code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowercase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )-> Tuple: '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=SCREAMING_SNAKE_CASE_ , speech_processor=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , ) def A__ ( self , SCREAMING_SNAKE_CASE_ = "auto" )-> Tuple: '''simple docstring''' if slice_size == "auto": __UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=16000 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.speech_processor.feature_extractor( SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , sampling_rate=SCREAMING_SNAKE_CASE_ ).input_features.to(self.device ) __UpperCamelCase = self.speech_model.generate(SCREAMING_SNAKE_CASE_ , max_length=480000 ) __UpperCamelCase = self.speech_processor.tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , normalize=SCREAMING_SNAKE_CASE_ )[ 0 ] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(SCREAMING_SNAKE_CASE_ )}." ) # get prompt text embeddings __UpperCamelCase = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) __UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] __UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = text_embeddings.shape __UpperCamelCase = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 ) __UpperCamelCase = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __UpperCamelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __UpperCamelCase = 42 if negative_prompt is None: __UpperCamelCase = [''''''] * batch_size elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !=" F" {type(SCREAMING_SNAKE_CASE_ )}." ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: __UpperCamelCase = negative_prompt __UpperCamelCase = text_input_ids.shape[-1] __UpperCamelCase = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , ) __UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __UpperCamelCase = uncond_embeddings.shape[1] __UpperCamelCase = uncond_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 ) __UpperCamelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __UpperCamelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __UpperCamelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __UpperCamelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __UpperCamelCase = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='''cpu''' , dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: __UpperCamelCase = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) __UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __UpperCamelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __UpperCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __UpperCamelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __UpperCamelCase = {} if accepts_eta: __UpperCamelCase = eta for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance __UpperCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCamelCase = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual __UpperCamelCase = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform guidance if do_classifier_free_guidance: __UpperCamelCase , __UpperCamelCase = noise_pred.chunk(2 ) __UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __UpperCamelCase = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = 1 / 0.1_8_2_1_5 * latents __UpperCamelCase = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample __UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
328
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> Dict: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self )-> str: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = DistilBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = True _snake_case = True _snake_case = True def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = DistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def A__ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> List[str]: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCamelCase = True __UpperCamelCase = model_class(config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) ) __UpperCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] __UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
328
1
import math def A_ ( snake_case : int , snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(snake_case ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowercase__ : Optional[Any] = "Enter the base and the power separated by a comma: " lowercase__ , lowercase__ : int = map(int, input(prompt).split(",")) lowercase__ , lowercase__ : Tuple = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. lowercase__ : Union[str, Any] = res(xa, ya) lowercase__ : Any = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
328
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase__ : Optional[Any] = logging.getLogger(__name__) def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int: '''simple docstring''' def get_dataset(snake_case : Optional[int] ): __UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any: '''simple docstring''' __UpperCamelCase = [] for epoch in range(snake_case ): # Train quickly model.train() for batch in dataloader: __UpperCamelCase , __UpperCamelCase = batch __UpperCamelCase = model(snake_case ) __UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case ) accelerator.backward(snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self )-> Tuple: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' return x * self.a + self.b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self )-> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() # Train baseline __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3] ) __UpperCamelCase = torch.tensor([2, 3, 4] ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(net.parameters() ) __UpperCamelCase = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() __UpperCamelCase = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing" lowercase__ : List[Any] = DummyModel() lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase__ , lowercase__ : str = dummy_dataloaders() lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase__ : int = group["params"][0].device break assert param_device.type == accelerator.device.type lowercase__ : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowercase__ : Any = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowercase__ : List[Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
328
1
import os from datetime import datetime as dt from github import Github lowercase__ : Any = [ "good first issue", "feature request", "wip", ] def A_ ( ) -> List[str]: '''simple docstring''' __UpperCamelCase = Github(os.environ['''GITHUB_TOKEN'''] ) __UpperCamelCase = g.get_repo('''huggingface/accelerate''' ) __UpperCamelCase = repo.get_issues(state='''open''' ) for issue in open_issues: __UpperCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda snake_case : i.created_at , reverse=snake_case ) __UpperCamelCase = comments[0] if len(snake_case ) > 0 else None __UpperCamelCase = dt.utcnow() __UpperCamelCase = (current_time - issue.updated_at).days __UpperCamelCase = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
328
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]: '''simple docstring''' super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Sql( cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , ) # Build dataset for splits __UpperCamelCase = self.builder.as_dataset( split='''train''' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) __UpperCamelCase = dataset __UpperCamelCase = name __UpperCamelCase = con __UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCamelCase = num_proc __UpperCamelCase = to_sql_kwargs def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.to_sql_kwargs.pop('''sql''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''con''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''index''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs ) return written def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args __UpperCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __UpperCamelCase = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCamelCase = batch.to_pandas() __UpperCamelCase = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return num_rows or len(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
328
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" _snake_case = 42 _snake_case = 42 class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = [[] for _ in range(SCREAMING_SNAKE_CASE_ )] __UpperCamelCase = size def __getitem__( self , SCREAMING_SNAKE_CASE_ )-> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex] ) @property def A__ ( self )-> int: '''simple docstring''' return self._size def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> List[Any]: '''simple docstring''' if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int | None: '''simple docstring''' __UpperCamelCase = deque([start_vertex] ) __UpperCamelCase = [None] * self.size __UpperCamelCase = 0 while queue: __UpperCamelCase = queue.popleft() __UpperCamelCase = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: __UpperCamelCase = current_distance + edge.weight __UpperCamelCase = distances[edge.destination_vertex] if ( isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and new_distance >= dest_vertex_distance ): continue __UpperCamelCase = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
328
def A_ ( snake_case : str ) -> int: '''simple docstring''' assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , snake_case ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
328
1
from copy import deepcopy class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None )-> None: '''simple docstring''' if arr is None and size is not None: __UpperCamelCase = size __UpperCamelCase = [0] * size elif arr is not None: self.init(SCREAMING_SNAKE_CASE_ ) else: raise ValueError('''Either arr or size must be specified''' ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' __UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = deepcopy(SCREAMING_SNAKE_CASE_ ) for i in range(1 , self.size ): __UpperCamelCase = self.next_(SCREAMING_SNAKE_CASE_ ) if j < self.size: self.tree[j] += self.tree[i] def A__ ( self )-> list[int]: '''simple docstring''' __UpperCamelCase = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): __UpperCamelCase = self.next_(SCREAMING_SNAKE_CASE_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def A__ ( SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' return index + (index & (-index)) @staticmethod def A__ ( SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' return index - (index & (-index)) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value __UpperCamelCase = self.next_(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' self.add(SCREAMING_SNAKE_CASE_ , value - self.get(SCREAMING_SNAKE_CASE_ ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' if right == 0: return 0 __UpperCamelCase = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] __UpperCamelCase = self.prev(SCREAMING_SNAKE_CASE_ ) return result def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' return self.prefix(SCREAMING_SNAKE_CASE_ ) - self.prefix(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' return self.query(SCREAMING_SNAKE_CASE_ , index + 1 ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' value -= self.tree[0] if value < 0: return -1 __UpperCamelCase = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 __UpperCamelCase = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
328
def A_ ( snake_case : int ) -> None: '''simple docstring''' __UpperCamelCase = generate_pascal_triangle(snake_case ) for row_idx in range(snake_case ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [] for current_row_idx in range(snake_case ): __UpperCamelCase = populate_current_row(snake_case , snake_case ) triangle.append(snake_case ) return triangle def A_ ( snake_case : list[list[int]] , snake_case : int ) -> list[int]: '''simple docstring''' __UpperCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase , __UpperCamelCase = 1, 1 for current_col_idx in range(1 , snake_case ): calculate_current_element( snake_case , snake_case , snake_case , snake_case ) return current_row def A_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , ) -> None: '''simple docstring''' __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase = above_to_left_elt + above_to_right_elt def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [[1]] for row_index in range(1 , snake_case ): __UpperCamelCase = [0] + result[-1] + [0] __UpperCamelCase = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase = sum(divmod(snake_case , 2 ) ) __UpperCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase = row_first_half + row_second_half result.append(snake_case ) return result def A_ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None: __UpperCamelCase = f"{func.__name__}({value})" __UpperCamelCase = timeit(f"__main__.{call}" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case , snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
1
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def A_ ( snake_case : Tuple , snake_case : Any , snake_case : Tuple , snake_case : List[str] , snake_case : Tuple ) -> str: '''simple docstring''' __UpperCamelCase = TapasConfig.from_json_file(snake_case ) # set absolute/relative position embeddings parameter __UpperCamelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __UpperCamelCase = TapasForQuestionAnswering(config=snake_case ) elif task == "WTQ": # run_task_main.py hparams __UpperCamelCase = 4 __UpperCamelCase = True # hparam_utils.py hparams __UpperCamelCase = 0.664694 __UpperCamelCase = 0.207951 __UpperCamelCase = 0.121194 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = 0.0352513 __UpperCamelCase = TapasForQuestionAnswering(config=snake_case ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __UpperCamelCase = 4 __UpperCamelCase = False # hparam_utils.py hparams __UpperCamelCase = 36.4519 __UpperCamelCase = 0.903421 __UpperCamelCase = 222.088 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = 0.763141 __UpperCamelCase = TapasForQuestionAnswering(config=snake_case ) elif task == "TABFACT": __UpperCamelCase = TapasForSequenceClassification(config=snake_case ) elif task == "MLM": __UpperCamelCase = TapasForMaskedLM(config=snake_case ) elif task == "INTERMEDIATE_PRETRAINING": __UpperCamelCase = TapasModel(config=snake_case ) else: raise ValueError(f"Task {task} not supported." ) print(f"Building PyTorch model from configuration: {config}" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(snake_case , snake_case , snake_case ) # Save pytorch-model (weights and configuration) print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(snake_case ) # Save tokenizer files print(f"Save tokenizer files to {pytorch_dump_path}" ) __UpperCamelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=512 ) tokenizer.save_pretrained(snake_case ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": lowercase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase__ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
328
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase__ : Any = parser.parse_args() lowercase__ : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase__ : List[str] = CLIPImageProcessor() lowercase__ : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase__ : Optional[Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
328
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=0.6 , SCREAMING_SNAKE_CASE_=None , )-> Any: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = mask_ratio __UpperCamelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def A__ ( self )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = self.get_config() return config, pixel_values, labels def A__ ( self )-> str: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> List[Any]: '''simple docstring''' __UpperCamelCase = ViTMAEModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = (self.image_size // self.patch_size) ** 2 __UpperCamelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def A__ ( self )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _snake_case = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = ViTMAEModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def A__ ( self )-> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' pass def A__ ( self )-> Optional[Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[Any]: '''simple docstring''' np.random.seed(2 ) __UpperCamelCase = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __UpperCamelCase = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __UpperCamelCase = pt_noise super().check_pt_tf_models(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __UpperCamelCase = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = outputs[0].cpu().numpy() __UpperCamelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __UpperCamelCase = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Make sure we don't have nans __UpperCamelCase = after_outputs[0].cpu().numpy() __UpperCamelCase = 0 __UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def A__ ( self )-> List[str]: '''simple docstring''' pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def A__ ( self )-> Tuple: '''simple docstring''' pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def A__ ( self )-> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def A__ ( self )-> Optional[int]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A__ ( self )-> Dict: '''simple docstring''' pass @slow def A__ ( self )-> List[Any]: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = ViTMAEModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def A_ ( ) -> int: '''simple docstring''' __UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self )-> Optional[Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def A__ ( self )-> Optional[int]: '''simple docstring''' np.random.seed(2 ) __UpperCamelCase = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __UpperCamelCase = ViTMAEConfig() __UpperCamelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __UpperCamelCase = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ , noise=torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ ) ) # verify the logits __UpperCamelCase = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(SCREAMING_SNAKE_CASE_ ) , atol=1E-4 ) )
328
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowercase__ : Union[str, Any] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" lowercase__ : Optional[Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" lowercase__ : Any = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" lowercase__ : Optional[int] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" lowercase__ : Optional[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[1, 10, 100] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3.0 )-> Union[str, Any]: '''simple docstring''' if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE_ ) as executor: __UpperCamelCase = [] __UpperCamelCase = Counter() __UpperCamelCase = 0 __UpperCamelCase = defaultdict(SCREAMING_SNAKE_CASE_ ) for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ): for candidate in candidates: __UpperCamelCase = candidate + '''\n''' + test_case __UpperCamelCase = (test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase = executor.submit(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) futures.append(SCREAMING_SNAKE_CASE_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) __UpperCamelCase , __UpperCamelCase = [], [] for result in results.values(): result.sort() __UpperCamelCase = [r[1]['''passed'''] for r in result] total.append(len(SCREAMING_SNAKE_CASE_ ) ) correct.append(sum(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = k __UpperCamelCase = {F"pass@{k}": estimate_pass_at_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A_ ( snake_case : Tuple , snake_case : Union[str, Any] , snake_case : List[Any] ) -> Optional[Any]: '''simple docstring''' def estimator(snake_case : int , snake_case : int , snake_case : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(snake_case , snake_case ): __UpperCamelCase = itertools.repeat(snake_case , len(snake_case ) ) else: assert len(snake_case ) == len(snake_case ) __UpperCamelCase = iter(snake_case ) return np.array([estimator(int(snake_case ) , int(snake_case ) , snake_case ) for n, c in zip(snake_case , snake_case )] )
328
1
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = CpmAntTokenizer _snake_case = False def A__ ( self )-> str: '''simple docstring''' super().setUp() __UpperCamelCase = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) __UpperCamelCase = '''今天天气真好!''' __UpperCamelCase = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __UpperCamelCase = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = '''今天天气真好!''' __UpperCamelCase = [tokenizer.bos_token] + tokens __UpperCamelCase = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
328
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__) lowercase__ : Optional[Any] = ["names", "prefix"] lowercase__ : List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowercase__ : Optional[Any] = ["encoding_errors", "on_bad_lines"] lowercase__ : List[str] = ["date_format"] @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): """simple docstring""" _snake_case = "," _snake_case = None _snake_case = "infer" _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = False _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = False _snake_case = True _snake_case = None _snake_case = "." _snake_case = None _snake_case = '"' _snake_case = 0 _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = 0 _snake_case = True _snake_case = False _snake_case = None _snake_case = 10000 _snake_case = None _snake_case = "strict" _snake_case = "error" _snake_case = None def A__ ( self )-> Any: '''simple docstring''' if self.delimiter is not None: __UpperCamelCase = self.delimiter if self.column_names is not None: __UpperCamelCase = self.column_names @property def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): """simple docstring""" _snake_case = CsvConfig def A__ ( self )-> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) __UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ): __UpperCamelCase = data_files if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) ) return splits def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.Table: '''simple docstring''' if self.config.features is not None: __UpperCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE_ ) for feature in self.config.features.values() ): # cheaper cast __UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __UpperCamelCase = table_cast(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return pa_table def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __UpperCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ): __UpperCamelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , iterator=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = pa.Table.from_pandas(SCREAMING_SNAKE_CASE_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}" ) raise
328
1
lowercase__ : int = "Input must be a string of 8 numbers plus letter" lowercase__ : Optional[Any] = "TRWAGMYFPDXBNJZSQVHLCKE" def A_ ( snake_case : str ) -> bool: '''simple docstring''' if not isinstance(snake_case , snake_case ): __UpperCamelCase = f"Expected string as input, found {type(snake_case ).__name__}" raise TypeError(snake_case ) __UpperCamelCase = spanish_id.replace('''-''' , '''''' ).upper() if len(snake_case ) != 9: raise ValueError(snake_case ) try: __UpperCamelCase = int(spanish_id_clean[0:8] ) __UpperCamelCase = spanish_id_clean[8] except ValueError as ex: raise ValueError(snake_case ) from ex if letter.isdigit(): raise ValueError(snake_case ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
328
from __future__ import annotations import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def A_ ( snake_case : int ) -> list[int]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) __UpperCamelCase = [] for num in range(len(snake_case ) ): __UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: __UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case ) == n: return list_nums return [] def A_ ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
328
1
def A_ ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowercase__ : List[str] = generate_large_matrix() lowercase__ : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A_ ( snake_case : list[list[int]] ) -> None: '''simple docstring''' assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid ) assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) ) def A_ ( snake_case : list[int] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCamelCase = (left + right) // 2 __UpperCamelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCamelCase = mid + 1 else: __UpperCamelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(grid[0] ) for i in range(len(snake_case ) ): __UpperCamelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case ) * len(grid[0] )) - total def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 for row in grid: for i, number in enumerate(snake_case ): if number < 0: total += len(snake_case ) - i break return total def A_ ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCamelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
from __future__ import annotations from collections.abc import Callable def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float: '''simple docstring''' __UpperCamelCase = x_start __UpperCamelCase = fnc(snake_case ) __UpperCamelCase = 0.0 for _ in range(snake_case ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCamelCase = (x_end - x_start) / steps + xa __UpperCamelCase = fnc(snake_case ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCamelCase = xa __UpperCamelCase = fxa return area if __name__ == "__main__": def A_ ( snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowercase__ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 1_0
328
1
import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num def A_ ( snake_case : int ) -> bool: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = n while left <= right: __UpperCamelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
328
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : int = logging.get_logger(__name__) lowercase__ : List[str] = ["model.decoder.embed_positions.weights"] def A_ ( snake_case : Any ) -> List[Any]: '''simple docstring''' if "emb" in name: __UpperCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: __UpperCamelCase = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: __UpperCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: __UpperCamelCase = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: __UpperCamelCase = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: __UpperCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: __UpperCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: __UpperCamelCase = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: __UpperCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: __UpperCamelCase = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: __UpperCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def A_ ( snake_case : OrderedDict , snake_case : int ) -> Tuple[Dict, Dict]: '''simple docstring''' __UpperCamelCase = list(state_dict.keys() ) __UpperCamelCase = {} for key in keys: __UpperCamelCase = state_dict.pop(snake_case ) __UpperCamelCase = rename_keys(snake_case ) if "in_proj_weight" in key: # split fused qkv proj __UpperCamelCase = val[:hidden_size, :] __UpperCamelCase = val[hidden_size : 2 * hidden_size, :] __UpperCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __UpperCamelCase = val else: __UpperCamelCase = val return state_dict, enc_dec_proj_state_dict def A_ ( snake_case : str ) -> MusicgenDecoderConfig: '''simple docstring''' if checkpoint == "small": # default config values __UpperCamelCase = 1024 __UpperCamelCase = 24 __UpperCamelCase = 16 elif checkpoint == "medium": __UpperCamelCase = 1536 __UpperCamelCase = 48 __UpperCamelCase = 24 elif checkpoint == "large": __UpperCamelCase = 2048 __UpperCamelCase = 48 __UpperCamelCase = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) __UpperCamelCase = MusicgenDecoderConfig( hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , ) return config @torch.no_grad() def A_ ( snake_case : Any , snake_case : str=None , snake_case : Any=None , snake_case : Union[str, Any]="cpu" ) -> List[Any]: '''simple docstring''' __UpperCamelCase = MusicGen.get_pretrained(snake_case , device=snake_case ) __UpperCamelCase = decoder_config_from_checkpoint(snake_case ) __UpperCamelCase = fairseq_model.lm.state_dict() __UpperCamelCase , __UpperCamelCase = rename_state_dict( snake_case , hidden_size=decoder_config.hidden_size ) __UpperCamelCase = TaEncoderModel.from_pretrained('''t5-base''' ) __UpperCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) __UpperCamelCase = MusicgenForCausalLM(snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __UpperCamelCase , __UpperCamelCase = decoder.load_state_dict(snake_case , strict=snake_case ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(snake_case ) if len(snake_case ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(snake_case ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model __UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(snake_case ) # check we can do a forward pass __UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __UpperCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __UpperCamelCase = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor __UpperCamelCase = AutoTokenizer.from_pretrained('''t5-base''' ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) __UpperCamelCase = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case ) # set the appropriate bos/pad token ids __UpperCamelCase = 2048 __UpperCamelCase = 2048 # set other default generation config params __UpperCamelCase = int(30 * audio_encoder.config.frame_rate ) __UpperCamelCase = True __UpperCamelCase = 3.0 if pytorch_dump_folder is not None: Path(snake_case ).mkdir(exist_ok=snake_case ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(snake_case ) processor.push_to_hub(snake_case ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowercase__ : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
328
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowercase__ : List[Any] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = "▁" lowercase__ : Dict = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowercase__ : Union[str, Any] = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } lowercase__ : int = { "google/pegasus-xsum": 5_1_2, } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = PegasusTokenizer _snake_case = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<mask_2>" , SCREAMING_SNAKE_CASE_="<mask_1>" , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=103 , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' __UpperCamelCase = offset if additional_special_tokens is not None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError( F"additional_special_tokens should be of type {type(SCREAMING_SNAKE_CASE_ )}, but is" F" {type(SCREAMING_SNAKE_CASE_ )}" ) __UpperCamelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"<unk_{i}>" for i in range(len(SCREAMING_SNAKE_CASE_ ) , self.offset - 1 ) ] if len(set(SCREAMING_SNAKE_CASE_ ) ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) __UpperCamelCase = additional_special_tokens_extended else: __UpperCamelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"<unk_{i}>" for i in range(2 , self.offset )] super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , mask_token_sent=SCREAMING_SNAKE_CASE_ , offset=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = vocab_file __UpperCamelCase = False if not self.vocab_file else True def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' F" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}" ) return [1 if x in all_special_ids else 0 for x in seq] def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False )-> List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(SCREAMING_SNAKE_CASE_ ) elif token_ids_a is None: return self._special_token_mask(SCREAMING_SNAKE_CASE_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None )-> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __UpperCamelCase = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
328
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : List[str] = 1_6 lowercase__ : str = 3_2 def A_ ( snake_case : Accelerator , snake_case : int = 16 ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCamelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase = datasets.map( snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase = 16 elif accelerator.mixed_precision != "no": __UpperCamelCase = 8 else: __UpperCamelCase = None return tokenizer.pad( snake_case , padding='''longest''' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) __UpperCamelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : Union[str, Any] = mocked_dataloaders # noqa: F811 def A_ ( snake_case : List[str] , snake_case : List[Any] ) -> Tuple: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case ) == "1": __UpperCamelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: __UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['''lr'''] __UpperCamelCase = int(config['''num_epochs'''] ) __UpperCamelCase = int(config['''seed'''] ) __UpperCamelCase = int(config['''batch_size'''] ) set_seed(snake_case ) __UpperCamelCase , __UpperCamelCase = get_dataloaders(snake_case , snake_case ) __UpperCamelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case ) # Instantiate scheduler __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __UpperCamelCase = os.path.split(snake_case )[-1].split('''.''' )[0] accelerator.init_trackers(snake_case , snake_case ) # Now we train the model for epoch in range(snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __UpperCamelCase = 0 for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case , references=snake_case , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(snake_case ), '''epoch''': epoch, } , step=snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def A_ ( ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case , default=snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
328
1
def A_ ( snake_case : int , snake_case : int ) -> int: '''simple docstring''' return abs(snake_case ) if a == 0 else greatest_common_divisor(b % a , snake_case ) def A_ ( snake_case : int , snake_case : int ) -> int: '''simple docstring''' while y: # --> when y=0 then loop will terminate and return x as final GCD. __UpperCamelCase , __UpperCamelCase = y, x % y return abs(snake_case ) def A_ ( ) -> List[str]: '''simple docstring''' try: __UpperCamelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) __UpperCamelCase = int(nums[0] ) __UpperCamelCase = int(nums[1] ) print( f"greatest_common_divisor({num_a}, {num_a}) = " f"{greatest_common_divisor(snake_case , snake_case )}" ) print(f"By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(snake_case , snake_case )}" ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
328
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ : str = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'whisper' _snake_case = ['past_key_values'] _snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE_=51865 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=50257 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1500 , SCREAMING_SNAKE_CASE_=448 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[220, 50256] , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=7 , **SCREAMING_SNAKE_CASE_ , )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = num_mel_bins __UpperCamelCase = d_model __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = use_cache __UpperCamelCase = encoder_layers __UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase = max_source_positions __UpperCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __UpperCamelCase = classifier_proj_size __UpperCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length __UpperCamelCase = mask_feature_min_masks __UpperCamelCase = median_filter_width super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def A__ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' __UpperCamelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: __UpperCamelCase = {0: '''batch'''} else: __UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' ) return common_inputs def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 22050 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 220 , )-> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase = OrderedDict() __UpperCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = encoder_inputs['''input_features'''].shape[2] __UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __UpperCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = encoder_inputs.pop('''input_features''' ) __UpperCamelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: __UpperCamelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def A__ ( self )-> float: '''simple docstring''' return 1E-3
328
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : List[str] = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'data2vec-text' def __init__( self , SCREAMING_SNAKE_CASE_=30522 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , )-> int: '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = use_cache __UpperCamelCase = classifier_dropout class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def A__ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
328
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : Tuple = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'xlnet' _snake_case = ['mems'] _snake_case = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , SCREAMING_SNAKE_CASE_=32000 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="bi" , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=-1 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="tanh" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = n_layer __UpperCamelCase = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) __UpperCamelCase = d_model // n_head __UpperCamelCase = ff_activation __UpperCamelCase = d_inner __UpperCamelCase = untie_r __UpperCamelCase = attn_type __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = dropout __UpperCamelCase = mem_len __UpperCamelCase = reuse_len __UpperCamelCase = bi_data __UpperCamelCase = clamp_len __UpperCamelCase = same_length __UpperCamelCase = summary_type __UpperCamelCase = summary_use_proj __UpperCamelCase = summary_activation __UpperCamelCase = summary_last_dropout __UpperCamelCase = start_n_top __UpperCamelCase = end_n_top __UpperCamelCase = bos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = kwargs['''use_cache'''] __UpperCamelCase = use_mems_eval __UpperCamelCase = use_mems_train super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> Optional[Any]: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
328
1
lowercase__ : int = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } lowercase__ : List[str] = {value: key for key, value in encode_dict.items()} def A_ ( snake_case : str ) -> str: '''simple docstring''' __UpperCamelCase = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def A_ ( snake_case : str ) -> str: '''simple docstring''' if set(snake_case ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) __UpperCamelCase = '''''' for word in coded.split(): while len(snake_case ) != 0: decoded += decode_dict[word[:5]] __UpperCamelCase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
328
from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None def __repr__( self )-> str: '''simple docstring''' return F"Node({self.data})" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = None def __iter__( self )-> Any: '''simple docstring''' __UpperCamelCase = self.head while node: yield node.data __UpperCamelCase = node.next def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self )-> str: '''simple docstring''' return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] ) def __getitem__( self , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) __UpperCamelCase = self.head for _ in range(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = current.next __UpperCamelCase = data def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' self.insert_nth(0 , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) __UpperCamelCase = Node(SCREAMING_SNAKE_CASE_ ) if self.head is None: __UpperCamelCase = new_node elif index == 0: __UpperCamelCase = self.head # link new_node to head __UpperCamelCase = new_node else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = new_node def A__ ( self )-> None: # print every node data '''simple docstring''' print(self ) def A__ ( self )-> Any: '''simple docstring''' return self.delete_nth(0 ) def A__ ( self )-> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def A__ ( self , SCREAMING_SNAKE_CASE_ = 0 )-> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) __UpperCamelCase = self.head # default first node if index == 0: __UpperCamelCase = self.head.next else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = temp.next.next return delete_node.data def A__ ( self )-> bool: '''simple docstring''' return self.head is None def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = self.head while current: # Store the current node's next node. __UpperCamelCase = current.next # Make the current node's next point backwards __UpperCamelCase = prev # Make the previous node be the current node __UpperCamelCase = current # Make the current node the next node (to progress iteration) __UpperCamelCase = next_node # Return prev in order to put the head at the end __UpperCamelCase = prev def A_ ( ) -> None: '''simple docstring''' __UpperCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(snake_case ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(snake_case ) == i linked_list.insert_nth(snake_case , i + 1 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(snake_case ) == 9 assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(snake_case ) == "->".join(str(snake_case ) for i in range(-8 , 1 ) ) def A_ ( ) -> None: '''simple docstring''' __UpperCamelCase = [ -9, 100, Node(77345112 ), '''dlrow olleH''', 7, 5555, 0, -192.55555, '''Hello, world!''', 77.9, Node(10 ), None, None, 12.20, ] __UpperCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(snake_case ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCamelCase = linked_list.delete_head() assert result == -9 assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(snake_case ) assert ( str(snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(snake_case ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def A_ ( ) -> Any: '''simple docstring''' from doctest import testmod testmod() __UpperCamelCase = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(snake_case ) print('''\nReading/changing Node data using indexing:''' ) print(f"Element at Position 1: {linked_list[1]}" ) __UpperCamelCase = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(snake_case ) print(f"length of linked_list is : {len(snake_case )}" ) if __name__ == "__main__": main()
328
1
from math import pi def A_ ( snake_case : int , snake_case : int ) -> float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(9_0, 1_0))
328
import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num def A_ ( snake_case : int ) -> bool: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = n while left <= right: __UpperCamelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
328
1
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowercase__ : Optional[Any] = open # noqa: we just need to have a builtin inside this module to test it properly
328
def A_ ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowercase__ : List[str] = generate_large_matrix() lowercase__ : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A_ ( snake_case : list[list[int]] ) -> None: '''simple docstring''' assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid ) assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) ) def A_ ( snake_case : list[int] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCamelCase = (left + right) // 2 __UpperCamelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCamelCase = mid + 1 else: __UpperCamelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(grid[0] ) for i in range(len(snake_case ) ): __UpperCamelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case ) * len(grid[0] )) - total def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 for row in grid: for i, number in enumerate(snake_case ): if number < 0: total += len(snake_case ) - i break return total def A_ ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCamelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase__ : Optional[Any] = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" _snake_case = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _snake_case = field( default='NER' , metadata={'help': 'Task type to fine tune in training (e.g. NER, POS, etc)'} ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _snake_case = field(default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" _snake_case = field( metadata={'help': 'The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'} ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'} , ) _snake_case = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def A_ ( ) -> int: '''simple docstring''' __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) __UpperCamelCase = import_module('''tasks''' ) try: __UpperCamelCase = getattr(snake_case , model_args.task_type ) __UpperCamelCase = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , snake_case ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __UpperCamelCase = token_classification_task.get_labels(data_args.labels ) __UpperCamelCase = dict(enumerate(snake_case ) ) __UpperCamelCase = len(snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=snake_case , idalabel=snake_case , labelaid={label: i for i, label in enumerate(snake_case )} , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __UpperCamelCase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=snake_case , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase = ( TokenClassificationDataset( token_classification_task=snake_case , data_dir=data_args.data_dir , tokenizer=snake_case , labels=snake_case , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase = ( TokenClassificationDataset( token_classification_task=snake_case , data_dir=data_args.data_dir , tokenizer=snake_case , labels=snake_case , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(snake_case : np.ndarray , snake_case : np.ndarray ) -> Tuple[List[int], List[int]]: __UpperCamelCase = np.argmax(snake_case , axis=2 ) __UpperCamelCase , __UpperCamelCase = preds.shape __UpperCamelCase = [[] for _ in range(snake_case )] __UpperCamelCase = [[] for _ in range(snake_case )] for i in range(snake_case ): for j in range(snake_case ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(snake_case : EvalPrediction ) -> Dict: __UpperCamelCase , __UpperCamelCase = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(snake_case , snake_case ), "precision": precision_score(snake_case , snake_case ), "recall": recall_score(snake_case , snake_case ), "f1": fa_score(snake_case , snake_case ), } # Data collator __UpperCamelCase = DataCollatorWithPadding(snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase = Trainer( model=snake_case , args=snake_case , train_dataset=snake_case , eval_dataset=snake_case , compute_metrics=snake_case , data_collator=snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCamelCase = trainer.evaluate() __UpperCamelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , snake_case , snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(snake_case ) # Predict if training_args.do_predict: __UpperCamelCase = TokenClassificationDataset( token_classification_task=snake_case , data_dir=data_args.data_dir , tokenizer=snake_case , labels=snake_case , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = trainer.predict(snake_case ) __UpperCamelCase , __UpperCamelCase = align_predictions(snake_case , snake_case ) __UpperCamelCase = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(snake_case , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , snake_case , snake_case ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions __UpperCamelCase = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(snake_case , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(snake_case , snake_case , snake_case ) return results def A_ ( snake_case : List[str] ) -> List[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
328
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = size if size is not None else {'''shortest_edge''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = crop_pct __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: __UpperCamelCase = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCamelCase = int(size['''height'''] / crop_pct ) else: __UpperCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) else: if "shortest_edge" in size: __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) elif "height" in size and "width" in size: __UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> str: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , )-> PIL.Image.Image: '''simple docstring''' __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
328
1
def A_ ( snake_case : int , snake_case : list[int] , snake_case : int ) -> int: '''simple docstring''' def count_of_possible_combinations(snake_case : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(snake_case ) def A_ ( snake_case : int , snake_case : list[int] , snake_case : int ) -> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( snake_case : int , snake_case : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __UpperCamelCase = sum( count_of_possible_combinations_with_dp_array(target - item , snake_case ) for item in array ) __UpperCamelCase = answer return answer __UpperCamelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(snake_case , snake_case ) def A_ ( snake_case : int , snake_case : list[int] , snake_case : int ) -> int: '''simple docstring''' __UpperCamelCase = [0] * (target + 1) __UpperCamelCase = 1 for i in range(1 , target + 1 ): for j in range(snake_case ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : int = 3 lowercase__ : Any = 5 lowercase__ : List[Any] = [1, 2, 5] print(combination_sum_iv(n, array, target))
328
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowercase__ : Any = getLogger(__name__) lowercase__ : List[str] = "cuda" if torch.cuda.is_available() else "cpu" def A_ ( snake_case : List[str] , snake_case : str , snake_case : str , snake_case : int = 8 , snake_case : str = DEFAULT_DEVICE , snake_case : List[str]=False , snake_case : Union[str, Any]="summarization" , snake_case : str=None , **snake_case : List[Any] , ) -> Dict: '''simple docstring''' __UpperCamelCase = Path(snake_case ).open('''w''' , encoding='''utf-8''' ) __UpperCamelCase = str(snake_case ) __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case ).to(snake_case ) if fpaa: __UpperCamelCase = model.half() __UpperCamelCase = AutoTokenizer.from_pretrained(snake_case ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __UpperCamelCase = time.time() # update config with task specific params use_task_specific_params(snake_case , snake_case ) if prefix is None: __UpperCamelCase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(snake_case , snake_case ) ) ): __UpperCamelCase = [prefix + text for text in examples_chunk] __UpperCamelCase = tokenizer(snake_case , return_tensors='''pt''' , truncation=snake_case , padding='''longest''' ).to(snake_case ) __UpperCamelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case , ) __UpperCamelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __UpperCamelCase = int(time.time() - start_time ) # seconds __UpperCamelCase = len(snake_case ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def A_ ( ) -> Tuple: '''simple docstring''' return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def A_ ( snake_case : str=True ) -> int: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=snake_case , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=snake_case , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=snake_case , required=snake_case , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=snake_case , required=snake_case , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=snake_case , required=snake_case , default=snake_case , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=snake_case , required=snake_case , default=snake_case , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=snake_case , default=8 , required=snake_case , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=snake_case , default=-1 , required=snake_case , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=snake_case , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __UpperCamelCase , __UpperCamelCase = parser.parse_known_args() __UpperCamelCase = parse_numeric_n_bool_cl_kwargs(snake_case ) if parsed_args and verbose: print(f"parsed the following generate kwargs: {parsed_args}" ) __UpperCamelCase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __UpperCamelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=snake_case ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __UpperCamelCase = generate_summaries_or_translations( snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case , ) if args.reference_path is None: return {} # Compute scores __UpperCamelCase = calculate_bleu if '''translation''' in args.task else calculate_rouge __UpperCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __UpperCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case )] __UpperCamelCase = score_fn(snake_case , snake_case ) scores.update(snake_case ) if args.dump_args: scores.update(snake_case ) if args.info: __UpperCamelCase = args.info if verbose: print(snake_case ) if args.score_path is not None: json.dump(snake_case , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
328
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = DiTPipeline _snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _snake_case = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } _snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _snake_case = False def A__ ( self )-> List[Any]: '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=SCREAMING_SNAKE_CASE_ , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = AutoencoderKL() __UpperCamelCase = DDIMScheduler() __UpperCamelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 )-> Any: '''simple docstring''' if str(SCREAMING_SNAKE_CASE_ ).startswith('''mps''' ): __UpperCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __UpperCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = '''cpu''' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = pipe(**SCREAMING_SNAKE_CASE_ ).images __UpperCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __UpperCamelCase = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) __UpperCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1E-3 ) def A__ ( self )-> Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=SCREAMING_SNAKE_CASE_ , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A__ ( self )-> int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) __UpperCamelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] __UpperCamelCase = pipe.get_label_ids(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = pipe(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = load_numpy( F"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1E-2 def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) __UpperCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) __UpperCamelCase = ['''vase''', '''umbrella'''] __UpperCamelCase = pipe.get_label_ids(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = pipe(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1E-1
328
from math import factorial def A_ ( snake_case : int = 100 ) -> int: '''simple docstring''' return sum(int(snake_case ) for x in str(factorial(snake_case ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
328
1
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowercase__ : int = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def A_ ( snake_case : Dict ) -> int: '''simple docstring''' if isinstance(snake_case , torch.Tensor ): return image elif isinstance(snake_case , PIL.Image.Image ): __UpperCamelCase = [image] __UpperCamelCase = [trans(img.convert('''RGB''' ) ) for img in image] __UpperCamelCase = torch.stack(snake_case ) return image class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM __UpperCamelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F"The value of strength should in [0.0, 1.0] but is {strength}" ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = min(int(num_inference_steps * strength ) , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = max(num_inference_steps - init_timestep , 0 ) __UpperCamelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None )-> Tuple: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(SCREAMING_SNAKE_CASE_ )}" ) __UpperCamelCase = image.to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) __UpperCamelCase = init_latents.shape __UpperCamelCase = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) # get latents print('''add noise to latents at timestep''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.scheduler.add_noise(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = init_latents return latents @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.8 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , )-> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(SCREAMING_SNAKE_CASE_ ) # 2. Preprocess image __UpperCamelCase = preprocess(SCREAMING_SNAKE_CASE_ ) # 3. set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=self.device ) __UpperCamelCase , __UpperCamelCase = self.get_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.device ) __UpperCamelCase = timesteps[:1].repeat(SCREAMING_SNAKE_CASE_ ) # 4. Prepare latent variables __UpperCamelCase = self.prepare_latents(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.unet.dtype , self.device , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = latents # 5. Denoising loop for t in self.progress_bar(SCREAMING_SNAKE_CASE_ ): # 1. predict noise model_output __UpperCamelCase = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCamelCase = self.scheduler.step( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , use_clipped_model_output=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , ).prev_sample __UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
328
def A_ ( snake_case : list ) -> list: '''simple docstring''' __UpperCamelCase = len(snake_case ) for i in range(1 , snake_case ): __UpperCamelCase = collection[i] __UpperCamelCase = 0 __UpperCamelCase = i - 1 while low <= high: __UpperCamelCase = (low + high) // 2 if val < collection[mid]: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 for j in range(snake_case , snake_case , -1 ): __UpperCamelCase = collection[j - 1] __UpperCamelCase = val return collection if __name__ == "__main__": lowercase__ : List[Any] = input("Enter numbers separated by a comma:\n").strip() lowercase__ : str = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
328
1
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" @register_to_config def __init__( self , SCREAMING_SNAKE_CASE_ = 768 , )-> Any: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.zeros(1 , SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = nn.Parameter(torch.ones(1 , SCREAMING_SNAKE_CASE_ ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , )-> str: '''simple docstring''' __UpperCamelCase = nn.Parameter(self.mean.to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = nn.Parameter(self.std.to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) ) return self def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = (embeds - self.mean) * 1.0 / self.std return embeds def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = (embeds * self.std) + self.mean return embeds
328
from __future__ import annotations from collections import deque class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(SCREAMING_SNAKE_CASE_ ) self.set_fail_transitions() def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int | None: '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' __UpperCamelCase = 0 for character in keyword: __UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __UpperCamelCase = len(self.adlist ) - 1 else: __UpperCamelCase = next_state self.adlist[current_state]["output"].append(SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = deque() for node in self.adlist[0]["next_states"]: q.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = 0 while q: __UpperCamelCase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.adlist[r]['''fail_state'''] while ( self.find_next_state(SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) is None and state != 0 ): __UpperCamelCase = self.adlist[state]['''fail_state'''] __UpperCamelCase = self.find_next_state( SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: __UpperCamelCase = 0 __UpperCamelCase = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> dict[str, list[int]]: '''simple docstring''' __UpperCamelCase = {} # returns a dict with keywords and list of its occurrences __UpperCamelCase = 0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): while ( self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) is None and current_state != 0 ): __UpperCamelCase = self.adlist[current_state]['''fail_state'''] __UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) if next_state is None: __UpperCamelCase = 0 else: __UpperCamelCase = next_state for key in self.adlist[current_state]["output"]: if key not in result: __UpperCamelCase = [] result[key].append(i - len(SCREAMING_SNAKE_CASE_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
328
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase__ : Any = parser.parse_args() lowercase__ : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase__ : List[str] = CLIPImageProcessor() lowercase__ : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase__ : Optional[Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
328
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> Dict: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self )-> str: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = DistilBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = True _snake_case = True _snake_case = True def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = DistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def A__ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> List[str]: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCamelCase = True __UpperCamelCase = model_class(config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) ) __UpperCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] __UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
328
1
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = '' _snake_case = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> Union[str, Any]: '''simple docstring''' super().__init__(self , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = repo_info __UpperCamelCase = token __UpperCamelCase = None def A__ ( self )-> Any: '''simple docstring''' if self.dir_cache is None: __UpperCamelCase = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __UpperCamelCase = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(SCREAMING_SNAKE_CASE_ ): {'''name''': str(SCREAMING_SNAKE_CASE_ ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "rb" , **SCREAMING_SNAKE_CASE_ , )-> List[Any]: '''simple docstring''' if not isinstance(self.repo_info , SCREAMING_SNAKE_CASE_ ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) __UpperCamelCase = hf_hub_url(self.repo_info.id , SCREAMING_SNAKE_CASE_ , revision=self.repo_info.sha ) return fsspec.open( SCREAMING_SNAKE_CASE_ , mode=SCREAMING_SNAKE_CASE_ , headers=get_authentication_headers_for_url(SCREAMING_SNAKE_CASE_ , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> List[Any]: '''simple docstring''' self._get_dirs() __UpperCamelCase = self._strip_protocol(SCREAMING_SNAKE_CASE_ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' self._get_dirs() __UpperCamelCase = PurePosixPath(path.strip('''/''' ) ) __UpperCamelCase = {} for p, f in self.dir_cache.items(): __UpperCamelCase = PurePosixPath(p.strip('''/''' ) ) __UpperCamelCase = p.parent if root == path: __UpperCamelCase = f __UpperCamelCase = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
328
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase__ : Optional[Any] = logging.getLogger(__name__) def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int: '''simple docstring''' def get_dataset(snake_case : Optional[int] ): __UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any: '''simple docstring''' __UpperCamelCase = [] for epoch in range(snake_case ): # Train quickly model.train() for batch in dataloader: __UpperCamelCase , __UpperCamelCase = batch __UpperCamelCase = model(snake_case ) __UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case ) accelerator.backward(snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self )-> Tuple: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' return x * self.a + self.b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self )-> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() # Train baseline __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3] ) __UpperCamelCase = torch.tensor([2, 3, 4] ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(net.parameters() ) __UpperCamelCase = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() __UpperCamelCase = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing" lowercase__ : List[Any] = DummyModel() lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase__ , lowercase__ : str = dummy_dataloaders() lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase__ : int = group["params"][0].device break assert param_device.type == accelerator.device.type lowercase__ : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowercase__ : Any = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowercase__ : List[Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
328
1
from math import pi, sqrt def A_ ( snake_case : float ) -> float: '''simple docstring''' if num <= 0: raise ValueError('''math domain error''' ) if num > 171.5: raise OverflowError('''math range error''' ) elif num - int(snake_case ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(snake_case ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def A_ ( ) -> None: '''simple docstring''' assert gamma(0.5 ) == sqrt(snake_case ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() lowercase__ : str = 1.0 while num: lowercase__ : List[Any] = float(input("Gamma of: ")) print(F"gamma({num}) = {gamma(num)}") print("\nEnter 0 to exit...")
328
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]: '''simple docstring''' super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Sql( cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , ) # Build dataset for splits __UpperCamelCase = self.builder.as_dataset( split='''train''' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) __UpperCamelCase = dataset __UpperCamelCase = name __UpperCamelCase = con __UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCamelCase = num_proc __UpperCamelCase = to_sql_kwargs def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.to_sql_kwargs.pop('''sql''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''con''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''index''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs ) return written def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args __UpperCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __UpperCamelCase = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCamelCase = batch.to_pandas() __UpperCamelCase = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return num_rows or len(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
328
1
import datasets from .evaluate import evaluate lowercase__ : Union[str, Any] = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" lowercase__ : List[Any] = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" lowercase__ : str = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def A__ ( self )-> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} __UpperCamelCase = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] __UpperCamelCase = evaluate(dataset=SCREAMING_SNAKE_CASE_ , predictions=SCREAMING_SNAKE_CASE_ ) return score
328
def A_ ( snake_case : str ) -> int: '''simple docstring''' assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , snake_case ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
328
1
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def A_ ( *snake_case : List[str] ) -> str: '''simple docstring''' with open(snake_case , '''r''' ) as fh: fcntl.flock(snake_case , fcntl.LOCK_EX ) try: print(*snake_case ) finally: fcntl.flock(snake_case , fcntl.LOCK_UN ) lowercase__ : Tuple = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) lowercase__ : Optional[Any] = torch.device("cuda", local_rank) lowercase__ : int = socket.gethostname() lowercase__ : Union[str, Any] = F"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank lowercase__ : Union[str, Any] = dist.get_rank() lowercase__ : Dict = dist.get_world_size() printflock(F"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(F"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(F"{gpu} is broken") raise
328
def A_ ( snake_case : int ) -> None: '''simple docstring''' __UpperCamelCase = generate_pascal_triangle(snake_case ) for row_idx in range(snake_case ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [] for current_row_idx in range(snake_case ): __UpperCamelCase = populate_current_row(snake_case , snake_case ) triangle.append(snake_case ) return triangle def A_ ( snake_case : list[list[int]] , snake_case : int ) -> list[int]: '''simple docstring''' __UpperCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase , __UpperCamelCase = 1, 1 for current_col_idx in range(1 , snake_case ): calculate_current_element( snake_case , snake_case , snake_case , snake_case ) return current_row def A_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , ) -> None: '''simple docstring''' __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase = above_to_left_elt + above_to_right_elt def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [[1]] for row_index in range(1 , snake_case ): __UpperCamelCase = [0] + result[-1] + [0] __UpperCamelCase = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase = sum(divmod(snake_case , 2 ) ) __UpperCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase = row_first_half + row_second_half result.append(snake_case ) return result def A_ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None: __UpperCamelCase = f"{func.__name__}({value})" __UpperCamelCase = timeit(f"__main__.{call}" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case , snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=18 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=400 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , )-> List[str]: '''simple docstring''' __UpperCamelCase = size if size is not None else {'''height''': 18, '''width''': 18} __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = num_channels __UpperCamelCase = image_size __UpperCamelCase = min_resolution __UpperCamelCase = max_resolution __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = apply_ocr def A__ ( self )-> int: '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = LayoutLMvaImageProcessor if is_pytesseract_available() else None def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = LayoutLMvaImageProcessingTester(self ) @property def A__ ( self )-> str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_resize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''size''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''apply_ocr''' ) ) def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) __UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def A__ ( self )-> Optional[Any]: '''simple docstring''' pass def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(encoding.boxes , SCREAMING_SNAKE_CASE_ ) # Test batched __UpperCamelCase = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __UpperCamelCase = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) # Test not batched input __UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __UpperCamelCase = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) __UpperCamelCase = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) __UpperCamelCase = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 __UpperCamelCase = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(encoding.boxes , SCREAMING_SNAKE_CASE_ ) # with apply_OCR = False __UpperCamelCase = LayoutLMvaImageProcessor(apply_ocr=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
328
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase__ : Any = parser.parse_args() lowercase__ : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase__ : List[str] = CLIPImageProcessor() lowercase__ : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase__ : Optional[Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
328
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer lowercase__ : Any = logging.get_logger(__name__) lowercase__ : List[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase__ : Union[str, Any] = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } lowercase__ : Optional[Any] = { "yjernite/retribert-base-uncased": 5_1_2, } lowercase__ : Union[str, Any] = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = PRETRAINED_INIT_CONFIGURATION _snake_case = RetriBertTokenizer _snake_case = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , )-> int: '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): __UpperCamelCase = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('''type''' ) ) __UpperCamelCase = do_lower_case __UpperCamelCase = strip_accents __UpperCamelCase = tokenize_chinese_chars __UpperCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = do_lower_case def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None )-> Any: '''simple docstring''' __UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> List[int]: '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> Tuple[str]: '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
328
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowercase__ : Union[str, Any] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" lowercase__ : Optional[Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" lowercase__ : Any = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" lowercase__ : Optional[int] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" lowercase__ : Optional[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[1, 10, 100] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3.0 )-> Union[str, Any]: '''simple docstring''' if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE_ ) as executor: __UpperCamelCase = [] __UpperCamelCase = Counter() __UpperCamelCase = 0 __UpperCamelCase = defaultdict(SCREAMING_SNAKE_CASE_ ) for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ): for candidate in candidates: __UpperCamelCase = candidate + '''\n''' + test_case __UpperCamelCase = (test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase = executor.submit(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) futures.append(SCREAMING_SNAKE_CASE_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) __UpperCamelCase , __UpperCamelCase = [], [] for result in results.values(): result.sort() __UpperCamelCase = [r[1]['''passed'''] for r in result] total.append(len(SCREAMING_SNAKE_CASE_ ) ) correct.append(sum(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = k __UpperCamelCase = {F"pass@{k}": estimate_pass_at_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A_ ( snake_case : Tuple , snake_case : Union[str, Any] , snake_case : List[Any] ) -> Optional[Any]: '''simple docstring''' def estimator(snake_case : int , snake_case : int , snake_case : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(snake_case , snake_case ): __UpperCamelCase = itertools.repeat(snake_case , len(snake_case ) ) else: assert len(snake_case ) == len(snake_case ) __UpperCamelCase = iter(snake_case ) return np.array([estimator(int(snake_case ) , int(snake_case ) , snake_case ) for n, c in zip(snake_case , snake_case )] )
328
1
import torch from diffusers import StableDiffusionPipeline lowercase__ : int = "path-to-your-trained-model" lowercase__ : Any = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda") lowercase__ : Union[str, Any] = "A photo of sks dog in a bucket" lowercase__ : Union[str, Any] = pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
328
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__) lowercase__ : Optional[Any] = ["names", "prefix"] lowercase__ : List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowercase__ : Optional[Any] = ["encoding_errors", "on_bad_lines"] lowercase__ : List[str] = ["date_format"] @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): """simple docstring""" _snake_case = "," _snake_case = None _snake_case = "infer" _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = False _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = False _snake_case = True _snake_case = None _snake_case = "." _snake_case = None _snake_case = '"' _snake_case = 0 _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = 0 _snake_case = True _snake_case = False _snake_case = None _snake_case = 10000 _snake_case = None _snake_case = "strict" _snake_case = "error" _snake_case = None def A__ ( self )-> Any: '''simple docstring''' if self.delimiter is not None: __UpperCamelCase = self.delimiter if self.column_names is not None: __UpperCamelCase = self.column_names @property def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): """simple docstring""" _snake_case = CsvConfig def A__ ( self )-> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) __UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ): __UpperCamelCase = data_files if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) ) return splits def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.Table: '''simple docstring''' if self.config.features is not None: __UpperCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE_ ) for feature in self.config.features.values() ): # cheaper cast __UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __UpperCamelCase = table_cast(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return pa_table def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __UpperCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ): __UpperCamelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , iterator=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = pa.Table.from_pandas(SCREAMING_SNAKE_CASE_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}" ) raise
328
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : List[Any] = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'fnet' def __init__( self , SCREAMING_SNAKE_CASE_=32000 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu_new" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , )-> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = vocab_size __UpperCamelCase = max_position_embeddings __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = initializer_range __UpperCamelCase = type_vocab_size __UpperCamelCase = layer_norm_eps __UpperCamelCase = use_tpu_fourier_optimizations __UpperCamelCase = tpu_short_seq_length
328
from __future__ import annotations import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def A_ ( snake_case : int ) -> list[int]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) __UpperCamelCase = [] for num in range(len(snake_case ) ): __UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: __UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case ) == n: return list_nums return [] def A_ ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
328
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ['image_processor', 'tokenizer'] _snake_case = 'CLIPImageProcessor' _snake_case = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = kwargs.pop('''feature_extractor''' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __UpperCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if images is not None: __UpperCamelCase = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ) , tensor_type=SCREAMING_SNAKE_CASE_ ) def A__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.tokenizer.model_input_names __UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A__ ( self )-> Optional[int]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , SCREAMING_SNAKE_CASE_ , ) return self.image_processor_class @property def A__ ( self )-> List[Any]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , SCREAMING_SNAKE_CASE_ , ) return self.image_processor
328
from __future__ import annotations from collections.abc import Callable def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float: '''simple docstring''' __UpperCamelCase = x_start __UpperCamelCase = fnc(snake_case ) __UpperCamelCase = 0.0 for _ in range(snake_case ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCamelCase = (x_end - x_start) / steps + xa __UpperCamelCase = fnc(snake_case ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCamelCase = xa __UpperCamelCase = fxa return area if __name__ == "__main__": def A_ ( snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowercase__ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 1_0
328
1
import pytest import datasets # Import fixture modules as plugins lowercase__ : Optional[Any] = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def A_ ( snake_case : List[str] , snake_case : List[str] ) -> Tuple: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def A_ ( snake_case : int ) -> Dict: '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=snake_case ) def A_ ( snake_case : str , snake_case : Optional[int] ) -> Optional[int]: '''simple docstring''' __UpperCamelCase = tmp_path_factory.getbasetemp() / '''cache''' __UpperCamelCase = test_hf_cache_home / '''datasets''' __UpperCamelCase = test_hf_cache_home / '''metrics''' __UpperCamelCase = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(snake_case ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(snake_case ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(snake_case ) ) __UpperCamelCase = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(snake_case ) ) __UpperCamelCase = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(snake_case ) ) @pytest.fixture(autouse=snake_case , scope='''session''' ) def A_ ( ) -> Optional[Any]: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=snake_case ) def A_ ( snake_case : Optional[Any] ) -> str: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , snake_case ) @pytest.fixture def A_ ( snake_case : Tuple ) -> Dict: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , snake_case )
328
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : int = logging.get_logger(__name__) lowercase__ : List[str] = ["model.decoder.embed_positions.weights"] def A_ ( snake_case : Any ) -> List[Any]: '''simple docstring''' if "emb" in name: __UpperCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: __UpperCamelCase = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: __UpperCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: __UpperCamelCase = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: __UpperCamelCase = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: __UpperCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: __UpperCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: __UpperCamelCase = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: __UpperCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: __UpperCamelCase = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: __UpperCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def A_ ( snake_case : OrderedDict , snake_case : int ) -> Tuple[Dict, Dict]: '''simple docstring''' __UpperCamelCase = list(state_dict.keys() ) __UpperCamelCase = {} for key in keys: __UpperCamelCase = state_dict.pop(snake_case ) __UpperCamelCase = rename_keys(snake_case ) if "in_proj_weight" in key: # split fused qkv proj __UpperCamelCase = val[:hidden_size, :] __UpperCamelCase = val[hidden_size : 2 * hidden_size, :] __UpperCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __UpperCamelCase = val else: __UpperCamelCase = val return state_dict, enc_dec_proj_state_dict def A_ ( snake_case : str ) -> MusicgenDecoderConfig: '''simple docstring''' if checkpoint == "small": # default config values __UpperCamelCase = 1024 __UpperCamelCase = 24 __UpperCamelCase = 16 elif checkpoint == "medium": __UpperCamelCase = 1536 __UpperCamelCase = 48 __UpperCamelCase = 24 elif checkpoint == "large": __UpperCamelCase = 2048 __UpperCamelCase = 48 __UpperCamelCase = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) __UpperCamelCase = MusicgenDecoderConfig( hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , ) return config @torch.no_grad() def A_ ( snake_case : Any , snake_case : str=None , snake_case : Any=None , snake_case : Union[str, Any]="cpu" ) -> List[Any]: '''simple docstring''' __UpperCamelCase = MusicGen.get_pretrained(snake_case , device=snake_case ) __UpperCamelCase = decoder_config_from_checkpoint(snake_case ) __UpperCamelCase = fairseq_model.lm.state_dict() __UpperCamelCase , __UpperCamelCase = rename_state_dict( snake_case , hidden_size=decoder_config.hidden_size ) __UpperCamelCase = TaEncoderModel.from_pretrained('''t5-base''' ) __UpperCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) __UpperCamelCase = MusicgenForCausalLM(snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __UpperCamelCase , __UpperCamelCase = decoder.load_state_dict(snake_case , strict=snake_case ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(snake_case ) if len(snake_case ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(snake_case ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model __UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(snake_case ) # check we can do a forward pass __UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __UpperCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __UpperCamelCase = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor __UpperCamelCase = AutoTokenizer.from_pretrained('''t5-base''' ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) __UpperCamelCase = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case ) # set the appropriate bos/pad token ids __UpperCamelCase = 2048 __UpperCamelCase = 2048 # set other default generation config params __UpperCamelCase = int(30 * audio_encoder.config.frame_rate ) __UpperCamelCase = True __UpperCamelCase = 3.0 if pytorch_dump_folder is not None: Path(snake_case ).mkdir(exist_ok=snake_case ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(snake_case ) processor.push_to_hub(snake_case ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowercase__ : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
328
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = VideoToVideoSDPipeline _snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'} _snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'} _snake_case = PipelineTesterMixin.required_optional_params - {'latents'} _snake_case = False # No `output_type`. _snake_case = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def A__ ( self )-> Tuple: '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) __UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , ) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) __UpperCamelCase = CLIPTextModel(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 )-> List[str]: '''simple docstring''' __UpperCamelCase = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) if str(SCREAMING_SNAKE_CASE_ ).startswith('''mps''' ): __UpperCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __UpperCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''video''': video, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = VideoToVideoSDPipeline(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = '''np''' __UpperCamelCase = sd_pipe(**SCREAMING_SNAKE_CASE_ ).frames __UpperCamelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __UpperCamelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A__ ( self )-> Tuple: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ , expected_max_diff=5E-3 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def A__ ( self )-> Tuple: '''simple docstring''' pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def A__ ( self )-> Dict: '''simple docstring''' pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def A__ ( self )-> Dict: '''simple docstring''' pass def A__ ( self )-> Optional[Any]: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = VideoToVideoSDPipeline.from_pretrained('''cerspense/zeroscope_v2_XL''' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __UpperCamelCase = torch.randn((1, 10, 3, 1024, 576) , generator=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = video.to('''cuda''' ) __UpperCamelCase = '''Spiderman is surfing''' __UpperCamelCase = pipe(SCREAMING_SNAKE_CASE_ , video=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=3 , output_type='''pt''' ).frames __UpperCamelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
328
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : List[str] = 1_6 lowercase__ : str = 3_2 def A_ ( snake_case : Accelerator , snake_case : int = 16 ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCamelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase = datasets.map( snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase = 16 elif accelerator.mixed_precision != "no": __UpperCamelCase = 8 else: __UpperCamelCase = None return tokenizer.pad( snake_case , padding='''longest''' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) __UpperCamelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : Union[str, Any] = mocked_dataloaders # noqa: F811 def A_ ( snake_case : List[str] , snake_case : List[Any] ) -> Tuple: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case ) == "1": __UpperCamelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: __UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['''lr'''] __UpperCamelCase = int(config['''num_epochs'''] ) __UpperCamelCase = int(config['''seed'''] ) __UpperCamelCase = int(config['''batch_size'''] ) set_seed(snake_case ) __UpperCamelCase , __UpperCamelCase = get_dataloaders(snake_case , snake_case ) __UpperCamelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case ) # Instantiate scheduler __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __UpperCamelCase = os.path.split(snake_case )[-1].split('''.''' )[0] accelerator.init_trackers(snake_case , snake_case ) # Now we train the model for epoch in range(snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __UpperCamelCase = 0 for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case , references=snake_case , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(snake_case ), '''epoch''': epoch, } , step=snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def A_ ( ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case , default=snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
328
1
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowercase__ : str = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) __UpperCamelCase = os.path.abspath('''examples''' ) for item in os.listdir(SCREAMING_SNAKE_CASE_ ): if item not in EXCLUDE_EXAMPLES: __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if os.path.isfile(SCREAMING_SNAKE_CASE_ ) and ".py" in item_path: with self.subTest( tested_script=SCREAMING_SNAKE_CASE_ , feature_script=SCREAMING_SNAKE_CASE_ , tested_section='''main()''' if parser_only else '''training_function()''' , ): __UpperCamelCase = compare_against_test( os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = '''\n'''.join(SCREAMING_SNAKE_CASE_ ) if special_strings is not None: for string in special_strings: __UpperCamelCase = diff.replace(SCREAMING_SNAKE_CASE_ , '''''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''''' ) def A__ ( self )-> str: '''simple docstring''' self.one_complete_example('''complete_nlp_example.py''' , SCREAMING_SNAKE_CASE_ ) self.one_complete_example('''complete_nlp_example.py''' , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) __UpperCamelCase = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.one_complete_example('''complete_cv_example.py''' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '1'} ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = False @classmethod def A__ ( cls )-> Tuple: '''simple docstring''' super().setUpClass() __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def A__ ( cls )-> int: '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = F"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() __UpperCamelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() __UpperCamelCase = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE_ ) self.assertNotIn('''epoch 0:''' , SCREAMING_SNAKE_CASE_ ) self.assertIn('''epoch 1:''' , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = F"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() __UpperCamelCase = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE_ ) if torch.cuda.is_available(): __UpperCamelCase = torch.cuda.device_count() else: __UpperCamelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , SCREAMING_SNAKE_CASE_ ) self.assertIn('''epoch 1:''' , SCREAMING_SNAKE_CASE_ ) else: self.assertIn('''epoch 0:''' , SCREAMING_SNAKE_CASE_ ) self.assertIn('''epoch 1:''' , SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): __UpperCamelCase = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = re.findall('''({.+})''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = [r for r in results if '''accuracy''' in r][-1] __UpperCamelCase = ast.literal_eval(SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: __UpperCamelCase = F"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''tracking''' ) ) ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
328
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ : str = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'whisper' _snake_case = ['past_key_values'] _snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE_=51865 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=50257 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1500 , SCREAMING_SNAKE_CASE_=448 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[220, 50256] , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=7 , **SCREAMING_SNAKE_CASE_ , )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = num_mel_bins __UpperCamelCase = d_model __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = use_cache __UpperCamelCase = encoder_layers __UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase = max_source_positions __UpperCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __UpperCamelCase = classifier_proj_size __UpperCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length __UpperCamelCase = mask_feature_min_masks __UpperCamelCase = median_filter_width super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def A__ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' __UpperCamelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: __UpperCamelCase = {0: '''batch'''} else: __UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' ) return common_inputs def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 22050 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 220 , )-> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase = OrderedDict() __UpperCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = encoder_inputs['''input_features'''].shape[2] __UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __UpperCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = encoder_inputs.pop('''input_features''' ) __UpperCamelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: __UpperCamelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def A__ ( self )-> float: '''simple docstring''' return 1E-3
328
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : Tuple = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'lxmert' _snake_case = {} def __init__( self , SCREAMING_SNAKE_CASE_=30522 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=9500 , SCREAMING_SNAKE_CASE_=1600 , SCREAMING_SNAKE_CASE_=400 , SCREAMING_SNAKE_CASE_=3072 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=2048 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6.6_7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , )-> int: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = num_qa_labels __UpperCamelCase = num_object_labels __UpperCamelCase = num_attr_labels __UpperCamelCase = l_layers __UpperCamelCase = x_layers __UpperCamelCase = r_layers __UpperCamelCase = visual_feat_dim __UpperCamelCase = visual_pos_dim __UpperCamelCase = visual_loss_normalizer __UpperCamelCase = task_matched __UpperCamelCase = task_mask_lm __UpperCamelCase = task_obj_predict __UpperCamelCase = task_qa __UpperCamelCase = visual_obj_loss __UpperCamelCase = visual_attr_loss __UpperCamelCase = visual_feat_loss __UpperCamelCase = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**SCREAMING_SNAKE_CASE_ )
328
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : Tuple = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'xlnet' _snake_case = ['mems'] _snake_case = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , SCREAMING_SNAKE_CASE_=32000 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="bi" , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=-1 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="tanh" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = n_layer __UpperCamelCase = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) __UpperCamelCase = d_model // n_head __UpperCamelCase = ff_activation __UpperCamelCase = d_inner __UpperCamelCase = untie_r __UpperCamelCase = attn_type __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = dropout __UpperCamelCase = mem_len __UpperCamelCase = reuse_len __UpperCamelCase = bi_data __UpperCamelCase = clamp_len __UpperCamelCase = same_length __UpperCamelCase = summary_type __UpperCamelCase = summary_use_proj __UpperCamelCase = summary_activation __UpperCamelCase = summary_last_dropout __UpperCamelCase = start_n_top __UpperCamelCase = end_n_top __UpperCamelCase = bos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = kwargs['''use_cache'''] __UpperCamelCase = use_mems_eval __UpperCamelCase = use_mems_train super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> Optional[Any]: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
328
1
def A_ ( snake_case : int = 100 ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"{solution() = }")
328
from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None def __repr__( self )-> str: '''simple docstring''' return F"Node({self.data})" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = None def __iter__( self )-> Any: '''simple docstring''' __UpperCamelCase = self.head while node: yield node.data __UpperCamelCase = node.next def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self )-> str: '''simple docstring''' return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] ) def __getitem__( self , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) __UpperCamelCase = self.head for _ in range(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = current.next __UpperCamelCase = data def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' self.insert_nth(0 , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) __UpperCamelCase = Node(SCREAMING_SNAKE_CASE_ ) if self.head is None: __UpperCamelCase = new_node elif index == 0: __UpperCamelCase = self.head # link new_node to head __UpperCamelCase = new_node else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = new_node def A__ ( self )-> None: # print every node data '''simple docstring''' print(self ) def A__ ( self )-> Any: '''simple docstring''' return self.delete_nth(0 ) def A__ ( self )-> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def A__ ( self , SCREAMING_SNAKE_CASE_ = 0 )-> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) __UpperCamelCase = self.head # default first node if index == 0: __UpperCamelCase = self.head.next else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = temp.next.next return delete_node.data def A__ ( self )-> bool: '''simple docstring''' return self.head is None def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = self.head while current: # Store the current node's next node. __UpperCamelCase = current.next # Make the current node's next point backwards __UpperCamelCase = prev # Make the previous node be the current node __UpperCamelCase = current # Make the current node the next node (to progress iteration) __UpperCamelCase = next_node # Return prev in order to put the head at the end __UpperCamelCase = prev def A_ ( ) -> None: '''simple docstring''' __UpperCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(snake_case ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(snake_case ) == i linked_list.insert_nth(snake_case , i + 1 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(snake_case ) == 9 assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(snake_case ) == "->".join(str(snake_case ) for i in range(-8 , 1 ) ) def A_ ( ) -> None: '''simple docstring''' __UpperCamelCase = [ -9, 100, Node(77345112 ), '''dlrow olleH''', 7, 5555, 0, -192.55555, '''Hello, world!''', 77.9, Node(10 ), None, None, 12.20, ] __UpperCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(snake_case ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCamelCase = linked_list.delete_head() assert result == -9 assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(snake_case ) assert ( str(snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(snake_case ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def A_ ( ) -> Any: '''simple docstring''' from doctest import testmod testmod() __UpperCamelCase = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(snake_case ) print('''\nReading/changing Node data using indexing:''' ) print(f"Element at Position 1: {linked_list[1]}" ) __UpperCamelCase = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(snake_case ) print(f"length of linked_list is : {len(snake_case )}" ) if __name__ == "__main__": main()
328
1
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A_ ( snake_case : Union[str, Any] , snake_case : Optional[Any]=() , snake_case : Optional[Any]=None , snake_case : Tuple="no" , snake_case : str="29500" ) -> Tuple: '''simple docstring''' __UpperCamelCase = False __UpperCamelCase = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): __UpperCamelCase = True elif "IPython" in sys.modules: __UpperCamelCase = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: __UpperCamelCase = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , snake_case ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: __UpperCamelCase = 8 __UpperCamelCase = PrepareForLaunch(snake_case , distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(snake_case , args=snake_case , nprocs=snake_case , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*snake_case ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=snake_case , master_addr='''127.0.01''' , master_port=snake_case , mixed_precision=snake_case ): __UpperCamelCase = PrepareForLaunch(snake_case , distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(snake_case , args=snake_case , nprocs=snake_case , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): __UpperCamelCase = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*snake_case ) def A_ ( snake_case : Union[str, Any] , snake_case : Tuple=() , snake_case : Tuple=2 ) -> List[str]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=snake_case , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): __UpperCamelCase = PrepareForLaunch(snake_case , debug=snake_case ) start_processes(snake_case , args=snake_case , nprocs=snake_case , start_method='''fork''' )
328
import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num def A_ ( snake_case : int ) -> bool: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = n while left <= right: __UpperCamelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
328
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : Tuple = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'xlnet' _snake_case = ['mems'] _snake_case = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , SCREAMING_SNAKE_CASE_=32000 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="bi" , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=-1 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="tanh" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = n_layer __UpperCamelCase = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) __UpperCamelCase = d_model // n_head __UpperCamelCase = ff_activation __UpperCamelCase = d_inner __UpperCamelCase = untie_r __UpperCamelCase = attn_type __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = dropout __UpperCamelCase = mem_len __UpperCamelCase = reuse_len __UpperCamelCase = bi_data __UpperCamelCase = clamp_len __UpperCamelCase = same_length __UpperCamelCase = summary_type __UpperCamelCase = summary_use_proj __UpperCamelCase = summary_activation __UpperCamelCase = summary_last_dropout __UpperCamelCase = start_n_top __UpperCamelCase = end_n_top __UpperCamelCase = bos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = kwargs['''use_cache'''] __UpperCamelCase = use_mems_eval __UpperCamelCase = use_mems_train super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> Optional[Any]: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
328
def A_ ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowercase__ : List[str] = generate_large_matrix() lowercase__ : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A_ ( snake_case : list[list[int]] ) -> None: '''simple docstring''' assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid ) assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) ) def A_ ( snake_case : list[int] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCamelCase = (left + right) // 2 __UpperCamelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCamelCase = mid + 1 else: __UpperCamelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(grid[0] ) for i in range(len(snake_case ) ): __UpperCamelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case ) * len(grid[0] )) - total def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 for row in grid: for i, number in enumerate(snake_case ): if number < 0: total += len(snake_case ) - i break return total def A_ ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCamelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowercase__ : str = logging.get_logger(__name__) lowercase__ : Union[str, Any] = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) lowercase__ : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def A_ ( snake_case : str ) -> Union[str, Any]: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: __UpperCamelCase = model_type_to_module_name(snake_case ) __UpperCamelCase = importlib.import_module(f".{module_name}" , '''transformers.models''' ) try: return getattr(snake_case , snake_case ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(snake_case , '''__name__''' , snake_case ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __UpperCamelCase = importlib.import_module('''transformers''' ) if hasattr(snake_case , snake_case ): return getattr(snake_case , snake_case ) return None def A_ ( snake_case : Union[str, os.PathLike] , snake_case : Optional[Union[str, os.PathLike]] = None , snake_case : bool = False , snake_case : bool = False , snake_case : Optional[Dict[str, str]] = None , snake_case : Optional[Union[bool, str]] = None , snake_case : Optional[str] = None , snake_case : bool = False , **snake_case : List[Any] , ) -> Optional[int]: '''simple docstring''' __UpperCamelCase = get_file_from_repo( snake_case , snake_case , cache_dir=snake_case , force_download=snake_case , resume_download=snake_case , proxies=snake_case , use_auth_token=snake_case , revision=snake_case , local_files_only=snake_case , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(snake_case , encoding='''utf-8''' ) as reader: return json.load(snake_case ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self )-> Dict: '''simple docstring''' raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(SCREAMING_SNAKE_CASE_ ) def A__ ( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase = kwargs.pop('''config''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = kwargs.pop('''trust_remote_code''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = True __UpperCamelCase , __UpperCamelCase = FeatureExtractionMixin.get_feature_extractor_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = config_dict.get('''feature_extractor_type''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): __UpperCamelCase = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # It could be in `config.feature_extractor_type`` __UpperCamelCase = getattr(SCREAMING_SNAKE_CASE_ , '''feature_extractor_type''' , SCREAMING_SNAKE_CASE_ ) if hasattr(SCREAMING_SNAKE_CASE_ , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: __UpperCamelCase = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: __UpperCamelCase = feature_extractor_class_from_name(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = feature_extractor_auto_map is not None __UpperCamelCase = feature_extractor_class is not None or type(SCREAMING_SNAKE_CASE_ ) in FEATURE_EXTRACTOR_MAPPING __UpperCamelCase = resolve_trust_remote_code( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if has_remote_code and trust_remote_code: __UpperCamelCase = get_class_from_dynamic_module( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = kwargs.pop('''code_revision''' , SCREAMING_SNAKE_CASE_ ) if os.path.isdir(SCREAMING_SNAKE_CASE_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(SCREAMING_SNAKE_CASE_ ) in FEATURE_EXTRACTOR_MAPPING: __UpperCamelCase = FEATURE_EXTRACTOR_MAPPING[type(SCREAMING_SNAKE_CASE_ )] return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) raise ValueError( F"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " F"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}" ) @staticmethod def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[Any]: '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
328
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = size if size is not None else {'''shortest_edge''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = crop_pct __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: __UpperCamelCase = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCamelCase = int(size['''height'''] / crop_pct ) else: __UpperCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) else: if "shortest_edge" in size: __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) elif "height" in size and "width" in size: __UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> str: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , )-> PIL.Image.Image: '''simple docstring''' __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
328
1
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowercase__ : Union[str, Any] = "Usage of script: script_name <size_of_canvas:int>" lowercase__ : str = [0] * 1_0_0 + [1] * 1_0 random.shuffle(choice) def A_ ( snake_case : int ) -> list[list[bool]]: '''simple docstring''' __UpperCamelCase = [[False for i in range(snake_case )] for j in range(snake_case )] return canvas def A_ ( snake_case : list[list[bool]] ) -> None: '''simple docstring''' for i, row in enumerate(snake_case ): for j, _ in enumerate(snake_case ): __UpperCamelCase = bool(random.getrandbits(1 ) ) def A_ ( snake_case : list[list[bool]] ) -> list[list[bool]]: '''simple docstring''' __UpperCamelCase = np.array(snake_case ) __UpperCamelCase = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(snake_case ): for c, pt in enumerate(snake_case ): __UpperCamelCase = __judge_point( snake_case , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __UpperCamelCase = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __UpperCamelCase = current_canvas.tolist() return return_canvas def A_ ( snake_case : bool , snake_case : list[list[bool]] ) -> bool: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __UpperCamelCase = pt if pt: if alive < 2: __UpperCamelCase = False elif alive == 2 or alive == 3: __UpperCamelCase = True elif alive > 3: __UpperCamelCase = False else: if alive == 3: __UpperCamelCase = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowercase__ : int = int(sys.argv[1]) # main working structure of this module. lowercase__ : Optional[Any] = create_canvas(canvas_size) seed(c) lowercase__ , lowercase__ : Any = plt.subplots() fig.show() lowercase__ : List[str] = ListedColormap(["w", "k"]) try: while True: lowercase__ : Any = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
328
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowercase__ : Any = getLogger(__name__) lowercase__ : List[str] = "cuda" if torch.cuda.is_available() else "cpu" def A_ ( snake_case : List[str] , snake_case : str , snake_case : str , snake_case : int = 8 , snake_case : str = DEFAULT_DEVICE , snake_case : List[str]=False , snake_case : Union[str, Any]="summarization" , snake_case : str=None , **snake_case : List[Any] , ) -> Dict: '''simple docstring''' __UpperCamelCase = Path(snake_case ).open('''w''' , encoding='''utf-8''' ) __UpperCamelCase = str(snake_case ) __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case ).to(snake_case ) if fpaa: __UpperCamelCase = model.half() __UpperCamelCase = AutoTokenizer.from_pretrained(snake_case ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __UpperCamelCase = time.time() # update config with task specific params use_task_specific_params(snake_case , snake_case ) if prefix is None: __UpperCamelCase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(snake_case , snake_case ) ) ): __UpperCamelCase = [prefix + text for text in examples_chunk] __UpperCamelCase = tokenizer(snake_case , return_tensors='''pt''' , truncation=snake_case , padding='''longest''' ).to(snake_case ) __UpperCamelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case , ) __UpperCamelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __UpperCamelCase = int(time.time() - start_time ) # seconds __UpperCamelCase = len(snake_case ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def A_ ( ) -> Tuple: '''simple docstring''' return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def A_ ( snake_case : str=True ) -> int: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=snake_case , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=snake_case , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=snake_case , required=snake_case , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=snake_case , required=snake_case , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=snake_case , required=snake_case , default=snake_case , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=snake_case , required=snake_case , default=snake_case , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=snake_case , default=8 , required=snake_case , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=snake_case , default=-1 , required=snake_case , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=snake_case , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __UpperCamelCase , __UpperCamelCase = parser.parse_known_args() __UpperCamelCase = parse_numeric_n_bool_cl_kwargs(snake_case ) if parsed_args and verbose: print(f"parsed the following generate kwargs: {parsed_args}" ) __UpperCamelCase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __UpperCamelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=snake_case ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __UpperCamelCase = generate_summaries_or_translations( snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case , ) if args.reference_path is None: return {} # Compute scores __UpperCamelCase = calculate_bleu if '''translation''' in args.task else calculate_rouge __UpperCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __UpperCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case )] __UpperCamelCase = score_fn(snake_case , snake_case ) scores.update(snake_case ) if args.dump_args: scores.update(snake_case ) if args.info: __UpperCamelCase = args.info if verbose: print(snake_case ) if args.score_path is not None: json.dump(snake_case , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
328
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowercase__ : Tuple = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" _snake_case = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _snake_case = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _snake_case = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _snake_case = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' __UpperCamelCase = ZeroShotClassificationPipeline( model=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , {'''sequence''': ANY(SCREAMING_SNAKE_CASE_ ), '''labels''': [ANY(SCREAMING_SNAKE_CASE_ )], '''scores''': [ANY(SCREAMING_SNAKE_CASE_ )]} ) # No kwarg __UpperCamelCase = classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , {'''sequence''': ANY(SCREAMING_SNAKE_CASE_ ), '''labels''': [ANY(SCREAMING_SNAKE_CASE_ )], '''scores''': [ANY(SCREAMING_SNAKE_CASE_ )]} ) __UpperCamelCase = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , {'''sequence''': ANY(SCREAMING_SNAKE_CASE_ ), '''labels''': [ANY(SCREAMING_SNAKE_CASE_ )], '''scores''': [ANY(SCREAMING_SNAKE_CASE_ )]} ) __UpperCamelCase = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( SCREAMING_SNAKE_CASE_ , {'''sequence''': ANY(SCREAMING_SNAKE_CASE_ ), '''labels''': [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], '''scores''': [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) __UpperCamelCase = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( SCREAMING_SNAKE_CASE_ , {'''sequence''': ANY(SCREAMING_SNAKE_CASE_ ), '''labels''': [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], '''scores''': [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) __UpperCamelCase = classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , {'''sequence''': ANY(SCREAMING_SNAKE_CASE_ ), '''labels''': [ANY(SCREAMING_SNAKE_CASE_ )], '''scores''': [ANY(SCREAMING_SNAKE_CASE_ )]} ) # https://github.com/huggingface/transformers/issues/13846 __UpperCamelCase = classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ {'''sequence''': ANY(SCREAMING_SNAKE_CASE_ ), '''labels''': [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], '''scores''': [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} for i in range(1 ) ] , ) __UpperCamelCase = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ {'''sequence''': ANY(SCREAMING_SNAKE_CASE_ ), '''labels''': [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], '''scores''': [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} for i in range(2 ) ] , ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier(SCREAMING_SNAKE_CASE_ , candidate_labels='''politics''' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier('''Who are you voting for in 2020?''' , candidate_labels=SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=SCREAMING_SNAKE_CASE_ , ) self.run_entailment_id(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase = zero_shot_classifier.model.config __UpperCamelCase = config.labelaid __UpperCamelCase = zero_shot_classifier.entailment_id __UpperCamelCase = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) __UpperCamelCase = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) __UpperCamelCase = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) __UpperCamelCase = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) __UpperCamelCase = original_labelaid self.assertEqual(SCREAMING_SNAKE_CASE_ , zero_shot_classifier.entailment_id ) @require_torch def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 100 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) __UpperCamelCase = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) __UpperCamelCase = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) __UpperCamelCase = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) __UpperCamelCase = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=SCREAMING_SNAKE_CASE_ , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) __UpperCamelCase = zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) __UpperCamelCase = zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=SCREAMING_SNAKE_CASE_ , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
328
from math import factorial def A_ ( snake_case : int = 100 ) -> int: '''simple docstring''' return sum(int(snake_case ) for x in str(factorial(snake_case ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
328
1
def A_ ( snake_case : int = 1000 ) -> int: '''simple docstring''' __UpperCamelCase = 3 __UpperCamelCase = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"{solution() = }")
328
def A_ ( snake_case : list ) -> list: '''simple docstring''' __UpperCamelCase = len(snake_case ) for i in range(1 , snake_case ): __UpperCamelCase = collection[i] __UpperCamelCase = 0 __UpperCamelCase = i - 1 while low <= high: __UpperCamelCase = (low + high) // 2 if val < collection[mid]: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 for j in range(snake_case , snake_case , -1 ): __UpperCamelCase = collection[j - 1] __UpperCamelCase = val return collection if __name__ == "__main__": lowercase__ : List[Any] = input("Enter numbers separated by a comma:\n").strip() lowercase__ : str = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
328
1
from math import pow, sqrt def A_ ( *snake_case : float ) -> bool: '''simple docstring''' __UpperCamelCase = len(snake_case ) > 0 and all(value > 0.0 for value in values ) return result def A_ ( snake_case : float , snake_case : float ) -> float | ValueError: '''simple docstring''' return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(snake_case , snake_case ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def A_ ( snake_case : float , snake_case : float , snake_case : float ) -> float | ValueError: '''simple docstring''' return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(snake_case , snake_case , snake_case ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def A_ ( snake_case : float , snake_case : float , snake_case : float ) -> float | ValueError: '''simple docstring''' return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(snake_case , snake_case , snake_case ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def A_ ( snake_case : float , snake_case : float , snake_case : float ) -> float | ValueError: '''simple docstring''' return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(snake_case , snake_case , snake_case ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def A_ ( snake_case : float , snake_case : float , snake_case : float ) -> float | ValueError: '''simple docstring''' return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(snake_case , snake_case , snake_case ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
328
from __future__ import annotations from collections import deque class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(SCREAMING_SNAKE_CASE_ ) self.set_fail_transitions() def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int | None: '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' __UpperCamelCase = 0 for character in keyword: __UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __UpperCamelCase = len(self.adlist ) - 1 else: __UpperCamelCase = next_state self.adlist[current_state]["output"].append(SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = deque() for node in self.adlist[0]["next_states"]: q.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = 0 while q: __UpperCamelCase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.adlist[r]['''fail_state'''] while ( self.find_next_state(SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) is None and state != 0 ): __UpperCamelCase = self.adlist[state]['''fail_state'''] __UpperCamelCase = self.find_next_state( SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: __UpperCamelCase = 0 __UpperCamelCase = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> dict[str, list[int]]: '''simple docstring''' __UpperCamelCase = {} # returns a dict with keywords and list of its occurrences __UpperCamelCase = 0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): while ( self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) is None and current_state != 0 ): __UpperCamelCase = self.adlist[current_state]['''fail_state'''] __UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) if next_state is None: __UpperCamelCase = 0 else: __UpperCamelCase = next_state for key in self.adlist[current_state]["output"]: if key not in result: __UpperCamelCase = [] result[key].append(i - len(SCREAMING_SNAKE_CASE_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
328
1
import argparse import json from tqdm import tqdm def A_ ( ) -> Dict: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=snake_case , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=snake_case , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=snake_case , help='''where to store parsed gold_data_path file''' , ) __UpperCamelCase = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: __UpperCamelCase = json.load(snake_case ) for dpr_record in tqdm(snake_case ): __UpperCamelCase = dpr_record['''question'''] __UpperCamelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(snake_case ) + '''\n''' ) if __name__ == "__main__": main()
328
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> Dict: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self )-> str: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = DistilBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = True _snake_case = True _snake_case = True def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = DistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def A__ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> List[str]: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCamelCase = True __UpperCamelCase = model_class(config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) ) __UpperCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] __UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
328
1
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ['image_processor'] _snake_case = 'SamImageProcessor' def __init__( self , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.image_processor __UpperCamelCase = -10 __UpperCamelCase = self.image_processor.size['''longest_edge'''] def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> BatchEncoding: '''simple docstring''' __UpperCamelCase = self.image_processor( SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # pop arguments that are not used in the foward but used nevertheless __UpperCamelCase = encoding_image_processor['''original_sizes'''] if hasattr(SCREAMING_SNAKE_CASE_ , '''numpy''' ): # Checks if Torch or TF tensor __UpperCamelCase = original_sizes.numpy() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self._check_and_preprocess_points( input_points=SCREAMING_SNAKE_CASE_ , input_labels=SCREAMING_SNAKE_CASE_ , input_boxes=SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = self._normalize_and_convert( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , input_points=SCREAMING_SNAKE_CASE_ , input_labels=SCREAMING_SNAKE_CASE_ , input_boxes=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , ) return encoding_image_processor def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="pt" , )-> Union[str, Any]: '''simple docstring''' if input_points is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , original_sizes[0] ) for point in input_points ] else: __UpperCamelCase = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for point, original_size in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __UpperCamelCase , __UpperCamelCase = self._pad_points_and_labels(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) if input_labels is not None: __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) if input_boxes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , original_sizes[0] , is_bounding_box=SCREAMING_SNAKE_CASE_ ) for box in input_boxes ] else: __UpperCamelCase = [ self._normalize_coordinates(self.target_size , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , is_bounding_box=SCREAMING_SNAKE_CASE_ ) for box, original_size in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) if input_boxes is not None: if return_tensors == "pt": __UpperCamelCase = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # boxes batch size of 1 by default __UpperCamelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __UpperCamelCase = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # boxes batch size of 1 by default __UpperCamelCase = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes} ) if input_points is not None: if return_tensors == "pt": __UpperCamelCase = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __UpperCamelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __UpperCamelCase = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __UpperCamelCase = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points} ) if input_labels is not None: if return_tensors == "pt": __UpperCamelCase = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __UpperCamelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __UpperCamelCase = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) # point batch size of 1 by default __UpperCamelCase = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels} ) return encoding_image_processor def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = max([point.shape[0] for point in input_points] ) __UpperCamelCase = [] for i, point in enumerate(SCREAMING_SNAKE_CASE_ ): if point.shape[0] != expected_nb_points: __UpperCamelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __UpperCamelCase = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = processed_input_points return input_points, input_labels def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False )-> np.ndarray: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = original_size __UpperCamelCase , __UpperCamelCase = self.image_processor._get_preprocess_shape(SCREAMING_SNAKE_CASE_ , longest_edge=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = deepcopy(SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) if is_bounding_box: __UpperCamelCase = coords.reshape(-1 , 2 , 2 ) __UpperCamelCase = coords[..., 0] * (new_w / old_w) __UpperCamelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __UpperCamelCase = coords.reshape(-1 , 4 ) return coords def A__ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , )-> List[str]: '''simple docstring''' if input_points is not None: if hasattr(SCREAMING_SNAKE_CASE_ , '''numpy''' ): # Checks for TF or Torch tensor __UpperCamelCase = input_points.numpy().tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_points[0] , SCREAMING_SNAKE_CASE_ ): raise ValueError('''Input points must be a list of list of floating points.''' ) __UpperCamelCase = [np.array(SCREAMING_SNAKE_CASE_ ) for input_point in input_points] else: __UpperCamelCase = None if input_labels is not None: if hasattr(SCREAMING_SNAKE_CASE_ , '''numpy''' ): __UpperCamelCase = input_labels.numpy().tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_labels[0] , SCREAMING_SNAKE_CASE_ ): raise ValueError('''Input labels must be a list of list integers.''' ) __UpperCamelCase = [np.array(SCREAMING_SNAKE_CASE_ ) for label in input_labels] else: __UpperCamelCase = None if input_boxes is not None: if hasattr(SCREAMING_SNAKE_CASE_ , '''numpy''' ): __UpperCamelCase = input_boxes.numpy().tolist() if ( not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_boxes[0] , SCREAMING_SNAKE_CASE_ ) or not isinstance(input_boxes[0][0] , SCREAMING_SNAKE_CASE_ ) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''' ) __UpperCamelCase = [np.array(SCREAMING_SNAKE_CASE_ ).astype(np.floataa ) for box in input_boxes] else: __UpperCamelCase = None return input_points, input_labels, input_boxes @property def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(SCREAMING_SNAKE_CASE_ ) ) def A__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' return self.image_processor.post_process_masks(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
328
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase__ : Optional[Any] = logging.getLogger(__name__) def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int: '''simple docstring''' def get_dataset(snake_case : Optional[int] ): __UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any: '''simple docstring''' __UpperCamelCase = [] for epoch in range(snake_case ): # Train quickly model.train() for batch in dataloader: __UpperCamelCase , __UpperCamelCase = batch __UpperCamelCase = model(snake_case ) __UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case ) accelerator.backward(snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self )-> Tuple: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' return x * self.a + self.b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self )-> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() # Train baseline __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3] ) __UpperCamelCase = torch.tensor([2, 3, 4] ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(net.parameters() ) __UpperCamelCase = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() __UpperCamelCase = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing" lowercase__ : List[Any] = DummyModel() lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase__ , lowercase__ : str = dummy_dataloaders() lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase__ : int = group["params"][0].device break assert param_device.type == accelerator.device.type lowercase__ : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowercase__ : Any = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowercase__ : List[Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
328
1
lowercase__ : Optional[int] = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
328
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]: '''simple docstring''' super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Sql( cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , ) # Build dataset for splits __UpperCamelCase = self.builder.as_dataset( split='''train''' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) __UpperCamelCase = dataset __UpperCamelCase = name __UpperCamelCase = con __UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCamelCase = num_proc __UpperCamelCase = to_sql_kwargs def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.to_sql_kwargs.pop('''sql''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''con''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''index''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs ) return written def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args __UpperCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __UpperCamelCase = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCamelCase = batch.to_pandas() __UpperCamelCase = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return num_rows or len(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
328
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowercase__ : Union[str, Any] = { "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = ["MobileViTFeatureExtractor"] lowercase__ : Any = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Any = [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = [ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys lowercase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
328
def A_ ( snake_case : str ) -> int: '''simple docstring''' assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , snake_case ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
328
1
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = IFImgaImgSuperResolutionPipeline _snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} _snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) _snake_case = PipelineTesterMixin.required_optional_params - {'latents'} def A__ ( self )-> str: '''simple docstring''' return self._get_superresolution_dummy_components() def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 )-> Any: '''simple docstring''' if str(SCREAMING_SNAKE_CASE_ ).startswith('''mps''' ): __UpperCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __UpperCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A__ ( self )-> Any: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def A__ ( self )-> str: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def A__ ( self )-> List[str]: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def A__ ( self )-> int: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def A__ ( self )-> List[Any]: '''simple docstring''' self._test_save_load_local() def A__ ( self )-> Dict: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
328
def A_ ( snake_case : int ) -> None: '''simple docstring''' __UpperCamelCase = generate_pascal_triangle(snake_case ) for row_idx in range(snake_case ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [] for current_row_idx in range(snake_case ): __UpperCamelCase = populate_current_row(snake_case , snake_case ) triangle.append(snake_case ) return triangle def A_ ( snake_case : list[list[int]] , snake_case : int ) -> list[int]: '''simple docstring''' __UpperCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase , __UpperCamelCase = 1, 1 for current_col_idx in range(1 , snake_case ): calculate_current_element( snake_case , snake_case , snake_case , snake_case ) return current_row def A_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , ) -> None: '''simple docstring''' __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase = above_to_left_elt + above_to_right_elt def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [[1]] for row_index in range(1 , snake_case ): __UpperCamelCase = [0] + result[-1] + [0] __UpperCamelCase = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase = sum(divmod(snake_case , 2 ) ) __UpperCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase = row_first_half + row_second_half result.append(snake_case ) return result def A_ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None: __UpperCamelCase = f"{func.__name__}({value})" __UpperCamelCase = timeit(f"__main__.{call}" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case , snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
1
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowercase__ : Optional[int] = {"UserAgent": UserAgent().random} def A_ ( snake_case : Dict ) -> dict: '''simple docstring''' __UpperCamelCase = script.contents[0] __UpperCamelCase = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = F"https://www.instagram.com/{username}/" __UpperCamelCase = self.get_json() def A__ ( self )-> dict: '''simple docstring''' __UpperCamelCase = requests.get(self.url , headers=SCREAMING_SNAKE_CASE_ ).text __UpperCamelCase = BeautifulSoup(SCREAMING_SNAKE_CASE_ , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self )-> str: '''simple docstring''' return F"{self.__class__.__name__}('{self.username}')" def __str__( self )-> str: '''simple docstring''' return F"{self.fullname} ({self.username}) is {self.biography}" @property def A__ ( self )-> str: '''simple docstring''' return self.user_data["username"] @property def A__ ( self )-> str: '''simple docstring''' return self.user_data["full_name"] @property def A__ ( self )-> str: '''simple docstring''' return self.user_data["biography"] @property def A__ ( self )-> str: '''simple docstring''' return self.user_data["business_email"] @property def A__ ( self )-> str: '''simple docstring''' return self.user_data["external_url"] @property def A__ ( self )-> int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def A__ ( self )-> int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def A__ ( self )-> int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def A__ ( self )-> str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def A__ ( self )-> bool: '''simple docstring''' return self.user_data["is_verified"] @property def A__ ( self )-> bool: '''simple docstring''' return self.user_data["is_private"] def A_ ( snake_case : str = "github" ) -> None: '''simple docstring''' import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions __UpperCamelCase = InstagramUser(snake_case ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , snake_case ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : Optional[Any] = InstagramUser("github") print(instagram_user) print(F"{instagram_user.number_of_posts = }") print(F"{instagram_user.number_of_followers = }") print(F"{instagram_user.number_of_followings = }") print(F"{instagram_user.email = }") print(F"{instagram_user.website = }") print(F"{instagram_user.profile_picture_url = }") print(F"{instagram_user.is_verified = }") print(F"{instagram_user.is_private = }")
328
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase__ : Any = parser.parse_args() lowercase__ : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase__ : List[str] = CLIPImageProcessor() lowercase__ : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase__ : Optional[Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
328
1
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def A_ ( snake_case : Optional[int] , snake_case : Any , snake_case : List[str] ) -> Optional[int]: '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , snake_case ) __UpperCamelCase = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __UpperCamelCase = dataset_size < in_memory_max_size else: __UpperCamelCase = False __UpperCamelCase = is_small_dataset(snake_case ) assert result == expected
328
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowercase__ : Union[str, Any] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" lowercase__ : Optional[Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" lowercase__ : Any = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" lowercase__ : Optional[int] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" lowercase__ : Optional[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[1, 10, 100] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3.0 )-> Union[str, Any]: '''simple docstring''' if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE_ ) as executor: __UpperCamelCase = [] __UpperCamelCase = Counter() __UpperCamelCase = 0 __UpperCamelCase = defaultdict(SCREAMING_SNAKE_CASE_ ) for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ): for candidate in candidates: __UpperCamelCase = candidate + '''\n''' + test_case __UpperCamelCase = (test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase = executor.submit(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) futures.append(SCREAMING_SNAKE_CASE_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) __UpperCamelCase , __UpperCamelCase = [], [] for result in results.values(): result.sort() __UpperCamelCase = [r[1]['''passed'''] for r in result] total.append(len(SCREAMING_SNAKE_CASE_ ) ) correct.append(sum(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = k __UpperCamelCase = {F"pass@{k}": estimate_pass_at_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A_ ( snake_case : Tuple , snake_case : Union[str, Any] , snake_case : List[Any] ) -> Optional[Any]: '''simple docstring''' def estimator(snake_case : int , snake_case : int , snake_case : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(snake_case , snake_case ): __UpperCamelCase = itertools.repeat(snake_case , len(snake_case ) ) else: assert len(snake_case ) == len(snake_case ) __UpperCamelCase = iter(snake_case ) return np.array([estimator(int(snake_case ) , int(snake_case ) , snake_case ) for n, c in zip(snake_case , snake_case )] )
328
1
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowercase__ : Any = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
328
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__) lowercase__ : Optional[Any] = ["names", "prefix"] lowercase__ : List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowercase__ : Optional[Any] = ["encoding_errors", "on_bad_lines"] lowercase__ : List[str] = ["date_format"] @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): """simple docstring""" _snake_case = "," _snake_case = None _snake_case = "infer" _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = False _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = False _snake_case = True _snake_case = None _snake_case = "." _snake_case = None _snake_case = '"' _snake_case = 0 _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = 0 _snake_case = True _snake_case = False _snake_case = None _snake_case = 10000 _snake_case = None _snake_case = "strict" _snake_case = "error" _snake_case = None def A__ ( self )-> Any: '''simple docstring''' if self.delimiter is not None: __UpperCamelCase = self.delimiter if self.column_names is not None: __UpperCamelCase = self.column_names @property def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): """simple docstring""" _snake_case = CsvConfig def A__ ( self )-> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) __UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ): __UpperCamelCase = data_files if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) ) return splits def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.Table: '''simple docstring''' if self.config.features is not None: __UpperCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE_ ) for feature in self.config.features.values() ): # cheaper cast __UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __UpperCamelCase = table_cast(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return pa_table def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __UpperCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ): __UpperCamelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , iterator=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = pa.Table.from_pandas(SCREAMING_SNAKE_CASE_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}" ) raise
328
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ : Dict = "▁" lowercase__ : Tuple = {"vocab_file": "spiece.model"} lowercase__ : int = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } lowercase__ : int = { "google/pegasus-xsum": 5_1_2, } lowercase__ : int = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<mask_2>" , SCREAMING_SNAKE_CASE_="<mask_1>" , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=103 , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None: '''simple docstring''' __UpperCamelCase = offset if additional_special_tokens is not None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError( F"additional_special_tokens should be of type {type(SCREAMING_SNAKE_CASE_ )}, but is" F" {type(SCREAMING_SNAKE_CASE_ )}" ) __UpperCamelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"<unk_{i}>" for i in range(len(SCREAMING_SNAKE_CASE_ ) , self.offset - 1 ) ] if len(set(SCREAMING_SNAKE_CASE_ ) ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) __UpperCamelCase = additional_special_tokens_extended else: __UpperCamelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"<unk_{i}>" for i in range(2 , self.offset )] __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token_sent=SCREAMING_SNAKE_CASE_ , offset=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = mask_token_sent __UpperCamelCase = vocab_file __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE_ ) # add special tokens to encoder dict __UpperCamelCase = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __UpperCamelCase = {v: k for k, v in self.encoder.items()} @property def A__ ( self )-> int: '''simple docstring''' return len(self.sp_model ) + self.offset def A__ ( self )-> Dict[str, int]: '''simple docstring''' __UpperCamelCase = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None return state def __setstate__( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __UpperCamelCase = self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE_ ) return sp_id + self.offset def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __UpperCamelCase = self.sp_model.IdToPiece(index - self.offset ) return token def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token __UpperCamelCase = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def A__ ( self , SCREAMING_SNAKE_CASE_=False )-> Union[str, Any]: '''simple docstring''' return 1 def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False )-> List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(SCREAMING_SNAKE_CASE_ ) elif token_ids_a is None: return self._special_token_mask(SCREAMING_SNAKE_CASE_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None )-> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __UpperCamelCase = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
328
from __future__ import annotations import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def A_ ( snake_case : int ) -> list[int]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) __UpperCamelCase = [] for num in range(len(snake_case ) ): __UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: __UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case ) == n: return list_nums return [] def A_ ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
328
1
from functools import reduce lowercase__ : Optional[int] = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def A_ ( snake_case : str = N ) -> int: '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda snake_case , snake_case : str(int(snake_case ) * int(snake_case ) ) , n[i : i + 13] ) ) for i in range(len(snake_case ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
328
from __future__ import annotations from collections.abc import Callable def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float: '''simple docstring''' __UpperCamelCase = x_start __UpperCamelCase = fnc(snake_case ) __UpperCamelCase = 0.0 for _ in range(snake_case ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCamelCase = (x_end - x_start) / steps + xa __UpperCamelCase = fnc(snake_case ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCamelCase = xa __UpperCamelCase = fxa return area if __name__ == "__main__": def A_ ( snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowercase__ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 1_0
328
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=32 * 4 , SCREAMING_SNAKE_CASE_=32 * 6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=32 , )-> Dict: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = is_training __UpperCamelCase = use_auxiliary_loss __UpperCamelCase = num_queries __UpperCamelCase = num_channels __UpperCamelCase = min_size __UpperCamelCase = max_size __UpperCamelCase = num_labels __UpperCamelCase = mask_feature_size def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=SCREAMING_SNAKE_CASE_ ) > 0.5 ).float() __UpperCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=SCREAMING_SNAKE_CASE_ ) > 0.5).long() __UpperCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self )-> str: '''simple docstring''' return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = output.encoder_hidden_states __UpperCamelCase = output.pixel_decoder_hidden_states __UpperCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) , config.decoder_config.decoder_layers ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False )-> List[str]: '''simple docstring''' with torch.no_grad(): __UpperCamelCase = MaskFormerModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(pixel_values=SCREAMING_SNAKE_CASE_ , pixel_mask=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = MaskFormerForInstanceSegmentation(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() def comm_check_on_output(SCREAMING_SNAKE_CASE_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __UpperCamelCase = model(pixel_values=SCREAMING_SNAKE_CASE_ , pixel_mask=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) comm_check_on_output(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model( pixel_values=SCREAMING_SNAKE_CASE_ , pixel_mask=SCREAMING_SNAKE_CASE_ , mask_labels=SCREAMING_SNAKE_CASE_ , class_labels=SCREAMING_SNAKE_CASE_ ) comm_check_on_output(SCREAMING_SNAKE_CASE_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () _snake_case = ( {'feature-extraction': MaskFormerModel, 'image-segmentation': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = MaskFormerModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def A__ ( self )-> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def A__ ( self )-> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def A__ ( self )-> Dict: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A__ ( self )-> Tuple: '''simple docstring''' pass def A__ ( self )-> str: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> Tuple: '''simple docstring''' for model_name in ["facebook/maskformer-swin-small-coco"]: __UpperCamelCase = MaskFormerModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = (self.model_tester.min_size,) * 2 __UpperCamelCase = { '''pixel_values''': torch.randn((2, 3, *size) , device=SCREAMING_SNAKE_CASE_ ), '''mask_labels''': torch.randn((2, 10, *size) , device=SCREAMING_SNAKE_CASE_ ), '''class_labels''': torch.zeros(2 , 10 , device=SCREAMING_SNAKE_CASE_ ).long(), } __UpperCamelCase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.loss is not None ) def A__ ( self )-> str: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.attentions is not None ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss __UpperCamelCase = self.all_model_classes[1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() __UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , mask_labels=SCREAMING_SNAKE_CASE_ , class_labels=SCREAMING_SNAKE_CASE_ ).loss loss.backward() def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.all_model_classes[1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , mask_labels=SCREAMING_SNAKE_CASE_ , class_labels=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __UpperCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't __UpperCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __UpperCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowercase__ : Any = 1e-4 def A_ ( ) -> List[Any]: '''simple docstring''' __UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self )-> Optional[int]: '''simple docstring''' return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_ , (1, 3, 800, 1088) ) with torch.no_grad(): __UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor( [[-0.0_4_8_2, 0.9_2_2_8, 0.4_9_5_1], [-0.2_5_4_7, 0.8_0_1_7, 0.8_5_2_7], [-0.0_0_6_9, 0.3_3_8_5, -0.0_0_8_9]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = torch.tensor( [[-0.8_4_2_2, -0.8_4_3_4, -0.9_7_1_8], [-1.0_1_4_4, -0.5_5_6_5, -0.4_1_9_5], [-1.0_0_3_8, -0.4_4_8_4, -0.1_9_6_1]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = torch.tensor( [[0.2_8_5_2, -0.0_1_5_9, 0.9_7_3_5], [0.6_2_5_4, 0.1_8_5_8, 0.8_5_2_9], [-0.0_6_8_0, -0.4_1_1_6, 1.8_4_1_3]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(SCREAMING_SNAKE_CASE_ ) .eval() ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_ , (1, 3, 800, 1088) ) with torch.no_grad(): __UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) # masks_queries_logits __UpperCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) __UpperCamelCase = [ [-1.3_7_3_7_1_2_4, -1.7_7_2_4_9_3_7, -1.9_3_6_4_2_3_3], [-1.5_9_7_7_2_8_1, -1.9_8_6_7_9_3_9, -2.1_5_2_3_6_9_5], [-1.5_7_9_5_3_9_8, -1.9_2_6_9_8_3_2, -2.0_9_3_9_4_2], ] __UpperCamelCase = torch.tensor(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) # class_queries_logits __UpperCamelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) __UpperCamelCase = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(SCREAMING_SNAKE_CASE_ ) .eval() ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_ , (1, 3, 800, 1088) ) with torch.no_grad(): __UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) # masks_queries_logits __UpperCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) __UpperCamelCase = [[-0.9_0_4_6, -2.6_3_6_6, -4.6_0_6_2], [-3.4_1_7_9, -5.7_8_9_0, -8.8_0_5_7], [-4.9_1_7_9, -7.6_5_6_0, -1_0.7_7_1_1]] __UpperCamelCase = torch.tensor(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) # class_queries_logits __UpperCamelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) __UpperCamelCase = torch.tensor( [[4.7_1_8_8, -3.2_5_8_5, -2.8_8_5_7], [6.6_8_7_1, -2.9_1_8_1, -1.2_4_8_7], [7.2_4_4_9, -2.2_7_6_4, -2.1_8_7_4]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(SCREAMING_SNAKE_CASE_ ) .eval() ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) __UpperCamelCase = inputs['''pixel_values'''].to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = [el.to(SCREAMING_SNAKE_CASE_ ) for el in inputs['''mask_labels''']] __UpperCamelCase = [el.to(SCREAMING_SNAKE_CASE_ ) for el in inputs['''class_labels''']] with torch.no_grad(): __UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.loss is not None )
328
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : int = logging.get_logger(__name__) lowercase__ : List[str] = ["model.decoder.embed_positions.weights"] def A_ ( snake_case : Any ) -> List[Any]: '''simple docstring''' if "emb" in name: __UpperCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: __UpperCamelCase = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: __UpperCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: __UpperCamelCase = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: __UpperCamelCase = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: __UpperCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: __UpperCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: __UpperCamelCase = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: __UpperCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: __UpperCamelCase = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: __UpperCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def A_ ( snake_case : OrderedDict , snake_case : int ) -> Tuple[Dict, Dict]: '''simple docstring''' __UpperCamelCase = list(state_dict.keys() ) __UpperCamelCase = {} for key in keys: __UpperCamelCase = state_dict.pop(snake_case ) __UpperCamelCase = rename_keys(snake_case ) if "in_proj_weight" in key: # split fused qkv proj __UpperCamelCase = val[:hidden_size, :] __UpperCamelCase = val[hidden_size : 2 * hidden_size, :] __UpperCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __UpperCamelCase = val else: __UpperCamelCase = val return state_dict, enc_dec_proj_state_dict def A_ ( snake_case : str ) -> MusicgenDecoderConfig: '''simple docstring''' if checkpoint == "small": # default config values __UpperCamelCase = 1024 __UpperCamelCase = 24 __UpperCamelCase = 16 elif checkpoint == "medium": __UpperCamelCase = 1536 __UpperCamelCase = 48 __UpperCamelCase = 24 elif checkpoint == "large": __UpperCamelCase = 2048 __UpperCamelCase = 48 __UpperCamelCase = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) __UpperCamelCase = MusicgenDecoderConfig( hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , ) return config @torch.no_grad() def A_ ( snake_case : Any , snake_case : str=None , snake_case : Any=None , snake_case : Union[str, Any]="cpu" ) -> List[Any]: '''simple docstring''' __UpperCamelCase = MusicGen.get_pretrained(snake_case , device=snake_case ) __UpperCamelCase = decoder_config_from_checkpoint(snake_case ) __UpperCamelCase = fairseq_model.lm.state_dict() __UpperCamelCase , __UpperCamelCase = rename_state_dict( snake_case , hidden_size=decoder_config.hidden_size ) __UpperCamelCase = TaEncoderModel.from_pretrained('''t5-base''' ) __UpperCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) __UpperCamelCase = MusicgenForCausalLM(snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __UpperCamelCase , __UpperCamelCase = decoder.load_state_dict(snake_case , strict=snake_case ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(snake_case ) if len(snake_case ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(snake_case ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model __UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(snake_case ) # check we can do a forward pass __UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __UpperCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __UpperCamelCase = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor __UpperCamelCase = AutoTokenizer.from_pretrained('''t5-base''' ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) __UpperCamelCase = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case ) # set the appropriate bos/pad token ids __UpperCamelCase = 2048 __UpperCamelCase = 2048 # set other default generation config params __UpperCamelCase = int(30 * audio_encoder.config.frame_rate ) __UpperCamelCase = True __UpperCamelCase = 3.0 if pytorch_dump_folder is not None: Path(snake_case ).mkdir(exist_ok=snake_case ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(snake_case ) processor.push_to_hub(snake_case ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowercase__ : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
328
1
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowercase__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" @register_to_config def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None )-> Dict: '''simple docstring''' super().__init__() __UpperCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __UpperCamelCase = torch.zeros(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: __UpperCamelCase = None __UpperCamelCase = torch.nn.Parameter(SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = 42 def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )-> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( vqvae=SCREAMING_SNAKE_CASE_ , transformer=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , learned_classifier_free_sampling_embeddings=SCREAMING_SNAKE_CASE_ , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else 1 # get prompt text embeddings __UpperCamelCase = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) __UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] __UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=SCREAMING_SNAKE_CASE_ ) # duplicate text embeddings for each generation per prompt __UpperCamelCase = prompt_embeds.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings __UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(SCREAMING_SNAKE_CASE_ , 1 , 1 ) else: __UpperCamelCase = [''''''] * batch_size __UpperCamelCase = text_input_ids.shape[-1] __UpperCamelCase = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , ) __UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=SCREAMING_SNAKE_CASE_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __UpperCamelCase = negative_prompt_embeds.shape[1] __UpperCamelCase = negative_prompt_embeds.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 ) __UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 100 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , )-> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}" ) __UpperCamelCase = batch_size * num_images_per_prompt __UpperCamelCase = guidance_scale > 1.0 __UpperCamelCase = self._encode_prompt(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(SCREAMING_SNAKE_CASE_ )}." ) # get the initial completely masked latents unless the user supplied it __UpperCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: __UpperCamelCase = self.transformer.num_vector_embeds - 1 __UpperCamelCase = torch.full(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F" {self.transformer.num_vector_embeds - 1} (inclusive)." ) __UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=self.device ) __UpperCamelCase = self.scheduler.timesteps.to(self.device ) __UpperCamelCase = latents for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the sample if we are doing classifier free guidance __UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __UpperCamelCase = self.transformer(SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ ).sample if do_classifier_free_guidance: __UpperCamelCase , __UpperCamelCase = model_output.chunk(2 ) __UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(SCREAMING_SNAKE_CASE_ , dim=1 , keepdim=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.truncate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # remove `log(0)`'s (`-inf`s) __UpperCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __UpperCamelCase = self.scheduler.step(SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , sample=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.vqvae.config.vq_embed_dim __UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __UpperCamelCase = self.vqvae.quantize.get_codebook_entry(SCREAMING_SNAKE_CASE_ , shape=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.vqvae.decode(SCREAMING_SNAKE_CASE_ , force_not_quantize=SCREAMING_SNAKE_CASE_ ).sample __UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> torch.FloatTensor: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = torch.sort(SCREAMING_SNAKE_CASE_ , 1 , descending=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.exp(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) __UpperCamelCase = keep_mask[:, :-1, :] __UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) __UpperCamelCase = log_p_x_0.clone() __UpperCamelCase = -torch.inf # -inf = log(0) return rv
328
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : List[str] = 1_6 lowercase__ : str = 3_2 def A_ ( snake_case : Accelerator , snake_case : int = 16 ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCamelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase = datasets.map( snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase = 16 elif accelerator.mixed_precision != "no": __UpperCamelCase = 8 else: __UpperCamelCase = None return tokenizer.pad( snake_case , padding='''longest''' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) __UpperCamelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : Union[str, Any] = mocked_dataloaders # noqa: F811 def A_ ( snake_case : List[str] , snake_case : List[Any] ) -> Tuple: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case ) == "1": __UpperCamelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: __UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['''lr'''] __UpperCamelCase = int(config['''num_epochs'''] ) __UpperCamelCase = int(config['''seed'''] ) __UpperCamelCase = int(config['''batch_size'''] ) set_seed(snake_case ) __UpperCamelCase , __UpperCamelCase = get_dataloaders(snake_case , snake_case ) __UpperCamelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case ) # Instantiate scheduler __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __UpperCamelCase = os.path.split(snake_case )[-1].split('''.''' )[0] accelerator.init_trackers(snake_case , snake_case ) # Now we train the model for epoch in range(snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __UpperCamelCase = 0 for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case , references=snake_case , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(snake_case ), '''epoch''': epoch, } , step=snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def A_ ( ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case , default=snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
328
1
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 lowercase__ : Dict = get_tests_dir("fixtures/dummy-config.json") class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = 0 def A__ ( self )-> Optional[int]: '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('''transformers.models.auto''' ) ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = AutoConfig.from_pretrained('''bert-base-uncased''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> str: '''simple docstring''' __UpperCamelCase = AutoConfig.for_model('''roberta''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''fake-roberta''' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , '''config.json''' ) , '''w''' ) as f: f.write(json.dumps({} ) ) __UpperCamelCase = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertEqual(type(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE_ ) # Wrong model type will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE_ ): AutoConfig.register('''model''' , SCREAMING_SNAKE_CASE_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE_ ): AutoConfig.register('''bert''' , SCREAMING_SNAKE_CASE_ ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCamelCase = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def A__ ( self )-> Dict: '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , '''bert-base is not a local folder and is not a valid model identifier''' ): __UpperCamelCase = AutoConfig.from_pretrained('''bert-base''' ) def A__ ( self )-> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __UpperCamelCase = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ , revision='''aaaaaa''' ) def A__ ( self )-> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , '''hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.''' , ): __UpperCamelCase = AutoConfig.from_pretrained('''hf-internal-testing/no-config-test-repo''' ) def A__ ( self )-> Tuple: '''simple docstring''' with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertEqual(reloaded_config.__class__.__name__ , '''NewModelConfig''' ) def A__ ( self )-> Any: '''simple docstring''' class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'new-model' try: AutoConfig.register('''new-model''' , SCREAMING_SNAKE_CASE_ ) # If remote code is not set, the default is to use local __UpperCamelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote code is disabled, we load the local one. __UpperCamelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertEqual(config.__class__.__name__ , '''NewModelConfigLocal''' ) # If remote is enabled, we load from the Hub __UpperCamelCase = AutoConfig.from_pretrained('''hf-internal-testing/test_dynamic_model''' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertEqual(config.__class__.__name__ , '''NewModelConfig''' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
328
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ : str = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'whisper' _snake_case = ['past_key_values'] _snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE_=51865 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=50257 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1500 , SCREAMING_SNAKE_CASE_=448 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[220, 50256] , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=7 , **SCREAMING_SNAKE_CASE_ , )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = num_mel_bins __UpperCamelCase = d_model __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = use_cache __UpperCamelCase = encoder_layers __UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase = max_source_positions __UpperCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __UpperCamelCase = classifier_proj_size __UpperCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length __UpperCamelCase = mask_feature_min_masks __UpperCamelCase = median_filter_width super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def A__ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' __UpperCamelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: __UpperCamelCase = {0: '''batch'''} else: __UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' ) return common_inputs def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 22050 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 220 , )-> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase = OrderedDict() __UpperCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = encoder_inputs['''input_features'''].shape[2] __UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __UpperCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = encoder_inputs.pop('''input_features''' ) __UpperCamelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: __UpperCamelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def A__ ( self )-> float: '''simple docstring''' return 1E-3
328
1
def A_ ( snake_case : str ) -> int: '''simple docstring''' __UpperCamelCase = hex_num.strip() if not hex_num: raise ValueError('''No value was passed to the function''' ) __UpperCamelCase = hex_num[0] == '''-''' if is_negative: __UpperCamelCase = hex_num[1:] try: __UpperCamelCase = int(snake_case , 16 ) except ValueError: raise ValueError('''Invalid value was passed to the function''' ) __UpperCamelCase = '''''' while int_num > 0: __UpperCamelCase = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('''-''' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
328
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : Tuple = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'xlnet' _snake_case = ['mems'] _snake_case = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , SCREAMING_SNAKE_CASE_=32000 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="bi" , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=-1 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="tanh" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = n_layer __UpperCamelCase = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) __UpperCamelCase = d_model // n_head __UpperCamelCase = ff_activation __UpperCamelCase = d_inner __UpperCamelCase = untie_r __UpperCamelCase = attn_type __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = dropout __UpperCamelCase = mem_len __UpperCamelCase = reuse_len __UpperCamelCase = bi_data __UpperCamelCase = clamp_len __UpperCamelCase = same_length __UpperCamelCase = summary_type __UpperCamelCase = summary_use_proj __UpperCamelCase = summary_activation __UpperCamelCase = summary_last_dropout __UpperCamelCase = start_n_top __UpperCamelCase = end_n_top __UpperCamelCase = bos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = kwargs['''use_cache'''] __UpperCamelCase = use_mems_eval __UpperCamelCase = use_mems_train super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> Optional[Any]: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
328
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ['image_processor', 'tokenizer'] _snake_case = 'CLIPImageProcessor' _snake_case = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = kwargs.pop('''feature_extractor''' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ )-> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __UpperCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if images is not None: __UpperCamelCase = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ) , tensor_type=SCREAMING_SNAKE_CASE_ ) def A__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = self.tokenizer.model_input_names __UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
328
from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None def __repr__( self )-> str: '''simple docstring''' return F"Node({self.data})" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = None def __iter__( self )-> Any: '''simple docstring''' __UpperCamelCase = self.head while node: yield node.data __UpperCamelCase = node.next def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self )-> str: '''simple docstring''' return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] ) def __getitem__( self , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) __UpperCamelCase = self.head for _ in range(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = current.next __UpperCamelCase = data def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' self.insert_nth(0 , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) __UpperCamelCase = Node(SCREAMING_SNAKE_CASE_ ) if self.head is None: __UpperCamelCase = new_node elif index == 0: __UpperCamelCase = self.head # link new_node to head __UpperCamelCase = new_node else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = new_node def A__ ( self )-> None: # print every node data '''simple docstring''' print(self ) def A__ ( self )-> Any: '''simple docstring''' return self.delete_nth(0 ) def A__ ( self )-> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def A__ ( self , SCREAMING_SNAKE_CASE_ = 0 )-> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) __UpperCamelCase = self.head # default first node if index == 0: __UpperCamelCase = self.head.next else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = temp.next.next return delete_node.data def A__ ( self )-> bool: '''simple docstring''' return self.head is None def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = self.head while current: # Store the current node's next node. __UpperCamelCase = current.next # Make the current node's next point backwards __UpperCamelCase = prev # Make the previous node be the current node __UpperCamelCase = current # Make the current node the next node (to progress iteration) __UpperCamelCase = next_node # Return prev in order to put the head at the end __UpperCamelCase = prev def A_ ( ) -> None: '''simple docstring''' __UpperCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(snake_case ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(snake_case ) == i linked_list.insert_nth(snake_case , i + 1 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(snake_case ) == 9 assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(snake_case ) == "->".join(str(snake_case ) for i in range(-8 , 1 ) ) def A_ ( ) -> None: '''simple docstring''' __UpperCamelCase = [ -9, 100, Node(77345112 ), '''dlrow olleH''', 7, 5555, 0, -192.55555, '''Hello, world!''', 77.9, Node(10 ), None, None, 12.20, ] __UpperCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(snake_case ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCamelCase = linked_list.delete_head() assert result == -9 assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(snake_case ) assert ( str(snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(snake_case ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def A_ ( ) -> Any: '''simple docstring''' from doctest import testmod testmod() __UpperCamelCase = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(snake_case ) print('''\nReading/changing Node data using indexing:''' ) print(f"Element at Position 1: {linked_list[1]}" ) __UpperCamelCase = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(snake_case ) print(f"length of linked_list is : {len(snake_case )}" ) if __name__ == "__main__": main()
328
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ['image_processor', 'tokenizer'] _snake_case = 'AutoImageProcessor' _snake_case = 'AutoTokenizer' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __UpperCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if images is not None: __UpperCamelCase = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ) , tensor_type=SCREAMING_SNAKE_CASE_ ) def A__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> Optional[Any]: '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
328
import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num def A_ ( snake_case : int ) -> bool: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = n while left <= right: __UpperCamelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
328
1
from __future__ import annotations class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = text, pattern __UpperCamelCase , __UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A__ ( self )-> list[int]: '''simple docstring''' __UpperCamelCase = [] for i in range(self.textLen - self.patLen + 1 ): __UpperCamelCase = self.mismatch_in_text(SCREAMING_SNAKE_CASE_ ) if mismatch_index == -1: positions.append(SCREAMING_SNAKE_CASE_ ) else: __UpperCamelCase = self.match_in_pattern(self.text[mismatch_index] ) __UpperCamelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowercase__ : int = "ABAABA" lowercase__ : int = "AB" lowercase__ : Optional[Any] = BoyerMooreSearch(text, pattern) lowercase__ : Optional[int] = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
328
def A_ ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowercase__ : List[str] = generate_large_matrix() lowercase__ : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A_ ( snake_case : list[list[int]] ) -> None: '''simple docstring''' assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid ) assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) ) def A_ ( snake_case : list[int] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCamelCase = (left + right) // 2 __UpperCamelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCamelCase = mid + 1 else: __UpperCamelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(grid[0] ) for i in range(len(snake_case ) ): __UpperCamelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case ) * len(grid[0] )) - total def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 for row in grid: for i, number in enumerate(snake_case ): if number < 0: total += len(snake_case ) - i break return total def A_ ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCamelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
1
import unittest import numpy as np def A_ ( snake_case : np.ndarray , snake_case : np.ndarray , snake_case : np.ndarray , snake_case : np.ndarray | None = None , ) -> np.ndarray: '''simple docstring''' __UpperCamelCase = np.shape(snake_case ) __UpperCamelCase = np.shape(snake_case ) __UpperCamelCase = np.shape(snake_case ) if shape_a[0] != shape_b[0]: __UpperCamelCase = ( '''Expected the same number of rows for A and B. ''' f"Instead found A of size {shape_a} and B of size {shape_b}" ) raise ValueError(snake_case ) if shape_b[1] != shape_c[1]: __UpperCamelCase = ( '''Expected the same number of columns for B and C. ''' f"Instead found B of size {shape_b} and C of size {shape_c}" ) raise ValueError(snake_case ) __UpperCamelCase = pseudo_inv if a_inv is None: try: __UpperCamelCase = np.linalg.inv(snake_case ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __UpperCamelCase = np.array([[0, 3], [3, 0], [2, 3]] ) __UpperCamelCase = np.array([[2, 1], [6, 3]] ) __UpperCamelCase = schur_complement(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = np.block([[a, b], [b.T, c]] ) __UpperCamelCase = np.linalg.det(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = np.linalg.det(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = np.linalg.det(SCREAMING_SNAKE_CASE_ ) self.assertAlmostEqual(SCREAMING_SNAKE_CASE_ , det_a * det_s ) def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __UpperCamelCase = np.array([[0, 3], [3, 0], [2, 3]] ) __UpperCamelCase = np.array([[2, 1], [6, 3]] ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): schur_complement(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __UpperCamelCase = np.array([[0, 3], [3, 0], [2, 3]] ) __UpperCamelCase = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): schur_complement(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
328
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = size if size is not None else {'''shortest_edge''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = crop_pct __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: __UpperCamelCase = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCamelCase = int(size['''height'''] / crop_pct ) else: __UpperCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) else: if "shortest_edge" in size: __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) elif "height" in size and "width" in size: __UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> str: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , )-> PIL.Image.Image: '''simple docstring''' __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
328
1
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase__ : Optional[Any] = logging.getLogger(__name__) def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int: '''simple docstring''' def get_dataset(snake_case : Optional[int] ): __UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any: '''simple docstring''' __UpperCamelCase = [] for epoch in range(snake_case ): # Train quickly model.train() for batch in dataloader: __UpperCamelCase , __UpperCamelCase = batch __UpperCamelCase = model(snake_case ) __UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case ) accelerator.backward(snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self )-> Tuple: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' return x * self.a + self.b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self )-> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() # Train baseline __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3] ) __UpperCamelCase = torch.tensor([2, 3, 4] ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(net.parameters() ) __UpperCamelCase = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() __UpperCamelCase = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing" lowercase__ : List[Any] = DummyModel() lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase__ , lowercase__ : str = dummy_dataloaders() lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase__ : int = group["params"][0].device break assert param_device.type == accelerator.device.type lowercase__ : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowercase__ : Any = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowercase__ : List[Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
328
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowercase__ : Any = getLogger(__name__) lowercase__ : List[str] = "cuda" if torch.cuda.is_available() else "cpu" def A_ ( snake_case : List[str] , snake_case : str , snake_case : str , snake_case : int = 8 , snake_case : str = DEFAULT_DEVICE , snake_case : List[str]=False , snake_case : Union[str, Any]="summarization" , snake_case : str=None , **snake_case : List[Any] , ) -> Dict: '''simple docstring''' __UpperCamelCase = Path(snake_case ).open('''w''' , encoding='''utf-8''' ) __UpperCamelCase = str(snake_case ) __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case ).to(snake_case ) if fpaa: __UpperCamelCase = model.half() __UpperCamelCase = AutoTokenizer.from_pretrained(snake_case ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __UpperCamelCase = time.time() # update config with task specific params use_task_specific_params(snake_case , snake_case ) if prefix is None: __UpperCamelCase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(snake_case , snake_case ) ) ): __UpperCamelCase = [prefix + text for text in examples_chunk] __UpperCamelCase = tokenizer(snake_case , return_tensors='''pt''' , truncation=snake_case , padding='''longest''' ).to(snake_case ) __UpperCamelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case , ) __UpperCamelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __UpperCamelCase = int(time.time() - start_time ) # seconds __UpperCamelCase = len(snake_case ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def A_ ( ) -> Tuple: '''simple docstring''' return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def A_ ( snake_case : str=True ) -> int: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=snake_case , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=snake_case , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=snake_case , required=snake_case , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=snake_case , required=snake_case , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=snake_case , required=snake_case , default=snake_case , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=snake_case , required=snake_case , default=snake_case , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=snake_case , default=8 , required=snake_case , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=snake_case , default=-1 , required=snake_case , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=snake_case , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __UpperCamelCase , __UpperCamelCase = parser.parse_known_args() __UpperCamelCase = parse_numeric_n_bool_cl_kwargs(snake_case ) if parsed_args and verbose: print(f"parsed the following generate kwargs: {parsed_args}" ) __UpperCamelCase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __UpperCamelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=snake_case ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __UpperCamelCase = generate_summaries_or_translations( snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case , ) if args.reference_path is None: return {} # Compute scores __UpperCamelCase = calculate_bleu if '''translation''' in args.task else calculate_rouge __UpperCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __UpperCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case )] __UpperCamelCase = score_fn(snake_case , snake_case ) scores.update(snake_case ) if args.dump_args: scores.update(snake_case ) if args.info: __UpperCamelCase = args.info if verbose: print(snake_case ) if args.score_path is not None: json.dump(snake_case , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
328
1
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self )-> str: '''simple docstring''' __UpperCamelCase = '''''' __UpperCamelCase = '''''' __UpperCamelCase = [] __UpperCamelCase = 0 __UpperCamelCase = 256 __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 0 def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[Any]: '''simple docstring''' __UpperCamelCase = cva.imread(SCREAMING_SNAKE_CASE_ , 0 ) __UpperCamelCase = copy.deepcopy(self.img ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' ) __UpperCamelCase = np.sum(SCREAMING_SNAKE_CASE_ ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): __UpperCamelCase = x[i] / self.k self.sk += prk __UpperCamelCase = (self.L - 1) * self.sk if self.rem != 0: __UpperCamelCase = int(last % last ) __UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) __UpperCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): __UpperCamelCase = self.img[j][i] if num != self.last_list[num]: __UpperCamelCase = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def A__ ( self )-> int: '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def A__ ( self )-> Any: '''simple docstring''' cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowercase__ : Any = os.path.join(os.path.basename(__file__), "image_data/input.jpg") lowercase__ : int = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
328
from math import factorial def A_ ( snake_case : int = 100 ) -> int: '''simple docstring''' return sum(int(snake_case ) for x in str(factorial(snake_case ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
328
1
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowercase__ , lowercase__ , lowercase__ : Optional[int] = False, False, False @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" _snake_case = None _snake_case = True _snake_case = True _snake_case = None # Automatically constructed _snake_case = "dict" _snake_case = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) _snake_case = field(default='Audio' , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self )-> Tuple: '''simple docstring''' return self.pa_type def A__ ( self , SCREAMING_SNAKE_CASE_ )-> dict: '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return {"bytes": None, "path": value} elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __UpperCamelCase = BytesIO() sf.write(SCREAMING_SNAKE_CASE_ , value['''array'''] , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __UpperCamelCase = np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 32767 else: __UpperCamelCase = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 32767 __UpperCamelCase = BytesIO(bytes() ) sf.write(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( F"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> dict: '''simple docstring''' if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) __UpperCamelCase , __UpperCamelCase = (value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(F"An audio sample should have one of 'path' or 'bytes' but both are None in {value}." ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err __UpperCamelCase = xsplitext(SCREAMING_SNAKE_CASE_ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) if file is None: __UpperCamelCase = token_per_repo_id or {} __UpperCamelCase = path.split('''::''' )[-1] try: __UpperCamelCase = string_to_dict(SCREAMING_SNAKE_CASE_ , config.HUB_DATASETS_URL )['''repo_id'''] __UpperCamelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): __UpperCamelCase = None with xopen(SCREAMING_SNAKE_CASE_ , '''rb''' , use_auth_token=SCREAMING_SNAKE_CASE_ ) as f: __UpperCamelCase , __UpperCamelCase = sf.read(SCREAMING_SNAKE_CASE_ ) else: __UpperCamelCase , __UpperCamelCase = sf.read(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = array.T if self.mono: __UpperCamelCase = librosa.to_mono(SCREAMING_SNAKE_CASE_ ) if self.sampling_rate and self.sampling_rate != sampling_rate: __UpperCamelCase = librosa.resample(SCREAMING_SNAKE_CASE_ , orig_sr=SCREAMING_SNAKE_CASE_ , target_sr=self.sampling_rate ) __UpperCamelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def A__ ( self )-> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): __UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.binary() ) __UpperCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.string() ) __UpperCamelCase = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): __UpperCamelCase = pa.array([Audio().encode_example(SCREAMING_SNAKE_CASE_ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: __UpperCamelCase = storage.field('''bytes''' ) else: __UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: __UpperCamelCase = storage.field('''path''' ) else: __UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.string() ) __UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) return array_cast(SCREAMING_SNAKE_CASE_ , self.pa_type ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(SCREAMING_SNAKE_CASE_ ): with xopen(SCREAMING_SNAKE_CASE_ , '''rb''' ) as f: __UpperCamelCase = f.read() return bytes_ __UpperCamelCase = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __UpperCamelCase = pa.array( [os.path.basename(SCREAMING_SNAKE_CASE_ ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) __UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(SCREAMING_SNAKE_CASE_ , self.pa_type )
328
def A_ ( snake_case : list ) -> list: '''simple docstring''' __UpperCamelCase = len(snake_case ) for i in range(1 , snake_case ): __UpperCamelCase = collection[i] __UpperCamelCase = 0 __UpperCamelCase = i - 1 while low <= high: __UpperCamelCase = (low + high) // 2 if val < collection[mid]: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 for j in range(snake_case , snake_case , -1 ): __UpperCamelCase = collection[j - 1] __UpperCamelCase = val return collection if __name__ == "__main__": lowercase__ : List[Any] = input("Enter numbers separated by a comma:\n").strip() lowercase__ : str = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
328
1
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowercase__ : List[Any] = Mapping[str, np.ndarray] lowercase__ : Dict = Mapping[str, Any] # Is a nested dict. lowercase__ : List[Any] = 0.01 @dataclasses.dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" _snake_case = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. _snake_case = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. _snake_case = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. _snake_case = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. _snake_case = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions _snake_case = None # Optional remark about the protein. Included as a comment in output PDB # files _snake_case = None # Templates used to generate this protein (prediction-only) _snake_case = None # Chain corresponding to each parent _snake_case = None def A_ ( snake_case : str ) -> Protein: '''simple docstring''' __UpperCamelCase = r'''(\[[A-Z]+\]\n)''' __UpperCamelCase = [tag.strip() for tag in re.split(snake_case , snake_case ) if len(snake_case ) > 0] __UpperCamelCase = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) __UpperCamelCase = ["N", "CA", "C"] __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None for g in groups: if "[PRIMARY]" == g[0]: __UpperCamelCase = g[1][0].strip() for i in range(len(snake_case ) ): if seq[i] not in residue_constants.restypes: __UpperCamelCase = '''X''' # FIXME: strings are immutable __UpperCamelCase = np.array( [residue_constants.restype_order.get(snake_case , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: __UpperCamelCase = [] for axis in range(3 ): tertiary.append(list(map(snake_case , g[1][axis].split() ) ) ) __UpperCamelCase = np.array(snake_case ) __UpperCamelCase = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(snake_case ): __UpperCamelCase = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: __UpperCamelCase = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) __UpperCamelCase = np.zeros( ( len(snake_case ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(snake_case ): __UpperCamelCase = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=snake_case , atom_mask=snake_case , aatype=snake_case , residue_index=np.arange(len(snake_case ) ) , b_factors=snake_case , ) def A_ ( snake_case : Protein , snake_case : int = 0 ) -> List[str]: '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) __UpperCamelCase = prot.parents __UpperCamelCase = prot.parents_chain_index if parents is not None and parents_chain_index is not None: __UpperCamelCase = [p for i, p in zip(snake_case , snake_case ) if i == chain_id] if parents is None or len(snake_case ) == 0: __UpperCamelCase = ['''N/A'''] pdb_headers.append(f"PARENT {' '.join(snake_case )}" ) return pdb_headers def A_ ( snake_case : Protein , snake_case : str ) -> str: '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = pdb_str.split('''\n''' ) __UpperCamelCase = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) __UpperCamelCase = 42 if prot.parents is not None and len(prot.parents ) > 0: __UpperCamelCase = [] if prot.parents_chain_index is not None: __UpperCamelCase = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(snake_case ) , [] ) parent_dict[str(snake_case )].append(snake_case ) __UpperCamelCase = max([int(snake_case ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): __UpperCamelCase = parent_dict.get(str(snake_case ) , ['''N/A'''] ) parents_per_chain.append(snake_case ) else: parents_per_chain.append(list(prot.parents ) ) else: __UpperCamelCase = [['''N/A''']] def make_parent_line(snake_case : Sequence[str] ) -> str: return f"PARENT {' '.join(snake_case )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) __UpperCamelCase = 0 for i, l in enumerate(snake_case ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(snake_case ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(snake_case ): __UpperCamelCase = parents_per_chain[chain_counter] else: __UpperCamelCase = ['''N/A'''] out_pdb_lines.append(make_parent_line(snake_case ) ) return "\n".join(snake_case ) def A_ ( snake_case : Protein ) -> str: '''simple docstring''' __UpperCamelCase = residue_constants.restypes + ['''X'''] def res_atoa(snake_case : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) __UpperCamelCase = residue_constants.atom_types __UpperCamelCase = [] __UpperCamelCase = prot.atom_mask __UpperCamelCase = prot.aatype __UpperCamelCase = prot.atom_positions __UpperCamelCase = prot.residue_index.astype(np.intaa ) __UpperCamelCase = prot.b_factors __UpperCamelCase = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) __UpperCamelCase = get_pdb_headers(snake_case ) if len(snake_case ) > 0: pdb_lines.extend(snake_case ) __UpperCamelCase = aatype.shape[0] __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = string.ascii_uppercase __UpperCamelCase = None # Add all atom sites. for i in range(snake_case ): __UpperCamelCase = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(snake_case , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue __UpperCamelCase = '''ATOM''' __UpperCamelCase = atom_name if len(snake_case ) == 4 else f" {atom_name}" __UpperCamelCase = '''''' __UpperCamelCase = '''''' __UpperCamelCase = 1.00 __UpperCamelCase = atom_name[0] # Protein supports only C, N, O, S, this works. __UpperCamelCase = '''''' __UpperCamelCase = '''A''' if chain_index is not None: __UpperCamelCase = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! __UpperCamelCase = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(snake_case ) atom_index += 1 __UpperCamelCase = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: __UpperCamelCase = True __UpperCamelCase = chain_index[i + 1] if should_terminate: # Close the chain. __UpperCamelCase = '''TER''' __UpperCamelCase = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(snake_case ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(snake_case , snake_case ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(snake_case ) def A_ ( snake_case : Protein ) -> np.ndarray: '''simple docstring''' return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def A_ ( snake_case : FeatureDict , snake_case : ModelOutput , snake_case : Optional[np.ndarray] = None , snake_case : Optional[np.ndarray] = None , snake_case : Optional[str] = None , snake_case : Optional[Sequence[str]] = None , snake_case : Optional[Sequence[int]] = None , ) -> Protein: '''simple docstring''' return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=snake_case , remark=snake_case , parents=snake_case , parents_chain_index=snake_case , )
328
from __future__ import annotations from collections import deque class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(SCREAMING_SNAKE_CASE_ ) self.set_fail_transitions() def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int | None: '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' __UpperCamelCase = 0 for character in keyword: __UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __UpperCamelCase = len(self.adlist ) - 1 else: __UpperCamelCase = next_state self.adlist[current_state]["output"].append(SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = deque() for node in self.adlist[0]["next_states"]: q.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = 0 while q: __UpperCamelCase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.adlist[r]['''fail_state'''] while ( self.find_next_state(SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) is None and state != 0 ): __UpperCamelCase = self.adlist[state]['''fail_state'''] __UpperCamelCase = self.find_next_state( SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: __UpperCamelCase = 0 __UpperCamelCase = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> dict[str, list[int]]: '''simple docstring''' __UpperCamelCase = {} # returns a dict with keywords and list of its occurrences __UpperCamelCase = 0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): while ( self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) is None and current_state != 0 ): __UpperCamelCase = self.adlist[current_state]['''fail_state'''] __UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) if next_state is None: __UpperCamelCase = 0 else: __UpperCamelCase = next_state for key in self.adlist[current_state]["output"]: if key not in result: __UpperCamelCase = [] result[key].append(i - len(SCREAMING_SNAKE_CASE_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
328
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def A_ ( snake_case : List[Any] , snake_case : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __UpperCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def A_ ( snake_case : Tuple , snake_case : List[Any] , snake_case : List[Any]=False ) -> Dict: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __UpperCamelCase = '''''' else: __UpperCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __UpperCamelCase = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) __UpperCamelCase = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase = in_proj_weight[ : config.hidden_size, : ] __UpperCamelCase = in_proj_bias[: config.hidden_size] __UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __UpperCamelCase = in_proj_weight[ -config.hidden_size :, : ] __UpperCamelCase = in_proj_bias[-config.hidden_size :] def A_ ( snake_case : int ) -> List[Any]: '''simple docstring''' __UpperCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(snake_case , snake_case ) def A_ ( snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' __UpperCamelCase = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(snake_case , snake_case ) def A_ ( snake_case : List[str] , snake_case : Tuple , snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase = dct.pop(snake_case ) __UpperCamelCase = val def A_ ( snake_case : Any , snake_case : List[Any] ) -> int: '''simple docstring''' __UpperCamelCase = ViTMSNConfig() __UpperCamelCase = 1000 __UpperCamelCase = '''datasets/huggingface/label-files''' __UpperCamelCase = '''imagenet-1k-id2label.json''' __UpperCamelCase = json.load(open(hf_hub_download(snake_case , snake_case ) , '''r''' ) ) __UpperCamelCase = {int(snake_case ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __UpperCamelCase = 384 __UpperCamelCase = 1536 __UpperCamelCase = 6 elif "l16" in checkpoint_url: __UpperCamelCase = 1024 __UpperCamelCase = 4096 __UpperCamelCase = 24 __UpperCamelCase = 16 __UpperCamelCase = 0.1 elif "b4" in checkpoint_url: __UpperCamelCase = 4 elif "l7" in checkpoint_url: __UpperCamelCase = 7 __UpperCamelCase = 1024 __UpperCamelCase = 4096 __UpperCamelCase = 24 __UpperCamelCase = 16 __UpperCamelCase = 0.1 __UpperCamelCase = ViTMSNModel(snake_case ) __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case , map_location='''cpu''' )['''target_encoder'''] __UpperCamelCase = ViTImageProcessor(size=config.image_size ) remove_projection_head(snake_case ) __UpperCamelCase = create_rename_keys(snake_case , base_model=snake_case ) for src, dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) read_in_q_k_v(snake_case , snake_case , base_model=snake_case ) model.load_state_dict(snake_case ) model.eval() __UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCamelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ) __UpperCamelCase = ViTImageProcessor( size=config.image_size , image_mean=snake_case , image_std=snake_case ) __UpperCamelCase = image_processor(images=snake_case , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __UpperCamelCase = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: __UpperCamelCase = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: __UpperCamelCase = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: __UpperCamelCase = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: __UpperCamelCase = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , snake_case , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowercase__ : Any = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
328
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> Dict: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self )-> str: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = DistilBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = True _snake_case = True _snake_case = True def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = DistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def A__ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> List[str]: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCamelCase = True __UpperCamelCase = model_class(config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) ) __UpperCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] __UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
328
1
import logging import os from .state import PartialState class SCREAMING_SNAKE_CASE__ ( logging.LoggerAdapter ): """simple docstring""" @staticmethod def A__ ( SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) __UpperCamelCase = kwargs.pop('''main_process_only''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = kwargs.pop('''in_order''' , SCREAMING_SNAKE_CASE_ ) if self.isEnabledFor(SCREAMING_SNAKE_CASE_ ): if self._should_log(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase , __UpperCamelCase = self.process(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.logger.log(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) elif in_order: __UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCamelCase , __UpperCamelCase = self.process(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.logger.log(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) state.wait_for_everyone() def A_ ( snake_case : str , snake_case : str = None ) -> Tuple: '''simple docstring''' if log_level is None: __UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , snake_case ) __UpperCamelCase = logging.getLogger(snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case , {} )
328
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase__ : Optional[Any] = logging.getLogger(__name__) def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int: '''simple docstring''' def get_dataset(snake_case : Optional[int] ): __UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any: '''simple docstring''' __UpperCamelCase = [] for epoch in range(snake_case ): # Train quickly model.train() for batch in dataloader: __UpperCamelCase , __UpperCamelCase = batch __UpperCamelCase = model(snake_case ) __UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case ) accelerator.backward(snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self )-> Tuple: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' return x * self.a + self.b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self )-> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() # Train baseline __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3] ) __UpperCamelCase = torch.tensor([2, 3, 4] ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(net.parameters() ) __UpperCamelCase = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() __UpperCamelCase = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing" lowercase__ : List[Any] = DummyModel() lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase__ , lowercase__ : str = dummy_dataloaders() lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase__ : int = group["params"][0].device break assert param_device.type == accelerator.device.type lowercase__ : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowercase__ : Any = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowercase__ : List[Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
328
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Optional[Any] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowercase__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
328
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]: '''simple docstring''' super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Sql( cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , ) # Build dataset for splits __UpperCamelCase = self.builder.as_dataset( split='''train''' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) __UpperCamelCase = dataset __UpperCamelCase = name __UpperCamelCase = con __UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCamelCase = num_proc __UpperCamelCase = to_sql_kwargs def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.to_sql_kwargs.pop('''sql''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''con''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''index''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs ) return written def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args __UpperCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __UpperCamelCase = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCamelCase = batch.to_pandas() __UpperCamelCase = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return num_rows or len(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
328
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Any = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys lowercase__ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
328
def A_ ( snake_case : str ) -> int: '''simple docstring''' assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , snake_case ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
328
1
import pprint import requests lowercase__ : int = "https://zenquotes.io/api" def A_ ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def A_ ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": lowercase__ : Dict = random_quotes() pprint.pprint(response)
328
def A_ ( snake_case : int ) -> None: '''simple docstring''' __UpperCamelCase = generate_pascal_triangle(snake_case ) for row_idx in range(snake_case ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [] for current_row_idx in range(snake_case ): __UpperCamelCase = populate_current_row(snake_case , snake_case ) triangle.append(snake_case ) return triangle def A_ ( snake_case : list[list[int]] , snake_case : int ) -> list[int]: '''simple docstring''' __UpperCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase , __UpperCamelCase = 1, 1 for current_col_idx in range(1 , snake_case ): calculate_current_element( snake_case , snake_case , snake_case , snake_case ) return current_row def A_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , ) -> None: '''simple docstring''' __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase = above_to_left_elt + above_to_right_elt def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [[1]] for row_index in range(1 , snake_case ): __UpperCamelCase = [0] + result[-1] + [0] __UpperCamelCase = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase = sum(divmod(snake_case , 2 ) ) __UpperCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase = row_first_half + row_second_half result.append(snake_case ) return result def A_ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None: __UpperCamelCase = f"{func.__name__}({value})" __UpperCamelCase = timeit(f"__main__.{call}" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case , snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
1
def A_ ( snake_case : list , snake_case : list , snake_case : int , snake_case : int , snake_case : int ) -> int: '''simple docstring''' if index == number_of_items: return 0 __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = knapsack(snake_case , snake_case , snake_case , snake_case , index + 1 ) if weights[index] <= max_weight: __UpperCamelCase = values[index] + knapsack( snake_case , snake_case , snake_case , max_weight - weights[index] , index + 1 ) return max(snake_case , snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
328
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase__ : Any = parser.parse_args() lowercase__ : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase__ : List[str] = CLIPImageProcessor() lowercase__ : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase__ : Optional[Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
328
1
# using dfs for finding eulerian path traversal def A_ ( snake_case : int , snake_case : Any , snake_case : str , snake_case : Optional[Any]=None ) -> Any: '''simple docstring''' __UpperCamelCase = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: __UpperCamelCase , __UpperCamelCase = True, True __UpperCamelCase = dfs(snake_case , snake_case , snake_case , snake_case ) return path def A_ ( snake_case : Optional[Any] , snake_case : Tuple ) -> List[str]: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = -1 for i in range(snake_case ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 __UpperCamelCase = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def A_ ( snake_case : List[Any] , snake_case : Any ) -> Any: '''simple docstring''' __UpperCamelCase = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] __UpperCamelCase , __UpperCamelCase = check_circuit_or_path(snake_case , snake_case ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return __UpperCamelCase = 1 if check == 2: __UpperCamelCase = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) __UpperCamelCase = dfs(snake_case , snake_case , snake_case ) print(snake_case ) def A_ ( ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} __UpperCamelCase = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} __UpperCamelCase = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} __UpperCamelCase = {1: [2, 3], 2: [1, 3], 3: [1, 2]} __UpperCamelCase = { 1: [], 2: [] # all degree is zero } __UpperCamelCase = 10 check_euler(snake_case , snake_case ) check_euler(snake_case , snake_case ) check_euler(snake_case , snake_case ) check_euler(snake_case , snake_case ) check_euler(snake_case , snake_case ) if __name__ == "__main__": main()
328
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowercase__ : Union[str, Any] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" lowercase__ : Optional[Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" lowercase__ : Any = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" lowercase__ : Optional[int] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" lowercase__ : Optional[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[1, 10, 100] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3.0 )-> Union[str, Any]: '''simple docstring''' if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE_ ) as executor: __UpperCamelCase = [] __UpperCamelCase = Counter() __UpperCamelCase = 0 __UpperCamelCase = defaultdict(SCREAMING_SNAKE_CASE_ ) for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ): for candidate in candidates: __UpperCamelCase = candidate + '''\n''' + test_case __UpperCamelCase = (test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase = executor.submit(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) futures.append(SCREAMING_SNAKE_CASE_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) __UpperCamelCase , __UpperCamelCase = [], [] for result in results.values(): result.sort() __UpperCamelCase = [r[1]['''passed'''] for r in result] total.append(len(SCREAMING_SNAKE_CASE_ ) ) correct.append(sum(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = k __UpperCamelCase = {F"pass@{k}": estimate_pass_at_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A_ ( snake_case : Tuple , snake_case : Union[str, Any] , snake_case : List[Any] ) -> Optional[Any]: '''simple docstring''' def estimator(snake_case : int , snake_case : int , snake_case : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(snake_case , snake_case ): __UpperCamelCase = itertools.repeat(snake_case , len(snake_case ) ) else: assert len(snake_case ) == len(snake_case ) __UpperCamelCase = iter(snake_case ) return np.array([estimator(int(snake_case ) , int(snake_case ) , snake_case ) for n, c in zip(snake_case , snake_case )] )
328
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase__ : Any = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = ["ConditionalDetrFeatureExtractor"] lowercase__ : Any = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys lowercase__ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
328
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__) lowercase__ : Optional[Any] = ["names", "prefix"] lowercase__ : List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowercase__ : Optional[Any] = ["encoding_errors", "on_bad_lines"] lowercase__ : List[str] = ["date_format"] @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): """simple docstring""" _snake_case = "," _snake_case = None _snake_case = "infer" _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = False _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = False _snake_case = True _snake_case = None _snake_case = "." _snake_case = None _snake_case = '"' _snake_case = 0 _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = 0 _snake_case = True _snake_case = False _snake_case = None _snake_case = 10000 _snake_case = None _snake_case = "strict" _snake_case = "error" _snake_case = None def A__ ( self )-> Any: '''simple docstring''' if self.delimiter is not None: __UpperCamelCase = self.delimiter if self.column_names is not None: __UpperCamelCase = self.column_names @property def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): """simple docstring""" _snake_case = CsvConfig def A__ ( self )-> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) __UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ): __UpperCamelCase = data_files if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) ) return splits def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.Table: '''simple docstring''' if self.config.features is not None: __UpperCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE_ ) for feature in self.config.features.values() ): # cheaper cast __UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __UpperCamelCase = table_cast(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return pa_table def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __UpperCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ): __UpperCamelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , iterator=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = pa.Table.from_pandas(SCREAMING_SNAKE_CASE_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}" ) raise
328
1
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class SCREAMING_SNAKE_CASE__ ( ctypes.Structure ): """simple docstring""" _snake_case = [('size', ctypes.c_int), ('visible', ctypes.c_byte)] def A_ ( ) -> List[Any]: '''simple docstring''' if os.name == "nt": __UpperCamelCase = CursorInfo() __UpperCamelCase = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(snake_case , ctypes.byref(snake_case ) ) __UpperCamelCase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(snake_case , ctypes.byref(snake_case ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def A_ ( ) -> Optional[int]: '''simple docstring''' if os.name == "nt": __UpperCamelCase = CursorInfo() __UpperCamelCase = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(snake_case , ctypes.byref(snake_case ) ) __UpperCamelCase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(snake_case , ctypes.byref(snake_case ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def A_ ( ) -> str: '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
328
from __future__ import annotations import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def A_ ( snake_case : int ) -> list[int]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) __UpperCamelCase = [] for num in range(len(snake_case ) ): __UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: __UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case ) == n: return list_nums return [] def A_ ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
328
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 42 class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" @register_to_config def __init__( self , SCREAMING_SNAKE_CASE_ = 65536 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = "fourier" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , SCREAMING_SNAKE_CASE_ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , SCREAMING_SNAKE_CASE_ = "UNetMidBlock1D" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = (32, 32, 64) , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 8 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = False , )-> List[Any]: '''simple docstring''' super().__init__() __UpperCamelCase = sample_size # time if time_embedding_type == "fourier": __UpperCamelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=SCREAMING_SNAKE_CASE_ , log=SCREAMING_SNAKE_CASE_ , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": __UpperCamelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ , downscale_freq_shift=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = block_out_channels[0] if use_timestep_embedding: __UpperCamelCase = block_out_channels[0] * 4 __UpperCamelCase = TimestepEmbedding( in_channels=SCREAMING_SNAKE_CASE_ , time_embed_dim=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , out_dim=block_out_channels[0] , ) __UpperCamelCase = nn.ModuleList([] ) __UpperCamelCase = None __UpperCamelCase = nn.ModuleList([] ) __UpperCamelCase = None # down __UpperCamelCase = in_channels for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = output_channel __UpperCamelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels __UpperCamelCase = i == len(SCREAMING_SNAKE_CASE_ ) - 1 __UpperCamelCase = get_down_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(SCREAMING_SNAKE_CASE_ ) # mid __UpperCamelCase = get_mid_block( SCREAMING_SNAKE_CASE_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=SCREAMING_SNAKE_CASE_ , add_downsample=SCREAMING_SNAKE_CASE_ , ) # up __UpperCamelCase = list(reversed(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = reversed_block_out_channels[0] if out_block_type is None: __UpperCamelCase = out_channels else: __UpperCamelCase = block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = output_channel __UpperCamelCase = ( reversed_block_out_channels[i + 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 else final_upsample_channels ) __UpperCamelCase = i == len(SCREAMING_SNAKE_CASE_ ) - 1 __UpperCamelCase = get_up_block( SCREAMING_SNAKE_CASE_ , num_layers=SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = output_channel # out __UpperCamelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) __UpperCamelCase = get_out_block( out_block_type=SCREAMING_SNAKE_CASE_ , num_groups_out=SCREAMING_SNAKE_CASE_ , embed_dim=block_out_channels[0] , out_channels=SCREAMING_SNAKE_CASE_ , act_fn=SCREAMING_SNAKE_CASE_ , fc_dim=block_out_channels[-1] // 4 , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True , )-> Union[UNetaDOutput, Tuple]: '''simple docstring''' __UpperCamelCase = timestep if not torch.is_tensor(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ) and len(timesteps.shape ) == 0: __UpperCamelCase = timesteps[None].to(sample.device ) __UpperCamelCase = self.time_proj(SCREAMING_SNAKE_CASE_ ) if self.config.use_timestep_embedding: __UpperCamelCase = self.time_mlp(SCREAMING_SNAKE_CASE_ ) else: __UpperCamelCase = timestep_embed[..., None] __UpperCamelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) __UpperCamelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down __UpperCamelCase = () for downsample_block in self.down_blocks: __UpperCamelCase , __UpperCamelCase = downsample_block(hidden_states=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: __UpperCamelCase = self.mid_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): __UpperCamelCase = down_block_res_samples[-1:] __UpperCamelCase = down_block_res_samples[:-1] __UpperCamelCase = upsample_block(SCREAMING_SNAKE_CASE_ , res_hidden_states_tuple=SCREAMING_SNAKE_CASE_ , temb=SCREAMING_SNAKE_CASE_ ) # 5. post-process if self.out_block: __UpperCamelCase = self.out_block(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=SCREAMING_SNAKE_CASE_ )
328
from __future__ import annotations from collections.abc import Callable def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float: '''simple docstring''' __UpperCamelCase = x_start __UpperCamelCase = fnc(snake_case ) __UpperCamelCase = 0.0 for _ in range(snake_case ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCamelCase = (x_end - x_start) / steps + xa __UpperCamelCase = fnc(snake_case ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCamelCase = xa __UpperCamelCase = fxa return area if __name__ == "__main__": def A_ ( snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowercase__ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 1_0
328
1
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowercase__ : Union[str, Any] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" lowercase__ : Optional[Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" lowercase__ : Any = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" lowercase__ : Optional[int] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" lowercase__ : Optional[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[1, 10, 100] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3.0 )-> Union[str, Any]: '''simple docstring''' if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE_ ) as executor: __UpperCamelCase = [] __UpperCamelCase = Counter() __UpperCamelCase = 0 __UpperCamelCase = defaultdict(SCREAMING_SNAKE_CASE_ ) for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ): for candidate in candidates: __UpperCamelCase = candidate + '''\n''' + test_case __UpperCamelCase = (test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase = executor.submit(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) futures.append(SCREAMING_SNAKE_CASE_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) __UpperCamelCase , __UpperCamelCase = [], [] for result in results.values(): result.sort() __UpperCamelCase = [r[1]['''passed'''] for r in result] total.append(len(SCREAMING_SNAKE_CASE_ ) ) correct.append(sum(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = k __UpperCamelCase = {F"pass@{k}": estimate_pass_at_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A_ ( snake_case : Tuple , snake_case : Union[str, Any] , snake_case : List[Any] ) -> Optional[Any]: '''simple docstring''' def estimator(snake_case : int , snake_case : int , snake_case : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(snake_case , snake_case ): __UpperCamelCase = itertools.repeat(snake_case , len(snake_case ) ) else: assert len(snake_case ) == len(snake_case ) __UpperCamelCase = iter(snake_case ) return np.array([estimator(int(snake_case ) , int(snake_case ) , snake_case ) for n, c in zip(snake_case , snake_case )] )
328
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : int = logging.get_logger(__name__) lowercase__ : List[str] = ["model.decoder.embed_positions.weights"] def A_ ( snake_case : Any ) -> List[Any]: '''simple docstring''' if "emb" in name: __UpperCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: __UpperCamelCase = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: __UpperCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: __UpperCamelCase = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: __UpperCamelCase = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: __UpperCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: __UpperCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: __UpperCamelCase = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: __UpperCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: __UpperCamelCase = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: __UpperCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def A_ ( snake_case : OrderedDict , snake_case : int ) -> Tuple[Dict, Dict]: '''simple docstring''' __UpperCamelCase = list(state_dict.keys() ) __UpperCamelCase = {} for key in keys: __UpperCamelCase = state_dict.pop(snake_case ) __UpperCamelCase = rename_keys(snake_case ) if "in_proj_weight" in key: # split fused qkv proj __UpperCamelCase = val[:hidden_size, :] __UpperCamelCase = val[hidden_size : 2 * hidden_size, :] __UpperCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __UpperCamelCase = val else: __UpperCamelCase = val return state_dict, enc_dec_proj_state_dict def A_ ( snake_case : str ) -> MusicgenDecoderConfig: '''simple docstring''' if checkpoint == "small": # default config values __UpperCamelCase = 1024 __UpperCamelCase = 24 __UpperCamelCase = 16 elif checkpoint == "medium": __UpperCamelCase = 1536 __UpperCamelCase = 48 __UpperCamelCase = 24 elif checkpoint == "large": __UpperCamelCase = 2048 __UpperCamelCase = 48 __UpperCamelCase = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) __UpperCamelCase = MusicgenDecoderConfig( hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , ) return config @torch.no_grad() def A_ ( snake_case : Any , snake_case : str=None , snake_case : Any=None , snake_case : Union[str, Any]="cpu" ) -> List[Any]: '''simple docstring''' __UpperCamelCase = MusicGen.get_pretrained(snake_case , device=snake_case ) __UpperCamelCase = decoder_config_from_checkpoint(snake_case ) __UpperCamelCase = fairseq_model.lm.state_dict() __UpperCamelCase , __UpperCamelCase = rename_state_dict( snake_case , hidden_size=decoder_config.hidden_size ) __UpperCamelCase = TaEncoderModel.from_pretrained('''t5-base''' ) __UpperCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) __UpperCamelCase = MusicgenForCausalLM(snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __UpperCamelCase , __UpperCamelCase = decoder.load_state_dict(snake_case , strict=snake_case ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(snake_case ) if len(snake_case ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(snake_case ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model __UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(snake_case ) # check we can do a forward pass __UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __UpperCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __UpperCamelCase = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor __UpperCamelCase = AutoTokenizer.from_pretrained('''t5-base''' ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) __UpperCamelCase = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case ) # set the appropriate bos/pad token ids __UpperCamelCase = 2048 __UpperCamelCase = 2048 # set other default generation config params __UpperCamelCase = int(30 * audio_encoder.config.frame_rate ) __UpperCamelCase = True __UpperCamelCase = 3.0 if pytorch_dump_folder is not None: Path(snake_case ).mkdir(exist_ok=snake_case ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(snake_case ) processor.push_to_hub(snake_case ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowercase__ : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
328
1
from datetime import datetime import matplotlib.pyplot as plt import torch def A_ ( snake_case : Dict ) -> Dict: '''simple docstring''' for param in module.parameters(): __UpperCamelCase = False def A_ ( ) -> Any: '''simple docstring''' __UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __UpperCamelCase = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def A_ ( snake_case : str ) -> Any: '''simple docstring''' __UpperCamelCase = plt.imshow(snake_case ) fig.axes.get_xaxis().set_visible(snake_case ) fig.axes.get_yaxis().set_visible(snake_case ) plt.show() def A_ ( ) -> Any: '''simple docstring''' __UpperCamelCase = datetime.now() __UpperCamelCase = current_time.strftime('''%H:%M:%S''' ) return timestamp
328
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : List[str] = 1_6 lowercase__ : str = 3_2 def A_ ( snake_case : Accelerator , snake_case : int = 16 ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCamelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase = datasets.map( snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase = 16 elif accelerator.mixed_precision != "no": __UpperCamelCase = 8 else: __UpperCamelCase = None return tokenizer.pad( snake_case , padding='''longest''' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) __UpperCamelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : Union[str, Any] = mocked_dataloaders # noqa: F811 def A_ ( snake_case : List[str] , snake_case : List[Any] ) -> Tuple: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case ) == "1": __UpperCamelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: __UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['''lr'''] __UpperCamelCase = int(config['''num_epochs'''] ) __UpperCamelCase = int(config['''seed'''] ) __UpperCamelCase = int(config['''batch_size'''] ) set_seed(snake_case ) __UpperCamelCase , __UpperCamelCase = get_dataloaders(snake_case , snake_case ) __UpperCamelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case ) # Instantiate scheduler __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __UpperCamelCase = os.path.split(snake_case )[-1].split('''.''' )[0] accelerator.init_trackers(snake_case , snake_case ) # Now we train the model for epoch in range(snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __UpperCamelCase = 0 for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case , references=snake_case , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(snake_case ), '''epoch''': epoch, } , step=snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def A_ ( ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case , default=snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
328
1
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def A_ ( snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = int(snake_case ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = t // 3600, (t // 60) % 60, t % 60 return f"{h}:{m:02d}:{s:02d}" if h != 0 else f"{m:02d}:{s:02d}" def A_ ( snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Any , snake_case : Optional[Any]=300 ) -> Union[str, Any]: '''simple docstring''' return f"\n <div>\n {prefix}\n <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>\n {label}\n </div>\n " def A_ ( snake_case : int ) -> List[Any]: '''simple docstring''' __UpperCamelCase = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f" <th>{i}</th>\n" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __UpperCamelCase = f"{elt:.6f}" if isinstance(snake_case , snake_case ) else str(snake_case ) html_code += f" <td>{elt}</td>\n" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class SCREAMING_SNAKE_CASE__ : """simple docstring""" _snake_case = 5 _snake_case = 0.2 def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 300 , )-> Any: '''simple docstring''' __UpperCamelCase = total __UpperCamelCase = '''''' if prefix is None else prefix __UpperCamelCase = leave __UpperCamelCase = parent __UpperCamelCase = width __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = value if comment is not None: __UpperCamelCase = comment if self.last_value is None: __UpperCamelCase = __UpperCamelCase = time.time() __UpperCamelCase = __UpperCamelCase = value __UpperCamelCase = __UpperCamelCase = None __UpperCamelCase = self.warmup __UpperCamelCase = 1 self.update_bar(SCREAMING_SNAKE_CASE_ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __UpperCamelCase = time.time() __UpperCamelCase = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __UpperCamelCase = self.elapsed_time / (value - self.start_value) else: __UpperCamelCase = None if value >= self.total: __UpperCamelCase = self.total __UpperCamelCase = None if not self.leave: self.close() elif self.average_time_per_item is not None: __UpperCamelCase = self.average_time_per_item * (self.total - value) self.update_bar(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = value __UpperCamelCase = current_time if self.average_time_per_item is None: __UpperCamelCase = 1 else: __UpperCamelCase = max(int(self.update_every / self.average_time_per_item ) , 1 ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None )-> Tuple: '''simple docstring''' __UpperCamelCase = ''' ''' * (len(str(self.total ) ) - len(str(SCREAMING_SNAKE_CASE_ ) )) + str(SCREAMING_SNAKE_CASE_ ) if self.elapsed_time is None: __UpperCamelCase = F"[{spaced_value}/{self.total} : < :" elif self.predicted_remaining is None: __UpperCamelCase = F"[{spaced_value}/{self.total} {format_time(self.elapsed_time )}" else: __UpperCamelCase = ( F"[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <" F" {format_time(self.predicted_remaining )}" ) self.label += F", {1/self.average_time_per_item:.2f} it/s" self.label += "]" if self.comment is None or len(self.comment ) == 0 else F", {self.comment}]" self.display() def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __UpperCamelCase = disp.display(disp.HTML(self.html_code ) , display_id=SCREAMING_SNAKE_CASE_ ) else: self.output.update(disp.HTML(self.html_code ) ) def A__ ( self )-> Tuple: '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None )-> Dict: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = None if column_names is None else [column_names] __UpperCamelCase = None def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __UpperCamelCase = disp.display(disp.HTML(self.html_code ) , display_id=SCREAMING_SNAKE_CASE_ ) else: self.output.update(disp.HTML(self.html_code ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' if self.inner_table is None: __UpperCamelCase = [list(values.keys() ), list(values.values() )] else: __UpperCamelCase = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = columns self.inner_table.append([values[c] for c in columns] ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=300 )-> Any: '''simple docstring''' __UpperCamelCase = NotebookProgressBar(SCREAMING_SNAKE_CASE_ , prefix=SCREAMING_SNAKE_CASE_ , parent=self , width=SCREAMING_SNAKE_CASE_ ) return self.child_bar def A__ ( self )-> str: '''simple docstring''' __UpperCamelCase = None self.display() class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self )-> List[str]: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = False def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) __UpperCamelCase = NotebookTrainingTracker(state.max_steps , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = int(state.epoch ) if int(state.epoch ) == state.epoch else F"{state.epoch:.2f}" self.training_tracker.update( state.global_step + 1 , comment=F"Epoch {epoch}/{state.num_train_epochs}" , force_update=self._force_next_update , ) __UpperCamelCase = False def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ )-> List[Any]: '''simple docstring''' if not has_length(SCREAMING_SNAKE_CASE_ ): return if self.prediction_bar is None: if self.training_tracker is not None: __UpperCamelCase = self.training_tracker.add_child(len(SCREAMING_SNAKE_CASE_ ) ) else: __UpperCamelCase = NotebookProgressBar(len(SCREAMING_SNAKE_CASE_ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() __UpperCamelCase = None def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __UpperCamelCase = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy __UpperCamelCase = state.global_step self.training_tracker.write_line(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' if self.training_tracker is not None: __UpperCamelCase = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: __UpperCamelCase = log['''loss'''] break if self.first_column == "Epoch": __UpperCamelCase = int(state.epoch ) else: __UpperCamelCase = state.global_step __UpperCamelCase = '''eval''' for k in metrics: if k.endswith('''_loss''' ): __UpperCamelCase = re.sub(r'''\_loss$''' , '''''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = metrics.pop('''total_flos''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = metrics.pop('''epoch''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = metrics.pop(F"{metric_key_prefix}_runtime" , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = metrics.pop(F"{metric_key_prefix}_samples_per_second" , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = metrics.pop(F"{metric_key_prefix}_steps_per_second" , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = metrics.pop(F"{metric_key_prefix}_jit_compilation_time" , SCREAMING_SNAKE_CASE_ ) for k, v in metrics.items(): if k == F"{metric_key_prefix}_loss": __UpperCamelCase = v else: __UpperCamelCase = k.split('''_''' ) __UpperCamelCase = ''' '''.join([part.capitalize() for part in splits[1:]] ) __UpperCamelCase = v self.training_tracker.write_line(SCREAMING_SNAKE_CASE_ ) self.training_tracker.remove_child() __UpperCamelCase = None # Evaluation takes a long time so we should force the next update. __UpperCamelCase = True def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' self.training_tracker.update( state.global_step , comment=F"Epoch {int(state.epoch )}/{state.num_train_epochs}" , force_update=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = None
328
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ : str = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'whisper' _snake_case = ['past_key_values'] _snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE_=51865 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=50257 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1500 , SCREAMING_SNAKE_CASE_=448 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[220, 50256] , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=7 , **SCREAMING_SNAKE_CASE_ , )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = num_mel_bins __UpperCamelCase = d_model __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = use_cache __UpperCamelCase = encoder_layers __UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase = max_source_positions __UpperCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __UpperCamelCase = classifier_proj_size __UpperCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length __UpperCamelCase = mask_feature_min_masks __UpperCamelCase = median_filter_width super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def A__ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' __UpperCamelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: __UpperCamelCase = {0: '''batch'''} else: __UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' ) return common_inputs def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 22050 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 220 , )-> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase = OrderedDict() __UpperCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = encoder_inputs['''input_features'''].shape[2] __UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __UpperCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = encoder_inputs.pop('''input_features''' ) __UpperCamelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: __UpperCamelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def A__ ( self )-> float: '''simple docstring''' return 1E-3
328
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowercase__ : str = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" _snake_case = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) _snake_case = field(default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Whether tp freeze the encoder.'} ) _snake_case = field(default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" _snake_case = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) _snake_case = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) _snake_case = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _snake_case = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _snake_case = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) _snake_case = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _snake_case = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) _snake_case = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) _snake_case = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) _snake_case = field(default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Source language id for translation.'} ) _snake_case = field(default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Target language id for translation.'} ) _snake_case = field(default=SCREAMING_SNAKE_CASE_ , metadata={'help': '# num_beams to use for evaluation.'} ) _snake_case = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def A_ ( snake_case : Optional[int] , snake_case : List[str] , snake_case : Tuple ) -> int: '''simple docstring''' logger.info(f"***** {split} metrics *****" ) for key in sorted(metrics.keys() ): logger.info(f" {key} = {metrics[key]}" ) save_json(snake_case , os.path.join(snake_case , f"{split}_results.json" ) ) def A_ ( ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = parser.parse_args_into_dataclasses() check_output_dir(snake_case ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , snake_case ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(snake_case , snake_case , snake_case ): assert hasattr(snake_case , snake_case ), f"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(snake_case , snake_case , getattr(snake_case , snake_case ) ) __UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=snake_case , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(snake_case , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __UpperCamelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(snake_case , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(snake_case , snake_case ): __UpperCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __UpperCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(snake_case ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __UpperCamelCase = SeqaSeqDataset # Get datasets __UpperCamelCase = ( dataset_class( snake_case , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) __UpperCamelCase = ( dataset_class( snake_case , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __UpperCamelCase = ( dataset_class( snake_case , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer __UpperCamelCase = ( build_compute_metrics_fn(data_args.task , snake_case ) if training_args.predict_with_generate else None ) __UpperCamelCase = SeqaSeqTrainer( model=snake_case , args=snake_case , data_args=snake_case , train_dataset=snake_case , eval_dataset=snake_case , data_collator=SeqaSeqDataCollator( snake_case , snake_case , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=snake_case , tokenizer=snake_case , ) __UpperCamelCase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __UpperCamelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __UpperCamelCase = train_result.metrics __UpperCamelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , snake_case , training_args.output_dir ) all_metrics.update(snake_case ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCamelCase = trainer.evaluate(metric_key_prefix='''val''' ) __UpperCamelCase = data_args.n_val __UpperCamelCase = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , snake_case , training_args.output_dir ) all_metrics.update(snake_case ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __UpperCamelCase = trainer.predict(test_dataset=snake_case , metric_key_prefix='''test''' ) __UpperCamelCase = test_output.metrics __UpperCamelCase = data_args.n_test if trainer.is_world_process_zero(): __UpperCamelCase = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , snake_case , training_args.output_dir ) all_metrics.update(snake_case ) if training_args.predict_with_generate: __UpperCamelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case ) __UpperCamelCase = lmap(str.strip , snake_case ) write_txt_file(snake_case , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(snake_case , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def A_ ( snake_case : List[Any] ) -> str: '''simple docstring''' main() if __name__ == "__main__": main()
328
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : Tuple = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'xlnet' _snake_case = ['mems'] _snake_case = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , SCREAMING_SNAKE_CASE_=32000 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="bi" , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=-1 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="tanh" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = n_layer __UpperCamelCase = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) __UpperCamelCase = d_model // n_head __UpperCamelCase = ff_activation __UpperCamelCase = d_inner __UpperCamelCase = untie_r __UpperCamelCase = attn_type __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = dropout __UpperCamelCase = mem_len __UpperCamelCase = reuse_len __UpperCamelCase = bi_data __UpperCamelCase = clamp_len __UpperCamelCase = same_length __UpperCamelCase = summary_type __UpperCamelCase = summary_use_proj __UpperCamelCase = summary_activation __UpperCamelCase = summary_last_dropout __UpperCamelCase = start_n_top __UpperCamelCase = end_n_top __UpperCamelCase = bos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = kwargs['''use_cache'''] __UpperCamelCase = use_mems_eval __UpperCamelCase = use_mems_train super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> Optional[Any]: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
328
1
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None )-> Union[str, Any]: '''simple docstring''' super().__init__() __UpperCamelCase = pad_token_id __UpperCamelCase = max_length __UpperCamelCase = vocab __UpperCamelCase = merges __UpperCamelCase = BytePairTokenizer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sequence_length=SCREAMING_SNAKE_CASE_ ) @classmethod def A__ ( cls , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = [''' '''.join(SCREAMING_SNAKE_CASE_ ) for m in tokenizer.bpe_ranks.keys()] __UpperCamelCase = tokenizer.get_vocab() return cls(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @classmethod def A__ ( cls , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return cls.from_tokenizer(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @classmethod def A__ ( cls , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' return cls(**SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Optional[Any]: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.tf_tokenizer(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = tf.ones_like(SCREAMING_SNAKE_CASE_ ) if self.pad_token_id is not None: # pad the tokens up to max length __UpperCamelCase = max_length if max_length is not None else self.max_length if max_length is not None: __UpperCamelCase , __UpperCamelCase = pad_model_inputs( SCREAMING_SNAKE_CASE_ , max_seq_length=SCREAMING_SNAKE_CASE_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
328
from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None def __repr__( self )-> str: '''simple docstring''' return F"Node({self.data})" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = None def __iter__( self )-> Any: '''simple docstring''' __UpperCamelCase = self.head while node: yield node.data __UpperCamelCase = node.next def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self )-> str: '''simple docstring''' return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] ) def __getitem__( self , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) __UpperCamelCase = self.head for _ in range(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = current.next __UpperCamelCase = data def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' self.insert_nth(0 , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) __UpperCamelCase = Node(SCREAMING_SNAKE_CASE_ ) if self.head is None: __UpperCamelCase = new_node elif index == 0: __UpperCamelCase = self.head # link new_node to head __UpperCamelCase = new_node else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = new_node def A__ ( self )-> None: # print every node data '''simple docstring''' print(self ) def A__ ( self )-> Any: '''simple docstring''' return self.delete_nth(0 ) def A__ ( self )-> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def A__ ( self , SCREAMING_SNAKE_CASE_ = 0 )-> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) __UpperCamelCase = self.head # default first node if index == 0: __UpperCamelCase = self.head.next else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = temp.next.next return delete_node.data def A__ ( self )-> bool: '''simple docstring''' return self.head is None def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = self.head while current: # Store the current node's next node. __UpperCamelCase = current.next # Make the current node's next point backwards __UpperCamelCase = prev # Make the previous node be the current node __UpperCamelCase = current # Make the current node the next node (to progress iteration) __UpperCamelCase = next_node # Return prev in order to put the head at the end __UpperCamelCase = prev def A_ ( ) -> None: '''simple docstring''' __UpperCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(snake_case ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(snake_case ) == i linked_list.insert_nth(snake_case , i + 1 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(snake_case ) == 9 assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(snake_case ) == "->".join(str(snake_case ) for i in range(-8 , 1 ) ) def A_ ( ) -> None: '''simple docstring''' __UpperCamelCase = [ -9, 100, Node(77345112 ), '''dlrow olleH''', 7, 5555, 0, -192.55555, '''Hello, world!''', 77.9, Node(10 ), None, None, 12.20, ] __UpperCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(snake_case ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCamelCase = linked_list.delete_head() assert result == -9 assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(snake_case ) assert ( str(snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(snake_case ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def A_ ( ) -> Any: '''simple docstring''' from doctest import testmod testmod() __UpperCamelCase = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(snake_case ) print('''\nReading/changing Node data using indexing:''' ) print(f"Element at Position 1: {linked_list[1]}" ) __UpperCamelCase = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(snake_case ) print(f"length of linked_list is : {len(snake_case )}" ) if __name__ == "__main__": main()
328
1
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def A_ ( snake_case : Optional[Any] ) -> List[str]: '''simple docstring''' return getitem, k def A_ ( snake_case : str , snake_case : int ) -> Tuple: '''simple docstring''' return setitem, k, v def A_ ( snake_case : int ) -> List[str]: '''simple docstring''' return delitem, k def A_ ( snake_case : Any , snake_case : Optional[int] , *snake_case : Dict ) -> Any: '''simple docstring''' try: return fun(snake_case , *snake_case ), None except Exception as e: return None, e lowercase__ : List[str] = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) lowercase__ : int = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] lowercase__ : Tuple = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] lowercase__ : Tuple = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] lowercase__ : Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowercase__ : Tuple = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def A_ ( snake_case : List[str] ) -> Any: '''simple docstring''' __UpperCamelCase = HashMap(initial_block_size=4 ) __UpperCamelCase = {} for _, (fun, *args) in enumerate(snake_case ): __UpperCamelCase , __UpperCamelCase = _run_operation(snake_case , snake_case , *snake_case ) __UpperCamelCase , __UpperCamelCase = _run_operation(snake_case , snake_case , *snake_case ) assert my_res == py_res assert str(snake_case ) == str(snake_case ) assert set(snake_case ) == set(snake_case ) assert len(snake_case ) == len(snake_case ) assert set(my.items() ) == set(py.items() ) def A_ ( ) -> List[Any]: '''simple docstring''' def is_public(snake_case : str ) -> bool: return not name.startswith('''_''' ) __UpperCamelCase = {name for name in dir({} ) if is_public(snake_case )} __UpperCamelCase = {name for name in dir(HashMap() ) if is_public(snake_case )} assert dict_public_names > hash_public_names
328
import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num def A_ ( snake_case : int ) -> bool: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = n while left <= right: __UpperCamelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
328
1
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> Dict: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self )-> str: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = DistilBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = True _snake_case = True _snake_case = True def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = DistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def A__ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> List[str]: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCamelCase = True __UpperCamelCase = model_class(config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) ) __UpperCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] __UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
328
def A_ ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowercase__ : List[str] = generate_large_matrix() lowercase__ : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A_ ( snake_case : list[list[int]] ) -> None: '''simple docstring''' assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid ) assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) ) def A_ ( snake_case : list[int] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCamelCase = (left + right) // 2 __UpperCamelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCamelCase = mid + 1 else: __UpperCamelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(grid[0] ) for i in range(len(snake_case ) ): __UpperCamelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case ) * len(grid[0] )) - total def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 for row in grid: for i, number in enumerate(snake_case ): if number < 0: total += len(snake_case ) - i break return total def A_ ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCamelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
1
from math import factorial def A_ ( snake_case : int = 20 ) -> int: '''simple docstring''' __UpperCamelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... __UpperCamelCase = n // 2 return int(factorial(snake_case ) / (factorial(snake_case ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: lowercase__ : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
328
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = size if size is not None else {'''shortest_edge''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = crop_pct __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: __UpperCamelCase = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCamelCase = int(size['''height'''] / crop_pct ) else: __UpperCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) else: if "shortest_edge" in size: __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) elif "height" in size and "width" in size: __UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> str: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , )-> PIL.Image.Image: '''simple docstring''' __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
328
1
def A_ ( snake_case : list[list[int | float]] ) -> int: '''simple docstring''' __UpperCamelCase = len(snake_case ) __UpperCamelCase = len(matrix[0] ) __UpperCamelCase = min(snake_case , snake_case ) for row in range(snake_case ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , snake_case ): __UpperCamelCase = matrix[col][row] / matrix[row][row] for i in range(snake_case , snake_case ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __UpperCamelCase = True for i in range(row + 1 , snake_case ): if matrix[i][row] != 0: __UpperCamelCase , __UpperCamelCase = matrix[i], matrix[row] __UpperCamelCase = False break if reduce: rank -= 1 for i in range(snake_case ): __UpperCamelCase = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
328
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowercase__ : Any = getLogger(__name__) lowercase__ : List[str] = "cuda" if torch.cuda.is_available() else "cpu" def A_ ( snake_case : List[str] , snake_case : str , snake_case : str , snake_case : int = 8 , snake_case : str = DEFAULT_DEVICE , snake_case : List[str]=False , snake_case : Union[str, Any]="summarization" , snake_case : str=None , **snake_case : List[Any] , ) -> Dict: '''simple docstring''' __UpperCamelCase = Path(snake_case ).open('''w''' , encoding='''utf-8''' ) __UpperCamelCase = str(snake_case ) __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case ).to(snake_case ) if fpaa: __UpperCamelCase = model.half() __UpperCamelCase = AutoTokenizer.from_pretrained(snake_case ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __UpperCamelCase = time.time() # update config with task specific params use_task_specific_params(snake_case , snake_case ) if prefix is None: __UpperCamelCase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(snake_case , snake_case ) ) ): __UpperCamelCase = [prefix + text for text in examples_chunk] __UpperCamelCase = tokenizer(snake_case , return_tensors='''pt''' , truncation=snake_case , padding='''longest''' ).to(snake_case ) __UpperCamelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case , ) __UpperCamelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __UpperCamelCase = int(time.time() - start_time ) # seconds __UpperCamelCase = len(snake_case ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def A_ ( ) -> Tuple: '''simple docstring''' return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def A_ ( snake_case : str=True ) -> int: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=snake_case , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=snake_case , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=snake_case , required=snake_case , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=snake_case , required=snake_case , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=snake_case , required=snake_case , default=snake_case , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=snake_case , required=snake_case , default=snake_case , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=snake_case , default=8 , required=snake_case , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=snake_case , default=-1 , required=snake_case , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=snake_case , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __UpperCamelCase , __UpperCamelCase = parser.parse_known_args() __UpperCamelCase = parse_numeric_n_bool_cl_kwargs(snake_case ) if parsed_args and verbose: print(f"parsed the following generate kwargs: {parsed_args}" ) __UpperCamelCase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __UpperCamelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=snake_case ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __UpperCamelCase = generate_summaries_or_translations( snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case , ) if args.reference_path is None: return {} # Compute scores __UpperCamelCase = calculate_bleu if '''translation''' in args.task else calculate_rouge __UpperCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __UpperCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case )] __UpperCamelCase = score_fn(snake_case , snake_case ) scores.update(snake_case ) if args.dump_args: scores.update(snake_case ) if args.info: __UpperCamelCase = args.info if verbose: print(snake_case ) if args.score_path is not None: json.dump(snake_case , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
328
1
from __future__ import annotations import math def A_ ( snake_case : int , snake_case : int , snake_case : bool , snake_case : list[int] , snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(snake_case ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , snake_case , snake_case , snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case , snake_case , snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , snake_case , snake_case , snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case , snake_case , snake_case ) , ) def A_ ( ) -> None: '''simple docstring''' __UpperCamelCase = [90, 23, 6, 33, 21, 65, 123, 34423] __UpperCamelCase = math.log(len(snake_case ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , snake_case , snake_case , snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
328
from math import factorial def A_ ( snake_case : int = 100 ) -> int: '''simple docstring''' return sum(int(snake_case ) for x in str(factorial(snake_case ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
328
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = BlenderbotSmallTokenizer _snake_case = False def A__ ( self )-> int: '''simple docstring''' super().setUp() __UpperCamelCase = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] __UpperCamelCase = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __UpperCamelCase = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] __UpperCamelCase = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def A__ ( self , **SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = '''adapt act apte''' __UpperCamelCase = '''adapt act apte''' return input_text, output_text def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase = '''adapt act apte''' __UpperCamelCase = ['''adapt''', '''act''', '''ap@@''', '''te'''] __UpperCamelCase = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __UpperCamelCase = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1384] __UpperCamelCase = '''I am a small frog.''' __UpperCamelCase = tok([src_text] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )['''input_ids'''] __UpperCamelCase = tok.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) __UpperCamelCase = '''I am a small frog .''' __UpperCamelCase = '''.''' __UpperCamelCase = tok(SCREAMING_SNAKE_CASE_ )['''input_ids'''] __UpperCamelCase = tok(SCREAMING_SNAKE_CASE_ )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
328
def A_ ( snake_case : list ) -> list: '''simple docstring''' __UpperCamelCase = len(snake_case ) for i in range(1 , snake_case ): __UpperCamelCase = collection[i] __UpperCamelCase = 0 __UpperCamelCase = i - 1 while low <= high: __UpperCamelCase = (low + high) // 2 if val < collection[mid]: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 for j in range(snake_case , snake_case , -1 ): __UpperCamelCase = collection[j - 1] __UpperCamelCase = val return collection if __name__ == "__main__": lowercase__ : List[Any] = input("Enter numbers separated by a comma:\n").strip() lowercase__ : str = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
328
1
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase__ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase__ : List[Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def A_ ( snake_case : int , snake_case : Tuple , snake_case : int=8 ) -> List[Any]: '''simple docstring''' __UpperCamelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCamelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def A_ ( snake_case : List[Any] , snake_case : Union[str, Any]=512 , snake_case : Optional[int]=512 ) -> str: '''simple docstring''' __UpperCamelCase = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) __UpperCamelCase = np.array(pil_image.convert('''RGB''' ) ) __UpperCamelCase = arr.astype(np.floataa ) / 127.5 - 1 __UpperCamelCase = np.transpose(snake_case , [2, 0, 1] ) __UpperCamelCase = torch.from_numpy(snake_case ).unsqueeze(0 ) return image class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )-> Tuple: '''simple docstring''' super().__init__() self.register_modules( unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , movq=SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> List[Any]: '''simple docstring''' __UpperCamelCase = min(int(num_inference_steps * strength ) , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = max(num_inference_steps - init_timestep , 0 ) __UpperCamelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None )-> Tuple: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(SCREAMING_SNAKE_CASE_ )}" ) __UpperCamelCase = image.to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = batch_size * num_images_per_prompt if image.shape[1] == 4: __UpperCamelCase = image else: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_ )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(SCREAMING_SNAKE_CASE_ ) ] __UpperCamelCase = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) else: __UpperCamelCase = self.movq.encode(SCREAMING_SNAKE_CASE_ ).latent_dist.sample(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.movq.config.scaling_factor * init_latents __UpperCamelCase = torch.cat([init_latents] , dim=0 ) __UpperCamelCase = init_latents.shape __UpperCamelCase = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) # get latents __UpperCamelCase = self.scheduler.add_noise(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = init_latents return latents def A__ ( self , SCREAMING_SNAKE_CASE_=0 )-> Union[str, Any]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __UpperCamelCase = torch.device(F"cuda:{gpu_id}" ) __UpperCamelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_=0 )-> Union[str, Any]: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __UpperCamelCase = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=SCREAMING_SNAKE_CASE_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCamelCase = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCamelCase , __UpperCamelCase = cpu_offload_with_hook(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prev_module_hook=SCREAMING_SNAKE_CASE_ ) # We'll offload the last model manually. __UpperCamelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A__ ( self )-> Any: '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 512 , SCREAMING_SNAKE_CASE_ = 100 , SCREAMING_SNAKE_CASE_ = 4.0 , SCREAMING_SNAKE_CASE_ = 0.3 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self._execution_device __UpperCamelCase = guidance_scale > 1.0 if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) __UpperCamelCase = image_embeds.shape[0] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) if do_classifier_free_guidance: __UpperCamelCase = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) __UpperCamelCase = negative_image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) __UpperCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [image] if not all(isinstance(SCREAMING_SNAKE_CASE_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"Input is in incorrect format: {[type(SCREAMING_SNAKE_CASE_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) __UpperCamelCase = torch.cat([prepare_image(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for i in image] , dim=0 ) __UpperCamelCase = image.to(dtype=image_embeds.dtype , device=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.movq.encode(SCREAMING_SNAKE_CASE_ )['''latents'''] __UpperCamelCase = latents.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase = self.get_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = timesteps[:1].repeat(batch_size * num_images_per_prompt ) __UpperCamelCase , __UpperCamelCase = downscale_height_and_width(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.movq_scale_factor ) __UpperCamelCase = self.prepare_latents( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , image_embeds.dtype , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance __UpperCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCamelCase = {'''image_embeds''': image_embeds} __UpperCamelCase = self.unet( sample=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , added_cond_kwargs=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0] if do_classifier_free_guidance: __UpperCamelCase , __UpperCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) __UpperCamelCase , __UpperCamelCase = noise_pred.chunk(2 ) __UpperCamelCase , __UpperCamelCase = variance_pred.chunk(2 ) __UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCamelCase , __UpperCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __UpperCamelCase = self.scheduler.step( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , )[0] # post-processing __UpperCamelCase = self.movq.decode(SCREAMING_SNAKE_CASE_ , force_not_quantize=SCREAMING_SNAKE_CASE_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: __UpperCamelCase = image * 0.5 + 0.5 __UpperCamelCase = image.clamp(0 , 1 ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ )
328
from __future__ import annotations from collections import deque class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(SCREAMING_SNAKE_CASE_ ) self.set_fail_transitions() def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int | None: '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' __UpperCamelCase = 0 for character in keyword: __UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __UpperCamelCase = len(self.adlist ) - 1 else: __UpperCamelCase = next_state self.adlist[current_state]["output"].append(SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = deque() for node in self.adlist[0]["next_states"]: q.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = 0 while q: __UpperCamelCase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.adlist[r]['''fail_state'''] while ( self.find_next_state(SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) is None and state != 0 ): __UpperCamelCase = self.adlist[state]['''fail_state'''] __UpperCamelCase = self.find_next_state( SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: __UpperCamelCase = 0 __UpperCamelCase = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> dict[str, list[int]]: '''simple docstring''' __UpperCamelCase = {} # returns a dict with keywords and list of its occurrences __UpperCamelCase = 0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): while ( self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) is None and current_state != 0 ): __UpperCamelCase = self.adlist[current_state]['''fail_state'''] __UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) if next_state is None: __UpperCamelCase = 0 else: __UpperCamelCase = next_state for key in self.adlist[current_state]["output"]: if key not in result: __UpperCamelCase = [] result[key].append(i - len(SCREAMING_SNAKE_CASE_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
328
1
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : Optional[Any] = { "artists_file": "artists.json", "lyrics_file": "lyrics.json", "genres_file": "genres.json", } lowercase__ : List[str] = { "artists_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json", }, "genres_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json", }, "lyrics_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json", }, } lowercase__ : Any = { "jukebox": 5_1_2, } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=["v3", "v2", "v2"] , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_="<|endoftext|>" , **SCREAMING_SNAKE_CASE_ , )-> Dict: '''simple docstring''' __UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token super().__init__( unk_token=SCREAMING_SNAKE_CASE_ , n_genres=SCREAMING_SNAKE_CASE_ , version=SCREAMING_SNAKE_CASE_ , max_n_lyric_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = version __UpperCamelCase = max_n_lyric_tokens __UpperCamelCase = n_genres with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: __UpperCamelCase = json.load(SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: __UpperCamelCase = json.load(SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: __UpperCamelCase = json.load(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __UpperCamelCase = oov.replace(r'''\-\'''' , r'''\-+\'''' ) __UpperCamelCase = regex.compile(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = {v: k for k, v in self.artists_encoder.items()} __UpperCamelCase = {v: k for k, v in self.genres_encoder.items()} __UpperCamelCase = {v: k for k, v in self.lyrics_encoder.items()} @property def A__ ( self )-> List[str]: '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def A__ ( self )-> List[str]: '''simple docstring''' return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = [self.artists_encoder.get(SCREAMING_SNAKE_CASE_ , 0 ) for artist in list_artists] for genres in range(len(SCREAMING_SNAKE_CASE_ ) ): __UpperCamelCase = [self.genres_encoder.get(SCREAMING_SNAKE_CASE_ , 0 ) for genre in list_genres[genres]] __UpperCamelCase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __UpperCamelCase = [[self.lyrics_encoder.get(SCREAMING_SNAKE_CASE_ , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' return list(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Optional[Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.prepare_for_tokenization(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._tokenize(SCREAMING_SNAKE_CASE_ ) return artist, genre, lyrics def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False )-> Tuple[str, str, str, Dict[str, Any]]: '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": __UpperCamelCase = artists[idx].lower() __UpperCamelCase = [genres[idx].lower()] else: __UpperCamelCase = self._normalize(artists[idx] ) + '''.v2''' __UpperCamelCase = [ self._normalize(SCREAMING_SNAKE_CASE_ ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __UpperCamelCase = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) __UpperCamelCase = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' __UpperCamelCase = {vocab[index]: index + 1 for index in range(len(SCREAMING_SNAKE_CASE_ ) )} __UpperCamelCase = 0 __UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) + 1 __UpperCamelCase = self.vocab __UpperCamelCase = {v: k for k, v in self.vocab.items()} __UpperCamelCase = '''''' else: __UpperCamelCase = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) __UpperCamelCase = self._run_strip_accents(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = lyrics.replace('''\\''' , '''\n''' ) __UpperCamelCase = self.out_of_vocab.sub('''''' , SCREAMING_SNAKE_CASE_ ), [], [] return artists, genres, lyrics def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = unicodedata.normalize('''NFD''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = [] for char in text: __UpperCamelCase = unicodedata.category(SCREAMING_SNAKE_CASE_ ) if cat == "Mn": continue output.append(SCREAMING_SNAKE_CASE_ ) return "".join(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = ( [chr(SCREAMING_SNAKE_CASE_ ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(SCREAMING_SNAKE_CASE_ ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(SCREAMING_SNAKE_CASE_ ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) __UpperCamelCase = frozenset(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = re.compile(r'''_+''' ) __UpperCamelCase = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) __UpperCamelCase = pattern.sub('''_''' , SCREAMING_SNAKE_CASE_ ).strip('''_''' ) return text def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' return " ".join(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False )-> Tuple: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = TensorType(SCREAMING_SNAKE_CASE_ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf __UpperCamelCase = tf.constant __UpperCamelCase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch __UpperCamelCase = torch.tensor __UpperCamelCase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 __UpperCamelCase = jnp.array __UpperCamelCase = _is_jax else: __UpperCamelCase = np.asarray __UpperCamelCase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __UpperCamelCase = [inputs] if not is_tensor(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = as_tensor(SCREAMING_SNAKE_CASE_ ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="" , SCREAMING_SNAKE_CASE_="pt" )-> BatchEncoding: '''simple docstring''' __UpperCamelCase = [0, 0, 0] __UpperCamelCase = [artist] * len(self.version ) __UpperCamelCase = [genres] * len(self.version ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.tokenize(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self._convert_token_to_id(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = [-INFINITY] * len(full_tokens[-1] ) __UpperCamelCase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=SCREAMING_SNAKE_CASE_ ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __UpperCamelCase = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=SCREAMING_SNAKE_CASE_ ) ) return (artists_file, genres_file, lyrics_file) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = self.artists_decoder.get(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = [self.genres_decoder.get(SCREAMING_SNAKE_CASE_ ) for genre in genres_index] __UpperCamelCase = [self.lyrics_decoder.get(SCREAMING_SNAKE_CASE_ ) for character in lyric_index] return artist, genres, lyrics
328
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> Dict: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self )-> str: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = DistilBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = True _snake_case = True _snake_case = True def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = DistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def A__ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> List[str]: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCamelCase = True __UpperCamelCase = model_class(config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) ) __UpperCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] __UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
328
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowercase__ : str = logging.get_logger(__name__) # General docstring lowercase__ : Tuple = "ResNetConfig" # Base docstring lowercase__ : Optional[int] = "microsoft/resnet-50" lowercase__ : Optional[Any] = [1, 2_0_4_8, 7, 7] # Image classification docstring lowercase__ : int = "microsoft/resnet-50" lowercase__ : Any = "tiger cat" lowercase__ : str = [ "microsoft/resnet-50", # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 3 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = "relu" )-> Any: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Convad( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , padding=kernel_size // 2 , bias=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = nn.BatchNormad(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = ACTaFN[activation] if activation is not None else nn.Identity() def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Tensor: '''simple docstring''' __UpperCamelCase = self.convolution(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.normalization(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' super().__init__() __UpperCamelCase = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) __UpperCamelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) __UpperCamelCase = config.num_channels def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Tensor: '''simple docstring''' __UpperCamelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) __UpperCamelCase = self.embedder(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.pooler(SCREAMING_SNAKE_CASE_ ) return embedding class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 2 )-> Optional[int]: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Convad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 , stride=SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = nn.BatchNormad(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Tensor: '''simple docstring''' __UpperCamelCase = self.convolution(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.normalization(SCREAMING_SNAKE_CASE_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = "relu" )-> Any: '''simple docstring''' super().__init__() __UpperCamelCase = in_channels != out_channels or stride != 1 __UpperCamelCase = ( ResNetShortCut(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ ) if should_apply_shortcut else nn.Identity() ) __UpperCamelCase = nn.Sequential( ResNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ ) , ResNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , activation=SCREAMING_SNAKE_CASE_ ) , ) __UpperCamelCase = ACTaFN[activation] def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = hidden_state __UpperCamelCase = self.layer(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.shortcut(SCREAMING_SNAKE_CASE_ ) hidden_state += residual __UpperCamelCase = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = "relu" , SCREAMING_SNAKE_CASE_ = 4 )-> Tuple: '''simple docstring''' super().__init__() __UpperCamelCase = in_channels != out_channels or stride != 1 __UpperCamelCase = out_channels // reduction __UpperCamelCase = ( ResNetShortCut(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ ) if should_apply_shortcut else nn.Identity() ) __UpperCamelCase = nn.Sequential( ResNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 ) , ResNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ ) , ResNetConvLayer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE_ ) , ) __UpperCamelCase = ACTaFN[activation] def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = hidden_state __UpperCamelCase = self.layer(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.shortcut(SCREAMING_SNAKE_CASE_ ) hidden_state += residual __UpperCamelCase = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 2 , )-> List[str]: '''simple docstring''' super().__init__() __UpperCamelCase = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer __UpperCamelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , activation=config.hidden_act ) , *[layer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Tensor: '''simple docstring''' __UpperCamelCase = input for layer in self.layers: __UpperCamelCase = layer(SCREAMING_SNAKE_CASE_ ) return hidden_state class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' super().__init__() __UpperCamelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( SCREAMING_SNAKE_CASE_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(SCREAMING_SNAKE_CASE_ , config.depths[1:] ): self.stages.append(ResNetStage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , depth=SCREAMING_SNAKE_CASE_ ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = True )-> BaseModelOutputWithNoAttention: '''simple docstring''' __UpperCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __UpperCamelCase = hidden_states + (hidden_state,) __UpperCamelCase = stage_module(SCREAMING_SNAKE_CASE_ ) if output_hidden_states: __UpperCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE_ , hidden_states=SCREAMING_SNAKE_CASE_ , ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ResNetConfig _snake_case = 'resnet' _snake_case = 'pixel_values' _snake_case = True def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(SCREAMING_SNAKE_CASE_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False )-> str: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = value lowercase__ : Any = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" lowercase__ : int = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE_ , ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = config __UpperCamelCase = ResNetEmbeddings(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = ResNetEncoder(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None )-> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' __UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase = self.embedder(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.encoder( SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = encoder_outputs[0] __UpperCamelCase = self.pooler(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE_ , pooler_output=SCREAMING_SNAKE_CASE_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE_ , ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = config.num_labels __UpperCamelCase = ResNetModel(SCREAMING_SNAKE_CASE_ ) # classification head __UpperCamelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A__ ( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , )-> ImageClassifierOutputWithNoAttention: '''simple docstring''' __UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase = self.resnet(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] __UpperCamelCase = self.classifier(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __UpperCamelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __UpperCamelCase = '''single_label_classification''' else: __UpperCamelCase = '''multi_label_classification''' if self.config.problem_type == "regression": __UpperCamelCase = MSELoss() if self.num_labels == 1: __UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __UpperCamelCase = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif self.config.problem_type == "single_label_classification": __UpperCamelCase = CrossEntropyLoss() __UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __UpperCamelCase = BCEWithLogitsLoss() __UpperCamelCase = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: __UpperCamelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , SCREAMING_SNAKE_CASE_ , ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ ) super()._init_backbone(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = [config.embedding_size] + config.hidden_sizes __UpperCamelCase = ResNetEmbeddings(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = ResNetEncoder(SCREAMING_SNAKE_CASE_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @replace_return_docstrings(output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None )-> BackboneOutput: '''simple docstring''' __UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase = self.embedder(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.encoder(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = outputs.hidden_states __UpperCamelCase = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: __UpperCamelCase = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=SCREAMING_SNAKE_CASE_ , )
328
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase__ : Optional[Any] = logging.getLogger(__name__) def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int: '''simple docstring''' def get_dataset(snake_case : Optional[int] ): __UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any: '''simple docstring''' __UpperCamelCase = [] for epoch in range(snake_case ): # Train quickly model.train() for batch in dataloader: __UpperCamelCase , __UpperCamelCase = batch __UpperCamelCase = model(snake_case ) __UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case ) accelerator.backward(snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self )-> Tuple: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' return x * self.a + self.b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self )-> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() # Train baseline __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3] ) __UpperCamelCase = torch.tensor([2, 3, 4] ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(net.parameters() ) __UpperCamelCase = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() __UpperCamelCase = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing" lowercase__ : List[Any] = DummyModel() lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase__ , lowercase__ : str = dummy_dataloaders() lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase__ : int = group["params"][0].device break assert param_device.type == accelerator.device.type lowercase__ : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowercase__ : Any = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowercase__ : List[Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
328
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase__ : Optional[Any] = "src/diffusers" lowercase__ : int = "." # This is to make sure the diffusers module imported is the one in the repo. lowercase__ : str = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) lowercase__ : str = spec.loader.load_module() def A_ ( snake_case : Dict , snake_case : Tuple ) -> Union[str, Any]: '''simple docstring''' return line.startswith(snake_case ) or len(snake_case ) <= 1 or re.search(r'''^\s*\)(\s*->.*:|:)\s*$''' , snake_case ) is not None def A_ ( snake_case : List[Any] ) -> int: '''simple docstring''' __UpperCamelCase = object_name.split('''.''' ) __UpperCamelCase = 0 # First let's find the module where our object lives. __UpperCamelCase = parts[i] while i < len(snake_case ) and not os.path.isfile(os.path.join(snake_case , f"{module}.py" ) ): i += 1 if i < len(snake_case ): __UpperCamelCase = os.path.join(snake_case , parts[i] ) if i >= len(snake_case ): raise ValueError(f"`object_name` should begin with the name of a module of diffusers but got {object_name}." ) with open(os.path.join(snake_case , f"{module}.py" ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCamelCase = f.readlines() # Now let's find the class / func in the code! __UpperCamelCase = '''''' __UpperCamelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(snake_case ) and re.search(rf"^{indent}(class|def)\s+{name}(\(|\:)" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(snake_case ): raise ValueError(f" {object_name} does not match any function or class in {module}." ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __UpperCamelCase = line_index while line_index < len(snake_case ) and _should_continue(lines[line_index] , snake_case ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __UpperCamelCase = lines[start_index:line_index] return "".join(snake_case ) lowercase__ : Tuple = re.compile(R"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") lowercase__ : Optional[int] = re.compile(R"^\s*(\S+)->(\S+)(\s+.*|$)") lowercase__ : Optional[Any] = re.compile(R"<FILL\s+[^>]*>") def A_ ( snake_case : Tuple ) -> str: '''simple docstring''' __UpperCamelCase = code.split('''\n''' ) __UpperCamelCase = 0 while idx < len(snake_case ) and len(lines[idx] ) == 0: idx += 1 if idx < len(snake_case ): return re.search(r'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def A_ ( snake_case : Any ) -> Optional[int]: '''simple docstring''' __UpperCamelCase = len(get_indent(snake_case ) ) > 0 if has_indent: __UpperCamelCase = f"class Bla:\n{code}" __UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=snake_case ) __UpperCamelCase = black.format_str(snake_case , mode=snake_case ) __UpperCamelCase , __UpperCamelCase = style_docstrings_in_code(snake_case ) return result[len('''class Bla:\n''' ) :] if has_indent else result def A_ ( snake_case : Tuple , snake_case : Any=False ) -> Dict: '''simple docstring''' with open(snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCamelCase = f.readlines() __UpperCamelCase = [] __UpperCamelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(snake_case ): __UpperCamelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = search.groups() __UpperCamelCase = find_code_in_diffusers(snake_case ) __UpperCamelCase = get_indent(snake_case ) __UpperCamelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 __UpperCamelCase = theoretical_indent __UpperCamelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __UpperCamelCase = True while line_index < len(snake_case ) and should_continue: line_index += 1 if line_index >= len(snake_case ): break __UpperCamelCase = lines[line_index] __UpperCamelCase = _should_continue(snake_case , snake_case ) and re.search(f"^{indent}# End copy" , snake_case ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __UpperCamelCase = lines[start_index:line_index] __UpperCamelCase = ''''''.join(snake_case ) # Remove any nested `Copied from` comments to avoid circular copies __UpperCamelCase = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(snake_case ) is None] __UpperCamelCase = '''\n'''.join(snake_case ) # Before comparing, use the `replace_pattern` on the original code. if len(snake_case ) > 0: __UpperCamelCase = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) __UpperCamelCase = [_re_replace_pattern.search(snake_case ) for p in patterns] for pattern in patterns: if pattern is None: continue __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = pattern.groups() __UpperCamelCase = re.sub(snake_case , snake_case , snake_case ) if option.strip() == "all-casing": __UpperCamelCase = re.sub(obja.lower() , obja.lower() , snake_case ) __UpperCamelCase = re.sub(obja.upper() , obja.upper() , snake_case ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __UpperCamelCase = blackify(lines[start_index - 1] + theoretical_code ) __UpperCamelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __UpperCamelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] __UpperCamelCase = start_index + 1 if overwrite and len(snake_case ) > 0: # Warn the user a file has been modified. print(f"Detected changes, rewriting {filename}." ) with open(snake_case , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(snake_case ) return diffs def A_ ( snake_case : bool = False ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase = glob.glob(os.path.join(snake_case , '''**/*.py''' ) , recursive=snake_case ) __UpperCamelCase = [] for filename in all_files: __UpperCamelCase = is_copy_consistent(snake_case , snake_case ) diffs += [f"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs] if not overwrite and len(snake_case ) > 0: __UpperCamelCase = '''\n'''.join(snake_case ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowercase__ : int = parser.parse_args() check_copies(args.fix_and_overwrite)
328
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]: '''simple docstring''' super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Sql( cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , ) # Build dataset for splits __UpperCamelCase = self.builder.as_dataset( split='''train''' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) __UpperCamelCase = dataset __UpperCamelCase = name __UpperCamelCase = con __UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCamelCase = num_proc __UpperCamelCase = to_sql_kwargs def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.to_sql_kwargs.pop('''sql''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''con''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''index''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs ) return written def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args __UpperCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __UpperCamelCase = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCamelCase = batch.to_pandas() __UpperCamelCase = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return num_rows or len(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
328
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowercase__ : Optional[Any] = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] lowercase__ : int = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] lowercase__ : int = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) lowercase__ : int = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) lowercase__ : str = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def A_ ( snake_case : Optional[int] , snake_case : List[Any] ) -> Optional[int]: '''simple docstring''' for tf_name, hf_name in patterns: __UpperCamelCase = k.replace(snake_case , snake_case ) return k def A_ ( snake_case : dict , snake_case : dict ) -> BigBirdPegasusForConditionalGeneration: '''simple docstring''' __UpperCamelCase = BigBirdPegasusConfig(**snake_case ) __UpperCamelCase = BigBirdPegasusForConditionalGeneration(snake_case ) __UpperCamelCase = torch_model.state_dict() __UpperCamelCase = {} # separating decoder weights __UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} __UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): __UpperCamelCase = [k.endswith(snake_case ) for ending in KEYS_TO_IGNORE] if any(snake_case ): continue __UpperCamelCase = DECODER_PATTERNS __UpperCamelCase = rename_state_dict_key(snake_case , snake_case ) if new_k not in state_dict: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __UpperCamelCase = v.T __UpperCamelCase = torch.from_numpy(snake_case ) assert v.shape == state_dict[new_k].shape, f"{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}" for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): __UpperCamelCase = [k.endswith(snake_case ) for ending in KEYS_TO_IGNORE] if any(snake_case ): continue __UpperCamelCase = REMAINING_PATTERNS __UpperCamelCase = rename_state_dict_key(snake_case , snake_case ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __UpperCamelCase = v.T __UpperCamelCase = torch.from_numpy(snake_case ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}" __UpperCamelCase = mapping['''model.embed_positions.weight'''] __UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) __UpperCamelCase , __UpperCamelCase = torch_model.load_state_dict(snake_case , strict=snake_case ) __UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def A_ ( snake_case : Optional[int] ) -> Dict: '''simple docstring''' __UpperCamelCase = tf.train.list_variables(snake_case ) __UpperCamelCase = {} __UpperCamelCase = ['''global_step'''] for name, shape in tqdm(snake_case , desc='''converting tf checkpoint to dict''' ): __UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCamelCase = tf.train.load_variable(snake_case , snake_case ) __UpperCamelCase = array return tf_weights def A_ ( snake_case : str , snake_case : str , snake_case : dict ) -> Dict: '''simple docstring''' __UpperCamelCase = get_tf_weights_as_numpy(snake_case ) __UpperCamelCase = convert_bigbird_pegasus(snake_case , snake_case ) torch_model.save_pretrained(snake_case ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") lowercase__ : Optional[Any] = parser.parse_args() lowercase__ : Union[str, Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
328
def A_ ( snake_case : str ) -> int: '''simple docstring''' assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , snake_case ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
328
1
lowercase__ : int = [ (1_0_0_0, "M"), (9_0_0, "CM"), (5_0_0, "D"), (4_0_0, "CD"), (1_0_0, "C"), (9_0, "XC"), (5_0, "L"), (4_0, "XL"), (1_0, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def A_ ( snake_case : str ) -> int: '''simple docstring''' __UpperCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} __UpperCamelCase = 0 __UpperCamelCase = 0 while place < len(snake_case ): if (place + 1 < len(snake_case )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def A_ ( snake_case : int ) -> str: '''simple docstring''' __UpperCamelCase = [] for arabic, roman in ROMAN: ((__UpperCamelCase) , (__UpperCamelCase)) = divmod(snake_case , snake_case ) result.append(roman * factor ) if number == 0: break return "".join(snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
328
def A_ ( snake_case : int ) -> None: '''simple docstring''' __UpperCamelCase = generate_pascal_triangle(snake_case ) for row_idx in range(snake_case ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [] for current_row_idx in range(snake_case ): __UpperCamelCase = populate_current_row(snake_case , snake_case ) triangle.append(snake_case ) return triangle def A_ ( snake_case : list[list[int]] , snake_case : int ) -> list[int]: '''simple docstring''' __UpperCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase , __UpperCamelCase = 1, 1 for current_col_idx in range(1 , snake_case ): calculate_current_element( snake_case , snake_case , snake_case , snake_case ) return current_row def A_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , ) -> None: '''simple docstring''' __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase = above_to_left_elt + above_to_right_elt def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [[1]] for row_index in range(1 , snake_case ): __UpperCamelCase = [0] + result[-1] + [0] __UpperCamelCase = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase = sum(divmod(snake_case , 2 ) ) __UpperCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase = row_first_half + row_second_half result.append(snake_case ) return result def A_ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None: __UpperCamelCase = f"{func.__name__}({value})" __UpperCamelCase = timeit(f"__main__.{call}" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case , snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
1
import collections import os import re from pathlib import Path lowercase__ : Optional[Any] = "src/transformers" # Matches is_xxx_available() lowercase__ : Optional[Any] = re.compile(R"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} lowercase__ : Tuple = re.compile(R"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowercase__ : Tuple = re.compile(R"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available lowercase__ : List[str] = re.compile(R"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") lowercase__ : Any = re.compile(R"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowercase__ : str = re.compile(R"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", lowercase__ : int = re.compile(R"^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], lowercase__ : Dict = re.compile(R"^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo lowercase__ : Tuple = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: lowercase__ : Dict = re.compile(R"^\s*try:") # Catches a line with else: lowercase__ : Union[str, Any] = re.compile(R"^\s*else:") def A_ ( snake_case : Optional[Any] ) -> int: '''simple docstring''' if _re_test_backend.search(snake_case ) is None: return None __UpperCamelCase = [b[0] for b in _re_backend.findall(snake_case )] backends.sort() return "_and_".join(snake_case ) def A_ ( snake_case : Tuple ) -> List[str]: '''simple docstring''' with open(snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCamelCase = f.readlines() __UpperCamelCase = 0 while line_index < len(snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(snake_case ): return None # First grab the objects without a specific backend in _import_structure __UpperCamelCase = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: __UpperCamelCase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(snake_case ): __UpperCamelCase = _re_one_line_import_struct.search(snake_case ).groups()[0] __UpperCamelCase = re.findall(r'''\[([^\]]+)\]''' , snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue __UpperCamelCase = _re_import_struct_key_value.search(snake_case ) if single_line_import_search is not None: __UpperCamelCase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(snake_case ) > 0] objects.extend(snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 __UpperCamelCase = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. __UpperCamelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __UpperCamelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __UpperCamelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): __UpperCamelCase = lines[line_index] if _re_import_struct_add_one.search(snake_case ) is not None: objects.append(_re_import_struct_add_one.search(snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(snake_case ) is not None: __UpperCamelCase = _re_import_struct_add_many.search(snake_case ).groups()[0].split(''', ''' ) __UpperCamelCase = [obj[1:-1] for obj in imports if len(snake_case ) > 0] objects.extend(snake_case ) elif _re_between_brackets.search(snake_case ) is not None: __UpperCamelCase = _re_between_brackets.search(snake_case ).groups()[0].split(''', ''' ) __UpperCamelCase = [obj[1:-1] for obj in imports if len(snake_case ) > 0] objects.extend(snake_case ) elif _re_quote_object.search(snake_case ) is not None: objects.append(_re_quote_object.search(snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 __UpperCamelCase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __UpperCamelCase = [] while ( line_index < len(snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): __UpperCamelCase = lines[line_index] __UpperCamelCase = _re_import.search(snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 __UpperCamelCase = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(snake_case ): # If the line is an if is_backend_available, we grab all objects associated. __UpperCamelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __UpperCamelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __UpperCamelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): __UpperCamelCase = lines[line_index] __UpperCamelCase = _re_import.search(snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 __UpperCamelCase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def A_ ( snake_case : List[str] , snake_case : str ) -> Dict: '''simple docstring''' def find_duplicates(snake_case : Dict ): return [k for k, v in collections.Counter(snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __UpperCamelCase = [] for key in import_dict_objects.keys(): __UpperCamelCase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"Duplicate _import_structure definitions for: {duplicate_imports}" ) __UpperCamelCase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __UpperCamelCase = '''base imports''' if key == '''none''' else f"{key} backend" errors.append(f"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f" {a} in _import_structure but not in TYPE_HINT." ) return errors def A_ ( ) -> int: '''simple docstring''' __UpperCamelCase = [] for root, _, files in os.walk(snake_case ): if "__init__.py" in files: __UpperCamelCase = os.path.join(snake_case , '''__init__.py''' ) __UpperCamelCase = parse_init(snake_case ) if objects is not None: __UpperCamelCase = analyze_results(*snake_case ) if len(snake_case ) > 0: __UpperCamelCase = f"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append('''\n'''.join(snake_case ) ) if len(snake_case ) > 0: raise ValueError('''\n\n'''.join(snake_case ) ) def A_ ( ) -> Optional[int]: '''simple docstring''' __UpperCamelCase = [] for path, directories, files in os.walk(snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue __UpperCamelCase = str((Path(snake_case ) / folder).relative_to(snake_case ) ) __UpperCamelCase = short_path.replace(os.path.sep , '''.''' ) submodules.append(snake_case ) for fname in files: if fname == "__init__.py": continue __UpperCamelCase = str((Path(snake_case ) / fname).relative_to(snake_case ) ) __UpperCamelCase = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(snake_case ) return submodules lowercase__ : List[str] = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", "models.esm.openfold_utils", ] def A_ ( ) -> Any: '''simple docstring''' from transformers.utils import direct_transformers_import __UpperCamelCase = direct_transformers_import(snake_case ) __UpperCamelCase = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(snake_case , '''__init__.py''' ) , '''r''' ) as f: __UpperCamelCase = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , snake_case ) ) ) __UpperCamelCase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(snake_case ) > 0: __UpperCamelCase = '''\n'''.join(f"- {module}" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' f"{list_of_modules}\n" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
328
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase__ : Any = parser.parse_args() lowercase__ : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase__ : List[str] = CLIPImageProcessor() lowercase__ : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase__ : Optional[Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
328
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : List[str] = 1_6 lowercase__ : str = 3_2 def A_ ( snake_case : Accelerator , snake_case : int = 16 ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCamelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase = datasets.map( snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase = 16 elif accelerator.mixed_precision != "no": __UpperCamelCase = 8 else: __UpperCamelCase = None return tokenizer.pad( snake_case , padding='''longest''' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) __UpperCamelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : Union[str, Any] = mocked_dataloaders # noqa: F811 def A_ ( snake_case : List[str] , snake_case : List[Any] ) -> Tuple: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case ) == "1": __UpperCamelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: __UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['''lr'''] __UpperCamelCase = int(config['''num_epochs'''] ) __UpperCamelCase = int(config['''seed'''] ) __UpperCamelCase = int(config['''batch_size'''] ) set_seed(snake_case ) __UpperCamelCase , __UpperCamelCase = get_dataloaders(snake_case , snake_case ) __UpperCamelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case ) # Instantiate scheduler __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __UpperCamelCase = os.path.split(snake_case )[-1].split('''.''' )[0] accelerator.init_trackers(snake_case , snake_case ) # Now we train the model for epoch in range(snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __UpperCamelCase = 0 for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case , references=snake_case , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(snake_case ), '''epoch''': epoch, } , step=snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def A_ ( ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case , default=snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
328
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowercase__ : Union[str, Any] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" lowercase__ : Optional[Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" lowercase__ : Any = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" lowercase__ : Optional[int] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" lowercase__ : Optional[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[1, 10, 100] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3.0 )-> Union[str, Any]: '''simple docstring''' if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE_ ) as executor: __UpperCamelCase = [] __UpperCamelCase = Counter() __UpperCamelCase = 0 __UpperCamelCase = defaultdict(SCREAMING_SNAKE_CASE_ ) for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ): for candidate in candidates: __UpperCamelCase = candidate + '''\n''' + test_case __UpperCamelCase = (test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase = executor.submit(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) futures.append(SCREAMING_SNAKE_CASE_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) __UpperCamelCase , __UpperCamelCase = [], [] for result in results.values(): result.sort() __UpperCamelCase = [r[1]['''passed'''] for r in result] total.append(len(SCREAMING_SNAKE_CASE_ ) ) correct.append(sum(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = k __UpperCamelCase = {F"pass@{k}": estimate_pass_at_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A_ ( snake_case : Tuple , snake_case : Union[str, Any] , snake_case : List[Any] ) -> Optional[Any]: '''simple docstring''' def estimator(snake_case : int , snake_case : int , snake_case : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(snake_case , snake_case ): __UpperCamelCase = itertools.repeat(snake_case , len(snake_case ) ) else: assert len(snake_case ) == len(snake_case ) __UpperCamelCase = iter(snake_case ) return np.array([estimator(int(snake_case ) , int(snake_case ) , snake_case ) for n, c in zip(snake_case , snake_case )] )
328
1
def A_ ( snake_case : str ) -> bool: '''simple docstring''' __UpperCamelCase = [int(snake_case ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(snake_case ) == 4 and all(0 <= int(snake_case ) <= 254 for octet in octets ) if __name__ == "__main__": lowercase__ : int = input().strip() lowercase__ : Tuple = "valid" if is_ip_va_address_valid(ip) else "invalid" print(F"{ip} is a {valid_or_invalid} IP v4 address.")
328
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__) lowercase__ : Optional[Any] = ["names", "prefix"] lowercase__ : List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowercase__ : Optional[Any] = ["encoding_errors", "on_bad_lines"] lowercase__ : List[str] = ["date_format"] @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): """simple docstring""" _snake_case = "," _snake_case = None _snake_case = "infer" _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = False _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = False _snake_case = True _snake_case = None _snake_case = "." _snake_case = None _snake_case = '"' _snake_case = 0 _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = 0 _snake_case = True _snake_case = False _snake_case = None _snake_case = 10000 _snake_case = None _snake_case = "strict" _snake_case = "error" _snake_case = None def A__ ( self )-> Any: '''simple docstring''' if self.delimiter is not None: __UpperCamelCase = self.delimiter if self.column_names is not None: __UpperCamelCase = self.column_names @property def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): """simple docstring""" _snake_case = CsvConfig def A__ ( self )-> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) __UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ): __UpperCamelCase = data_files if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) ) return splits def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.Table: '''simple docstring''' if self.config.features is not None: __UpperCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE_ ) for feature in self.config.features.values() ): # cheaper cast __UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __UpperCamelCase = table_cast(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return pa_table def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __UpperCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ): __UpperCamelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , iterator=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = pa.Table.from_pandas(SCREAMING_SNAKE_CASE_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}" ) raise
328
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase__ : str = logging.get_logger(__name__) lowercase__ : Optional[int] = {"vocab_file": "spiece.model"} lowercase__ : int = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } lowercase__ : Any = { "albert-base-v1": 5_1_2, "albert-large-v1": 5_1_2, "albert-xlarge-v1": 5_1_2, "albert-xxlarge-v1": 5_1_2, "albert-base-v2": 5_1_2, "albert-large-v2": 5_1_2, "albert-xlarge-v2": 5_1_2, "albert-xxlarge-v2": 5_1_2, } lowercase__ : Dict = "▁" class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None: '''simple docstring''' __UpperCamelCase = ( AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ , normalized=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token ) __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=SCREAMING_SNAKE_CASE_ , remove_space=SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = do_lower_case __UpperCamelCase = remove_space __UpperCamelCase = keep_accents __UpperCamelCase = vocab_file __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> List[str]: '''simple docstring''' return len(self.sp_model ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None return state def __setstate__( self , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' if self.remove_space: __UpperCamelCase = ''' '''.join(inputs.strip().split() ) else: __UpperCamelCase = inputs __UpperCamelCase = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: __UpperCamelCase = unicodedata.normalize('''NFKD''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = ''''''.join([c for c in outputs if not unicodedata.combining(SCREAMING_SNAKE_CASE_ )] ) if self.do_lower_case: __UpperCamelCase = outputs.lower() return outputs def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' __UpperCamelCase = self.preprocess_text(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = [] for piece in pieces: if len(SCREAMING_SNAKE_CASE_ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __UpperCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(SCREAMING_SNAKE_CASE_ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __UpperCamelCase = cur_pieces[1:] else: __UpperCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(SCREAMING_SNAKE_CASE_ ) else: new_pieces.append(SCREAMING_SNAKE_CASE_ ) return new_pieces def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = '''''' __UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token __UpperCamelCase = True __UpperCamelCase = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> List[int]: '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False )-> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> List[int]: '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None )-> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __UpperCamelCase = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
328
from __future__ import annotations import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def A_ ( snake_case : int ) -> list[int]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) __UpperCamelCase = [] for num in range(len(snake_case ) ): __UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: __UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case ) == n: return list_nums return [] def A_ ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
328
1
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )-> Optional[Any]: '''simple docstring''' super().__init__() __UpperCamelCase = value_function __UpperCamelCase = unet __UpperCamelCase = scheduler __UpperCamelCase = env __UpperCamelCase = env.get_dataset() __UpperCamelCase = {} for key in self.data.keys(): try: __UpperCamelCase = self.data[key].mean() except: # noqa: E722 pass __UpperCamelCase = {} for key in self.data.keys(): try: __UpperCamelCase = self.data[key].std() except: # noqa: E722 pass __UpperCamelCase = env.observation_space.shape[0] __UpperCamelCase = env.action_space.shape[0] def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' if type(SCREAMING_SNAKE_CASE_ ) is dict: return {k: self.to_torch(SCREAMING_SNAKE_CASE_ ) for k, v in x_in.items()} elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ): return x_in.to(self.unet.device ) return torch.tensor(SCREAMING_SNAKE_CASE_ , device=self.unet.device ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' for key, val in cond.items(): __UpperCamelCase = val.clone() return x_in def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = x.shape[0] __UpperCamelCase = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model __UpperCamelCase = torch.full((batch_size,) , SCREAMING_SNAKE_CASE_ , device=self.unet.device , dtype=torch.long ) for _ in range(SCREAMING_SNAKE_CASE_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models __UpperCamelCase = self.value_function(x.permute(0 , 2 , 1 ) , SCREAMING_SNAKE_CASE_ ).sample __UpperCamelCase = torch.autograd.grad([y.sum()] , [x] )[0] __UpperCamelCase = self.scheduler._get_variance(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.exp(0.5 * posterior_variance ) __UpperCamelCase = model_std * grad __UpperCamelCase = 0 __UpperCamelCase = x.detach() __UpperCamelCase = x + scale * grad __UpperCamelCase = self.reset_xa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.action_dim ) __UpperCamelCase = self.unet(x.permute(0 , 2 , 1 ) , SCREAMING_SNAKE_CASE_ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg __UpperCamelCase = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , predict_epsilon=SCREAMING_SNAKE_CASE_ )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) __UpperCamelCase = self.reset_xa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.action_dim ) __UpperCamelCase = self.to_torch(SCREAMING_SNAKE_CASE_ ) return x, y def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.1 )-> Dict: '''simple docstring''' __UpperCamelCase = self.normalize(SCREAMING_SNAKE_CASE_ , '''observations''' ) __UpperCamelCase = obs[None].repeat(SCREAMING_SNAKE_CASE_ , axis=0 ) __UpperCamelCase = {0: self.to_torch(SCREAMING_SNAKE_CASE_ )} __UpperCamelCase = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) __UpperCamelCase = randn_tensor(SCREAMING_SNAKE_CASE_ , device=self.unet.device ) __UpperCamelCase = self.reset_xa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.action_dim ) __UpperCamelCase = self.to_torch(SCREAMING_SNAKE_CASE_ ) # run the diffusion process __UpperCamelCase , __UpperCamelCase = self.run_diffusion(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # sort output trajectories by value __UpperCamelCase = y.argsort(0 , descending=SCREAMING_SNAKE_CASE_ ).squeeze() __UpperCamelCase = x[sorted_idx] __UpperCamelCase = sorted_values[:, :, : self.action_dim] __UpperCamelCase = actions.detach().cpu().numpy() __UpperCamelCase = self.de_normalize(SCREAMING_SNAKE_CASE_ , key='''actions''' ) # select the action with the highest value if y is not None: __UpperCamelCase = 0 else: # if we didn't run value guiding, select a random action __UpperCamelCase = np.random.randint(0 , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = denorm_actions[selected_index, 0] return denorm_actions
328
from __future__ import annotations from collections.abc import Callable def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float: '''simple docstring''' __UpperCamelCase = x_start __UpperCamelCase = fnc(snake_case ) __UpperCamelCase = 0.0 for _ in range(snake_case ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCamelCase = (x_end - x_start) / steps + xa __UpperCamelCase = fnc(snake_case ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCamelCase = xa __UpperCamelCase = fxa return area if __name__ == "__main__": def A_ ( snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowercase__ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 1_0
328
1
from __future__ import annotations import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def A_ ( snake_case : int ) -> list[int]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) __UpperCamelCase = [] for num in range(len(snake_case ) ): __UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: __UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case ) == n: return list_nums return [] def A_ ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
328
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : int = logging.get_logger(__name__) lowercase__ : List[str] = ["model.decoder.embed_positions.weights"] def A_ ( snake_case : Any ) -> List[Any]: '''simple docstring''' if "emb" in name: __UpperCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: __UpperCamelCase = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: __UpperCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: __UpperCamelCase = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: __UpperCamelCase = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: __UpperCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: __UpperCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: __UpperCamelCase = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: __UpperCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: __UpperCamelCase = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: __UpperCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def A_ ( snake_case : OrderedDict , snake_case : int ) -> Tuple[Dict, Dict]: '''simple docstring''' __UpperCamelCase = list(state_dict.keys() ) __UpperCamelCase = {} for key in keys: __UpperCamelCase = state_dict.pop(snake_case ) __UpperCamelCase = rename_keys(snake_case ) if "in_proj_weight" in key: # split fused qkv proj __UpperCamelCase = val[:hidden_size, :] __UpperCamelCase = val[hidden_size : 2 * hidden_size, :] __UpperCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __UpperCamelCase = val else: __UpperCamelCase = val return state_dict, enc_dec_proj_state_dict def A_ ( snake_case : str ) -> MusicgenDecoderConfig: '''simple docstring''' if checkpoint == "small": # default config values __UpperCamelCase = 1024 __UpperCamelCase = 24 __UpperCamelCase = 16 elif checkpoint == "medium": __UpperCamelCase = 1536 __UpperCamelCase = 48 __UpperCamelCase = 24 elif checkpoint == "large": __UpperCamelCase = 2048 __UpperCamelCase = 48 __UpperCamelCase = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) __UpperCamelCase = MusicgenDecoderConfig( hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , ) return config @torch.no_grad() def A_ ( snake_case : Any , snake_case : str=None , snake_case : Any=None , snake_case : Union[str, Any]="cpu" ) -> List[Any]: '''simple docstring''' __UpperCamelCase = MusicGen.get_pretrained(snake_case , device=snake_case ) __UpperCamelCase = decoder_config_from_checkpoint(snake_case ) __UpperCamelCase = fairseq_model.lm.state_dict() __UpperCamelCase , __UpperCamelCase = rename_state_dict( snake_case , hidden_size=decoder_config.hidden_size ) __UpperCamelCase = TaEncoderModel.from_pretrained('''t5-base''' ) __UpperCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) __UpperCamelCase = MusicgenForCausalLM(snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __UpperCamelCase , __UpperCamelCase = decoder.load_state_dict(snake_case , strict=snake_case ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(snake_case ) if len(snake_case ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(snake_case ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model __UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(snake_case ) # check we can do a forward pass __UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __UpperCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __UpperCamelCase = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor __UpperCamelCase = AutoTokenizer.from_pretrained('''t5-base''' ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) __UpperCamelCase = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case ) # set the appropriate bos/pad token ids __UpperCamelCase = 2048 __UpperCamelCase = 2048 # set other default generation config params __UpperCamelCase = int(30 * audio_encoder.config.frame_rate ) __UpperCamelCase = True __UpperCamelCase = 3.0 if pytorch_dump_folder is not None: Path(snake_case ).mkdir(exist_ok=snake_case ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(snake_case ) processor.push_to_hub(snake_case ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowercase__ : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
328
1
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = CodeGenTokenizer _snake_case = CodeGenTokenizerFast _snake_case = True _snake_case = {'add_prefix_space': True} _snake_case = False def A__ ( self )-> Union[str, Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] __UpperCamelCase = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __UpperCamelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCamelCase = {'''unk_token''': '''<unk>'''} __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def A__ ( self , **SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , **SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = '''lower newer''' __UpperCamelCase = '''lower newer''' return input_text, output_text def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase = '''lower newer''' __UpperCamelCase = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCamelCase = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = tokens + [tokenizer.unk_token] __UpperCamelCase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> str: '''simple docstring''' if not self.test_rust_tokenizer: return __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = '''lower newer''' # Testing tokenization __UpperCamelCase = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids without special tokens __UpperCamelCase = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids with special tokens __UpperCamelCase = self.get_rust_tokenizer(add_prefix_space=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing the unknown token __UpperCamelCase = tokens + [rust_tokenizer.unk_token] __UpperCamelCase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def A__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Optional[Any]: '''simple docstring''' pass def A__ ( self , SCREAMING_SNAKE_CASE_=15 )-> Dict: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __UpperCamelCase = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # Simple input __UpperCamelCase = '''This is a simple input''' __UpperCamelCase = ['''This is a simple input 1''', '''This is a simple input 2'''] __UpperCamelCase = ('''This is a simple input''', '''This is a pair''') __UpperCamelCase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' , ) def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input __UpperCamelCase = '''This is a simple input''' __UpperCamelCase = ['''This is a simple input looooooooong''', '''This is a simple input'''] __UpperCamelCase = ('''This is a simple input''', '''This is a pair''') __UpperCamelCase = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] __UpperCamelCase = tokenizer.pad_token_id __UpperCamelCase = tokenizer(SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=30 , return_tensors='''np''' ) __UpperCamelCase = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncate=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ) __UpperCamelCase = tokenizer(*SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=60 , return_tensors='''np''' ) __UpperCamelCase = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncate=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = '''$$$''' __UpperCamelCase = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=SCREAMING_SNAKE_CASE_ , add_bos_token=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = '''This is a simple input''' __UpperCamelCase = ['''This is a simple input 1''', '''This is a simple input 2'''] __UpperCamelCase = tokenizer.bos_token_id __UpperCamelCase = tokenizer(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = tokenizer(SCREAMING_SNAKE_CASE_ ) self.assertEqual(out_s.input_ids[0] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __UpperCamelCase = tokenizer.decode(out_s.input_ids ) __UpperCamelCase = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def A__ ( self )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = CodeGenTokenizer.from_pretrained('''Salesforce/codegen-350M-mono''' ) __UpperCamelCase = '''\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#''' __UpperCamelCase = '''\nif len_a > len_b: result = a\nelse: result = b''' __UpperCamelCase = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = ['''^#''', re.escape('''<|endoftext|>''' ), '''^\'\'\'''', '''^"""''', '''\n\n\n'''] __UpperCamelCase = tokenizer.decode(SCREAMING_SNAKE_CASE_ , truncate_before_pattern=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' pass
328
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : List[str] = 1_6 lowercase__ : str = 3_2 def A_ ( snake_case : Accelerator , snake_case : int = 16 ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCamelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase = datasets.map( snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase = 16 elif accelerator.mixed_precision != "no": __UpperCamelCase = 8 else: __UpperCamelCase = None return tokenizer.pad( snake_case , padding='''longest''' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) __UpperCamelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : Union[str, Any] = mocked_dataloaders # noqa: F811 def A_ ( snake_case : List[str] , snake_case : List[Any] ) -> Tuple: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case ) == "1": __UpperCamelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: __UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['''lr'''] __UpperCamelCase = int(config['''num_epochs'''] ) __UpperCamelCase = int(config['''seed'''] ) __UpperCamelCase = int(config['''batch_size'''] ) set_seed(snake_case ) __UpperCamelCase , __UpperCamelCase = get_dataloaders(snake_case , snake_case ) __UpperCamelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case ) # Instantiate scheduler __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __UpperCamelCase = os.path.split(snake_case )[-1].split('''.''' )[0] accelerator.init_trackers(snake_case , snake_case ) # Now we train the model for epoch in range(snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __UpperCamelCase = 0 for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case , references=snake_case , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(snake_case ), '''epoch''': epoch, } , step=snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def A_ ( ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case , default=snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
328
1