
__UpperCamelCase , __UpperCamelCase = accelerator.prepare(snake_case , snake_case )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(snake_case ):
assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case )
if iteration < len(snake_case ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(snake_case ):
assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case )
if batch_num < len(snake_case ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def A_ ( ) -> List[Any]:
'''simple docstring'''
__UpperCamelCase = Accelerator()
__UpperCamelCase = accelerator.state
if state.local_process_index == 0:
print('''**Test `accumulate` gradient accumulation with dataloader break**''' )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print('''**Test NOOP `no_sync` context manager**''' )
test_noop_sync(snake_case )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print('''**Test Distributed `no_sync` context manager**''' )
test_distributed_sync(snake_case )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation, ''' , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , )
test_gradient_accumulation(snake_case , snake_case )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , )
test_gradient_accumulation_with_opt_and_scheduler(snake_case , snake_case )
def A_ ( snake_case : Tuple ) -> int:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 328 |
import math
def A_ ( snake_case : int ) -> bool:
'''simple docstring'''
return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num
def A_ ( snake_case : int ) -> bool:
'''simple docstring'''
__UpperCamelCase = 0
__UpperCamelCase = n
while left <= right:
__UpperCamelCase = (left + right) // 2
if mid**2 == n:
return True
elif mid**2 > n:
__UpperCamelCase = mid - 1
else:
__UpperCamelCase = mid + 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 328 | 1 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__)
lowercase__ : Optional[Any] = ["names", "prefix"]
lowercase__ : List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"]
lowercase__ : Optional[Any] = ["encoding_errors", "on_bad_lines"]
lowercase__ : List[str] = ["date_format"]
@dataclass
class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ):
"""simple docstring"""
_snake_case = ","
_snake_case = None
_snake_case = "infer"
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = True
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = False
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = True
_snake_case = True
_snake_case = False
_snake_case = True
_snake_case = None
_snake_case = "."
_snake_case = None
_snake_case = '"'
_snake_case = 0
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = None
_snake_case = True
_snake_case = True
_snake_case = 0
_snake_case = True
_snake_case = False
_snake_case = None
_snake_case = 10000
_snake_case = None
_snake_case = "strict"
_snake_case = "error"
_snake_case = None
def A__ ( self )-> Any:
'''simple docstring'''
if self.delimiter is not None:
__UpperCamelCase = self.delimiter
if self.column_names is not None:
__UpperCamelCase = self.column_names
@property
def A__ ( self )-> Any:
'''simple docstring'''
__UpperCamelCase = {
'''sep''': self.sep,
'''header''': self.header,
'''names''': self.names,
'''index_col''': self.index_col,
'''usecols''': self.usecols,
'''prefix''': self.prefix,
'''mangle_dupe_cols''': self.mangle_dupe_cols,
'''engine''': self.engine,
'''converters''': self.converters,
'''true_values''': self.true_values,
'''false_values''': self.false_values,
'''skipinitialspace''': self.skipinitialspace,
'''skiprows''': self.skiprows,
'''nrows''': self.nrows,
'''na_values''': self.na_values,
'''keep_default_na''': self.keep_default_na,
'''na_filter''': self.na_filter,
'''verbose''': self.verbose,
'''skip_blank_lines''': self.skip_blank_lines,
'''thousands''': self.thousands,
'''decimal''': self.decimal,
'''lineterminator''': self.lineterminator,
'''quotechar''': self.quotechar,
'''quoting''': self.quoting,
'''escapechar''': self.escapechar,
'''comment''': self.comment,
'''encoding''': self.encoding,
'''dialect''': self.dialect,
'''error_bad_lines''': self.error_bad_lines,
'''warn_bad_lines''': self.warn_bad_lines,
'''skipfooter''': self.skipfooter,
'''doublequote''': self.doublequote,
'''memory_map''': self.memory_map,
'''float_precision''': self.float_precision,
'''chunksize''': self.chunksize,
'''encoding_errors''': self.encoding_errors,
'''on_bad_lines''': self.on_bad_lines,
'''date_format''': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE_ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
_snake_case = CsvConfig
def A__ ( self )-> Any:
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" )
__UpperCamelCase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ):
__UpperCamelCase = data_files
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = [files]
__UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
__UpperCamelCase = []
for split_name, files in data_files.items():
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = [files]
__UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files]
splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) )
return splits
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.Table:
'''simple docstring'''
if self.config.features is not None:
__UpperCamelCase = self.config.features.arrow_schema
if all(not require_storage_cast(SCREAMING_SNAKE_CASE_ ) for feature in self.config.features.values() ):
# cheaper cast
__UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE_ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
__UpperCamelCase = table_cast(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return pa_table
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str:
'''simple docstring'''
__UpperCamelCase = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
__UpperCamelCase = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE_ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ):
__UpperCamelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , iterator=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = pa.Table.from_pandas(SCREAMING_SNAKE_CASE_ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ )
except ValueError as e:
logger.error(F"Failed to read file '{file}' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}" )
raise
| 328 |
def A_ ( ) -> list[list[int]]:
'''simple docstring'''
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
lowercase__ : List[str] = generate_large_matrix()
lowercase__ : Tuple = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def A_ ( snake_case : list[list[int]] ) -> None:
'''simple docstring'''
assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid )
assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) )
def A_ ( snake_case : list[int] ) -> int:
'''simple docstring'''
__UpperCamelCase = 0
__UpperCamelCase = len(snake_case ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
__UpperCamelCase = (left + right) // 2
__UpperCamelCase = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
__UpperCamelCase = mid + 1
else:
__UpperCamelCase = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(snake_case )
def A_ ( snake_case : list[list[int]] ) -> int:
'''simple docstring'''
__UpperCamelCase = 0
__UpperCamelCase = len(grid[0] )
for i in range(len(snake_case ) ):
__UpperCamelCase = find_negative_index(grid[i][:bound] )
total += bound
return (len(snake_case ) * len(grid[0] )) - total
def A_ ( snake_case : list[list[int]] ) -> int:
'''simple docstring'''
return len([number for row in grid for number in row if number < 0] )
def A_ ( snake_case : list[list[int]] ) -> int:
'''simple docstring'''
__UpperCamelCase = 0
for row in grid:
for i, number in enumerate(snake_case ):
if number < 0:
total += len(snake_case ) - i
break
return total
def A_ ( ) -> None:
'''simple docstring'''
from timeit import timeit
print('''Running benchmarks''' )
__UpperCamelCase = (
'''from __main__ import count_negatives_binary_search, '''
'''count_negatives_brute_force, count_negatives_brute_force_with_break, grid'''
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
__UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 )
print(f"{func}() took {time:0.4f} seconds" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 328 | 1 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, ClassLabel, Features
from .base import TaskTemplate
@dataclass(frozen=SCREAMING_SNAKE_CASE_ )
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} )
_snake_case = Features({'audio': Audio()} )
_snake_case = Features({'labels': ClassLabel} )
_snake_case = "audio"
_snake_case = "labels"
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(F"Column {self.label_column} is not present in features." )
if not isinstance(features[self.label_column] , SCREAMING_SNAKE_CASE_ ):
raise ValueError(F"Column {self.label_column} is not a ClassLabel." )
__UpperCamelCase = copy.deepcopy(self )
__UpperCamelCase = self.label_schema.copy()
__UpperCamelCase = features[self.label_column]
__UpperCamelCase = label_schema
return task_template
@property
def A__ ( self )-> Dict[str, str]:
'''simple docstring'''
return {
self.audio_column: "audio",
self.label_column: "labels",
}
| 328 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowercase__ : str = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = ['pixel_values']
def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None:
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = size if size is not None else {'''shortest_edge''': 224}
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' )
__UpperCamelCase = do_resize
__UpperCamelCase = size
__UpperCamelCase = crop_pct
__UpperCamelCase = resample
__UpperCamelCase = do_center_crop
__UpperCamelCase = crop_size
__UpperCamelCase = do_rescale
__UpperCamelCase = rescale_factor
__UpperCamelCase = do_normalize
__UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray:
'''simple docstring'''
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
if "shortest_edge" not in size and ("height" not in size or "width" not in size):
raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
if crop_pct is not None:
if "shortest_edge" in size:
__UpperCamelCase = int(size['''shortest_edge'''] / crop_pct )
elif "height" in size and "width" in size:
if size["height"] == size["width"]:
__UpperCamelCase = int(size['''height'''] / crop_pct )
else:
__UpperCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct ))
else:
raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) )
__UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
else:
if "shortest_edge" in size:
__UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ )
elif "height" in size and "width" in size:
__UpperCamelCase = (size['''height'''], size['''width'''])
else:
raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) )
return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray:
'''simple docstring'''
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ )
if "height" not in size or "width" not in size:
raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> str:
'''simple docstring'''
return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray:
'''simple docstring'''
return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , )-> PIL.Image.Image:
'''simple docstring'''
__UpperCamelCase = do_resize if do_resize is not None else self.do_resize
__UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct
__UpperCamelCase = resample if resample is not None else self.resample
__UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
__UpperCamelCase = image_mean if image_mean is not None else self.image_mean
__UpperCamelCase = image_std if image_std is not None else self.image_std
__UpperCamelCase = size if size is not None else self.size
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = crop_size if crop_size is not None else self.crop_size
__UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' )
__UpperCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE_ )
if not valid_images(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_pct is None:
raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
__UpperCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images]
if do_resize:
__UpperCamelCase = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_center_crop:
__UpperCamelCase = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_rescale:
__UpperCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images]
if do_normalize:
__UpperCamelCase = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images]
__UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images]
__UpperCamelCase = {'''pixel_values''': images}
return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
| 328 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase__ : Tuple = logging.get_logger(__name__)
lowercase__ : Dict = {
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json",
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json",
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json",
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json",
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json",
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json",
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json",
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json",
"bert-large-uncased-whole-word-masking": (
"https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json"
),
"bert-large-cased-whole-word-masking": (
"https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json"
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
"https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json"
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
"https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json"
),
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json",
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json",
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json",
"cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json",
"cl-tohoku/bert-base-japanese-whole-word-masking": (
"https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json"
),
"cl-tohoku/bert-base-japanese-char": (
"https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json"
),
"cl-tohoku/bert-base-japanese-char-whole-word-masking": (
"https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json"
),
"TurkuNLP/bert-base-finnish-cased-v1": (
"https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json"
),
"TurkuNLP/bert-base-finnish-uncased-v1": (
"https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json"
),
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json",
# See all BERT models at https://huggingface.co/models?filter=bert
}
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = 'bert'
def __init__( self , SCREAMING_SNAKE_CASE_=30522 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , )-> Optional[Any]:
'''simple docstring'''
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = use_cache
__UpperCamelCase = classifier_dropout
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
@property
def A__ ( self )-> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
__UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__UpperCamelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 328 |
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
lowercase__ : Any = getLogger(__name__)
lowercase__ : List[str] = "cuda" if torch.cuda.is_available() else "cpu"
def A_ ( snake_case : List[str] , snake_case : str , snake_case : str , snake_case : int = 8 , snake_case : str = DEFAULT_DEVICE , snake_case : List[str]=False , snake_case : Union[str, Any]="summarization" , snake_case : str=None , **snake_case : List[Any] , ) -> Dict:
'''simple docstring'''
__UpperCamelCase = Path(snake_case ).open('''w''' , encoding='''utf-8''' )
__UpperCamelCase = str(snake_case )
__UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case ).to(snake_case )
if fpaa:
__UpperCamelCase = model.half()
__UpperCamelCase = AutoTokenizer.from_pretrained(snake_case )
logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
__UpperCamelCase = time.time()
# update config with task specific params
use_task_specific_params(snake_case , snake_case )
if prefix is None:
__UpperCamelCase = prefix or getattr(model.config , '''prefix''' , '''''' ) or ''''''
for examples_chunk in tqdm(list(chunks(snake_case , snake_case ) ) ):
__UpperCamelCase = [prefix + text for text in examples_chunk]
__UpperCamelCase = tokenizer(snake_case , return_tensors='''pt''' , truncation=snake_case , padding='''longest''' ).to(snake_case )
__UpperCamelCase = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case , )
__UpperCamelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case )
for hypothesis in dec:
fout.write(hypothesis + '''\n''' )
fout.flush()
fout.close()
__UpperCamelCase = int(time.time() - start_time ) # seconds
__UpperCamelCase = len(snake_case )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def A_ ( ) -> Tuple:
'''simple docstring'''
return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' )
def A_ ( snake_case : str=True ) -> int:
'''simple docstring'''
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''model_name''' , type=snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' )
parser.add_argument('''input_path''' , type=snake_case , help='''like cnn_dm/test.source''' )
parser.add_argument('''save_path''' , type=snake_case , help='''where to save summaries''' )
parser.add_argument('''--reference_path''' , type=snake_case , required=snake_case , help='''like cnn_dm/test.target''' )
parser.add_argument('''--score_path''' , type=snake_case , required=snake_case , default='''metrics.json''' , help='''where to save metrics''' )
parser.add_argument('''--device''' , type=snake_case , required=snake_case , default=snake_case , help='''cuda, cuda:1, cpu etc.''' )
parser.add_argument(
'''--prefix''' , type=snake_case , required=snake_case , default=snake_case , help='''will be added to the begininng of src examples''' )
parser.add_argument('''--task''' , type=snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' )
parser.add_argument('''--bs''' , type=snake_case , default=8 , required=snake_case , help='''batch size''' )
parser.add_argument(
'''--n_obs''' , type=snake_case , default=-1 , required=snake_case , help='''How many observations. Defaults to all.''' )
parser.add_argument('''--fp16''' , action='''store_true''' )
parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' )
parser.add_argument(
'''--info''' , nargs='''?''' , type=snake_case , const=datetime_now() , help=(
'''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.'''
''' lang=en-ru. If no value is passed, the current datetime string will be used.'''
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
__UpperCamelCase , __UpperCamelCase = parser.parse_known_args()
__UpperCamelCase = parse_numeric_n_bool_cl_kwargs(snake_case )
if parsed_args and verbose:
print(f"parsed the following generate kwargs: {parsed_args}" )
__UpperCamelCase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
__UpperCamelCase = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=snake_case )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError('''Can\'t mix --fp16 and --device cpu''' )
__UpperCamelCase = generate_summaries_or_translations(
snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case , )
if args.reference_path is None:
return {}
# Compute scores
__UpperCamelCase = calculate_bleu if '''translation''' in args.task else calculate_rouge
__UpperCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()]
__UpperCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case )]
__UpperCamelCase = score_fn(snake_case , snake_case )
scores.update(snake_case )
if args.dump_args:
scores.update(snake_case )
if args.info:
__UpperCamelCase = args.info
if verbose:
print(snake_case )
if args.score_path is not None:
json.dump(snake_case , open(args.score_path , '''w''' ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 328 | 1 |
def A_ ( snake_case : str , snake_case : str ) -> str:
'''simple docstring'''
if not (isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case )):
raise ValueError('''longest_common_substring() takes two strings for inputs''' )
__UpperCamelCase = len(snake_case )
__UpperCamelCase = len(snake_case )
__UpperCamelCase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )]
__UpperCamelCase = 0
__UpperCamelCase = 0
for i in range(1 , texta_length + 1 ):
for j in range(1 , texta_length + 1 ):
if texta[i - 1] == texta[j - 1]:
__UpperCamelCase = 1 + dp[i - 1][j - 1]
if dp[i][j] > ans_length:
__UpperCamelCase = i
__UpperCamelCase = dp[i][j]
return texta[ans_index - ans_length : ans_index]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 328 |
from math import factorial
def A_ ( snake_case : int = 100 ) -> int:
'''simple docstring'''
return sum(int(snake_case ) for x in str(factorial(snake_case ) ) )
if __name__ == "__main__":
print(solution(int(input("Enter the Number: ").strip())))
| 328 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
lowercase__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
lowercase__ : Optional[int] = {
"vocab_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json",
"roberta-large-openai-detector": (
"https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json"
),
},
"merges_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt",
"roberta-large-openai-detector": (
"https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt"
),
},
"tokenizer_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json",
"roberta-base-openai-detector": (
"https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json"
),
"roberta-large-openai-detector": (
"https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json"
),
},
}
lowercase__ : Optional[Any] = {
"roberta-base": 5_1_2,
"roberta-large": 5_1_2,
"roberta-large-mnli": 5_1_2,
"distilroberta-base": 5_1_2,
"roberta-base-openai-detector": 5_1_2,
"roberta-large-openai-detector": 5_1_2,
}
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_snake_case = VOCAB_FILES_NAMES
_snake_case = PRETRAINED_VOCAB_FILES_MAP
_snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case = ['input_ids', 'attention_mask']
_snake_case = RobertaTokenizer
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="replace" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , )-> List[Any]:
'''simple docstring'''
super().__init__(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
__UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space:
__UpperCamelCase = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('''type''' ) )
__UpperCamelCase = add_prefix_space
__UpperCamelCase = pre_tok_class(**SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = add_prefix_space
__UpperCamelCase = '''post_processor'''
__UpperCamelCase = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if tokenizer_component_instance:
__UpperCamelCase = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
__UpperCamelCase = tuple(state['''sep'''] )
if "cls" in state:
__UpperCamelCase = tuple(state['''cls'''] )
__UpperCamelCase = False
if state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space:
__UpperCamelCase = add_prefix_space
__UpperCamelCase = True
if state.get('''trim_offsets''' , SCREAMING_SNAKE_CASE_ ) != trim_offsets:
__UpperCamelCase = trim_offsets
__UpperCamelCase = True
if changes_to_apply:
__UpperCamelCase = getattr(SCREAMING_SNAKE_CASE_ , state.pop('''type''' ) )
__UpperCamelCase = component_class(**SCREAMING_SNAKE_CASE_ )
setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@property
def A__ ( self )-> str:
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('''Using mask_token, but it is not set yet.''' )
return None
return str(self._mask_token )
@mask_token.setter
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]:
'''simple docstring'''
__UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else value
__UpperCamelCase = value
def A__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> BatchEncoding:
'''simple docstring'''
__UpperCamelCase = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE_ )
assert self.add_prefix_space or not is_split_into_words, (
F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> BatchEncoding:
'''simple docstring'''
__UpperCamelCase = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE_ )
assert self.add_prefix_space or not is_split_into_words, (
F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> Tuple[str]:
'''simple docstring'''
__UpperCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None )-> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> List[int]:
'''simple docstring'''
__UpperCamelCase = [self.sep_token_id]
__UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 328 |
def A_ ( snake_case : list ) -> list:
'''simple docstring'''
__UpperCamelCase = len(snake_case )
for i in range(1 , snake_case ):
__UpperCamelCase = collection[i]
__UpperCamelCase = 0
__UpperCamelCase = i - 1
while low <= high:
__UpperCamelCase = (low + high) // 2
if val < collection[mid]:
__UpperCamelCase = mid - 1
else:
__UpperCamelCase = mid + 1
for j in range(snake_case , snake_case , -1 ):
__UpperCamelCase = collection[j - 1]
__UpperCamelCase = val
return collection
if __name__ == "__main__":
lowercase__ : List[Any] = input("Enter numbers separated by a comma:\n").strip()
lowercase__ : str = [int(item) for item in user_input.split(",")]
print(binary_insertion_sort(unsorted))
| 328 | 1 |
def A_ ( snake_case : int , snake_case : List[Any] , snake_case : int ) -> Tuple:
'''simple docstring'''
if n == 0:
return 1
elif n % 2 == 1:
return (binary_exponentiation(snake_case , n - 1 , snake_case ) * a) % mod
else:
__UpperCamelCase = binary_exponentiation(snake_case , n / 2 , snake_case )
return (b * b) % mod
# a prime number
lowercase__ : Optional[int] = 7_0_1
lowercase__ : Union[str, Any] = 1_0_0_0_0_0_0_0_0_0
lowercase__ : List[Any] = 1_0
# using binary exponentiation function, O(log(p)):
print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p)
print((a / b) % p == (a * b ** (p - 2)) % p)
| 328 |
from __future__ import annotations
from collections import deque
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ )-> int:
'''simple docstring'''
__UpperCamelCase = []
self.adlist.append(
{'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} )
for keyword in keywords:
self.add_keyword(SCREAMING_SNAKE_CASE_ )
self.set_fail_transitions()
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int | None:
'''simple docstring'''
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
__UpperCamelCase = 0
for character in keyword:
__UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if next_state is None:
self.adlist.append(
{
'''value''': character,
'''next_states''': [],
'''fail_state''': 0,
'''output''': [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
__UpperCamelCase = len(self.adlist ) - 1
else:
__UpperCamelCase = next_state
self.adlist[current_state]["output"].append(SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> None:
'''simple docstring'''
__UpperCamelCase = deque()
for node in self.adlist[0]["next_states"]:
q.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = 0
while q:
__UpperCamelCase = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.adlist[r]['''fail_state''']
while (
self.find_next_state(SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) is None
and state != 0
):
__UpperCamelCase = self.adlist[state]['''fail_state''']
__UpperCamelCase = self.find_next_state(
SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] )
if self.adlist[child]["fail_state"] is None:
__UpperCamelCase = 0
__UpperCamelCase = (
self.adlist[child]['''output''']
+ self.adlist[self.adlist[child]['''fail_state''']]['''output''']
)
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> dict[str, list[int]]:
'''simple docstring'''
__UpperCamelCase = {} # returns a dict with keywords and list of its occurrences
__UpperCamelCase = 0
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
while (
self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) is None
and current_state != 0
):
__UpperCamelCase = self.adlist[current_state]['''fail_state''']
__UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] )
if next_state is None:
__UpperCamelCase = 0
else:
__UpperCamelCase = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
__UpperCamelCase = []
result[key].append(i - len(SCREAMING_SNAKE_CASE_ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 328 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.