code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _a = 'src/diffusers' # Matches is_xxx_available() _a = re.compile(R'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla _a = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') _a = '\n{0} = None\n' _a = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' _a = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def __a ( __lowerCamelCase ): UpperCAmelCase_ : int = _re_backend.findall(__lowerCamelCase ) if len(__lowerCamelCase ) == 0: return None return "_and_".join(__lowerCamelCase ) def __a ( ): with open(os.path.join(__lowerCamelCase, "__init__.py" ), "r", encoding="utf-8", newline="\n" ) as f: UpperCAmelCase_ : Optional[int] = f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Optional[int] = {} # Go through the end of the file while line_index < len(__lowerCamelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase_ : Union[str, Any] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCAmelCase_ : List[str] = [] # Until we unindent, add backend objects to the list while line_index < len(__lowerCamelCase ) and len(lines[line_index] ) > 1: UpperCAmelCase_ : Union[str, Any] = lines[line_index] UpperCAmelCase_ : Optional[Any] = _re_single_line_import.search(__lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__lowerCamelCase ) > 0: UpperCAmelCase_ : Optional[int] = objects else: line_index += 1 return backend_specific_objects def __a ( __lowerCamelCase, __lowerCamelCase ): if name.isupper(): return DUMMY_CONSTANT.format(__lowerCamelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__lowerCamelCase, __lowerCamelCase ) else: return DUMMY_CLASS.format(__lowerCamelCase, __lowerCamelCase ) def __a ( __lowerCamelCase=None ): if backend_specific_objects is None: UpperCAmelCase_ : Tuple = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase_ : str = {} for backend, objects in backend_specific_objects.items(): UpperCAmelCase_ : int = "[" + ", ".join(f"""\"{b}\"""" for b in backend.split("_and_" ) ) + "]" UpperCAmelCase_ : Dict = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__lowerCamelCase, __lowerCamelCase ) for o in objects] ) UpperCAmelCase_ : int = dummy_file return dummy_files def __a ( __lowerCamelCase=False ): UpperCAmelCase_ : Optional[Any] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase_ : Union[str, Any] = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCAmelCase_ : List[str] = os.path.join(__lowerCamelCase, "utils" ) UpperCAmelCase_ : Optional[int] = { backend: os.path.join(__lowerCamelCase, f"""dummy_{short_names.get(__lowerCamelCase, __lowerCamelCase )}_objects.py""" ) for backend in dummy_files.keys() } UpperCAmelCase_ : Any = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__lowerCamelCase ): with open(__lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f: UpperCAmelCase_ : Optional[int] = f.read() else: UpperCAmelCase_ : Any = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"""Updating diffusers.utils.dummy_{short_names.get(__lowerCamelCase, __lowerCamelCase )}_objects.py as the main """ "__init__ has new objects." ) with open(dummy_file_paths[backend], "w", encoding="utf-8", newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " f"""diffusers.utils.dummy_{short_names.get(__lowerCamelCase, __lowerCamelCase )}_objects.py. Run `make fix-copies` """ "to fix this." ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _a = parser.parse_args() check_dummies(args.fix_and_overwrite)
61
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]: '''simple docstring''' super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Sql( cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , ) # Build dataset for splits __UpperCamelCase = self.builder.as_dataset( split='''train''' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) __UpperCamelCase = dataset __UpperCamelCase = name __UpperCamelCase = con __UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCamelCase = num_proc __UpperCamelCase = to_sql_kwargs def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.to_sql_kwargs.pop('''sql''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''con''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''index''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs ) return written def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args __UpperCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __UpperCamelCase = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCamelCase = batch.to_pandas() __UpperCamelCase = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return num_rows or len(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
328
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _A = logging.get_logger(__name__) _A = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = "detr" UpperCAmelCase__ : Optional[int] = ["past_key_values"] UpperCAmelCase__ : Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , A_=True , A_=None , A_=3 , A_=100 , A_=6 , A_=2048 , A_=8 , A_=6 , A_=2048 , A_=8 , A_=0.0 , A_=0.0 , A_=True , A_="relu" , A_=256 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=1.0 , A_=False , A_="sine" , A_="resnet50" , A_=True , A_=False , A_=1 , A_=5 , A_=2 , A_=1 , A_=1 , A_=5 , A_=2 , A_=0.1 , **A_ , ) -> List[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) __UpperCamelCase =CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(A_ , A_ ): __UpperCamelCase =backbone_config.get('model_type' ) __UpperCamelCase =CONFIG_MAPPING[backbone_model_type] __UpperCamelCase =config_class.from_dict(A_ ) # set timm attributes to None __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =None, None, None __UpperCamelCase =use_timm_backbone __UpperCamelCase =backbone_config __UpperCamelCase =num_channels __UpperCamelCase =num_queries __UpperCamelCase =d_model __UpperCamelCase =encoder_ffn_dim __UpperCamelCase =encoder_layers __UpperCamelCase =encoder_attention_heads __UpperCamelCase =decoder_ffn_dim __UpperCamelCase =decoder_layers __UpperCamelCase =decoder_attention_heads __UpperCamelCase =dropout __UpperCamelCase =attention_dropout __UpperCamelCase =activation_dropout __UpperCamelCase =activation_function __UpperCamelCase =init_std __UpperCamelCase =init_xavier_std __UpperCamelCase =encoder_layerdrop __UpperCamelCase =decoder_layerdrop __UpperCamelCase =encoder_layers __UpperCamelCase =auxiliary_loss __UpperCamelCase =position_embedding_type __UpperCamelCase =backbone __UpperCamelCase =use_pretrained_backbone __UpperCamelCase =dilation # Hungarian matcher __UpperCamelCase =class_cost __UpperCamelCase =bbox_cost __UpperCamelCase =giou_cost # Loss coefficients __UpperCamelCase =mask_loss_coefficient __UpperCamelCase =dice_loss_coefficient __UpperCamelCase =bbox_loss_coefficient __UpperCamelCase =giou_loss_coefficient __UpperCamelCase =eos_coefficient super().__init__(is_encoder_decoder=A_ , **A_ ) @property def _a ( self ) -> int: return self.encoder_attention_heads @property def _a ( self ) -> int: return self.d_model @classmethod def _a ( cls , A_ , **A_ ) -> Tuple: return cls(backbone_config=A_ , **A_ ) def _a ( self ) -> Dict[str, any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCamelCase =self.backbone_config.to_dict() __UpperCamelCase =self.__class__.model_type return output class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = version.parse("1.11" ) @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def _a ( self ) -> float: return 1E-5 @property def _a ( self ) -> int: return 12
62
def A_ ( snake_case : str ) -> int: '''simple docstring''' assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , snake_case ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
328
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : int = logging.get_logger(__name__) lowerCAmelCase_ : Tuple = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='big_bird' def __init__( self : Optional[int] , __a : Dict=5_03_58 , __a : str=7_68 , __a : List[Any]=12 , __a : List[str]=12 , __a : Union[str, Any]=30_72 , __a : str="gelu_new" , __a : Dict=0.1 , __a : Union[str, Any]=0.1 , __a : Any=40_96 , __a : int=2 , __a : Tuple=0.02 , __a : List[Any]=1e-1_2 , __a : int=True , __a : List[str]=0 , __a : Tuple=1 , __a : Optional[Any]=2 , __a : Tuple=66 , __a : str="block_sparse" , __a : Tuple=True , __a : Optional[int]=False , __a : str=64 , __a : Tuple=3 , __a : Any=None , **__a : Dict , ): super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , sep_token_id=__a , **__a , ) _a = vocab_size _a = max_position_embeddings _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = type_vocab_size _a = layer_norm_eps _a = use_cache _a = rescale_embeddings _a = attention_type _a = use_bias _a = block_size _a = num_random_blocks _a = classifier_dropout class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" @property def UpperCamelCase__ ( self : Optional[int] ): if self.task == "multiple-choice": _a = {0: "batch", 1: "choice", 2: "sequence"} else: _a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
63
def A_ ( snake_case : int ) -> None: '''simple docstring''' __UpperCamelCase = generate_pascal_triangle(snake_case ) for row_idx in range(snake_case ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [] for current_row_idx in range(snake_case ): __UpperCamelCase = populate_current_row(snake_case , snake_case ) triangle.append(snake_case ) return triangle def A_ ( snake_case : list[list[int]] , snake_case : int ) -> list[int]: '''simple docstring''' __UpperCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase , __UpperCamelCase = 1, 1 for current_col_idx in range(1 , snake_case ): calculate_current_element( snake_case , snake_case , snake_case , snake_case ) return current_row def A_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , ) -> None: '''simple docstring''' __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase = above_to_left_elt + above_to_right_elt def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [[1]] for row_index in range(1 , snake_case ): __UpperCamelCase = [0] + result[-1] + [0] __UpperCamelCase = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase = sum(divmod(snake_case , 2 ) ) __UpperCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase = row_first_half + row_second_half result.append(snake_case ) return result def A_ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None: __UpperCamelCase = f"{func.__name__}({value})" __UpperCamelCase = timeit(f"__main__.{call}" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case , snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
0
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging A_ = logging.get_logger(__name__) class lowercase( __a ): '''simple docstring''' def __init__( self: Optional[int], a_: int=None, **a_: Union[str, Any] ): '''simple docstring''' warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""", a_, ) super().__init__(args=a_, **a_ )
64
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase__ : Any = parser.parse_args() lowercase__ : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase__ : List[str] = CLIPImageProcessor() lowercase__ : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase__ : Optional[Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
328
0
from __future__ import annotations def lowerCAmelCase_ ( __A ) -> list[int]: '''simple docstring''' return [ord(__A ) - 96 for elem in plain] def lowerCAmelCase_ ( __A ) -> str: '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def lowerCAmelCase_ ( ) -> None: '''simple docstring''' UpperCAmelCase__ = encode(input("-> " ).strip().lower() ) print("Encoded: ", __A ) print("Decoded:", decode(__A ) ) if __name__ == "__main__": main()
65
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowercase__ : Union[str, Any] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" lowercase__ : Optional[Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" lowercase__ : Any = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" lowercase__ : Optional[int] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" lowercase__ : Optional[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[1, 10, 100] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3.0 )-> Union[str, Any]: '''simple docstring''' if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE_ ) as executor: __UpperCamelCase = [] __UpperCamelCase = Counter() __UpperCamelCase = 0 __UpperCamelCase = defaultdict(SCREAMING_SNAKE_CASE_ ) for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ): for candidate in candidates: __UpperCamelCase = candidate + '''\n''' + test_case __UpperCamelCase = (test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase = executor.submit(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) futures.append(SCREAMING_SNAKE_CASE_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) __UpperCamelCase , __UpperCamelCase = [], [] for result in results.values(): result.sort() __UpperCamelCase = [r[1]['''passed'''] for r in result] total.append(len(SCREAMING_SNAKE_CASE_ ) ) correct.append(sum(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = k __UpperCamelCase = {F"pass@{k}": estimate_pass_at_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A_ ( snake_case : Tuple , snake_case : Union[str, Any] , snake_case : List[Any] ) -> Optional[Any]: '''simple docstring''' def estimator(snake_case : int , snake_case : int , snake_case : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(snake_case , snake_case ): __UpperCamelCase = itertools.repeat(snake_case , len(snake_case ) ) else: assert len(snake_case ) == len(snake_case ) __UpperCamelCase = iter(snake_case ) return np.array([estimator(int(snake_case ) , int(snake_case ) , snake_case ) for n, c in zip(snake_case , snake_case )] )
328
0
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
66
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__) lowercase__ : Optional[Any] = ["names", "prefix"] lowercase__ : List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowercase__ : Optional[Any] = ["encoding_errors", "on_bad_lines"] lowercase__ : List[str] = ["date_format"] @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): """simple docstring""" _snake_case = "," _snake_case = None _snake_case = "infer" _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = False _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = False _snake_case = True _snake_case = None _snake_case = "." _snake_case = None _snake_case = '"' _snake_case = 0 _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = 0 _snake_case = True _snake_case = False _snake_case = None _snake_case = 10000 _snake_case = None _snake_case = "strict" _snake_case = "error" _snake_case = None def A__ ( self )-> Any: '''simple docstring''' if self.delimiter is not None: __UpperCamelCase = self.delimiter if self.column_names is not None: __UpperCamelCase = self.column_names @property def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): """simple docstring""" _snake_case = CsvConfig def A__ ( self )-> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) __UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ): __UpperCamelCase = data_files if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) ) return splits def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.Table: '''simple docstring''' if self.config.features is not None: __UpperCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE_ ) for feature in self.config.features.values() ): # cheaper cast __UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __UpperCamelCase = table_cast(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return pa_table def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __UpperCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ): __UpperCamelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , iterator=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = pa.Table.from_pandas(SCREAMING_SNAKE_CASE_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}" ) raise
328
0
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> list[str]: if nth_term == "": return [""] __lowerCamelCase = int(UpperCamelCase__ ) __lowerCamelCase = int(UpperCamelCase__ ) __lowerCamelCase = [] for temp in range(int(UpperCamelCase__ ) ): series.append(f"""1 / {pow(temp + 1 , int(UpperCamelCase__ ) )}""" if series else '''1''' ) return series if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase =int(input("Enter the last number (nth term) of the P-Series")) __UpperCAmelCase =int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
67
from __future__ import annotations import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def A_ ( snake_case : int ) -> list[int]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) __UpperCamelCase = [] for num in range(len(snake_case ) ): __UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: __UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case ) == n: return list_nums return [] def A_ ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
328
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'altclip_text_model' def __init__( self , lowercase=250002 , lowercase=1024 , lowercase=24 , lowercase=16 , lowercase=4096 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=514 , lowercase=1 , lowercase=0.02 , lowercase=0.02 , lowercase=1e-05 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase="absolute" , lowercase=True , lowercase=768 , **lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = initializer_factor A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = project_dim class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'altclip_vision_model' def __init__( self , lowercase=768 , lowercase=3072 , lowercase=512 , lowercase=12 , lowercase=12 , lowercase=3 , lowercase=224 , lowercase=32 , lowercase="quick_gelu" , lowercase=1e-5 , lowercase=0.0 , lowercase=0.02 , lowercase=1.0 , **lowercase , ) -> Tuple: '''simple docstring''' super().__init__(**lowercase ) A__ = hidden_size A__ = intermediate_size A__ = projection_dim A__ = num_hidden_layers A__ = num_attention_heads A__ = num_channels A__ = patch_size A__ = image_size A__ = initializer_range A__ = initializer_factor A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act @classmethod def UpperCamelCase ( cls , lowercase , **lowercase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowercase ) A__ , A__ = cls.get_config_dict(lowercase , **lowercase ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": A__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(lowercase , **lowercase ) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'altclip' __lowerCamelCase = True def __init__( self , lowercase=None , lowercase=None , lowercase=768 , lowercase=2.6592 , **lowercase ) -> List[str]: '''simple docstring''' A__ = kwargs.pop("text_config_dict" , lowercase ) A__ = kwargs.pop("vision_config_dict" , lowercase ) super().__init__(**lowercase ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: A__ = {} # This is the complete result when using `text_config_dict`. A__ = AltCLIPTextConfig(**lowercase ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: A__ = ( F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' F'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: A__ = ( F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' F'value `text_config["{key}"]` will be overriden.' ) logger.warning(lowercase ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: A__ = {} # This is the complete result when using `vision_config_dict`. A__ = AltCLIPVisionConfig(**lowercase ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: A__ = { str(lowercase ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: A__ = ( F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' F'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: A__ = ( F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' F'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(lowercase ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: A__ = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: A__ = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) A__ = AltCLIPTextConfig(**lowercase ) A__ = AltCLIPVisionConfig(**lowercase ) A__ = projection_dim A__ = logit_scale_init_value A__ = 1.0 @classmethod def UpperCamelCase ( cls , lowercase , lowercase , **lowercase ) -> Union[str, Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = copy.deepcopy(self.__dict__ ) A__ = self.text_config.to_dict() A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
68
from __future__ import annotations from collections.abc import Callable def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float: '''simple docstring''' __UpperCamelCase = x_start __UpperCamelCase = fnc(snake_case ) __UpperCamelCase = 0.0 for _ in range(snake_case ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCamelCase = (x_end - x_start) / steps + xa __UpperCamelCase = fnc(snake_case ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCamelCase = xa __UpperCamelCase = fxa return area if __name__ == "__main__": def A_ ( snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowercase__ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 1_0
328
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase : def __init__( self, lowerCAmelCase__, lowerCAmelCase__=13, lowerCAmelCase__=7, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=False, lowerCAmelCase__=True, lowerCAmelCase__=99, lowerCAmelCase__=32, lowerCAmelCase__=5, lowerCAmelCase__=4, lowerCAmelCase__=37, lowerCAmelCase__="gelu", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=512, lowerCAmelCase__=16, lowerCAmelCase__=2, lowerCAmelCase__=0.02, lowerCAmelCase__=3, lowerCAmelCase__=4, lowerCAmelCase__=None, ) -> Optional[int]: snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def a_ ( self) -> str: snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length]) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size], self.type_sequence_label_size) snake_case_ = ids_tensor([self.batch_size, self.seq_length], self.num_labels) snake_case_ = ids_tensor([self.batch_size], self.num_choices) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self) -> List[Any]: return OpenLlamaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCAmelCase__, initializer_range=self.initializer_range, use_stable_embedding=lowerCAmelCase__, ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = OpenLlamaModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = model(lowerCAmelCase__, attention_mask=lowerCAmelCase__) snake_case_ = model(lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> List[str]: snake_case_ = True snake_case_ = OpenLlamaModel(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = model( lowerCAmelCase__, attention_mask=lowerCAmelCase__, encoder_hidden_states=lowerCAmelCase__, encoder_attention_mask=lowerCAmelCase__, ) snake_case_ = model( lowerCAmelCase__, attention_mask=lowerCAmelCase__, encoder_hidden_states=lowerCAmelCase__, ) snake_case_ = model(lowerCAmelCase__, attention_mask=lowerCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> Tuple: snake_case_ = OpenLlamaForCausalLM(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = model(lowerCAmelCase__, attention_mask=lowerCAmelCase__, labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, ) -> Any: snake_case_ = True snake_case_ = True snake_case_ = OpenLlamaForCausalLM(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() # first forward pass snake_case_ = model( lowerCAmelCase__, attention_mask=lowerCAmelCase__, encoder_hidden_states=lowerCAmelCase__, encoder_attention_mask=lowerCAmelCase__, use_cache=lowerCAmelCase__, ) snake_case_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3), config.vocab_size) snake_case_ = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens], dim=-1) snake_case_ = torch.cat([input_mask, next_mask], dim=-1) snake_case_ = model( lowerCAmelCase__, attention_mask=lowerCAmelCase__, encoder_hidden_states=lowerCAmelCase__, encoder_attention_mask=lowerCAmelCase__, output_hidden_states=lowerCAmelCase__, )['hidden_states'][0] snake_case_ = model( lowerCAmelCase__, attention_mask=lowerCAmelCase__, encoder_hidden_states=lowerCAmelCase__, encoder_attention_mask=lowerCAmelCase__, past_key_values=lowerCAmelCase__, output_hidden_states=lowerCAmelCase__, )['hidden_states'][0] # select random slice snake_case_ = ids_tensor((1,), output_from_past.shape[-1]).item() snake_case_ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__, lowerCAmelCase__, atol=1e-3)) def a_ ( self) -> str: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = (OpenLlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def a_ ( self) -> Union[str, Any]: snake_case_ = OpenLlamaModelTester(self) snake_case_ = ConfigTester(self, config_class=lowerCAmelCase__, hidden_size=37) def a_ ( self) -> Optional[Any]: self.config_tester.run_common_tests() def a_ ( self) -> Tuple: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def a_ ( self) -> Any: snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*lowerCAmelCase__) def a_ ( self) -> Tuple: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = input_dict['input_ids'] snake_case_ = input_ids.ne(1).to(lowerCAmelCase__) snake_case_ = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) snake_case_ = OpenLlamaForSequenceClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = model(lowerCAmelCase__, attention_mask=lowerCAmelCase__, labels=lowerCAmelCase__) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def a_ ( self) -> Optional[int]: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = 'single_label_classification' snake_case_ = input_dict['input_ids'] snake_case_ = input_ids.ne(1).to(lowerCAmelCase__) snake_case_ = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) snake_case_ = OpenLlamaForSequenceClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = model(lowerCAmelCase__, attention_mask=lowerCAmelCase__, labels=lowerCAmelCase__) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) def a_ ( self) -> Optional[int]: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = 'multi_label_classification' snake_case_ = input_dict['input_ids'] snake_case_ = input_ids.ne(1).to(lowerCAmelCase__) snake_case_ = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size).to(torch.float) snake_case_ = OpenLlamaForSequenceClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = model(lowerCAmelCase__, attention_mask=lowerCAmelCase__, labels=lowerCAmelCase__) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test') def a_ ( self) -> List[Any]: pass @parameterized.expand([('linear',), ('dynamic',)]) def a_ ( self, lowerCAmelCase__) -> int: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = ids_tensor([1, 10], config.vocab_size) snake_case_ = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights snake_case_ = OpenLlamaModel(lowerCAmelCase__) original_model.to(lowerCAmelCase__) original_model.eval() snake_case_ = original_model(lowerCAmelCase__).last_hidden_state snake_case_ = original_model(lowerCAmelCase__).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights snake_case_ = {'type': scaling_type, 'factor': 10.0} snake_case_ = OpenLlamaModel(lowerCAmelCase__) scaled_model.to(lowerCAmelCase__) scaled_model.eval() snake_case_ = scaled_model(lowerCAmelCase__).last_hidden_state snake_case_ = scaled_model(lowerCAmelCase__).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase__, lowerCAmelCase__, atol=1e-5)) else: self.assertFalse(torch.allclose(lowerCAmelCase__, lowerCAmelCase__, atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase__, lowerCAmelCase__, atol=1e-5))
69
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : int = logging.get_logger(__name__) lowercase__ : List[str] = ["model.decoder.embed_positions.weights"] def A_ ( snake_case : Any ) -> List[Any]: '''simple docstring''' if "emb" in name: __UpperCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: __UpperCamelCase = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: __UpperCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: __UpperCamelCase = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: __UpperCamelCase = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: __UpperCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: __UpperCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: __UpperCamelCase = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: __UpperCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: __UpperCamelCase = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: __UpperCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def A_ ( snake_case : OrderedDict , snake_case : int ) -> Tuple[Dict, Dict]: '''simple docstring''' __UpperCamelCase = list(state_dict.keys() ) __UpperCamelCase = {} for key in keys: __UpperCamelCase = state_dict.pop(snake_case ) __UpperCamelCase = rename_keys(snake_case ) if "in_proj_weight" in key: # split fused qkv proj __UpperCamelCase = val[:hidden_size, :] __UpperCamelCase = val[hidden_size : 2 * hidden_size, :] __UpperCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __UpperCamelCase = val else: __UpperCamelCase = val return state_dict, enc_dec_proj_state_dict def A_ ( snake_case : str ) -> MusicgenDecoderConfig: '''simple docstring''' if checkpoint == "small": # default config values __UpperCamelCase = 1024 __UpperCamelCase = 24 __UpperCamelCase = 16 elif checkpoint == "medium": __UpperCamelCase = 1536 __UpperCamelCase = 48 __UpperCamelCase = 24 elif checkpoint == "large": __UpperCamelCase = 2048 __UpperCamelCase = 48 __UpperCamelCase = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) __UpperCamelCase = MusicgenDecoderConfig( hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , ) return config @torch.no_grad() def A_ ( snake_case : Any , snake_case : str=None , snake_case : Any=None , snake_case : Union[str, Any]="cpu" ) -> List[Any]: '''simple docstring''' __UpperCamelCase = MusicGen.get_pretrained(snake_case , device=snake_case ) __UpperCamelCase = decoder_config_from_checkpoint(snake_case ) __UpperCamelCase = fairseq_model.lm.state_dict() __UpperCamelCase , __UpperCamelCase = rename_state_dict( snake_case , hidden_size=decoder_config.hidden_size ) __UpperCamelCase = TaEncoderModel.from_pretrained('''t5-base''' ) __UpperCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) __UpperCamelCase = MusicgenForCausalLM(snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __UpperCamelCase , __UpperCamelCase = decoder.load_state_dict(snake_case , strict=snake_case ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(snake_case ) if len(snake_case ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(snake_case ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model __UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(snake_case ) # check we can do a forward pass __UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __UpperCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __UpperCamelCase = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor __UpperCamelCase = AutoTokenizer.from_pretrained('''t5-base''' ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) __UpperCamelCase = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case ) # set the appropriate bos/pad token ids __UpperCamelCase = 2048 __UpperCamelCase = 2048 # set other default generation config params __UpperCamelCase = int(30 * audio_encoder.config.frame_rate ) __UpperCamelCase = True __UpperCamelCase = 3.0 if pytorch_dump_folder is not None: Path(snake_case ).mkdir(exist_ok=snake_case ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(snake_case ) processor.push_to_hub(snake_case ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowercase__ : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
328
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A__ : str ={ '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] =[ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int =[ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys A__ : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : List[str] = 1_6 lowercase__ : str = 3_2 def A_ ( snake_case : Accelerator , snake_case : int = 16 ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCamelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase = datasets.map( snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase = 16 elif accelerator.mixed_precision != "no": __UpperCamelCase = 8 else: __UpperCamelCase = None return tokenizer.pad( snake_case , padding='''longest''' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) __UpperCamelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : Union[str, Any] = mocked_dataloaders # noqa: F811 def A_ ( snake_case : List[str] , snake_case : List[Any] ) -> Tuple: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case ) == "1": __UpperCamelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: __UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['''lr'''] __UpperCamelCase = int(config['''num_epochs'''] ) __UpperCamelCase = int(config['''seed'''] ) __UpperCamelCase = int(config['''batch_size'''] ) set_seed(snake_case ) __UpperCamelCase , __UpperCamelCase = get_dataloaders(snake_case , snake_case ) __UpperCamelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case ) # Instantiate scheduler __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __UpperCamelCase = os.path.split(snake_case )[-1].split('''.''' )[0] accelerator.init_trackers(snake_case , snake_case ) # Now we train the model for epoch in range(snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __UpperCamelCase = 0 for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case , references=snake_case , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(snake_case ), '''epoch''': epoch, } , step=snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def A_ ( ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case , default=snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
328
0
import os def A ( ) -> List[Any]: with open(os.path.dirname(a_ ) + '/grid.txt' ) as f: __UpperCamelCase : str =[] # noqa: E741 for _ in range(20 ): l.append([int(a_ ) for x in f.readline().split()] ) __UpperCamelCase : List[Any] =0 # right for i in range(20 ): for j in range(17 ): __UpperCamelCase : Tuple =l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: __UpperCamelCase : Dict =temp # down for i in range(17 ): for j in range(20 ): __UpperCamelCase : Optional[int] =l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: __UpperCamelCase : int =temp # diagonal 1 for i in range(17 ): for j in range(17 ): __UpperCamelCase : Tuple =l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: __UpperCamelCase : int =temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): __UpperCamelCase : Optional[Any] =l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: __UpperCamelCase : Union[str, Any] =temp return maximum if __name__ == "__main__": print(solution())
71
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ : str = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'whisper' _snake_case = ['past_key_values'] _snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE_=51865 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=50257 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1500 , SCREAMING_SNAKE_CASE_=448 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[220, 50256] , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=7 , **SCREAMING_SNAKE_CASE_ , )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = num_mel_bins __UpperCamelCase = d_model __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = use_cache __UpperCamelCase = encoder_layers __UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase = max_source_positions __UpperCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __UpperCamelCase = classifier_proj_size __UpperCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length __UpperCamelCase = mask_feature_min_masks __UpperCamelCase = median_filter_width super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def A__ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' __UpperCamelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: __UpperCamelCase = {0: '''batch'''} else: __UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' ) return common_inputs def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 22050 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 220 , )-> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase = OrderedDict() __UpperCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = encoder_inputs['''input_features'''].shape[2] __UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __UpperCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = encoder_inputs.pop('''input_features''' ) __UpperCamelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: __UpperCamelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def A__ ( self )-> float: '''simple docstring''' return 1E-3
328
0
"""simple docstring""" def snake_case_ ( A_ : int, A_ : int ): '''simple docstring''' _lowerCamelCase : Tuple = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): _lowerCamelCase : List[Any] = n - k # Calculate C(n,k) for i in range(A_ ): result *= n - i result //= i + 1 return result def snake_case_ ( A_ : int ): '''simple docstring''' return binomial_coefficient(2 * node_count, A_ ) // (node_count + 1) def snake_case_ ( A_ : int ): '''simple docstring''' if n < 0: raise ValueError('''factorial() not defined for negative values''' ) _lowerCamelCase : Dict = 1 for i in range(1, n + 1 ): result *= i return result def snake_case_ ( A_ : int ): '''simple docstring''' return catalan_number(A_ ) * factorial(A_ ) if __name__ == "__main__": lowerCAmelCase__ = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ F"""binary trees and {catalan_number(node_count)} binary search trees.""" )
72
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : Tuple = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'xlnet' _snake_case = ['mems'] _snake_case = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , SCREAMING_SNAKE_CASE_=32000 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="bi" , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=-1 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="tanh" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = n_layer __UpperCamelCase = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) __UpperCamelCase = d_model // n_head __UpperCamelCase = ff_activation __UpperCamelCase = d_inner __UpperCamelCase = untie_r __UpperCamelCase = attn_type __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = dropout __UpperCamelCase = mem_len __UpperCamelCase = reuse_len __UpperCamelCase = bi_data __UpperCamelCase = clamp_len __UpperCamelCase = same_length __UpperCamelCase = summary_type __UpperCamelCase = summary_use_proj __UpperCamelCase = summary_activation __UpperCamelCase = summary_last_dropout __UpperCamelCase = start_n_top __UpperCamelCase = end_n_top __UpperCamelCase = bos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = kwargs['''use_cache'''] __UpperCamelCase = use_mems_eval __UpperCamelCase = use_mems_train super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> Optional[Any]: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
328
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a =logging.get_logger(__name__) a ={ """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[Any] = '''dpr''' def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : Tuple=3_0_5_2_2 ,SCREAMING_SNAKE_CASE__ : Any=7_6_8 ,SCREAMING_SNAKE_CASE__ : str=1_2 ,SCREAMING_SNAKE_CASE__ : Tuple=1_2 ,SCREAMING_SNAKE_CASE__ : Any=3_0_7_2 ,SCREAMING_SNAKE_CASE__ : Dict="gelu" ,SCREAMING_SNAKE_CASE__ : Tuple=0.1 ,SCREAMING_SNAKE_CASE__ : str=0.1 ,SCREAMING_SNAKE_CASE__ : int=5_1_2 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 ,SCREAMING_SNAKE_CASE__ : Dict=1E-12 ,SCREAMING_SNAKE_CASE__ : Dict=0 ,SCREAMING_SNAKE_CASE__ : List[Any]="absolute" ,SCREAMING_SNAKE_CASE__ : int = 0 ,**SCREAMING_SNAKE_CASE__ : Dict ,): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = vocab_size __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : int = num_hidden_layers __lowerCamelCase : Any = num_attention_heads __lowerCamelCase : Dict = hidden_act __lowerCamelCase : str = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : Tuple = max_position_embeddings __lowerCamelCase : int = type_vocab_size __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : List[str] = layer_norm_eps __lowerCamelCase : Any = projection_dim __lowerCamelCase : Union[str, Any] = position_embedding_type
73
from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None def __repr__( self )-> str: '''simple docstring''' return F"Node({self.data})" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = None def __iter__( self )-> Any: '''simple docstring''' __UpperCamelCase = self.head while node: yield node.data __UpperCamelCase = node.next def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self )-> str: '''simple docstring''' return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] ) def __getitem__( self , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) __UpperCamelCase = self.head for _ in range(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = current.next __UpperCamelCase = data def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' self.insert_nth(0 , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) __UpperCamelCase = Node(SCREAMING_SNAKE_CASE_ ) if self.head is None: __UpperCamelCase = new_node elif index == 0: __UpperCamelCase = self.head # link new_node to head __UpperCamelCase = new_node else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = new_node def A__ ( self )-> None: # print every node data '''simple docstring''' print(self ) def A__ ( self )-> Any: '''simple docstring''' return self.delete_nth(0 ) def A__ ( self )-> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def A__ ( self , SCREAMING_SNAKE_CASE_ = 0 )-> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) __UpperCamelCase = self.head # default first node if index == 0: __UpperCamelCase = self.head.next else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = temp.next.next return delete_node.data def A__ ( self )-> bool: '''simple docstring''' return self.head is None def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = self.head while current: # Store the current node's next node. __UpperCamelCase = current.next # Make the current node's next point backwards __UpperCamelCase = prev # Make the previous node be the current node __UpperCamelCase = current # Make the current node the next node (to progress iteration) __UpperCamelCase = next_node # Return prev in order to put the head at the end __UpperCamelCase = prev def A_ ( ) -> None: '''simple docstring''' __UpperCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(snake_case ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(snake_case ) == i linked_list.insert_nth(snake_case , i + 1 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(snake_case ) == 9 assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(snake_case ) == "->".join(str(snake_case ) for i in range(-8 , 1 ) ) def A_ ( ) -> None: '''simple docstring''' __UpperCamelCase = [ -9, 100, Node(77345112 ), '''dlrow olleH''', 7, 5555, 0, -192.55555, '''Hello, world!''', 77.9, Node(10 ), None, None, 12.20, ] __UpperCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(snake_case ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCamelCase = linked_list.delete_head() assert result == -9 assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(snake_case ) assert ( str(snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(snake_case ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def A_ ( ) -> Any: '''simple docstring''' from doctest import testmod testmod() __UpperCamelCase = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(snake_case ) print('''\nReading/changing Node data using indexing:''' ) print(f"Element at Position 1: {linked_list[1]}" ) __UpperCamelCase = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(snake_case ) print(f"length of linked_list is : {len(snake_case )}" ) if __name__ == "__main__": main()
328
0
"""simple docstring""" from math import pow, sqrt def _snake_case ( *snake_case__ : float ): A = len(snake_case__ ) > 0 and all(value > 0.0 for value in values ) return result def _snake_case ( snake_case__ : float , snake_case__ : float ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(snake_case__ , snake_case__ ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def _snake_case ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(snake_case__ , snake_case__ , snake_case__ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
74
import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num def A_ ( snake_case : int ) -> bool: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = n while left <= right: __UpperCamelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
328
0
'''simple docstring''' import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a_ ( __snake_case : Dataset , __snake_case : Dict[str, str] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =args.log_outputs lowerCamelCase_ ='''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowerCamelCase_ =load_metric('''wer''' ) lowerCamelCase_ =load_metric('''cer''' ) # compute metrics lowerCamelCase_ =wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowerCamelCase_ =cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowerCamelCase_ =F'''WER: {wer_result}\nCER: {cer_result}''' print(__snake_case ) with open(F'''{dataset_id}_eval_results.txt''' , '''w''' ) as f: f.write(__snake_case ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowerCamelCase_ =F'''log_{dataset_id}_predictions.txt''' lowerCamelCase_ =F'''log_{dataset_id}_targets.txt''' with open(__snake_case , '''w''' ) as p, open(__snake_case , '''w''' ) as t: # mapping function to write output def write_to_file(__snake_case : List[Any] , __snake_case : Optional[int] ): p.write(F'''{i}''' + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F'''{i}''' + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(__snake_case , with_indices=__snake_case ) def a_ ( __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ ='''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowerCamelCase_ =re.sub(__snake_case , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowerCamelCase_ =['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowerCamelCase_ =''' '''.join(text.split(__snake_case ) ) return text def a_ ( __snake_case : Any ) -> List[str]: """simple docstring""" # load dataset lowerCamelCase_ =load_dataset(args.dataset , args.config , split=args.split , use_auth_token=__snake_case ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowerCamelCase_ =AutoFeatureExtractor.from_pretrained(args.model_id ) lowerCamelCase_ =feature_extractor.sampling_rate # resample audio lowerCamelCase_ =dataset.cast_column('''audio''' , Audio(sampling_rate=__snake_case ) ) # load eval pipeline if args.device is None: lowerCamelCase_ =0 if torch.cuda.is_available() else -1 lowerCamelCase_ =pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(__snake_case : List[str] ): lowerCamelCase_ =asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowerCamelCase_ =prediction['''text'''] lowerCamelCase_ =normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowerCamelCase_ =dataset.map(__snake_case , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(__snake_case , __snake_case ) if __name__ == "__main__": a_ : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) a_ : Optional[Any] = parser.parse_args() main(args)
75
def A_ ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowercase__ : List[str] = generate_large_matrix() lowercase__ : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A_ ( snake_case : list[list[int]] ) -> None: '''simple docstring''' assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid ) assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) ) def A_ ( snake_case : list[int] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCamelCase = (left + right) // 2 __UpperCamelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCamelCase = mid + 1 else: __UpperCamelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(grid[0] ) for i in range(len(snake_case ) ): __UpperCamelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case ) * len(grid[0] )) - total def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 for row in grid: for i, number in enumerate(snake_case ): if number < 0: total += len(snake_case ) - i break return total def A_ ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCamelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
0
import collections import os import re from pathlib import Path a_ = 'src/transformers' # Matches is_xxx_available() a_ = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} a_ = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] a_ = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available a_ = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") a_ = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] a_ = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", a_ = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], a_ = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo a_ = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: a_ = re.compile(r'^\s*try:') # Catches a line with else: a_ = re.compile(r'^\s*else:') def lowerCamelCase__ ( _a): if _re_test_backend.search(_a) is None: return None SCREAMING_SNAKE_CASE : int = [b[0] for b in _re_backend.findall(_a)] backends.sort() return "_and_".join(_a) def lowerCamelCase__ ( _a): with open(_a , "r" , encoding="utf-8" , newline="\n") as f: SCREAMING_SNAKE_CASE : List[str] = f.readlines() SCREAMING_SNAKE_CASE : Any = 0 while line_index < len(_a) and not lines[line_index].startswith("_import_structure = {"): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_a): return None # First grab the objects without a specific backend in _import_structure SCREAMING_SNAKE_CASE : Dict = [] while not lines[line_index].startswith("if TYPE_CHECKING") and find_backend(lines[line_index]) is None: SCREAMING_SNAKE_CASE : Tuple = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_a): SCREAMING_SNAKE_CASE : List[Any] = _re_one_line_import_struct.search(_a).groups()[0] SCREAMING_SNAKE_CASE : Any = re.findall(r"\[([^\]]+)\]" , _a) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", ")]) line_index += 1 continue SCREAMING_SNAKE_CASE : Tuple = _re_import_struct_key_value.search(_a) if single_line_import_search is not None: SCREAMING_SNAKE_CASE : int = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", ") if len(_a) > 0] objects.extend(_a) elif line.startswith(" " * 8 + "\""): objects.append(line[9:-3]) line_index += 1 SCREAMING_SNAKE_CASE : Any = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING"): # If the line is an if not is_backend_available, we grab all objects associated. SCREAMING_SNAKE_CASE : Any = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: SCREAMING_SNAKE_CASE : str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(" " * 4): SCREAMING_SNAKE_CASE : Union[str, Any] = lines[line_index] if _re_import_struct_add_one.search(_a) is not None: objects.append(_re_import_struct_add_one.search(_a).groups()[0]) elif _re_import_struct_add_many.search(_a) is not None: SCREAMING_SNAKE_CASE : Any = _re_import_struct_add_many.search(_a).groups()[0].split(", ") SCREAMING_SNAKE_CASE : Optional[int] = [obj[1:-1] for obj in imports if len(_a) > 0] objects.extend(_a) elif _re_between_brackets.search(_a) is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = _re_between_brackets.search(_a).groups()[0].split(", ") SCREAMING_SNAKE_CASE : int = [obj[1:-1] for obj in imports if len(_a) > 0] objects.extend(_a) elif _re_quote_object.search(_a) is not None: objects.append(_re_quote_object.search(_a).groups()[0]) elif line.startswith(" " * 8 + "\""): objects.append(line[9:-3]) elif line.startswith(" " * 12 + "\""): objects.append(line[13:-3]) line_index += 1 SCREAMING_SNAKE_CASE : Any = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend SCREAMING_SNAKE_CASE : Any = [] while ( line_index < len(_a) and find_backend(lines[line_index]) is None and not lines[line_index].startswith("else") ): SCREAMING_SNAKE_CASE : Union[str, Any] = lines[line_index] SCREAMING_SNAKE_CASE : int = _re_import.search(_a) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", ")) elif line.startswith(" " * 8): objects.append(line[8:-2]) line_index += 1 SCREAMING_SNAKE_CASE : str = {"none": objects} # Let's continue with backend-specific objects while line_index < len(_a): # If the line is an if is_backend_available, we grab all objects associated. SCREAMING_SNAKE_CASE : int = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: SCREAMING_SNAKE_CASE : Union[str, Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE : List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(" " * 8): SCREAMING_SNAKE_CASE : Optional[Any] = lines[line_index] SCREAMING_SNAKE_CASE : Dict = _re_import.search(_a) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", ")) elif line.startswith(" " * 12): objects.append(line[12:-2]) line_index += 1 SCREAMING_SNAKE_CASE : List[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowerCamelCase__ ( _a , _a): def find_duplicates(_a): return [k for k, v in collections.Counter(_a).items() if v > 1] if list(import_dict_objects.keys()) != list(type_hint_objects.keys()): return ["Both sides of the init do not have the same backends!"] SCREAMING_SNAKE_CASE : Dict = [] for key in import_dict_objects.keys(): SCREAMING_SNAKE_CASE : List[Any] = find_duplicates(import_dict_objects[key]) if duplicate_imports: errors.append(f"Duplicate _import_structure definitions for: {duplicate_imports}") SCREAMING_SNAKE_CASE : Dict = find_duplicates(type_hint_objects[key]) if duplicate_type_hints: errors.append(f"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}") if sorted(set(import_dict_objects[key])) != sorted(set(type_hint_objects[key])): SCREAMING_SNAKE_CASE : Dict = "base imports" if key == "none" else f"{key} backend" errors.append(f"Differences for {name}:") for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f" {a} in TYPE_HINT but not in _import_structure.") for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f" {a} in _import_structure but not in TYPE_HINT.") return errors def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : List[Any] = [] for root, _, files in os.walk(_a): if "__init__.py" in files: SCREAMING_SNAKE_CASE : List[Any] = os.path.join(_a , "__init__.py") SCREAMING_SNAKE_CASE : List[str] = parse_init(_a) if objects is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = analyze_results(*_a) if len(_a) > 0: SCREAMING_SNAKE_CASE : List[str] = f"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("\n".join(_a)) if len(_a) > 0: raise ValueError("\n\n".join(_a)) def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Dict = [] for path, directories, files in os.walk(_a): for folder in directories: # Ignore private modules if folder.startswith("_"): directories.remove(_a) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_a) / folder).glob("*.py"))) == 0: continue SCREAMING_SNAKE_CASE : Union[str, Any] = str((Path(_a) / folder).relative_to(_a)) SCREAMING_SNAKE_CASE : int = short_path.replace(os.path.sep , ".") submodules.append(_a) for fname in files: if fname == "__init__.py": continue SCREAMING_SNAKE_CASE : Dict = str((Path(_a) / fname).relative_to(_a)) SCREAMING_SNAKE_CASE : int = short_path.replace(".py" , "").replace(os.path.sep , ".") if len(submodule.split(".")) == 1: submodules.append(_a) return submodules a_ = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def lowerCamelCase__ ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import SCREAMING_SNAKE_CASE : str = direct_transformers_import(_a) SCREAMING_SNAKE_CASE : Optional[Any] = set(transformers._import_structure.keys()) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_a , "__init__.py") , "r") as f: SCREAMING_SNAKE_CASE : Optional[int] = f.read() import_structure_keys.update(set(re.findall(r"import_structure\[\"([^\"]*)\"\]" , _a))) SCREAMING_SNAKE_CASE : str = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_a) > 0: SCREAMING_SNAKE_CASE : int = "\n".join(f"- {module}" for module in module_not_registered) raise ValueError( "The following submodules are not properly registed in the main init of Transformers:\n" f"{list_of_modules}\n" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.") if __name__ == "__main__": check_all_inits() check_submodules()
76
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = size if size is not None else {'''shortest_edge''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = crop_pct __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: __UpperCamelCase = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCamelCase = int(size['''height'''] / crop_pct ) else: __UpperCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) else: if "shortest_edge" in size: __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) elif "height" in size and "width" in size: __UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> str: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , )-> PIL.Image.Image: '''simple docstring''' __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
328
0
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
77
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowercase__ : Any = getLogger(__name__) lowercase__ : List[str] = "cuda" if torch.cuda.is_available() else "cpu" def A_ ( snake_case : List[str] , snake_case : str , snake_case : str , snake_case : int = 8 , snake_case : str = DEFAULT_DEVICE , snake_case : List[str]=False , snake_case : Union[str, Any]="summarization" , snake_case : str=None , **snake_case : List[Any] , ) -> Dict: '''simple docstring''' __UpperCamelCase = Path(snake_case ).open('''w''' , encoding='''utf-8''' ) __UpperCamelCase = str(snake_case ) __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case ).to(snake_case ) if fpaa: __UpperCamelCase = model.half() __UpperCamelCase = AutoTokenizer.from_pretrained(snake_case ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __UpperCamelCase = time.time() # update config with task specific params use_task_specific_params(snake_case , snake_case ) if prefix is None: __UpperCamelCase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(snake_case , snake_case ) ) ): __UpperCamelCase = [prefix + text for text in examples_chunk] __UpperCamelCase = tokenizer(snake_case , return_tensors='''pt''' , truncation=snake_case , padding='''longest''' ).to(snake_case ) __UpperCamelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case , ) __UpperCamelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __UpperCamelCase = int(time.time() - start_time ) # seconds __UpperCamelCase = len(snake_case ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def A_ ( ) -> Tuple: '''simple docstring''' return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def A_ ( snake_case : str=True ) -> int: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=snake_case , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=snake_case , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=snake_case , required=snake_case , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=snake_case , required=snake_case , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=snake_case , required=snake_case , default=snake_case , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=snake_case , required=snake_case , default=snake_case , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=snake_case , default=8 , required=snake_case , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=snake_case , default=-1 , required=snake_case , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=snake_case , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __UpperCamelCase , __UpperCamelCase = parser.parse_known_args() __UpperCamelCase = parse_numeric_n_bool_cl_kwargs(snake_case ) if parsed_args and verbose: print(f"parsed the following generate kwargs: {parsed_args}" ) __UpperCamelCase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __UpperCamelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=snake_case ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __UpperCamelCase = generate_summaries_or_translations( snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case , ) if args.reference_path is None: return {} # Compute scores __UpperCamelCase = calculate_bleu if '''translation''' in args.task else calculate_rouge __UpperCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __UpperCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case )] __UpperCamelCase = score_fn(snake_case , snake_case ) scores.update(snake_case ) if args.dump_args: scores.update(snake_case ) if args.info: __UpperCamelCase = args.info if verbose: print(snake_case ) if args.score_path is not None: json.dump(snake_case , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
328
0
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = [False] * len(lowercase_ ) UpperCAmelCase = [-1] * len(lowercase_ ) def dfs(lowercase_ , lowercase_ ): UpperCAmelCase = True UpperCAmelCase = c for u in graph[v]: if not visited[u]: dfs(lowercase_ , 1 - c ) for i in range(len(lowercase_ ) ): if not visited[i]: dfs(lowercase_ , 0 ) for i in range(len(lowercase_ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph snake_case_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
78
from math import factorial def A_ ( snake_case : int = 100 ) -> int: '''simple docstring''' return sum(int(snake_case ) for x in str(factorial(snake_case ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
328
0
'''simple docstring''' import operator as op lowerCamelCase_ = '''scaler.pt''' lowerCamelCase_ = '''pytorch_model''' lowerCamelCase_ = '''random_states''' lowerCamelCase_ = '''optimizer''' lowerCamelCase_ = '''scheduler''' lowerCamelCase_ = '''pytorch_model.bin''' lowerCamelCase_ = '''pytorch_model.bin.index.json''' lowerCamelCase_ = '''model.safetensors''' lowerCamelCase_ = '''model.safetensors.index.json''' lowerCamelCase_ = '''1.10.2''' lowerCamelCase_ = '''py38''' lowerCamelCase_ = '''4.17.0''' lowerCamelCase_ = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] lowerCamelCase_ = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] lowerCamelCase_ = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] lowerCamelCase_ = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] lowerCamelCase_ = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] lowerCamelCase_ = '''2.0.1''' lowerCamelCase_ = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] lowerCamelCase_ = ['''default''', '''reduce-overhead''', '''max-autotune'''] lowerCamelCase_ = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 lowerCamelCase_ = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] lowerCamelCase_ = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] lowerCamelCase_ = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
79
def A_ ( snake_case : list ) -> list: '''simple docstring''' __UpperCamelCase = len(snake_case ) for i in range(1 , snake_case ): __UpperCamelCase = collection[i] __UpperCamelCase = 0 __UpperCamelCase = i - 1 while low <= high: __UpperCamelCase = (low + high) // 2 if val < collection[mid]: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 for j in range(snake_case , snake_case , -1 ): __UpperCamelCase = collection[j - 1] __UpperCamelCase = val return collection if __name__ == "__main__": lowercase__ : List[Any] = input("Enter numbers separated by a comma:\n").strip() lowercase__ : str = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
328
0
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING a__ : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(a__ ) class lowercase_ ( a__ ): def __init__( self , *a , **a ): super().__init__(*a , **a ) requires_backends(self , "vision" ) self.check_model_type(a ) def __call__( self , a , **a ): return super().__call__(a , **a ) def __a ( self , **a ): return {}, {}, {} def __a ( self , a ): UpperCamelCase__ = load_image(a ) UpperCamelCase__ = image.size UpperCamelCase__ = self.image_processor(images=a , return_tensors=self.framework ) return model_inputs def __a ( self , a ): UpperCamelCase__ = self.model(**a ) return model_outputs def __a ( self , a ): UpperCamelCase__ = model_outputs.predicted_depth UpperCamelCase__ = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=a ) UpperCamelCase__ = prediction.squeeze().cpu().numpy() UpperCamelCase__ = (output * 2_55 / np.max(a )).astype("uint8" ) UpperCamelCase__ = Image.fromarray(a ) UpperCamelCase__ = {} UpperCamelCase__ = predicted_depth UpperCamelCase__ = depth return output_dict
80
from __future__ import annotations from collections import deque class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(SCREAMING_SNAKE_CASE_ ) self.set_fail_transitions() def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int | None: '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' __UpperCamelCase = 0 for character in keyword: __UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __UpperCamelCase = len(self.adlist ) - 1 else: __UpperCamelCase = next_state self.adlist[current_state]["output"].append(SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = deque() for node in self.adlist[0]["next_states"]: q.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = 0 while q: __UpperCamelCase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.adlist[r]['''fail_state'''] while ( self.find_next_state(SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) is None and state != 0 ): __UpperCamelCase = self.adlist[state]['''fail_state'''] __UpperCamelCase = self.find_next_state( SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: __UpperCamelCase = 0 __UpperCamelCase = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> dict[str, list[int]]: '''simple docstring''' __UpperCamelCase = {} # returns a dict with keywords and list of its occurrences __UpperCamelCase = 0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): while ( self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) is None and current_state != 0 ): __UpperCamelCase = self.adlist[current_state]['''fail_state'''] __UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) if next_state is None: __UpperCamelCase = 0 else: __UpperCamelCase = next_state for key in self.adlist[current_state]["output"]: if key not in result: __UpperCamelCase = [] result[key].append(i - len(SCREAMING_SNAKE_CASE_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
328
0
"""simple docstring""" def _A ( lowercase = 1_00 ): """simple docstring""" a =(n * (n + 1) // 2) ** 2 a =n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(F'{solution() = }')
81
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> Dict: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self )-> str: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = DistilBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = True _snake_case = True _snake_case = True def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = DistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def A__ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> List[str]: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCamelCase = True __UpperCamelCase = model_class(config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) ) __UpperCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] __UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
328
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A__ = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""LayoutLMv2FeatureExtractor"""] A__ = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
82
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase__ : Optional[Any] = logging.getLogger(__name__) def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int: '''simple docstring''' def get_dataset(snake_case : Optional[int] ): __UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any: '''simple docstring''' __UpperCamelCase = [] for epoch in range(snake_case ): # Train quickly model.train() for batch in dataloader: __UpperCamelCase , __UpperCamelCase = batch __UpperCamelCase = model(snake_case ) __UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case ) accelerator.backward(snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self )-> Tuple: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' return x * self.a + self.b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self )-> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() # Train baseline __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3] ) __UpperCamelCase = torch.tensor([2, 3, 4] ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(net.parameters() ) __UpperCamelCase = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() __UpperCamelCase = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing" lowercase__ : List[Any] = DummyModel() lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase__ , lowercase__ : str = dummy_dataloaders() lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase__ : int = group["params"][0].device break assert param_device.type == accelerator.device.type lowercase__ : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowercase__ : Any = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowercase__ : List[Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
328
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : str = {'vocab_file': 'spiece.model'} snake_case_ : Union[str, Any] = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class lowercase__ ( lowercase ): def __init__( self : Union[str, Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[Any]=False ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : str=False ,lowerCamelCase__ : int="<s>" ,lowerCamelCase__ : str="</s>" ,lowerCamelCase__ : List[str]="<unk>" ,lowerCamelCase__ : List[Any]="<sep>" ,lowerCamelCase__ : Dict="<pad>" ,lowerCamelCase__ : Dict="<cls>" ,lowerCamelCase__ : str="<mask>" ,lowerCamelCase__ : Dict=["<eop>", "<eod>"] ,lowerCamelCase__ : Optional[Dict[str, Any]] = None ,**lowerCamelCase__ : Any ,): '''simple docstring''' _UpperCamelCase : Optional[Any] = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else mask_token _UpperCamelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase__ ,remove_space=lowerCamelCase__ ,keep_accents=lowerCamelCase__ ,bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,additional_special_tokens=lowerCamelCase__ ,sp_model_kwargs=self.sp_model_kwargs ,**lowerCamelCase__ ,) _UpperCamelCase : Union[str, Any] = 3 _UpperCamelCase : int = do_lower_case _UpperCamelCase : str = remove_space _UpperCamelCase : str = keep_accents _UpperCamelCase : Any = vocab_file _UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( 'You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ' 'See https://pypi.org/project/jieba/ for installation.' ) _UpperCamelCase : Tuple = jieba _UpperCamelCase : Optional[Any] = str.maketrans(' \n' ,'\u2582\u2583' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCamelCase_ ( self : int ): '''simple docstring''' return len(self.sp_model ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : Any = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.__dict__.copy() _UpperCamelCase : int = None return state def __setstate__( self : List[str] ,lowerCamelCase__ : Any ): '''simple docstring''' _UpperCamelCase : Optional[Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _UpperCamelCase : List[Any] = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self : int ,lowerCamelCase__ : Dict ): '''simple docstring''' if self.remove_space: _UpperCamelCase : str = ' '.join(inputs.strip().split() ) else: _UpperCamelCase : Union[str, Any] = inputs _UpperCamelCase : List[str] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: _UpperCamelCase : List[str] = unicodedata.normalize('NFKD' ,lowerCamelCase__ ) _UpperCamelCase : Any = ''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase__ )] ) if self.do_lower_case: _UpperCamelCase : Any = outputs.lower() return outputs def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : Any = self.preprocess_text(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = self.sp_model.encode(lowerCamelCase__ ,out_type=lowerCamelCase__ ) _UpperCamelCase : int = [] for piece in pieces: if len(lowerCamelCase__ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _UpperCamelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase__ ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _UpperCamelCase : Tuple = cur_pieces[1:] else: _UpperCamelCase : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase__ ) else: new_pieces.append(lowerCamelCase__ ) return new_pieces def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : int ): '''simple docstring''' return self.sp_model.PieceToId(lowerCamelCase__ ) def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' return self.sp_model.IdToPiece(lowerCamelCase__ ) def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : int = ''.join(lowerCamelCase__ ).replace(lowerCamelCase__ ,' ' ).strip() return out_string def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCamelCase_ ( self : Optional[int] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ ,token_ids_a=lowerCamelCase__ ,already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is not None: return ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] return ([0] * len(lowerCamelCase__ )) + [1, 1] def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = [self.sep_token_id] _UpperCamelCase : int = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCamelCase : str = os.path.join( lowerCamelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ ,'wb' ) as fi: _UpperCamelCase : str = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,) def UpperCamelCase_ ( self : Union[str, Any] ,*lowerCamelCase__ : Dict ,**lowerCamelCase__ : Tuple ): '''simple docstring''' _UpperCamelCase : List[str] = super()._decode(*lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Dict = text.replace(' ' ,'' ).replace('\u2582' ,' ' ).replace('\u2583' ,'\n' ) return text
83
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]: '''simple docstring''' super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Sql( cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , ) # Build dataset for splits __UpperCamelCase = self.builder.as_dataset( split='''train''' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) __UpperCamelCase = dataset __UpperCamelCase = name __UpperCamelCase = con __UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCamelCase = num_proc __UpperCamelCase = to_sql_kwargs def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.to_sql_kwargs.pop('''sql''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''con''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''index''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs ) return written def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args __UpperCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __UpperCamelCase = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCamelCase = batch.to_pandas() __UpperCamelCase = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return num_rows or len(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
328
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart __UpperCAmelCase = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } __UpperCAmelCase = { 'facebook/bart-base': 10_24, 'facebook/bart-large': 10_24, 'facebook/bart-large-mnli': 10_24, 'facebook/bart-large-cnn': 10_24, 'facebook/bart-large-xsum': 10_24, 'yjernite/bart_eli5': 10_24, } class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :List[str] = VOCAB_FILES_NAMES UpperCAmelCase_ :Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ :Optional[Any] = ["input_ids", "attention_mask"] UpperCAmelCase_ :int = BartTokenizer def __init__( self , __A=None , __A=None , __A=None , __A="replace" , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A=False , __A=True , **__A , ) -> Any: super().__init__( __A , __A , tokenizer_file=__A , errors=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , trim_offsets=__A , **__A , ) lowerCAmelCase_ :Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __A ) != add_prefix_space: lowerCAmelCase_ :Optional[Any] = getattr(__A , pre_tok_state.pop("""type""" ) ) lowerCAmelCase_ :Optional[int] = add_prefix_space lowerCAmelCase_ :Any = pre_tok_class(**__A ) lowerCAmelCase_ :int = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCAmelCase_ :Dict = """post_processor""" lowerCAmelCase_ :Optional[Any] = getattr(self.backend_tokenizer , __A , __A ) if tokenizer_component_instance: lowerCAmelCase_ :List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase_ :str = tuple(state["""sep"""] ) if "cls" in state: lowerCAmelCase_ :Any = tuple(state["""cls"""] ) lowerCAmelCase_ :Dict = False if state.get("""add_prefix_space""" , __A ) != add_prefix_space: lowerCAmelCase_ :int = add_prefix_space lowerCAmelCase_ :Dict = True if state.get("""trim_offsets""" , __A ) != trim_offsets: lowerCAmelCase_ :Tuple = trim_offsets lowerCAmelCase_ :str = True if changes_to_apply: lowerCAmelCase_ :Tuple = getattr(__A , state.pop("""type""" ) ) lowerCAmelCase_ :int = component_class(**__A ) setattr(self.backend_tokenizer , __A , __A ) @property def __lowerCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , __A ) -> str: lowerCAmelCase_ :List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else value lowerCAmelCase_ :Optional[int] = value def __lowerCAmelCase ( self , *__A , **__A ) -> BatchEncoding: lowerCAmelCase_ :Optional[int] = kwargs.get("""is_split_into_words""" , __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__A , **__A ) def __lowerCAmelCase ( self , *__A , **__A ) -> BatchEncoding: lowerCAmelCase_ :Optional[Any] = kwargs.get("""is_split_into_words""" , __A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__A , **__A ) def __lowerCAmelCase ( self , __A , __A = None ) -> Tuple[str]: lowerCAmelCase_ :Tuple = self._tokenizer.model.save(__A , name=__A ) return tuple(__A ) def __lowerCAmelCase ( self , __A , __A=None ) -> Tuple: lowerCAmelCase_ :Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , __A , __A = None ) -> List[int]: lowerCAmelCase_ :Any = [self.sep_token_id] lowerCAmelCase_ :Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
84
def A_ ( snake_case : str ) -> int: '''simple docstring''' assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , snake_case ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
328
0
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _snake_case : def __init__( self , a__ , a__=13 , a__=30 , a__=2 , a__=3 , a__=True , a__=True , a__=32 , a__=2 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.0_2 , a__=3 , a__=None , a__=2 , ) -> List[str]: '''simple docstring''' snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = scope snake_case_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = num_patches + 2 def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCAmelCase__ ( self , a__ , a__ , a__ ) -> Optional[int]: '''simple docstring''' snake_case_ = TFDeiTModel(config=a__ ) snake_case_ = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ ) -> str: '''simple docstring''' snake_case_ = TFDeiTForMaskedImageModeling(config=a__ ) snake_case_ = model(a__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case_ = 1 snake_case_ = TFDeiTForMaskedImageModeling(a__ ) snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(a__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.type_sequence_label_size snake_case_ = TFDeiTForImageClassification(a__ ) snake_case_ = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case_ = 1 snake_case_ = TFDeiTForImageClassification(a__ ) snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _snake_case ( lowercase_ , lowercase_ , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCAmelCase_ : List[Any] = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : List[str] = False def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = TFDeiTModelTester(self ) snake_case_ = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , tf.keras.layers.Dense ) ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(a__ ) snake_case_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , a__ ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a__ ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) def lowerCAmelCase__ ( self , a__ , a__ , a__=False ) -> Optional[int]: '''simple docstring''' snake_case_ = super()._prepare_for_class(a__ , a__ , return_labels=a__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = TFDeiTModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _snake_case ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=a__ , return_tensors="tf" ) # forward pass snake_case_ = model(**a__ ) # verify the logits snake_case_ = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , a__ ) snake_case_ = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) )
85
def A_ ( snake_case : int ) -> None: '''simple docstring''' __UpperCamelCase = generate_pascal_triangle(snake_case ) for row_idx in range(snake_case ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [] for current_row_idx in range(snake_case ): __UpperCamelCase = populate_current_row(snake_case , snake_case ) triangle.append(snake_case ) return triangle def A_ ( snake_case : list[list[int]] , snake_case : int ) -> list[int]: '''simple docstring''' __UpperCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase , __UpperCamelCase = 1, 1 for current_col_idx in range(1 , snake_case ): calculate_current_element( snake_case , snake_case , snake_case , snake_case ) return current_row def A_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , ) -> None: '''simple docstring''' __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase = above_to_left_elt + above_to_right_elt def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [[1]] for row_index in range(1 , snake_case ): __UpperCamelCase = [0] + result[-1] + [0] __UpperCamelCase = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase = sum(divmod(snake_case , 2 ) ) __UpperCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase = row_first_half + row_second_half result.append(snake_case ) return result def A_ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None: __UpperCamelCase = f"{func.__name__}({value})" __UpperCamelCase = timeit(f"__main__.{call}" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case , snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
0
"""simple docstring""" from __future__ import annotations from typing import Any def __lowerCAmelCase (_UpperCamelCase ): create_state_space_tree(_UpperCamelCase , [] , 0 ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_UpperCamelCase , _UpperCamelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCamelCase__ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
86
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase__ : Any = parser.parse_args() lowercase__ : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase__ : List[str] = CLIPImageProcessor() lowercase__ : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase__ : Optional[Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
328
0
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def lowercase_ ( _lowerCamelCase : int): random.seed(_lowerCamelCase) np.random.seed(_lowerCamelCase) torch.manual_seed(_lowerCamelCase) torch.cuda.manual_seed_all(_lowerCamelCase) # ^^ safe to call this function even if cuda is not available class snake_case_ : def __init__( self : str , lowercase_ : Iterable[torch.nn.Parameter] , lowercase_ : float = 0.99_99 , lowercase_ : float = 0.0 , lowercase_ : int = 0 , lowercase_ : bool = False , lowercase_ : Union[float, int] = 1.0 , lowercase_ : Union[float, int] = 2 / 3 , lowercase_ : Optional[Any] = None , lowercase_ : Dict[str, Any] = None , **lowercase_ : str , ) -> str: if isinstance(lowercase_ , torch.nn.Module ): lowercase__ : Tuple = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`" , "1.0.0" , lowercase_ , standard_warn=lowercase_ , ) lowercase__ : Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility lowercase__ : List[Any] = True if kwargs.get("max_value" , lowercase_ ) is not None: lowercase__ : Any = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value" , "1.0.0" , lowercase_ , standard_warn=lowercase_ ) lowercase__ : int = kwargs["max_value"] if kwargs.get("min_value" , lowercase_ ) is not None: lowercase__ : Optional[Any] = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value" , "1.0.0" , lowercase_ , standard_warn=lowercase_ ) lowercase__ : Dict = kwargs["min_value"] lowercase__ : Optional[int] = list(lowercase_ ) lowercase__ : Dict = [p.clone().detach() for p in parameters] if kwargs.get("device" , lowercase_ ) is not None: lowercase__ : str = "The `device` argument is deprecated. Please use `to` instead." deprecate("device" , "1.0.0" , lowercase_ , standard_warn=lowercase_ ) self.to(device=kwargs["device"] ) lowercase__ : int = None lowercase__ : int = decay lowercase__ : List[str] = min_decay lowercase__ : Tuple = update_after_step lowercase__ : Union[str, Any] = use_ema_warmup lowercase__ : Union[str, Any] = inv_gamma lowercase__ : Any = power lowercase__ : Optional[Any] = 0 lowercase__ : Optional[int] = None # set in `step()` lowercase__ : str = model_cls lowercase__ : Union[str, Any] = model_config @classmethod def __UpperCamelCase ( cls : Any , lowercase_ : str , lowercase_ : List[Any] ) -> "EMAModel": lowercase__ , lowercase__ : Dict = model_cls.load_config(lowercase_ , return_unused_kwargs=lowercase_ ) lowercase__ : str = model_cls.from_pretrained(lowercase_ ) lowercase__ : int = cls(model.parameters() , model_cls=lowercase_ , model_config=model.config ) ema_model.load_state_dict(lowercase_ ) return ema_model def __UpperCamelCase ( self : int , lowercase_ : List[str] ) -> Tuple: if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) lowercase__ : Optional[int] = self.model_cls.from_config(self.model_config ) lowercase__ : Optional[int] = self.state_dict() state_dict.pop("shadow_params" , lowercase_ ) model.register_to_config(**lowercase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowercase_ ) def __UpperCamelCase ( self : Any , lowercase_ : int ) -> float: lowercase__ : Any = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: lowercase__ : List[str] = 1 - (1 + step / self.inv_gamma) ** -self.power else: lowercase__ : int = (1 + step) / (10 + step) lowercase__ : Optional[int] = min(lowercase_ , self.decay ) # make sure decay is not smaller than min_decay lowercase__ : List[Any] = max(lowercase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def __UpperCamelCase ( self : List[str] , lowercase_ : Iterable[torch.nn.Parameter] ) -> int: if isinstance(lowercase_ , torch.nn.Module ): lowercase__ : str = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`" , "1.0.0" , lowercase_ , standard_warn=lowercase_ , ) lowercase__ : Union[str, Any] = parameters.parameters() lowercase__ : Tuple = list(lowercase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. lowercase__ : Dict = self.get_decay(self.optimization_step ) lowercase__ : Optional[int] = decay lowercase__ : Any = 1 - decay lowercase__ : Optional[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowercase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): lowercase__ : Optional[int] = deepspeed.zero.GatheredParameters(lowercase_ , modifier_rank=lowercase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowercase_ ) def __UpperCamelCase ( self : Dict , lowercase_ : Iterable[torch.nn.Parameter] ) -> None: lowercase__ : int = list(lowercase_ ) for s_param, param in zip(self.shadow_params , lowercase_ ): param.data.copy_(s_param.to(param.device ).data ) def __UpperCamelCase ( self : List[Any] , lowercase_ : List[str]=None , lowercase_ : List[Any]=None ) -> None: lowercase__ : List[Any] = [ p.to(device=lowercase_ , dtype=lowercase_ ) if p.is_floating_point() else p.to(device=lowercase_ ) for p in self.shadow_params ] def __UpperCamelCase ( self : Dict ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def __UpperCamelCase ( self : Tuple , lowercase_ : Iterable[torch.nn.Parameter] ) -> None: lowercase__ : List[str] = [param.detach().cpu().clone() for param in parameters] def __UpperCamelCase ( self : str , lowercase_ : Iterable[torch.nn.Parameter] ) -> None: if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params , lowercase_ ): param.data.copy_(c_param.data ) # Better memory-wise. lowercase__ : Dict = None def __UpperCamelCase ( self : List[Any] , lowercase_ : dict ) -> None: lowercase__ : Tuple = copy.deepcopy(lowercase_ ) lowercase__ : Union[str, Any] = state_dict.get("decay" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) lowercase__ : Optional[Any] = state_dict.get("min_decay" , self.min_decay ) if not isinstance(self.min_decay , lowercase_ ): raise ValueError("Invalid min_decay" ) lowercase__ : Optional[Any] = state_dict.get("optimization_step" , self.optimization_step ) if not isinstance(self.optimization_step , lowercase_ ): raise ValueError("Invalid optimization_step" ) lowercase__ : List[Any] = state_dict.get("update_after_step" , self.update_after_step ) if not isinstance(self.update_after_step , lowercase_ ): raise ValueError("Invalid update_after_step" ) lowercase__ : str = state_dict.get("use_ema_warmup" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowercase_ ): raise ValueError("Invalid use_ema_warmup" ) lowercase__ : Dict = state_dict.get("inv_gamma" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("Invalid inv_gamma" ) lowercase__ : Tuple = state_dict.get("power" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("Invalid power" ) lowercase__ : Tuple = state_dict.get("shadow_params" , lowercase_ ) if shadow_params is not None: lowercase__ : List[Any] = shadow_params if not isinstance(self.shadow_params , lowercase_ ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(lowercase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
87
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowercase__ : Union[str, Any] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" lowercase__ : Optional[Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" lowercase__ : Any = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" lowercase__ : Optional[int] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" lowercase__ : Optional[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[1, 10, 100] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3.0 )-> Union[str, Any]: '''simple docstring''' if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE_ ) as executor: __UpperCamelCase = [] __UpperCamelCase = Counter() __UpperCamelCase = 0 __UpperCamelCase = defaultdict(SCREAMING_SNAKE_CASE_ ) for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ): for candidate in candidates: __UpperCamelCase = candidate + '''\n''' + test_case __UpperCamelCase = (test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase = executor.submit(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) futures.append(SCREAMING_SNAKE_CASE_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) __UpperCamelCase , __UpperCamelCase = [], [] for result in results.values(): result.sort() __UpperCamelCase = [r[1]['''passed'''] for r in result] total.append(len(SCREAMING_SNAKE_CASE_ ) ) correct.append(sum(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = k __UpperCamelCase = {F"pass@{k}": estimate_pass_at_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A_ ( snake_case : Tuple , snake_case : Union[str, Any] , snake_case : List[Any] ) -> Optional[Any]: '''simple docstring''' def estimator(snake_case : int , snake_case : int , snake_case : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(snake_case , snake_case ): __UpperCamelCase = itertools.repeat(snake_case , len(snake_case ) ) else: assert len(snake_case ) == len(snake_case ) __UpperCamelCase = iter(snake_case ) return np.array([estimator(int(snake_case ) , int(snake_case ) , snake_case ) for n, c in zip(snake_case , snake_case )] )
328
0
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = TaConfig.from_json_file(A_ ) print(f'''Building PyTorch model from configuration: {config}''' ) __magic_name__ = TaForConditionalGeneration(A_ ) # Load weights from tf checkpoint load_tf_weights_in_ta(A_, A_, A_ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(A_ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
88
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__) lowercase__ : Optional[Any] = ["names", "prefix"] lowercase__ : List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowercase__ : Optional[Any] = ["encoding_errors", "on_bad_lines"] lowercase__ : List[str] = ["date_format"] @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): """simple docstring""" _snake_case = "," _snake_case = None _snake_case = "infer" _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = False _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = False _snake_case = True _snake_case = None _snake_case = "." _snake_case = None _snake_case = '"' _snake_case = 0 _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = 0 _snake_case = True _snake_case = False _snake_case = None _snake_case = 10000 _snake_case = None _snake_case = "strict" _snake_case = "error" _snake_case = None def A__ ( self )-> Any: '''simple docstring''' if self.delimiter is not None: __UpperCamelCase = self.delimiter if self.column_names is not None: __UpperCamelCase = self.column_names @property def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): """simple docstring""" _snake_case = CsvConfig def A__ ( self )-> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) __UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ): __UpperCamelCase = data_files if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) ) return splits def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.Table: '''simple docstring''' if self.config.features is not None: __UpperCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE_ ) for feature in self.config.features.values() ): # cheaper cast __UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __UpperCamelCase = table_cast(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return pa_table def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __UpperCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ): __UpperCamelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , iterator=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = pa.Table.from_pandas(SCREAMING_SNAKE_CASE_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}" ) raise
328
0
'''simple docstring''' __lowerCAmelCase = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def __lowerCamelCase ( ) -> None: _a : List[Any] = input('Enter message: ' ) _a : Optional[int] = input('Enter key [alphanumeric]: ' ) _a : Union[str, Any] = input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): _a : Dict = 'encrypt' _a : Tuple = encrypt_message(lowerCAmelCase_ , lowerCAmelCase_ ) elif mode.lower().startswith('d' ): _a : List[Any] = 'decrypt' _a : List[Any] = decrypt_message(lowerCAmelCase_ , lowerCAmelCase_ ) print(f"""\n{mode.title()}ed message:""" ) print(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str: return translate_message(lowerCAmelCase_ , lowerCAmelCase_ , 'encrypt' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str: return translate_message(lowerCAmelCase_ , lowerCAmelCase_ , 'decrypt' ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _a : Optional[Any] = [] _a : List[str] = 0 _a : Union[str, Any] = key.upper() for symbol in message: _a : Optional[Any] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(lowerCAmelCase_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(lowerCAmelCase_ ): _a : List[str] = 0 else: translated.append(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) if __name__ == "__main__": main()
89
from __future__ import annotations import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def A_ ( snake_case : int ) -> list[int]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) __UpperCamelCase = [] for num in range(len(snake_case ) ): __UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: __UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case ) == n: return list_nums return [] def A_ ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
328
0
from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase_ ( UpperCamelCase__ : int = 200_0000 ) -> int: """simple docstring""" __lowerCamelCase = [0] __lowerCamelCase = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __lowerCamelCase = 0 # the area corresponding to the grid that gives the product closest to target __lowerCamelCase = 0 # an estimate of b, using the quadratic formula __lowerCamelCase = 42 # the largest integer less than b_estimate __lowerCamelCase = 42 # the largest integer less than b_estimate __lowerCamelCase = 42 # the triangle number corresponding to b_floor __lowerCamelCase = 42 # the triangle number corresponding to b_ceil __lowerCamelCase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __lowerCamelCase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __lowerCamelCase = floor(UpperCamelCase__ ) __lowerCamelCase = ceil(UpperCamelCase__ ) __lowerCamelCase = triangle_numbers[b_floor] __lowerCamelCase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __lowerCamelCase = triangle_b_first_guess * triangle_a __lowerCamelCase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __lowerCamelCase = triangle_b_second_guess * triangle_a __lowerCamelCase = idx_a * b_ceil return area if __name__ == "__main__": print(f'''{solution() = }''')
90
from __future__ import annotations from collections.abc import Callable def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float: '''simple docstring''' __UpperCamelCase = x_start __UpperCamelCase = fnc(snake_case ) __UpperCamelCase = 0.0 for _ in range(snake_case ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCamelCase = (x_end - x_start) / steps + xa __UpperCamelCase = fnc(snake_case ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCamelCase = xa __UpperCamelCase = fxa return area if __name__ == "__main__": def A_ ( snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowercase__ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 1_0
328
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "megatron-bert" def __init__( self : int , lowercase_ : int=29056 , lowercase_ : Dict=1024 , lowercase_ : Optional[Any]=24 , lowercase_ : Union[str, Any]=16 , lowercase_ : Optional[int]=4096 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : int=512 , lowercase_ : Optional[Any]=2 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Optional[Any]=1e-12 , lowercase_ : Optional[Any]=0 , lowercase_ : Dict="absolute" , lowercase_ : Any=True , **lowercase_ : List[str] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Any = num_attention_heads SCREAMING_SNAKE_CASE_ : str = hidden_act SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : int = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[int] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Any = position_embedding_type SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_cache
91
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : int = logging.get_logger(__name__) lowercase__ : List[str] = ["model.decoder.embed_positions.weights"] def A_ ( snake_case : Any ) -> List[Any]: '''simple docstring''' if "emb" in name: __UpperCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: __UpperCamelCase = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: __UpperCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: __UpperCamelCase = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: __UpperCamelCase = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: __UpperCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: __UpperCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: __UpperCamelCase = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: __UpperCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: __UpperCamelCase = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: __UpperCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def A_ ( snake_case : OrderedDict , snake_case : int ) -> Tuple[Dict, Dict]: '''simple docstring''' __UpperCamelCase = list(state_dict.keys() ) __UpperCamelCase = {} for key in keys: __UpperCamelCase = state_dict.pop(snake_case ) __UpperCamelCase = rename_keys(snake_case ) if "in_proj_weight" in key: # split fused qkv proj __UpperCamelCase = val[:hidden_size, :] __UpperCamelCase = val[hidden_size : 2 * hidden_size, :] __UpperCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __UpperCamelCase = val else: __UpperCamelCase = val return state_dict, enc_dec_proj_state_dict def A_ ( snake_case : str ) -> MusicgenDecoderConfig: '''simple docstring''' if checkpoint == "small": # default config values __UpperCamelCase = 1024 __UpperCamelCase = 24 __UpperCamelCase = 16 elif checkpoint == "medium": __UpperCamelCase = 1536 __UpperCamelCase = 48 __UpperCamelCase = 24 elif checkpoint == "large": __UpperCamelCase = 2048 __UpperCamelCase = 48 __UpperCamelCase = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) __UpperCamelCase = MusicgenDecoderConfig( hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , ) return config @torch.no_grad() def A_ ( snake_case : Any , snake_case : str=None , snake_case : Any=None , snake_case : Union[str, Any]="cpu" ) -> List[Any]: '''simple docstring''' __UpperCamelCase = MusicGen.get_pretrained(snake_case , device=snake_case ) __UpperCamelCase = decoder_config_from_checkpoint(snake_case ) __UpperCamelCase = fairseq_model.lm.state_dict() __UpperCamelCase , __UpperCamelCase = rename_state_dict( snake_case , hidden_size=decoder_config.hidden_size ) __UpperCamelCase = TaEncoderModel.from_pretrained('''t5-base''' ) __UpperCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) __UpperCamelCase = MusicgenForCausalLM(snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __UpperCamelCase , __UpperCamelCase = decoder.load_state_dict(snake_case , strict=snake_case ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(snake_case ) if len(snake_case ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(snake_case ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model __UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(snake_case ) # check we can do a forward pass __UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __UpperCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __UpperCamelCase = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor __UpperCamelCase = AutoTokenizer.from_pretrained('''t5-base''' ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) __UpperCamelCase = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case ) # set the appropriate bos/pad token ids __UpperCamelCase = 2048 __UpperCamelCase = 2048 # set other default generation config params __UpperCamelCase = int(30 * audio_encoder.config.frame_rate ) __UpperCamelCase = True __UpperCamelCase = 3.0 if pytorch_dump_folder is not None: Path(snake_case ).mkdir(exist_ok=snake_case ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(snake_case ) processor.push_to_hub(snake_case ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowercase__ : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
328
0
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {"""vocab_file""": """sentencepiece.model"""} UpperCamelCase__ = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, } UpperCamelCase__ = { """google/rembert""": 256, } class a__ ( snake_case__ ): _a : Optional[int] = VOCAB_FILES_NAMES _a : Dict = PRETRAINED_VOCAB_FILES_MAP _a : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _A , _A=False , _A=True , _A=True , _A="[CLS]" , _A="[SEP]" , _A="[UNK]" , _A="[SEP]" , _A="[PAD]" , _A="[CLS]" , _A="[MASK]" , **_A , ): """simple docstring""" super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , **_A , ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = remove_space __lowerCAmelCase = keep_accents __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(_A ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return len(self.sp_model ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self , _A ): """simple docstring""" __lowerCAmelCase = d __lowerCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __SCREAMING_SNAKE_CASE( self , _A , _A=False ): """simple docstring""" __lowerCAmelCase = self.sp_model.EncodeAsPieces(_A ) return pieces def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return self.sp_model.PieceToId(_A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return self.sp_model.IdToPiece(_A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = self.sp_model.decode_pieces(_A ) return out_string def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __SCREAMING_SNAKE_CASE( self , _A , _A = None , _A = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1] def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error("Vocabulary path ({}) should be a directory".format(_A ) ) return __lowerCAmelCase = os.path.join( _A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
92
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : List[str] = 1_6 lowercase__ : str = 3_2 def A_ ( snake_case : Accelerator , snake_case : int = 16 ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCamelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase = datasets.map( snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase = 16 elif accelerator.mixed_precision != "no": __UpperCamelCase = 8 else: __UpperCamelCase = None return tokenizer.pad( snake_case , padding='''longest''' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) __UpperCamelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : Union[str, Any] = mocked_dataloaders # noqa: F811 def A_ ( snake_case : List[str] , snake_case : List[Any] ) -> Tuple: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case ) == "1": __UpperCamelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: __UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['''lr'''] __UpperCamelCase = int(config['''num_epochs'''] ) __UpperCamelCase = int(config['''seed'''] ) __UpperCamelCase = int(config['''batch_size'''] ) set_seed(snake_case ) __UpperCamelCase , __UpperCamelCase = get_dataloaders(snake_case , snake_case ) __UpperCamelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case ) # Instantiate scheduler __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __UpperCamelCase = os.path.split(snake_case )[-1].split('''.''' )[0] accelerator.init_trackers(snake_case , snake_case ) # Now we train the model for epoch in range(snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __UpperCamelCase = 0 for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case , references=snake_case , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(snake_case ), '''epoch''': epoch, } , step=snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def A_ ( ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case , default=snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
328
0
'''simple docstring''' import logging from transformers import PretrainedConfig _lowercase : List[str] = logging.getLogger(__name__) _lowercase : Tuple = { "bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json", } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''bertabs''' def __init__( self , __SCREAMING_SNAKE_CASE=3_05_22 , __SCREAMING_SNAKE_CASE=5_12 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=5_12 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=5_12 , __SCREAMING_SNAKE_CASE=0.2 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=7_68 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=20_48 , __SCREAMING_SNAKE_CASE=0.2 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = vocab_size lowercase_ : List[Any] = max_pos lowercase_ : Union[str, Any] = enc_layers lowercase_ : Optional[Any] = enc_hidden_size lowercase_ : str = enc_heads lowercase_ : str = enc_ff_size lowercase_ : List[str] = enc_dropout lowercase_ : List[str] = dec_layers lowercase_ : List[str] = dec_hidden_size lowercase_ : List[str] = dec_heads lowercase_ : Optional[int] = dec_ff_size lowercase_ : Optional[Any] = dec_dropout
93
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ : str = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'whisper' _snake_case = ['past_key_values'] _snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE_=51865 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=50257 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1500 , SCREAMING_SNAKE_CASE_=448 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[220, 50256] , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=7 , **SCREAMING_SNAKE_CASE_ , )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = num_mel_bins __UpperCamelCase = d_model __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = use_cache __UpperCamelCase = encoder_layers __UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase = max_source_positions __UpperCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __UpperCamelCase = classifier_proj_size __UpperCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length __UpperCamelCase = mask_feature_min_masks __UpperCamelCase = median_filter_width super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def A__ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' __UpperCamelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: __UpperCamelCase = {0: '''batch'''} else: __UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' ) return common_inputs def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 22050 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 220 , )-> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase = OrderedDict() __UpperCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = encoder_inputs['''input_features'''].shape[2] __UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __UpperCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = encoder_inputs.pop('''input_features''' ) __UpperCamelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: __UpperCamelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def A__ ( self )-> float: '''simple docstring''' return 1E-3
328
0
snake_case : str = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' snake_case : List[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] snake_case : int = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
94
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : Tuple = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'xlnet' _snake_case = ['mems'] _snake_case = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , SCREAMING_SNAKE_CASE_=32000 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="bi" , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=-1 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="tanh" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = n_layer __UpperCamelCase = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) __UpperCamelCase = d_model // n_head __UpperCamelCase = ff_activation __UpperCamelCase = d_inner __UpperCamelCase = untie_r __UpperCamelCase = attn_type __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = dropout __UpperCamelCase = mem_len __UpperCamelCase = reuse_len __UpperCamelCase = bi_data __UpperCamelCase = clamp_len __UpperCamelCase = same_length __UpperCamelCase = summary_type __UpperCamelCase = summary_use_proj __UpperCamelCase = summary_activation __UpperCamelCase = summary_last_dropout __UpperCamelCase = start_n_top __UpperCamelCase = end_n_top __UpperCamelCase = bos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = kwargs['''use_cache'''] __UpperCamelCase = use_mems_eval __UpperCamelCase = use_mems_train super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> Optional[Any]: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
328
0
import functools def _A ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : list[int] ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not all(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(SCREAMING_SNAKE_CASE ) == 0: return 0 if min(SCREAMING_SNAKE_CASE ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(SCREAMING_SNAKE_CASE ) >= 366: raise ValueError("All days elements should be less than 366" ) a__ : Any =set(SCREAMING_SNAKE_CASE ) @functools.cache def dynamic_programming(SCREAMING_SNAKE_CASE : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
95
from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None def __repr__( self )-> str: '''simple docstring''' return F"Node({self.data})" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = None def __iter__( self )-> Any: '''simple docstring''' __UpperCamelCase = self.head while node: yield node.data __UpperCamelCase = node.next def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self )-> str: '''simple docstring''' return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] ) def __getitem__( self , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) __UpperCamelCase = self.head for _ in range(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = current.next __UpperCamelCase = data def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' self.insert_nth(0 , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) __UpperCamelCase = Node(SCREAMING_SNAKE_CASE_ ) if self.head is None: __UpperCamelCase = new_node elif index == 0: __UpperCamelCase = self.head # link new_node to head __UpperCamelCase = new_node else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = new_node def A__ ( self )-> None: # print every node data '''simple docstring''' print(self ) def A__ ( self )-> Any: '''simple docstring''' return self.delete_nth(0 ) def A__ ( self )-> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def A__ ( self , SCREAMING_SNAKE_CASE_ = 0 )-> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) __UpperCamelCase = self.head # default first node if index == 0: __UpperCamelCase = self.head.next else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = temp.next.next return delete_node.data def A__ ( self )-> bool: '''simple docstring''' return self.head is None def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = self.head while current: # Store the current node's next node. __UpperCamelCase = current.next # Make the current node's next point backwards __UpperCamelCase = prev # Make the previous node be the current node __UpperCamelCase = current # Make the current node the next node (to progress iteration) __UpperCamelCase = next_node # Return prev in order to put the head at the end __UpperCamelCase = prev def A_ ( ) -> None: '''simple docstring''' __UpperCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(snake_case ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(snake_case ) == i linked_list.insert_nth(snake_case , i + 1 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(snake_case ) == 9 assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(snake_case ) == "->".join(str(snake_case ) for i in range(-8 , 1 ) ) def A_ ( ) -> None: '''simple docstring''' __UpperCamelCase = [ -9, 100, Node(77345112 ), '''dlrow olleH''', 7, 5555, 0, -192.55555, '''Hello, world!''', 77.9, Node(10 ), None, None, 12.20, ] __UpperCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(snake_case ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCamelCase = linked_list.delete_head() assert result == -9 assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(snake_case ) assert ( str(snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(snake_case ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def A_ ( ) -> Any: '''simple docstring''' from doctest import testmod testmod() __UpperCamelCase = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(snake_case ) print('''\nReading/changing Node data using indexing:''' ) print(f"Element at Position 1: {linked_list[1]}" ) __UpperCamelCase = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(snake_case ) print(f"length of linked_list is : {len(snake_case )}" ) if __name__ == "__main__": main()
328
0
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=4 , ): _lowerCamelCase : Optional[int] = parent _lowerCamelCase : Dict = batch_size _lowerCamelCase : Tuple = seq_length _lowerCamelCase : Tuple = is_training _lowerCamelCase : int = use_attention_mask _lowerCamelCase : Tuple = use_token_type_ids _lowerCamelCase : Union[str, Any] = use_labels _lowerCamelCase : Any = vocab_size _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : Optional[int] = attention_probs_dropout_prob _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : Any = type_vocab_size _lowerCamelCase : Any = type_sequence_label_size _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : Optional[int] = num_choices def A_ ( self ): _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Optional[int] = None if self.use_attention_mask: _lowerCamelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[Any] = None if self.use_token_type_ids: _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : List[Any] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A_ ( self ): _lowerCamelCase : Tuple = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = config_and_inputs _lowerCamelCase : str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def A_ ( self ): _lowerCamelCase : Dict = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = config_and_inputs _lowerCamelCase : Dict = True _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = True lowerCamelCase__ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = FlaxRobertaModelTester(self ) @slow def A_ ( self ): for model_class_name in self.all_model_classes: _lowerCamelCase : Any = model_class_name.from_pretrained('roberta-base' , from_pt=lowercase ) _lowerCamelCase : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase )
96
import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num def A_ ( snake_case : int ) -> bool: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = n while left <= right: __UpperCamelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
328
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
97
def A_ ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowercase__ : List[str] = generate_large_matrix() lowercase__ : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A_ ( snake_case : list[list[int]] ) -> None: '''simple docstring''' assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid ) assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) ) def A_ ( snake_case : list[int] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCamelCase = (left + right) // 2 __UpperCamelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCamelCase = mid + 1 else: __UpperCamelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(grid[0] ) for i in range(len(snake_case ) ): __UpperCamelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case ) * len(grid[0] )) - total def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 for row in grid: for i, number in enumerate(snake_case ): if number < 0: total += len(snake_case ) - i break return total def A_ ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCamelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
0
"""simple docstring""" import requests lowerCAmelCase__ : Optional[int] = 'YOUR API KEY' def a_ ( lowerCamelCase , lowerCamelCase = giphy_api_key ): UpperCAmelCase__ = '+'.join(query.split() ) UpperCAmelCase__ = f'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' UpperCAmelCase__ = requests.get(lowerCamelCase ).json()['data'] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
98
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = size if size is not None else {'''shortest_edge''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = crop_pct __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: __UpperCamelCase = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCamelCase = int(size['''height'''] / crop_pct ) else: __UpperCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) else: if "shortest_edge" in size: __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) elif "height" in size and "width" in size: __UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> str: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , )-> PIL.Image.Image: '''simple docstring''' __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
328
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=3 , lowercase=32 , lowercase=3 , lowercase=10 , lowercase=[8, 16, 32, 64] , lowercase=[1, 1, 2, 1] , lowercase=True , lowercase=True , lowercase="relu" , lowercase=3 , lowercase=None , lowercase=["stage2", "stage3", "stage4"] , lowercase=[2, 3, 4] , lowercase=1 , ) -> Optional[int]: '''simple docstring''' a__ : Optional[Any] = parent a__ : Any = batch_size a__ : Any = image_size a__ : Union[str, Any] = num_channels a__ : Optional[int] = embeddings_size a__ : str = hidden_sizes a__ : Optional[Any] = depths a__ : Optional[Any] = is_training a__ : int = use_labels a__ : Union[str, Any] = hidden_act a__ : Optional[int] = num_labels a__ : Optional[int] = scope a__ : Tuple = len(lowercase) a__ : Union[str, Any] = out_features a__ : List[str] = out_indices a__ : Any = num_groups def __lowercase ( self) -> str: '''simple docstring''' a__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ : Optional[Any] = None if self.use_labels: a__ : Tuple = ids_tensor([self.batch_size] , self.num_labels) a__ : Optional[int] = self.get_config() return config, pixel_values, labels def __lowercase ( self) -> str: '''simple docstring''' return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> List[str]: '''simple docstring''' a__ : List[Any] = BitModel(config=lowercase) model.to(lowercase) model.eval() a__ : int = model(lowercase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> str: '''simple docstring''' a__ : Union[str, Any] = self.num_labels a__ : Union[str, Any] = BitForImageClassification(lowercase) model.to(lowercase) model.eval() a__ : List[Any] = model(lowercase , labels=lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __lowercase ( self , lowercase , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' a__ : List[Any] = BitBackbone(config=lowercase) model.to(lowercase) model.eval() a__ : List[str] = model(lowercase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:]) # verify backbone works with out_features=None a__ : Union[str, Any] = None a__ : List[Any] = BitBackbone(config=lowercase) model.to(lowercase) model.eval() a__ : Optional[int] = model(lowercase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : int = self.prepare_config_and_inputs() a__ , a__ , a__ : Optional[int] = config_and_inputs a__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Union[str, Any] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __A : List[Any] = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) __A : Optional[Any] = False __A : int = False __A : Optional[int] = False __A : str = False __A : Optional[Any] = False def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : List[str] = BitModelTester(self) a__ : int = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' return @unittest.skip(reason='Bit does not output attentions') def __lowercase ( self) -> int: '''simple docstring''' pass @unittest.skip(reason='Bit does not use inputs_embeds') def __lowercase ( self) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='Bit does not support input and output embeddings') def __lowercase ( self) -> Optional[int]: '''simple docstring''' pass def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ , a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : str = model_class(lowercase) a__ : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowercase) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ , a__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Union[str, Any] = model_class(config=lowercase) for name, module in model.named_modules(): if isinstance(lowercase , (nn.BatchNormad, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' def check_hidden_states_output(lowercase , lowercase , lowercase): a__ : Optional[Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : Union[str, Any] = model(**self._prepare_for_class(lowercase , lowercase)) a__ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a__ : List[str] = self.model_tester.num_stages self.assertEqual(len(lowercase) , expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) a__ , a__ : Any = self.model_tester.prepare_config_and_inputs_for_common() a__ : int = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: a__ : int = layer_type a__ : List[str] = True check_hidden_states_output(lowercase , lowercase , lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : int = True check_hidden_states_output(lowercase , lowercase , lowercase) @unittest.skip(reason='Bit does not use feedforward chunking') def __lowercase ( self) -> List[Any]: '''simple docstring''' pass def __lowercase ( self) -> str: '''simple docstring''' a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase) @slow def __lowercase ( self) -> Optional[int]: '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Dict = BitModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def A_ ( ) -> int: a__ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self) -> Dict: '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def __lowercase ( self) -> str: '''simple docstring''' a__ : Any = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(lowercase) a__ : Tuple = self.default_image_processor a__ : str = prepare_img() a__ : Tuple = image_processor(images=lowercase , return_tensors='pt').to(lowercase) # forward pass with torch.no_grad(): a__ : Any = model(**lowercase) # verify the logits a__ : Any = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Optional[Any] = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4)) @require_torch class A__ ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Optional[int] = (BitBackbone,) if is_torch_available() else () __A : Optional[Any] = BitConfig __A : int = False def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : str = BitModelTester(self)
99
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowercase__ : Any = getLogger(__name__) lowercase__ : List[str] = "cuda" if torch.cuda.is_available() else "cpu" def A_ ( snake_case : List[str] , snake_case : str , snake_case : str , snake_case : int = 8 , snake_case : str = DEFAULT_DEVICE , snake_case : List[str]=False , snake_case : Union[str, Any]="summarization" , snake_case : str=None , **snake_case : List[Any] , ) -> Dict: '''simple docstring''' __UpperCamelCase = Path(snake_case ).open('''w''' , encoding='''utf-8''' ) __UpperCamelCase = str(snake_case ) __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case ).to(snake_case ) if fpaa: __UpperCamelCase = model.half() __UpperCamelCase = AutoTokenizer.from_pretrained(snake_case ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __UpperCamelCase = time.time() # update config with task specific params use_task_specific_params(snake_case , snake_case ) if prefix is None: __UpperCamelCase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(snake_case , snake_case ) ) ): __UpperCamelCase = [prefix + text for text in examples_chunk] __UpperCamelCase = tokenizer(snake_case , return_tensors='''pt''' , truncation=snake_case , padding='''longest''' ).to(snake_case ) __UpperCamelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case , ) __UpperCamelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __UpperCamelCase = int(time.time() - start_time ) # seconds __UpperCamelCase = len(snake_case ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def A_ ( ) -> Tuple: '''simple docstring''' return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def A_ ( snake_case : str=True ) -> int: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=snake_case , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=snake_case , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=snake_case , required=snake_case , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=snake_case , required=snake_case , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=snake_case , required=snake_case , default=snake_case , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=snake_case , required=snake_case , default=snake_case , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=snake_case , default=8 , required=snake_case , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=snake_case , default=-1 , required=snake_case , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=snake_case , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __UpperCamelCase , __UpperCamelCase = parser.parse_known_args() __UpperCamelCase = parse_numeric_n_bool_cl_kwargs(snake_case ) if parsed_args and verbose: print(f"parsed the following generate kwargs: {parsed_args}" ) __UpperCamelCase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __UpperCamelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=snake_case ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __UpperCamelCase = generate_summaries_or_translations( snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case , ) if args.reference_path is None: return {} # Compute scores __UpperCamelCase = calculate_bleu if '''translation''' in args.task else calculate_rouge __UpperCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __UpperCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case )] __UpperCamelCase = score_fn(snake_case , snake_case ) scores.update(snake_case ) if args.dump_args: scores.update(snake_case ) if args.info: __UpperCamelCase = args.info if verbose: print(snake_case ) if args.score_path is not None: json.dump(snake_case , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
328
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Optional[Any] = KandinskyVaaImgaImgPipeline __lowercase : str = ['''image_embeds''', '''negative_image_embeds''', '''image'''] __lowercase : Dict = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] __lowercase : Tuple = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __lowercase : Tuple = False @property def snake_case_ ( self): return 3_2 @property def snake_case_ ( self): return 3_2 @property def snake_case_ ( self): return self.time_input_dim @property def snake_case_ ( self): return self.time_input_dim * 4 @property def snake_case_ ( self): return 1_0_0 @property def snake_case_ ( self): torch.manual_seed(0) __SCREAMING_SNAKE_CASE = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __SCREAMING_SNAKE_CASE = UNetaDConditionModel(**lowerCAmelCase__) return model @property def snake_case_ ( self): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self): torch.manual_seed(0) __SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs) return model def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.dummy_unet __SCREAMING_SNAKE_CASE = self.dummy_movq __SCREAMING_SNAKE_CASE = { """num_train_timesteps""": 1_0_0_0, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __SCREAMING_SNAKE_CASE = DDIMScheduler(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=0): __SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( lowerCAmelCase__) # create init_image __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1)[0] __SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(lowerCAmelCase__)).convert("""RGB""").resize((2_5_6, 2_5_6)) if str(lowerCAmelCase__).startswith("""mps"""): __SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 1_0, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """cpu""" __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(lowerCAmelCase__) , return_dict=lowerCAmelCase__ , )[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __SCREAMING_SNAKE_CASE = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""") __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""") __SCREAMING_SNAKE_CASE = """A red cartoon frog, 4k""" __SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa) pipe_prior.to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa) __SCREAMING_SNAKE_CASE = pipeline.to(lowerCAmelCase__) pipeline.set_progress_bar_config(disable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""").manual_seed(0) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __SCREAMING_SNAKE_CASE = pipeline( image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="""np""" , ) __SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
100
from math import factorial def A_ ( snake_case : int = 100 ) -> int: '''simple docstring''' return sum(int(snake_case ) for x in str(factorial(snake_case ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
328
0
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING lowercase__ :Tuple = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,*A__ ,**A__): super().__init__(*A__ ,**A__) requires_backends(self ,'''decord''') self.check_model_type(A__) def A__ ( self ,A__=None ,A__=None ,A__=None): lowercase = {} if frame_sampling_rate is not None: lowercase = frame_sampling_rate if num_frames is not None: lowercase = num_frames lowercase = {} if top_k is not None: lowercase = top_k return preprocess_params, {}, postprocess_params def __call__( self ,A__ ,**A__): return super().__call__(A__ ,**A__) def A__ ( self ,A__ ,A__=None ,A__=1): if num_frames is None: lowercase = self.model.config.num_frames if video.startswith('''http://''') or video.startswith('''https://'''): lowercase = BytesIO(requests.get(A__).content) lowercase = VideoReader(A__) videoreader.seek(0) lowercase = 0 lowercase = num_frames * frame_sampling_rate - 1 lowercase = np.linspace(A__ ,A__ ,num=A__ ,dtype=np.intaa) lowercase = videoreader.get_batch(A__).asnumpy() lowercase = list(A__) lowercase = self.image_processor(A__ ,return_tensors=self.framework) return model_inputs def A__ ( self ,A__): lowercase = self.model(**A__) return model_outputs def A__ ( self ,A__ ,A__=5): if top_k > self.model.config.num_labels: lowercase = self.model.config.num_labels if self.framework == "pt": lowercase = model_outputs.logits.softmax(-1)[0] lowercase , lowercase = probs.topk(A__) else: raise ValueError(f'Unsupported framework: {self.framework}') lowercase = scores.tolist() lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(A__ ,A__)]
101
def A_ ( snake_case : list ) -> list: '''simple docstring''' __UpperCamelCase = len(snake_case ) for i in range(1 , snake_case ): __UpperCamelCase = collection[i] __UpperCamelCase = 0 __UpperCamelCase = i - 1 while low <= high: __UpperCamelCase = (low + high) // 2 if val < collection[mid]: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 for j in range(snake_case , snake_case , -1 ): __UpperCamelCase = collection[j - 1] __UpperCamelCase = val return collection if __name__ == "__main__": lowercase__ : List[Any] = input("Enter numbers separated by a comma:\n").strip() lowercase__ : str = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
328
0
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =JukeboxTokenizer lowerCamelCase__ ={ 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' import torch __snake_case : str = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) __snake_case : List[Any] = tokenizer(**self.metas )['''input_ids'''] # fmt: off __snake_case : Optional[int] = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' import torch __snake_case : List[Any] = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) __snake_case : Optional[int] = tokenizer(**self.metas )['''input_ids'''] # fmt: off __snake_case : Any = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
102
from __future__ import annotations from collections import deque class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(SCREAMING_SNAKE_CASE_ ) self.set_fail_transitions() def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int | None: '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' __UpperCamelCase = 0 for character in keyword: __UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __UpperCamelCase = len(self.adlist ) - 1 else: __UpperCamelCase = next_state self.adlist[current_state]["output"].append(SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = deque() for node in self.adlist[0]["next_states"]: q.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = 0 while q: __UpperCamelCase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.adlist[r]['''fail_state'''] while ( self.find_next_state(SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) is None and state != 0 ): __UpperCamelCase = self.adlist[state]['''fail_state'''] __UpperCamelCase = self.find_next_state( SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: __UpperCamelCase = 0 __UpperCamelCase = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> dict[str, list[int]]: '''simple docstring''' __UpperCamelCase = {} # returns a dict with keywords and list of its occurrences __UpperCamelCase = 0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): while ( self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) is None and current_state != 0 ): __UpperCamelCase = self.adlist[current_state]['''fail_state'''] __UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) if next_state is None: __UpperCamelCase = 0 else: __UpperCamelCase = next_state for key in self.adlist[current_state]["output"]: if key not in result: __UpperCamelCase = [] result[key].append(i - len(SCREAMING_SNAKE_CASE_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
328
0
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __snake_case ( UpperCamelCase_ ): _a = ['''vqvae'''] def __init__( self : Tuple , A_ : AutoencoderKL , A_ : UNetaDConditionModel , A_ : Mel , A_ : Union[DDIMScheduler, DDPMScheduler] , ): super().__init__() self.register_modules(unet=A_ , scheduler=A_ , mel=A_ , vqvae=A_) def UpperCAmelCase__ ( self : Any): return 5_0 if isinstance(self.scheduler , A_) else 1_0_0_0 @torch.no_grad() def __call__( self : Any , A_ : int = 1 , A_ : str = None , A_ : np.ndarray = None , A_ : int = 0 , A_ : int = 0 , A_ : int = None , A_ : torch.Generator = None , A_ : float = 0 , A_ : float = 0 , A_ : torch.Generator = None , A_ : float = 0 , A_ : torch.Tensor = None , A_ : torch.Tensor = None , A_ : int=True , ): lowerCAmelCase_ : Union[str, Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(A_) lowerCAmelCase_ : int = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: lowerCAmelCase_ : Optional[int] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowerCAmelCase_ : int = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A_ , device=self.device , ) lowerCAmelCase_ : Tuple = noise lowerCAmelCase_ : Union[str, Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A_ , A_) lowerCAmelCase_ : Optional[int] = self.mel.audio_slice_to_image(A_) lowerCAmelCase_ : int = np.frombuffer(input_image.tobytes() , dtype='''uint8''').reshape( (input_image.height, input_image.width)) lowerCAmelCase_ : str = (input_image / 2_5_5) * 2 - 1 lowerCAmelCase_ : List[Any] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: lowerCAmelCase_ : Optional[Any] = self.vqvae.encode(torch.unsqueeze(A_ , 0)).latent_dist.sample( generator=A_)[0] lowerCAmelCase_ : Optional[int] = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowerCAmelCase_ : List[str] = self.scheduler.add_noise(A_ , A_ , self.scheduler.timesteps[start_step - 1]) lowerCAmelCase_ : Union[str, Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowerCAmelCase_ : List[Any] = int(mask_start_secs * pixels_per_second) lowerCAmelCase_ : Optional[Any] = int(mask_end_secs * pixels_per_second) lowerCAmelCase_ : str = self.scheduler.add_noise(A_ , A_ , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , A_): lowerCAmelCase_ : Optional[Any] = self.unet(A_ , A_ , A_)['''sample'''] else: lowerCAmelCase_ : Dict = self.unet(A_ , A_)['''sample'''] if isinstance(self.scheduler , A_): lowerCAmelCase_ : List[Any] = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , eta=A_ , generator=A_ , )['''prev_sample'''] else: lowerCAmelCase_ : int = self.scheduler.step( model_output=A_ , timestep=A_ , sample=A_ , generator=A_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: lowerCAmelCase_ : Optional[Any] = mask[:, step, :, :mask_start] if mask_end > 0: lowerCAmelCase_ : Any = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowerCAmelCase_ : Tuple = 1 / self.vqvae.config.scaling_factor * images lowerCAmelCase_ : Tuple = self.vqvae.decode(A_)['''sample'''] lowerCAmelCase_ : Optional[int] = (images / 2 + 0.5).clamp(0 , 1) lowerCAmelCase_ : List[str] = images.cpu().permute(0 , 2 , 3 , 1).numpy() lowerCAmelCase_ : Union[str, Any] = (images * 2_5_5).round().astype('''uint8''') lowerCAmelCase_ : Optional[Any] = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A_ , mode='''RGB''').convert('''L''') for _ in images)) lowerCAmelCase_ : Optional[Any] = [self.mel.image_to_audio(A_) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A_)[:, np.newaxis, :]) , **ImagePipelineOutput(A_)) @torch.no_grad() def UpperCAmelCase__ ( self : Optional[int] , A_ : List[Image.Image] , A_ : int = 5_0): assert isinstance(self.scheduler , A_) self.scheduler.set_timesteps(A_) lowerCAmelCase_ : int = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''').reshape((1, image.height, image.width)) for image in images]) lowerCAmelCase_ : Any = (sample / 2_5_5) * 2 - 1 lowerCAmelCase_ : List[str] = torch.Tensor(A_).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): lowerCAmelCase_ : Optional[int] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowerCAmelCase_ : Tuple = self.scheduler.alphas_cumprod[t] lowerCAmelCase_ : Optional[int] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowerCAmelCase_ : int = 1 - alpha_prod_t lowerCAmelCase_ : Optional[Any] = self.unet(A_ , A_)['''sample'''] lowerCAmelCase_ : Optional[Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowerCAmelCase_ : Tuple = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowerCAmelCase_ : List[str] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase__ ( A_ : torch.Tensor , A_ : torch.Tensor , A_ : float): lowerCAmelCase_ : Dict = acos(torch.dot(torch.flatten(A_) , torch.flatten(A_)) / torch.norm(A_) / torch.norm(A_)) return sin((1 - alpha) * theta) * xa / sin(A_) + sin(alpha * theta) * xa / sin(A_)
103
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> Dict: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self )-> str: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = DistilBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = True _snake_case = True _snake_case = True def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = DistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def A__ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> List[str]: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCamelCase = True __UpperCamelCase = model_class(config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) ) __UpperCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] __UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
328
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase__ = logging.get_logger(__name__) if is_vision_available(): import PIL class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ['pixel_values'] def __init__( self : List[Any] ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : PILImageResampling = PILImageResampling.BICUBIC ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : bool = True ,lowercase__ : Union[int, float] = 1 / 2_5_5 ,lowercase__ : bool = True ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : bool = True ,**lowercase__ : Any ,): super().__init__(**lowercase__ ) __lowercase = size if size is not None else {'''shortest_edge''': 2_2_4} __lowercase = get_size_dict(lowercase__ ,default_to_square=lowercase__ ) __lowercase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} __lowercase = get_size_dict(lowercase__ ,default_to_square=lowercase__ ,param_name='''crop_size''' ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase = do_convert_rgb def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : np.ndarray ,lowercase__ : Dict[str, int] ,lowercase__ : PILImageResampling = PILImageResampling.BICUBIC ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : str ,): __lowercase = get_size_dict(lowercase__ ,default_to_square=lowercase__ ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase = get_resize_output_image_size(lowercase__ ,size=size['''shortest_edge'''] ,default_to_square=lowercase__ ) return resize(lowercase__ ,size=lowercase__ ,resample=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : np.ndarray ,lowercase__ : Dict[str, int] ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : Any ,): __lowercase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(lowercase__ ,size=(size['''height'''], size['''width''']) ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : np.ndarray ,lowercase__ : Union[int, float] ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[Any] ,): return rescale(lowercase__ ,scale=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : np.ndarray ,lowercase__ : Union[float, List[float]] ,lowercase__ : Union[float, List[float]] ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[str] ,): return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : bool = None ,lowercase__ : Dict[str, int] = None ,lowercase__ : PILImageResampling = None ,lowercase__ : bool = None ,lowercase__ : int = None ,lowercase__ : bool = None ,lowercase__ : float = None ,lowercase__ : bool = None ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : bool = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : Optional[ChannelDimension] = ChannelDimension.FIRST ,**lowercase__ : Dict ,): __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = size if size is not None else self.size __lowercase = get_size_dict(lowercase__ ,param_name='''size''' ,default_to_square=lowercase__ ) __lowercase = resample if resample is not None else self.resample __lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase = crop_size if crop_size is not None else self.crop_size __lowercase = get_size_dict(lowercase__ ,param_name='''crop_size''' ,default_to_square=lowercase__ ) __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(lowercase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __lowercase = [self.resize(image=lowercase__ ,size=lowercase__ ,resample=lowercase__ ) for image in images] if do_center_crop: __lowercase = [self.center_crop(image=lowercase__ ,size=lowercase__ ) for image in images] if do_rescale: __lowercase = [self.rescale(image=lowercase__ ,scale=lowercase__ ) for image in images] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ,mean=lowercase__ ,std=lowercase__ ) for image in images] __lowercase = [to_channel_dimension_format(lowercase__ ,lowercase__ ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=lowercase__ ,tensor_type=lowercase__ )
104
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase__ : Optional[Any] = logging.getLogger(__name__) def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int: '''simple docstring''' def get_dataset(snake_case : Optional[int] ): __UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any: '''simple docstring''' __UpperCamelCase = [] for epoch in range(snake_case ): # Train quickly model.train() for batch in dataloader: __UpperCamelCase , __UpperCamelCase = batch __UpperCamelCase = model(snake_case ) __UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case ) accelerator.backward(snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self )-> Tuple: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' return x * self.a + self.b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self )-> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() # Train baseline __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3] ) __UpperCamelCase = torch.tensor([2, 3, 4] ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(net.parameters() ) __UpperCamelCase = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() __UpperCamelCase = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing" lowercase__ : List[Any] = DummyModel() lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase__ , lowercase__ : str = dummy_dataloaders() lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase__ : int = group["params"][0].device break assert param_device.type == accelerator.device.type lowercase__ : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowercase__ : Any = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowercase__ : List[Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
328
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , ) -> int: super().__init__() self.register_modules(transformer=lowerCAmelCase__ , vae=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) # create a imagenet -> id dictionary for easier use a : str = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): a : int = int(lowerCAmelCase__ ) a : Any = dict(sorted(self.labels.items() ) ) def __a ( self , lowerCAmelCase__ ) -> List[int]: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Optional[Any] = list(lowerCAmelCase__ ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = 4.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = 50 , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ) -> Union[ImagePipelineOutput, Tuple]: a : Dict = len(lowerCAmelCase__ ) a : Tuple = self.transformer.config.sample_size a : Tuple = self.transformer.config.in_channels a : Optional[int] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowerCAmelCase__ , device=self.device , dtype=self.transformer.dtype , ) a : Tuple = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents a : List[str] = torch.tensor(lowerCAmelCase__ , device=self.device ).reshape(-1 ) a : str = torch.tensor([1000] * batch_size , device=self.device ) a : Dict = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: a : Any = latent_model_input[: len(lowerCAmelCase__ ) // 2] a : Tuple = torch.cat([half, half] , dim=0 ) a : List[str] = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) a : Dict = t if not torch.is_tensor(lowerCAmelCase__ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) a : Optional[int] = latent_model_input.device.type == "mps" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Union[str, Any] = torch.floataa if is_mps else torch.floataa else: a : str = torch.intaa if is_mps else torch.intaa a : List[str] = torch.tensor([timesteps] , dtype=lowerCAmelCase__ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: a : List[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML a : Dict = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output a : Union[str, Any] = self.transformer( lowerCAmelCase__ , timestep=lowerCAmelCase__ , class_labels=lowerCAmelCase__ ).sample # perform guidance if guidance_scale > 1: a, a : Any = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] a, a : Union[str, Any] = torch.split(lowerCAmelCase__ , len(lowerCAmelCase__ ) // 2 , dim=0 ) a : Dict = uncond_eps + guidance_scale * (cond_eps - uncond_eps) a : Optional[int] = torch.cat([half_eps, half_eps] , dim=0 ) a : Optional[int] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: a, a : str = torch.split(lowerCAmelCase__ , lowerCAmelCase__ , dim=1 ) else: a : Any = noise_pred # compute previous image: x_t -> x_t-1 a : Optional[int] = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample if guidance_scale > 1: a, a : Tuple = latent_model_input.chunk(2 , dim=0 ) else: a : Tuple = latent_model_input a : Optional[Any] = 1 / self.vae.config.scaling_factor * latents a : Any = self.vae.decode(lowerCAmelCase__ ).sample a : Tuple = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 a : Optional[Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a : int = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCAmelCase__ )
105
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]: '''simple docstring''' super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Sql( cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , ) # Build dataset for splits __UpperCamelCase = self.builder.as_dataset( split='''train''' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) __UpperCamelCase = dataset __UpperCamelCase = name __UpperCamelCase = con __UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCamelCase = num_proc __UpperCamelCase = to_sql_kwargs def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.to_sql_kwargs.pop('''sql''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''con''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''index''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs ) return written def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args __UpperCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __UpperCamelCase = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCamelCase = batch.to_pandas() __UpperCamelCase = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return num_rows or len(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
328
0
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __UpperCamelCase : str = getLogger(__name__) def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ = 8 , A_ = 10_24 , A_="val" , A_=None , A_=False , A_="summarization" , A_=None , A_=1 , A_ = None , A_="" , **A_ , ): lowerCAmelCase__ : Any = str(A_ ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=A_ ) lowerCAmelCase__ : Union[str, Any] = Path(A_ ) lowerCAmelCase__ : Any = save_dir.joinpath(f'rank_{local_rank}_output.json' ) torch.cuda.set_device(A_ ) lowerCAmelCase__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(A_ ).cuda() if fpaa: lowerCAmelCase__ : int = model.half() # determine if we need to increase num_beams use_task_specific_params(A_ , A_ ) # update config with task specific params lowerCAmelCase__ : Any = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: lowerCAmelCase__ : Union[str, Any] = num_return_sequences lowerCAmelCase__ : str = AutoTokenizer.from_pretrained(A_ ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: lowerCAmelCase__ : Optional[int] = tokenizer.model_max_length if prefix is None: lowerCAmelCase__ : str = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' lowerCAmelCase__ : List[Any] = SeqaSeqDataset( A_ , A_ , A_ , max_target_length=10_24 , type_path=A_ , n_obs=A_ , prefix=A_ , **A_ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. lowerCAmelCase__ : List[Any] = ds.make_sortish_sampler(A_ , distributed=A_ , add_extra_examples=A_ , shuffle=A_ ) lowerCAmelCase__ : List[str] = DataLoader(A_ , sampler=A_ , batch_size=A_ , collate_fn=ds.collate_fn ) lowerCAmelCase__ : List[str] = [] for batch in tqdm(A_ ): lowerCAmelCase__ : Tuple = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=A_ , num_beams=A_ , **A_ , ) lowerCAmelCase__ : Tuple = tokenizer.batch_decode(A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ ) lowerCAmelCase__ : List[Any] = batch['''ids'''] if num_return_sequences > 1: lowerCAmelCase__ : List[Any] = chunks(A_ , A_ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(A_ ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(A_ , A_ ) return results, sampler.num_replicas def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[Any] = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=A_ , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=A_ , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=A_ , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=A_ , default=A_ ) parser.add_argument( '''--type_path''' , type=A_ , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=A_ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=A_ , default=8 , required=A_ , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=A_ , default=-1 , required=A_ , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=A_ , default=A_ , required=A_ , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=A_ , default=1 , required=A_ , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=A_ , default=6_00 , required=A_ , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=A_ , default=A_ , required=A_ ) parser.add_argument('''--tgt_lang''' , type=A_ , default=A_ , required=A_ ) parser.add_argument( '''--prefix''' , type=A_ , required=A_ , default=A_ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) lowerCAmelCase__ : List[Any] = time.time() lowerCAmelCase__ ,lowerCAmelCase__ : Any = parser.parse_known_args() lowerCAmelCase__ : List[Any] = parse_numeric_n_bool_cl_kwargs(A_ ) if generate_kwargs and args.local_rank <= 0: print(f'parsed the following generate kwargs: {generate_kwargs}' ) lowerCAmelCase__ : Union[str, Any] = Path(args.save_dir + '''_tmp''' ) Path(A_ ).mkdir(exist_ok=A_ ) # this handles locking. lowerCAmelCase__ : List[str] = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(f'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. lowerCAmelCase__ : Any = {} if args.src_lang is not None: lowerCAmelCase__ : List[Any] = args.src_lang if args.tgt_lang is not None: lowerCAmelCase__ : Tuple = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=A_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Any = eval_data_dir( args.data_dir , A_ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=A_ , **A_ , ) if args.local_rank <= 0: lowerCAmelCase__ : List[str] = Path(args.save_dir ) save_dir.mkdir(exist_ok=A_ ) lowerCAmelCase__ : Tuple = gather_results_from_each_node(A_ , A_ , args.sync_timeout ) lowerCAmelCase__ : str = combine_partial_results(A_ ) if args.num_return_sequences > 1: lowerCAmelCase__ : Optional[int] = save_dir.joinpath('''pseudolabel_results.json''' ) print(f'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(A_ , A_ ) return lowerCAmelCase__ : List[str] = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(A_ ) as f: lowerCAmelCase__ : Dict = [x.rstrip() for x in f.readlines()][: len(A_ )] # Calculate metrics, save metrics, and save _generations.txt lowerCAmelCase__ : Optional[Any] = '''translation''' in args.task lowerCAmelCase__ : List[Any] = calculate_bleu if calc_bleu else calculate_rouge lowerCAmelCase__ : str = '''bleu''' if calc_bleu else '''rouge''' lowerCAmelCase__ : Dict = score_fn(A_ , A_ ) lowerCAmelCase__ : Union[str, Any] = len(A_ ) lowerCAmelCase__ : Dict = time.time() - start_time lowerCAmelCase__ : str = round(runtime / metrics['''n_obs'''] , 4 ) lowerCAmelCase__ : List[Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics lowerCAmelCase__ : str = save_dir.joinpath(f'{args.type_path}_{metric_name}.json' ) save_json(A_ , A_ , indent=A_ ) print(A_ ) write_txt_file(A_ , save_dir.joinpath(f'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(A_ , save_dir.joinpath(f'{args.type_path}.target' ) ) else: shutil.rmtree(A_ ) def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Dict = [] for partial_result in partial_results: records.extend(A_ ) lowerCAmelCase__ : str = sorted(A_ , key=lambda A_ : x["id"] ) lowerCAmelCase__ : str = [x['''pred'''] for x in records] return preds def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): # WAIT FOR lots of .json files lowerCAmelCase__ : Union[str, Any] = time.time() logger.info('''waiting for all nodes to finish''' ) lowerCAmelCase__ : Union[str, Any] = None while (time.time() - start_wait) < timeout: lowerCAmelCase__ : Union[str, Any] = list(save_dir.glob('''rank_*.json''' ) ) if len(A_ ) < num_replicas: continue try: # make sure all json files are fully saved lowerCAmelCase__ : int = lmap(A_ , A_ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
106
def A_ ( snake_case : str ) -> int: '''simple docstring''' assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , snake_case ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
328
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( A : Optional[int], A : Optional[int], A : Optional[Any] ): '''simple docstring''' return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __magic_name__ ( A : str, A : Any, A : Optional[int], A : int="attention" ): '''simple docstring''' a = a = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) a = k_tmp.reshape(k_tmp.shape[0], k_tmp.shape[1] * k_tmp.shape[2] ) a = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) a = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1], o_tmp.shape[2] ) a = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) a = q_tmp.reshape(q_tmp.shape[0], q_tmp.shape[1] * q_tmp.shape[2] ) a = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) a = v_tmp.reshape(v_tmp.shape[0], v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __magic_name__ ( A : str, A : Tuple, A : List[str], A : int=False ): '''simple docstring''' if split_mlp_wi: a = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] a = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] a = (wi_a, wi_a) else: a = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] a = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __magic_name__ ( A : int, A : Any, A : Optional[int], A : Any ): '''simple docstring''' return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __magic_name__ ( A : dict, *, A : int, A : bool, A : bool = False ): '''simple docstring''' a = traverse_util.flatten_dict(variables["target"] ) a = {"/".join(A ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi a = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:", A ) a = collections.OrderedDict() # Shared embeddings. a = old["token_embedder/embedding"] # Encoder. for i in range(A ): # Block i, layer 0 (Self Attention). a = tax_layer_norm_lookup(A, A, "encoder", "pre_attention_layer_norm" ) a , a , a , a = tax_attention_lookup(A, A, "encoder", "attention" ) a = layer_norm a = k.T a = o.T a = q.T a = v.T # Block i, layer 1 (MLP). a = tax_layer_norm_lookup(A, A, "encoder", "pre_mlp_layer_norm" ) a , a = tax_mlp_lookup(A, A, "encoder", A ) a = layer_norm if split_mlp_wi: a = wi[0].T a = wi[1].T else: a = wi.T a = wo.T if scalable_attention: # convert the rel_embedding of each layer a = tax_relpos_bias_lookup( A, A, "encoder" ).T a = old["encoder/encoder_norm/scale"] if not scalable_attention: a = tax_relpos_bias_lookup( A, 0, "encoder" ).T a = tax_relpos_bias_lookup( A, 0, "decoder" ).T if not is_encoder_only: # Decoder. for i in range(A ): # Block i, layer 0 (Self Attention). a = tax_layer_norm_lookup(A, A, "decoder", "pre_self_attention_layer_norm" ) a , a , a , a = tax_attention_lookup(A, A, "decoder", "self_attention" ) a = layer_norm a = k.T a = o.T a = q.T a = v.T # Block i, layer 1 (Cross Attention). a = tax_layer_norm_lookup(A, A, "decoder", "pre_cross_attention_layer_norm" ) a , a , a , a = tax_attention_lookup(A, A, "decoder", "encoder_decoder_attention" ) a = layer_norm a = k.T a = o.T a = q.T a = v.T # Block i, layer 2 (MLP). a = tax_layer_norm_lookup(A, A, "decoder", "pre_mlp_layer_norm" ) a , a = tax_mlp_lookup(A, A, "decoder", A ) a = layer_norm if split_mlp_wi: a = wi[0].T a = wi[1].T else: a = wi.T a = wo.T if scalable_attention: # convert the rel_embedding of each layer a = tax_relpos_bias_lookup(A, A, "decoder" ).T a = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: a = old["decoder/logits_dense/kernel"].T return new def __magic_name__ ( A : Dict, A : bool ): '''simple docstring''' a = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: a = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: a = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) a = state_dict["shared.weight"] return state_dict def __magic_name__ ( A : Optional[int], A : Dict, A : str, A : int, A : str ): '''simple docstring''' a = checkpoints.load_tax_checkpoint(A ) a = convert_tax_to_pytorch( A, num_layers=config.num_layers, is_encoder_only=A, scalable_attention=A ) a = make_state_dict(A, A ) model.load_state_dict(A, strict=A ) def __magic_name__ ( A : List[str], A : Union[str, Any], A : List[Any], A : bool = False, A : bool = False, ): '''simple docstring''' a = MTaConfig.from_json_file(A ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: a = UMTaEncoderModel(A ) else: a = UMTaForConditionalGeneration(A ) # Load weights from tf checkpoint load_tax_weights_in_ta(A, A, A, A, A ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) # Verify that we can load the checkpoint. model.from_pretrained(A ) print("Done" ) if __name__ == "__main__": __lowerCAmelCase : int = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) parser.add_argument( '--scalable_attention', action='store_true', help='Whether the model uses scaled attention (umt5 model)', default=False, ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
107
def A_ ( snake_case : int ) -> None: '''simple docstring''' __UpperCamelCase = generate_pascal_triangle(snake_case ) for row_idx in range(snake_case ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [] for current_row_idx in range(snake_case ): __UpperCamelCase = populate_current_row(snake_case , snake_case ) triangle.append(snake_case ) return triangle def A_ ( snake_case : list[list[int]] , snake_case : int ) -> list[int]: '''simple docstring''' __UpperCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase , __UpperCamelCase = 1, 1 for current_col_idx in range(1 , snake_case ): calculate_current_element( snake_case , snake_case , snake_case , snake_case ) return current_row def A_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , ) -> None: '''simple docstring''' __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase = above_to_left_elt + above_to_right_elt def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [[1]] for row_index in range(1 , snake_case ): __UpperCamelCase = [0] + result[-1] + [0] __UpperCamelCase = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase = sum(divmod(snake_case , 2 ) ) __UpperCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase = row_first_half + row_second_half result.append(snake_case ) return result def A_ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None: __UpperCamelCase = f"{func.__name__}({value})" __UpperCamelCase = timeit(f"__main__.{call}" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case , snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
108
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase__ : Any = parser.parse_args() lowercase__ : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase__ : List[str] = CLIPImageProcessor() lowercase__ : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase__ : Optional[Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
328
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __lowerCAmelCase : str = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) __lowerCAmelCase : ClassVar[Features] = Features({'text': Value('string' )} ) __lowerCAmelCase : ClassVar[Features] = Features({'labels': ClassLabel} ) __lowerCAmelCase : str = "text" __lowerCAmelCase : str = "labels" def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' if self.label_column not in features: raise ValueError(F"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , _SCREAMING_SNAKE_CASE ): raise ValueError(F"Column {self.label_column} is not a ClassLabel." ) UpperCAmelCase : Any = copy.deepcopy(self ) UpperCAmelCase : int = self.label_schema.copy() UpperCAmelCase : Optional[Any] = features[self.label_column] UpperCAmelCase : Optional[int] = label_schema return task_template @property def SCREAMING_SNAKE_CASE ( self ) -> Dict[str, str]: '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
109
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowercase__ : Union[str, Any] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" lowercase__ : Optional[Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" lowercase__ : Any = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" lowercase__ : Optional[int] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" lowercase__ : Optional[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[1, 10, 100] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3.0 )-> Union[str, Any]: '''simple docstring''' if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE_ ) as executor: __UpperCamelCase = [] __UpperCamelCase = Counter() __UpperCamelCase = 0 __UpperCamelCase = defaultdict(SCREAMING_SNAKE_CASE_ ) for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ): for candidate in candidates: __UpperCamelCase = candidate + '''\n''' + test_case __UpperCamelCase = (test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase = executor.submit(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) futures.append(SCREAMING_SNAKE_CASE_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) __UpperCamelCase , __UpperCamelCase = [], [] for result in results.values(): result.sort() __UpperCamelCase = [r[1]['''passed'''] for r in result] total.append(len(SCREAMING_SNAKE_CASE_ ) ) correct.append(sum(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = k __UpperCamelCase = {F"pass@{k}": estimate_pass_at_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A_ ( snake_case : Tuple , snake_case : Union[str, Any] , snake_case : List[Any] ) -> Optional[Any]: '''simple docstring''' def estimator(snake_case : int , snake_case : int , snake_case : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(snake_case , snake_case ): __UpperCamelCase = itertools.repeat(snake_case , len(snake_case ) ) else: assert len(snake_case ) == len(snake_case ) __UpperCamelCase = iter(snake_case ) return np.array([estimator(int(snake_case ) , int(snake_case ) , snake_case ) for n, c in zip(snake_case , snake_case )] )
328
0
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): @register_to_config def __init__( self : List[Any] ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : List[Any] = None ,_UpperCAmelCase : Any = None ): super().__init__() _a : Tuple = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _a : Any = torch.zeros(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) else: _a : str = None _a : Optional[Any] = torch.nn.Parameter(SCREAMING_SNAKE_CASE_ ) class __magic_name__ ( SCREAMING_SNAKE_CASE_ ): lowerCAmelCase : Tuple = 4_2 lowerCAmelCase : Any = 4_2 lowerCAmelCase : Optional[Any] = 4_2 lowerCAmelCase : Tuple = 4_2 lowerCAmelCase : Optional[int] = 4_2 lowerCAmelCase : Union[str, Any] = 4_2 def __init__( self : Any ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Optional[int] ,): super().__init__() self.register_modules( vqvae=SCREAMING_SNAKE_CASE_ ,transformer=SCREAMING_SNAKE_CASE_ ,text_encoder=SCREAMING_SNAKE_CASE_ ,tokenizer=SCREAMING_SNAKE_CASE_ ,scheduler=SCREAMING_SNAKE_CASE_ ,learned_classifier_free_sampling_embeddings=SCREAMING_SNAKE_CASE_ ,) def __lowercase ( self : List[Any] ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Union[str, Any] ): _a : Any = len(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) else 1 # get prompt text embeddings _a : Any = self.tokenizer( SCREAMING_SNAKE_CASE_ ,padding='max_length' ,max_length=self.tokenizer.model_max_length ,return_tensors='pt' ,) _a : str = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _a : List[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _a : List[Any] = text_input_ids[:, : self.tokenizer.model_max_length] _a : Optional[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _a : str = prompt_embeds / prompt_embeds.norm(dim=-1 ,keepdim=SCREAMING_SNAKE_CASE_ ) # duplicate text embeddings for each generation per prompt _a : List[Any] = prompt_embeds.repeat_interleave(SCREAMING_SNAKE_CASE_ ,dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _a : Any = self.learned_classifier_free_sampling_embeddings.embeddings _a : Optional[Any] = negative_prompt_embeds.unsqueeze(0 ).repeat(SCREAMING_SNAKE_CASE_ ,1 ,1 ) else: _a : Tuple = [''] * batch_size _a : Dict = text_input_ids.shape[-1] _a : int = self.tokenizer( SCREAMING_SNAKE_CASE_ ,padding='max_length' ,max_length=SCREAMING_SNAKE_CASE_ ,truncation=SCREAMING_SNAKE_CASE_ ,return_tensors='pt' ,) _a : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _a : Any = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 ,keepdim=SCREAMING_SNAKE_CASE_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _a : str = negative_prompt_embeds.shape[1] _a : str = negative_prompt_embeds.repeat(1 ,SCREAMING_SNAKE_CASE_ ,1 ) _a : List[str] = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,SCREAMING_SNAKE_CASE_ ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a : List[str] = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Optional[int] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[str] = 100 ,_UpperCAmelCase : List[str] = 5.0 ,_UpperCAmelCase : List[str] = 1.0 ,_UpperCAmelCase : Optional[int] = 1 ,_UpperCAmelCase : Dict = None ,_UpperCAmelCase : str = None ,_UpperCAmelCase : List[Any] = "pil" ,_UpperCAmelCase : str = True ,_UpperCAmelCase : Optional[Any] = None ,_UpperCAmelCase : Optional[int] = 1 ,): if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): _a : List[Any] = 1 elif isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): _a : int = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}""" ) _a : Optional[int] = batch_size * num_images_per_prompt _a : Any = guidance_scale > 1.0 _a : Dict = self._encode_prompt(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(SCREAMING_SNAKE_CASE_ )}.""" ) # get the initial completely masked latents unless the user supplied it _a : Any = (batch_size, self.transformer.num_latent_pixels) if latents is None: _a : Dict = self.transformer.num_vector_embeds - 1 _a : Optional[int] = torch.full(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) _a : Any = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ,device=self.device ) _a : Tuple = self.scheduler.timesteps.to(self.device ) _a : Any = latents for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the sample if we are doing classifier free guidance _a : str = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _a : List[Any] = self.transformer(SCREAMING_SNAKE_CASE_ ,encoder_hidden_states=SCREAMING_SNAKE_CASE_ ,timestep=SCREAMING_SNAKE_CASE_ ).sample if do_classifier_free_guidance: _a , _a : Dict = model_output.chunk(2 ) _a : str = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(SCREAMING_SNAKE_CASE_ ,dim=1 ,keepdim=SCREAMING_SNAKE_CASE_ ) _a : str = self.truncate(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) # remove `log(0)`'s (`-inf`s) _a : List[str] = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _a : List[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE_ ,timestep=SCREAMING_SNAKE_CASE_ ,sample=SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) _a : Union[str, Any] = self.vqvae.config.vq_embed_dim _a : List[Any] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _a : Union[str, Any] = self.vqvae.quantize.get_codebook_entry(SCREAMING_SNAKE_CASE_ ,shape=SCREAMING_SNAKE_CASE_ ) _a : List[Any] = self.vqvae.decode(SCREAMING_SNAKE_CASE_ ,force_not_quantize=SCREAMING_SNAKE_CASE_ ).sample _a : Optional[Any] = (image / 2 + 0.5).clamp(0 ,1 ) _a : str = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": _a : str = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_ ) def __lowercase ( self : List[str] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : List[Any] ): _a , _a : List[Any] = torch.sort(SCREAMING_SNAKE_CASE_ ,1 ,descending=SCREAMING_SNAKE_CASE_ ) _a : int = torch.exp(SCREAMING_SNAKE_CASE_ ) _a : Any = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _a : int = torch.full_like(keep_mask[:, 0:1, :] ,SCREAMING_SNAKE_CASE_ ) _a : List[str] = torch.cat((all_true, keep_mask) ,dim=1 ) _a : Optional[int] = keep_mask[:, :-1, :] _a : List[Any] = keep_mask.gather(1 ,indices.argsort(1 ) ) _a : List[Any] = log_p_x_0.clone() _a : List[Any] = -torch.inf # -inf = log(0) return rv
89
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__) lowercase__ : Optional[Any] = ["names", "prefix"] lowercase__ : List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowercase__ : Optional[Any] = ["encoding_errors", "on_bad_lines"] lowercase__ : List[str] = ["date_format"] @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): """simple docstring""" _snake_case = "," _snake_case = None _snake_case = "infer" _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = False _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = False _snake_case = True _snake_case = None _snake_case = "." _snake_case = None _snake_case = '"' _snake_case = 0 _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = 0 _snake_case = True _snake_case = False _snake_case = None _snake_case = 10000 _snake_case = None _snake_case = "strict" _snake_case = "error" _snake_case = None def A__ ( self )-> Any: '''simple docstring''' if self.delimiter is not None: __UpperCamelCase = self.delimiter if self.column_names is not None: __UpperCamelCase = self.column_names @property def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): """simple docstring""" _snake_case = CsvConfig def A__ ( self )-> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) __UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ): __UpperCamelCase = data_files if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) ) return splits def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.Table: '''simple docstring''' if self.config.features is not None: __UpperCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE_ ) for feature in self.config.features.values() ): # cheaper cast __UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __UpperCamelCase = table_cast(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return pa_table def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __UpperCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ): __UpperCamelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , iterator=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = pa.Table.from_pandas(SCREAMING_SNAKE_CASE_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}" ) raise
328
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase_ = { "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["MobileViTFeatureExtractor"] lowerCamelCase_ = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
244
from __future__ import annotations import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def A_ ( snake_case : int ) -> list[int]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) __UpperCamelCase = [] for num in range(len(snake_case ) ): __UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: __UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case ) == n: return list_nums return [] def A_ ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
328
0
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version a_ : str = logging.getLogger(__name__) require_version("""pytorch_lightning>=1.0.4""") a_ : Union[str, Any] = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization a_ : Optional[Any] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } a_ : Optional[int] = sorted(arg_to_scheduler.keys()) a_ : Dict = "{" + ", ".join(arg_to_scheduler_choices) + "}" class snake_case ( pl.LightningModule ): """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=None , UpperCamelCase="base" , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , **UpperCamelCase , ): """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 0 lowerCamelCase_ = Path(self.hparams.output_dir ) lowerCamelCase_ = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: lowerCamelCase_ = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) else: lowerCamelCase_ = config lowerCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert hasattr(self.config , SCREAMING_SNAKE_CASE_ ), f'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , SCREAMING_SNAKE_CASE_ , getattr(self.hparams , SCREAMING_SNAKE_CASE_ ) ) if tokenizer is None: lowerCamelCase_ = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=SCREAMING_SNAKE_CASE_ , ) else: lowerCamelCase_ = tokenizer lowerCamelCase_ = MODEL_MODES[mode] if model is None: lowerCamelCase_ = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=SCREAMING_SNAKE_CASE_ , ) else: lowerCamelCase_ = model def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.model_type.from_pretrained(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = arg_to_scheduler[self.hparams.lr_scheduler] lowerCamelCase_ = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) lowerCamelCase_ = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model lowerCamelCase_ = ["bias", "LayerNorm.weight"] lowerCamelCase_ = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: lowerCamelCase_ = Adafactor( SCREAMING_SNAKE_CASE_ , lr=self.hparams.learning_rate , scale_parameter=SCREAMING_SNAKE_CASE_ , relative_step=SCREAMING_SNAKE_CASE_ ) else: lowerCamelCase_ = AdamW( SCREAMING_SNAKE_CASE_ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) lowerCamelCase_ = optimizer lowerCamelCase_ = self.get_lr_scheduler() return [optimizer], [scheduler] def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" return self.validation_step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.validation_end(SCREAMING_SNAKE_CASE_ ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores lowerCamelCase_ = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def snake_case ( self , UpperCamelCase ): """simple docstring""" if stage == "test": lowerCamelCase_ = len(self.test_dataloader().dataset ) else: lowerCamelCase_ = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = len(self.train_dataloader().dataset ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase = False ): """simple docstring""" raise NotImplementedError("You must implement this for your task" ) def snake_case ( self ): """simple docstring""" return self.train_loader def snake_case ( self ): """simple docstring""" return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=SCREAMING_SNAKE_CASE_ ) def snake_case ( self ): """simple docstring""" return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=SCREAMING_SNAKE_CASE_ ) def snake_case ( self , UpperCamelCase ): """simple docstring""" return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( SCREAMING_SNAKE_CASE_ , list(filter(SCREAMING_SNAKE_CASE_ , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.output_dir.joinpath("best_tfmr" ) lowerCamelCase_ = self.step_count self.model.save_pretrained(SCREAMING_SNAKE_CASE_ ) self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) @staticmethod def snake_case ( UpperCamelCase , UpperCamelCase ): """simple docstring""" parser.add_argument( "--model_name_or_path" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=SCREAMING_SNAKE_CASE_ , help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(SCREAMING_SNAKE_CASE_ ).parent / "test_run" / "cache" ) , type=SCREAMING_SNAKE_CASE_ , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=SCREAMING_SNAKE_CASE_ , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=SCREAMING_SNAKE_CASE_ , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=SCREAMING_SNAKE_CASE_ , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=SCREAMING_SNAKE_CASE_ , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5e-5 , type=SCREAMING_SNAKE_CASE_ , help="The initial learning rate for Adam." ) parser.add_argument( "--lr_scheduler" , default="linear" , choices=SCREAMING_SNAKE_CASE_ , metavar=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=SCREAMING_SNAKE_CASE_ , help="Weight decay if we apply some." ) parser.add_argument("--adam_epsilon" , default=1e-8 , type=SCREAMING_SNAKE_CASE_ , help="Epsilon for Adam optimizer." ) parser.add_argument("--warmup_steps" , default=0 , type=SCREAMING_SNAKE_CASE_ , help="Linear warmup over warmup_steps." ) parser.add_argument("--num_workers" , default=4 , type=SCREAMING_SNAKE_CASE_ , help="kwarg passed to DataLoader" ) parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=SCREAMING_SNAKE_CASE_ ) parser.add_argument("--train_batch_size" , default=32 , type=SCREAMING_SNAKE_CASE_ ) parser.add_argument("--eval_batch_size" , default=32 , type=SCREAMING_SNAKE_CASE_ ) parser.add_argument("--adafactor" , action="store_true" ) class snake_case ( pl.Callback ): """simple docstring""" def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class snake_case ( pl.Callback ): """simple docstring""" def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(SCREAMING_SNAKE_CASE_ ) class snake_case ( pl.Callback ): """simple docstring""" def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = trainer.lr_schedulers[0]["scheduler"] lowerCamelCase_ = {f'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE_ ) def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" rank_zero_info("***** Validation results *****" ) lowerCamelCase_ = trainer.callback_metrics # Log results for key in sorted(SCREAMING_SNAKE_CASE_ ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(SCREAMING_SNAKE_CASE_ , str(metrics[key] ) ) ) def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" rank_zero_info("***** Test results *****" ) lowerCamelCase_ = trainer.callback_metrics # Log and save results to file lowerCamelCase_ = os.path.join(pl_module.hparams.output_dir , "test_results.txt" ) with open(SCREAMING_SNAKE_CASE_ , "w" ) as writer: for key in sorted(SCREAMING_SNAKE_CASE_ ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(SCREAMING_SNAKE_CASE_ , str(metrics[key] ) ) ) writer.write("{} = {}\n".format(SCREAMING_SNAKE_CASE_ , str(metrics[key] ) ) ) def __snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ): parser.add_argument( "--output_dir" , default=str(Path(UpperCAmelCase_ ).parent / "test_run" / "model_checkpoints" ) , type=UpperCAmelCase_ , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=UpperCAmelCase_ , default="O2" , help=( "For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=UpperCAmelCase_ ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=UpperCAmelCase_ , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=UpperCAmelCase_ , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=UpperCAmelCase_ , default=42 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(UpperCAmelCase_ ).parent / "test_run" / "dummy-train-data" ) , type=UpperCAmelCase_ , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def __snake_case ( UpperCAmelCase_ : BaseTransformer , UpperCAmelCase_ : argparse.Namespace , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=[] , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : List[Any] , ): pl.seed_everything(args.seed ) # init model lowerCamelCase_ = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=UpperCAmelCase_ ) # add custom checkpoints if checkpoint_callback is None: lowerCamelCase_ = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(UpperCAmelCase_ ) if logging_callback is None: lowerCamelCase_ = LoggingCallback() lowerCamelCase_ = {} if args.fpaa: lowerCamelCase_ = 16 if args.gpus > 1: lowerCamelCase_ = "auto" lowerCamelCase_ = "ddp" lowerCamelCase_ = args.accumulate_grad_batches lowerCamelCase_ = None lowerCamelCase_ = "auto" lowerCamelCase_ = pl.Trainer.from_argparse_args( UpperCAmelCase_ , weights_summary=UpperCAmelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=UpperCAmelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **UpperCAmelCase_ , ) if args.do_train: trainer.fit(UpperCAmelCase_ ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
55
from __future__ import annotations from collections.abc import Callable def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float: '''simple docstring''' __UpperCamelCase = x_start __UpperCamelCase = fnc(snake_case ) __UpperCamelCase = 0.0 for _ in range(snake_case ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCamelCase = (x_end - x_start) / steps + xa __UpperCamelCase = fnc(snake_case ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCamelCase = xa __UpperCamelCase = fxa return area if __name__ == "__main__": def A_ ( snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowercase__ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 1_0
328
0
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __A : Optional[Any] = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" __A : str = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" __A : Dict = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Tuple: '''simple docstring''' return float((preds == labels).mean() ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="binary" ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = simple_accuracy(_UpperCAmelCase, _UpperCAmelCase ) lowerCAmelCase : int = float(fa_score(y_true=_UpperCAmelCase, y_pred=_UpperCAmelCase, average=_UpperCAmelCase ) ) return { "accuracy": acc, "f1": fa, } def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> str: '''simple docstring''' lowerCAmelCase : List[Any] = {} for id_pred, label in zip(_UpperCAmelCase, _UpperCAmelCase ): lowerCAmelCase : List[Any] = f"{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}" lowerCAmelCase : Optional[int] = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCAmelCase : Optional[int] = [(pred, label)] lowerCAmelCase , lowerCAmelCase : Any = [], [] for question, preds_labels in question_map.items(): lowerCAmelCase , lowerCAmelCase : Union[str, Any] = zip(*_UpperCAmelCase ) lowerCAmelCase : int = fa_score(y_true=_UpperCAmelCase, y_pred=_UpperCAmelCase, average='macro' ) fas.append(_UpperCAmelCase ) lowerCAmelCase : str = int(sum(pred == label for pred, label in preds_labels ) == len(_UpperCAmelCase ) ) ems.append(_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = float(sum(_UpperCAmelCase ) / len(_UpperCAmelCase ) ) lowerCAmelCase : List[Any] = sum(_UpperCAmelCase ) / len(_UpperCAmelCase ) lowerCAmelCase : Dict = float(fa_score(y_true=_UpperCAmelCase, y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def lowercase__ ( self : str ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def lowercase__ ( self : int ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} elif self.config_name == "cb": return acc_and_fa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , fa_avg='macro' ) elif self.config_name == "record": lowerCAmelCase : int = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] lowerCAmelCase : List[Any] = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[0] elif self.config_name == "multirc": return evaluate_multirc(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
138
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : int = logging.get_logger(__name__) lowercase__ : List[str] = ["model.decoder.embed_positions.weights"] def A_ ( snake_case : Any ) -> List[Any]: '''simple docstring''' if "emb" in name: __UpperCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: __UpperCamelCase = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: __UpperCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: __UpperCamelCase = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: __UpperCamelCase = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: __UpperCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: __UpperCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: __UpperCamelCase = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: __UpperCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: __UpperCamelCase = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: __UpperCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def A_ ( snake_case : OrderedDict , snake_case : int ) -> Tuple[Dict, Dict]: '''simple docstring''' __UpperCamelCase = list(state_dict.keys() ) __UpperCamelCase = {} for key in keys: __UpperCamelCase = state_dict.pop(snake_case ) __UpperCamelCase = rename_keys(snake_case ) if "in_proj_weight" in key: # split fused qkv proj __UpperCamelCase = val[:hidden_size, :] __UpperCamelCase = val[hidden_size : 2 * hidden_size, :] __UpperCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __UpperCamelCase = val else: __UpperCamelCase = val return state_dict, enc_dec_proj_state_dict def A_ ( snake_case : str ) -> MusicgenDecoderConfig: '''simple docstring''' if checkpoint == "small": # default config values __UpperCamelCase = 1024 __UpperCamelCase = 24 __UpperCamelCase = 16 elif checkpoint == "medium": __UpperCamelCase = 1536 __UpperCamelCase = 48 __UpperCamelCase = 24 elif checkpoint == "large": __UpperCamelCase = 2048 __UpperCamelCase = 48 __UpperCamelCase = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) __UpperCamelCase = MusicgenDecoderConfig( hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , ) return config @torch.no_grad() def A_ ( snake_case : Any , snake_case : str=None , snake_case : Any=None , snake_case : Union[str, Any]="cpu" ) -> List[Any]: '''simple docstring''' __UpperCamelCase = MusicGen.get_pretrained(snake_case , device=snake_case ) __UpperCamelCase = decoder_config_from_checkpoint(snake_case ) __UpperCamelCase = fairseq_model.lm.state_dict() __UpperCamelCase , __UpperCamelCase = rename_state_dict( snake_case , hidden_size=decoder_config.hidden_size ) __UpperCamelCase = TaEncoderModel.from_pretrained('''t5-base''' ) __UpperCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) __UpperCamelCase = MusicgenForCausalLM(snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __UpperCamelCase , __UpperCamelCase = decoder.load_state_dict(snake_case , strict=snake_case ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(snake_case ) if len(snake_case ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(snake_case ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model __UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(snake_case ) # check we can do a forward pass __UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __UpperCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __UpperCamelCase = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor __UpperCamelCase = AutoTokenizer.from_pretrained('''t5-base''' ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) __UpperCamelCase = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case ) # set the appropriate bos/pad token ids __UpperCamelCase = 2048 __UpperCamelCase = 2048 # set other default generation config params __UpperCamelCase = int(30 * audio_encoder.config.frame_rate ) __UpperCamelCase = True __UpperCamelCase = 3.0 if pytorch_dump_folder is not None: Path(snake_case ).mkdir(exist_ok=snake_case ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(snake_case ) processor.push_to_hub(snake_case ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowercase__ : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
328
0
import numpy # List of input, output pairs a_ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) a_ = (((515, 22, 13), 555), ((61, 35, 49), 150)) a_ = [2, 4, 1, 5] a_ = len(train_data) a_ = 0.0_09 def a__ ( _UpperCamelCase : Dict ,_UpperCamelCase : Optional[int]="train" ): return calculate_hypothesis_value(_UpperCamelCase ,_UpperCamelCase ) - output( _UpperCamelCase ,_UpperCamelCase ) def a__ ( _UpperCamelCase : Optional[Any] ): __lowerCamelCase = 0 for i in range(len(_UpperCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def a__ ( _UpperCamelCase : int ,_UpperCamelCase : Tuple ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def a__ ( _UpperCamelCase : Tuple ,_UpperCamelCase : str ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : int=m ): __lowerCamelCase = 0 for i in range(_UpperCamelCase ): if index == -1: summation_value += _error(_UpperCamelCase ) else: summation_value += _error(_UpperCamelCase ) * train_data[i][0][index] return summation_value def a__ ( _UpperCamelCase : Optional[Any] ): __lowerCamelCase = summation_of_cost_derivative(_UpperCamelCase ,_UpperCamelCase ) / m return cost_derivative_value def a__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output __lowerCamelCase = 0.000_002 __lowerCamelCase = 0 __lowerCamelCase = 0 while True: j += 1 __lowerCamelCase = [0, 0, 0, 0] for i in range(0 ,len(_UpperCamelCase ) ): __lowerCamelCase = get_cost_derivative(i - 1 ) __lowerCamelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _UpperCamelCase ,_UpperCamelCase ,atol=_UpperCamelCase ,rtol=_UpperCamelCase ,): break __lowerCamelCase = temp_parameter_vector print(('''Number of iterations:''', j) ) def a__ ( ): for i in range(len(_UpperCamelCase ) ): print(('''Actual output value:''', output(_UpperCamelCase ,'''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(_UpperCamelCase ,'''test''' )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
330
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : List[str] = 1_6 lowercase__ : str = 3_2 def A_ ( snake_case : Accelerator , snake_case : int = 16 ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCamelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase = datasets.map( snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase = 16 elif accelerator.mixed_precision != "no": __UpperCamelCase = 8 else: __UpperCamelCase = None return tokenizer.pad( snake_case , padding='''longest''' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) __UpperCamelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : Union[str, Any] = mocked_dataloaders # noqa: F811 def A_ ( snake_case : List[str] , snake_case : List[Any] ) -> Tuple: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case ) == "1": __UpperCamelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: __UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['''lr'''] __UpperCamelCase = int(config['''num_epochs'''] ) __UpperCamelCase = int(config['''seed'''] ) __UpperCamelCase = int(config['''batch_size'''] ) set_seed(snake_case ) __UpperCamelCase , __UpperCamelCase = get_dataloaders(snake_case , snake_case ) __UpperCamelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case ) # Instantiate scheduler __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __UpperCamelCase = os.path.split(snake_case )[-1].split('''.''' )[0] accelerator.init_trackers(snake_case , snake_case ) # Now we train the model for epoch in range(snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __UpperCamelCase = 0 for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case , references=snake_case , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(snake_case ), '''epoch''': epoch, } , step=snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def A_ ( ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case , default=snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
328
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: snake_case_ = None snake_case_ = logging.get_logger(__name__) snake_case_ = "▁" snake_case_ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} snake_case_ = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } snake_case_ = { "google/pegasus-xsum": 512, } class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PegasusTokenizer __UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self :Any , lowercase_ :Any=None , lowercase_ :List[Any]=None , lowercase_ :Dict="<pad>" , lowercase_ :List[Any]="</s>" , lowercase_ :Dict="<unk>" , lowercase_ :Tuple="<mask_2>" , lowercase_ :Union[str, Any]="<mask_1>" , lowercase_ :Union[str, Any]=None , lowercase_ :List[str]=1_03 , **lowercase_ :str , ) -> List[str]: UpperCAmelCase = offset if additional_special_tokens is not None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError( f"""additional_special_tokens should be of type {type(SCREAMING_SNAKE_CASE_ )}, but is""" f""" {type(SCREAMING_SNAKE_CASE_ )}""" ) UpperCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(SCREAMING_SNAKE_CASE_ ) , self.offset - 1 ) ] if len(set(SCREAMING_SNAKE_CASE_ ) ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) UpperCAmelCase = additional_special_tokens_extended else: UpperCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , mask_token_sent=SCREAMING_SNAKE_CASE_ , offset=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase = vocab_file UpperCAmelCase = False if not self.vocab_file else True def UpperCAmelCase__ ( self :str , lowercase_ :Optional[Any] ) -> Optional[Any]: UpperCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( 'There should be 3 special tokens: mask_token, pad_token, and eos_token +' f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :Optional[int] , lowercase_ :List[Any] = None , lowercase_ :Any = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(SCREAMING_SNAKE_CASE_ ) elif token_ids_a is None: return self._special_token_mask(SCREAMING_SNAKE_CASE_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :int , lowercase_ :int=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Any , lowercase_ :Union[str, Any] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
78
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ : str = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'whisper' _snake_case = ['past_key_values'] _snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE_=51865 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=50257 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1500 , SCREAMING_SNAKE_CASE_=448 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[220, 50256] , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=7 , **SCREAMING_SNAKE_CASE_ , )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = num_mel_bins __UpperCamelCase = d_model __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = use_cache __UpperCamelCase = encoder_layers __UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase = max_source_positions __UpperCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __UpperCamelCase = classifier_proj_size __UpperCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length __UpperCamelCase = mask_feature_min_masks __UpperCamelCase = median_filter_width super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def A__ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' __UpperCamelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: __UpperCamelCase = {0: '''batch'''} else: __UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' ) return common_inputs def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 22050 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 220 , )-> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase = OrderedDict() __UpperCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = encoder_inputs['''input_features'''].shape[2] __UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __UpperCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = encoder_inputs.pop('''input_features''' ) __UpperCamelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: __UpperCamelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def A__ ( self )-> float: '''simple docstring''' return 1E-3
328
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case__ : """simple docstring""" def __init__( self : Union[str, Any], _snake_case : Dict, _snake_case : List[Any]=1_3, _snake_case : List[Any]=3_0, _snake_case : Dict=2, _snake_case : int=3, _snake_case : Dict=True, _snake_case : str=True, _snake_case : List[Any]=3_2, _snake_case : Union[str, Any]=5, _snake_case : List[Any]=4, _snake_case : List[Any]=3_7, _snake_case : Union[str, Any]="gelu", _snake_case : Tuple=0.1, _snake_case : int=0.1, _snake_case : Union[str, Any]=1_0, _snake_case : Tuple=0.0_2, _snake_case : int=3, _snake_case : List[Any]=0.6, _snake_case : str=None, ) ->Any: snake_case__ : int = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Tuple = image_size snake_case__ : Optional[int] = patch_size snake_case__ : Optional[Any] = num_channels snake_case__ : Union[str, Any] = is_training snake_case__ : Optional[int] = use_labels snake_case__ : List[Any] = hidden_size snake_case__ : List[str] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : Union[str, Any] = intermediate_size snake_case__ : int = hidden_act snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Tuple = attention_probs_dropout_prob snake_case__ : List[str] = type_sequence_label_size snake_case__ : List[Any] = initializer_range snake_case__ : Tuple = mask_ratio snake_case__ : Dict = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case__ : List[Any] = (image_size // patch_size) ** 2 snake_case__ : Union[str, Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowercase_ ( self : Tuple ) ->Optional[Any]: snake_case__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : List[str] = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case__ : List[Any] = self.get_config() return config, pixel_values, labels def lowercase_ ( self : str ) ->str: return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, ) def lowercase_ ( self : str, _snake_case : Dict, _snake_case : List[Any], _snake_case : str ) ->List[Any]: snake_case__ : Optional[int] = ViTMAEModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() snake_case__ : List[str] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Tuple, _snake_case : Optional[int], _snake_case : Optional[int], _snake_case : Optional[Any] ) ->Tuple: snake_case__ : Any = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() snake_case__ : int = model(SCREAMING_SNAKE_CASE_ ) snake_case__ : List[str] = (self.image_size // self.patch_size) ** 2 snake_case__ : Tuple = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case__ : List[Any] = 1 snake_case__ : Tuple = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() snake_case__ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : Tuple = model(SCREAMING_SNAKE_CASE_ ) snake_case__ : Union[str, Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) def lowercase_ ( self : Optional[int] ) ->Optional[Any]: snake_case__ : Union[str, Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Dict = config_and_inputs snake_case__ : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _SCREAMING_SNAKE_CASE = {"""feature-extraction""": ViTMAEModel} if is_torch_available() else {} _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def lowercase_ ( self : Dict ) ->List[Any]: snake_case__ : Dict = ViTMAEModelTester(self ) snake_case__ : List[str] = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_, hidden_size=3_7 ) def lowercase_ ( self : Union[str, Any] ) ->List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def lowercase_ ( self : int ) ->Union[str, Any]: pass def lowercase_ ( self : List[str] ) ->Optional[Any]: snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) snake_case__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_, nn.Linear ) ) def lowercase_ ( self : List[str] ) ->Tuple: snake_case__ , snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : int = model_class(SCREAMING_SNAKE_CASE_ ) snake_case__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : List[Any] = [*signature.parameters.keys()] snake_case__ : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self : List[Any] ) ->Tuple: snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self : Tuple ) ->List[Any]: snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self : List[str], _snake_case : Any, _snake_case : List[Any], _snake_case : Any ) ->Optional[Any]: np.random.seed(2 ) snake_case__ : Any = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) snake_case__ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case__ : Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case__ : Optional[Any] = pt_noise super().check_pt_tf_models(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self : List[Any] ) ->Dict: snake_case__ , snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): snake_case__ : Optional[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) snake_case__ : Dict = outputs[0].cpu().numpy() snake_case__ : int = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE_ ) snake_case__ : Optional[Any] = model_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): snake_case__ : Tuple = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) # Make sure we don't have nans snake_case__ : Optional[Any] = after_outputs[0].cpu().numpy() snake_case__ : Dict = 0 snake_case__ : Dict = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(SCREAMING_SNAKE_CASE_, 1e-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowercase_ ( self : Dict ) ->List[str]: pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowercase_ ( self : int ) ->Tuple: pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowercase_ ( self : Optional[int] ) ->Optional[int]: pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def lowercase_ ( self : Union[str, Any] ) ->Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self : Dict ) ->Dict: pass @slow def lowercase_ ( self : Tuple ) ->List[Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Dict = ViTMAEModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def lowercase_ (): snake_case__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self : int ) ->Optional[Any]: return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def lowercase_ ( self : List[str] ) ->Optional[int]: np.random.seed(2 ) snake_case__ : int = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(SCREAMING_SNAKE_CASE_ ) snake_case__ : int = self.default_image_processor snake_case__ : Optional[int] = prepare_img() snake_case__ : int = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case__ : Union[str, Any] = ViTMAEConfig() snake_case__ : Tuple = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case__ : Union[str, Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): snake_case__ : str = model(**SCREAMING_SNAKE_CASE_, noise=torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ ) ) # verify the logits snake_case__ : Union[str, Any] = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) snake_case__ : List[Any] = torch.tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice.to(SCREAMING_SNAKE_CASE_ ), atol=1e-4 ) )
277
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : Tuple = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'xlnet' _snake_case = ['mems'] _snake_case = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , SCREAMING_SNAKE_CASE_=32000 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="bi" , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=-1 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="tanh" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = n_layer __UpperCamelCase = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) __UpperCamelCase = d_model // n_head __UpperCamelCase = ff_activation __UpperCamelCase = d_inner __UpperCamelCase = untie_r __UpperCamelCase = attn_type __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = dropout __UpperCamelCase = mem_len __UpperCamelCase = reuse_len __UpperCamelCase = bi_data __UpperCamelCase = clamp_len __UpperCamelCase = same_length __UpperCamelCase = summary_type __UpperCamelCase = summary_use_proj __UpperCamelCase = summary_activation __UpperCamelCase = summary_last_dropout __UpperCamelCase = start_n_top __UpperCamelCase = end_n_top __UpperCamelCase = bos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = kwargs['''use_cache'''] __UpperCamelCase = use_mems_eval __UpperCamelCase = use_mems_train super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> Optional[Any]: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
328
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase : Tuple = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowercase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
99
from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None def __repr__( self )-> str: '''simple docstring''' return F"Node({self.data})" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = None def __iter__( self )-> Any: '''simple docstring''' __UpperCamelCase = self.head while node: yield node.data __UpperCamelCase = node.next def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self )-> str: '''simple docstring''' return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] ) def __getitem__( self , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) __UpperCamelCase = self.head for _ in range(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = current.next __UpperCamelCase = data def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' self.insert_nth(0 , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) __UpperCamelCase = Node(SCREAMING_SNAKE_CASE_ ) if self.head is None: __UpperCamelCase = new_node elif index == 0: __UpperCamelCase = self.head # link new_node to head __UpperCamelCase = new_node else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = new_node def A__ ( self )-> None: # print every node data '''simple docstring''' print(self ) def A__ ( self )-> Any: '''simple docstring''' return self.delete_nth(0 ) def A__ ( self )-> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def A__ ( self , SCREAMING_SNAKE_CASE_ = 0 )-> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) __UpperCamelCase = self.head # default first node if index == 0: __UpperCamelCase = self.head.next else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = temp.next.next return delete_node.data def A__ ( self )-> bool: '''simple docstring''' return self.head is None def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = self.head while current: # Store the current node's next node. __UpperCamelCase = current.next # Make the current node's next point backwards __UpperCamelCase = prev # Make the previous node be the current node __UpperCamelCase = current # Make the current node the next node (to progress iteration) __UpperCamelCase = next_node # Return prev in order to put the head at the end __UpperCamelCase = prev def A_ ( ) -> None: '''simple docstring''' __UpperCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(snake_case ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(snake_case ) == i linked_list.insert_nth(snake_case , i + 1 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(snake_case ) == 9 assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(snake_case ) == "->".join(str(snake_case ) for i in range(-8 , 1 ) ) def A_ ( ) -> None: '''simple docstring''' __UpperCamelCase = [ -9, 100, Node(77345112 ), '''dlrow olleH''', 7, 5555, 0, -192.55555, '''Hello, world!''', 77.9, Node(10 ), None, None, 12.20, ] __UpperCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(snake_case ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCamelCase = linked_list.delete_head() assert result == -9 assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(snake_case ) assert ( str(snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(snake_case ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def A_ ( ) -> Any: '''simple docstring''' from doctest import testmod testmod() __UpperCamelCase = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(snake_case ) print('''\nReading/changing Node data using indexing:''' ) print(f"Element at Position 1: {linked_list[1]}" ) __UpperCamelCase = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(snake_case ) print(f"length of linked_list is : {len(snake_case )}" ) if __name__ == "__main__": main()
328
0
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline __a :Dict = { "n_samples": 64, "horizon": 32, "num_inference_steps": 20, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": __a :Tuple = "hopper-medium-v2" __a :Tuple = gym.make(env_name) __a :Any = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) __a :List[Any] = env.reset() __a :int = 0 __a :Tuple = 0 __a :Union[str, Any] = 1000 __a :List[str] = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy __a :Tuple = pipeline(obs, planning_horizon=32) # execute action in environment __a :Tuple = env.step(denorm_actions) __a :Union[str, Any] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) __a :int = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
312
import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num def A_ ( snake_case : int ) -> bool: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = n while left <= right: __UpperCamelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
328
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCamelCase__ = logging.getLogger(__name__) @dataclass class A : __UpperCAmelCase : Any = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCAmelCase : Union[str, Any] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCAmelCase : Dict = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCAmelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __UpperCAmelCase : Union[str, Any] = field(default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Whether tp freeze the encoder.'} ) __UpperCAmelCase : List[Any] = field(default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class A : __UpperCAmelCase : Optional[int] = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __UpperCAmelCase : Tuple = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) __UpperCAmelCase : Any = field( default=10_24 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCAmelCase : int = field( default=1_28 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCAmelCase : List[str] = field( default=1_42 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) __UpperCAmelCase : str = field( default=1_42 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCAmelCase : Any = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) __UpperCAmelCase : Tuple = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) __UpperCAmelCase : Tuple = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) __UpperCAmelCase : Union[str, Any] = field(default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Source language id for translation.'} ) __UpperCAmelCase : Any = field(default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Target language id for translation.'} ) __UpperCAmelCase : Dict = field(default=SCREAMING_SNAKE_CASE_ , metadata={'help': '# num_beams to use for evaluation.'} ) __UpperCAmelCase : List[str] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def lowerCAmelCase_ ( __A, __A, __A ) -> int: '''simple docstring''' logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(__A, os.path.join(__A, f"""{split}_results.json""" ) ) def lowerCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = parser.parse_args_into_dataclasses() check_output_dir(__A ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ), training_args.fpaa, ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s", __A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) UpperCAmelCase__ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(__A, __A, __A ): assert hasattr(__A, __A ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(__A, __A, getattr(__A, __A ) ) UpperCAmelCase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path, from_tf=".ckpt" in model_args.model_name_or_path, config=__A, cache_dir=model_args.cache_dir, ) # use task specific params use_task_specific_params(__A, data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCAmelCase__ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__A, (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__A, __A ): UpperCAmelCase__ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__A ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCAmelCase__ = SeqaSeqDataset # Get datasets UpperCAmelCase__ = ( dataset_class( __A, type_path="train", data_dir=data_args.data_dir, n_obs=data_args.n_train, max_target_length=data_args.max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_train else None ) UpperCAmelCase__ = ( dataset_class( __A, type_path="val", data_dir=data_args.data_dir, n_obs=data_args.n_val, max_target_length=data_args.val_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCAmelCase__ = ( dataset_class( __A, type_path="test", data_dir=data_args.data_dir, n_obs=data_args.n_test, max_target_length=data_args.test_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_predict else None ) # Initialize our Trainer UpperCAmelCase__ = ( build_compute_metrics_fn(data_args.task, __A ) if training_args.predict_with_generate else None ) UpperCAmelCase__ = SeqaSeqTrainer( model=__A, args=__A, data_args=__A, train_dataset=__A, eval_dataset=__A, data_collator=SeqaSeqDataCollator( __A, __A, model.config.decoder_start_token_id, training_args.tpu_num_cores ), compute_metrics=__A, tokenizer=__A, ) UpperCAmelCase__ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCAmelCase__ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCAmelCase__ = train_result.metrics UpperCAmelCase__ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train", __A, training_args.output_dir ) all_metrics.update(__A ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCAmelCase__ = trainer.evaluate(metric_key_prefix="val" ) UpperCAmelCase__ = data_args.n_val UpperCAmelCase__ = round(metrics["val_loss"], 4 ) if trainer.is_world_process_zero(): handle_metrics("val", __A, training_args.output_dir ) all_metrics.update(__A ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCAmelCase__ = trainer.predict(test_dataset=__A, metric_key_prefix="test" ) UpperCAmelCase__ = test_output.metrics UpperCAmelCase__ = data_args.n_test if trainer.is_world_process_zero(): UpperCAmelCase__ = round(metrics["test_loss"], 4 ) handle_metrics("test", __A, training_args.output_dir ) all_metrics.update(__A ) if training_args.predict_with_generate: UpperCAmelCase__ = tokenizer.batch_decode( test_output.predictions, skip_special_tokens=__A, clean_up_tokenization_spaces=__A ) UpperCAmelCase__ = lmap(str.strip, __A ) write_txt_file(__A, os.path.join(training_args.output_dir, "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(__A, os.path.join(training_args.output_dir, "all_results.json" ) ) return all_metrics def lowerCAmelCase_ ( __A ) -> str: '''simple docstring''' main() if __name__ == "__main__": main()
65
def A_ ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowercase__ : List[str] = generate_large_matrix() lowercase__ : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A_ ( snake_case : list[list[int]] ) -> None: '''simple docstring''' assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid ) assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) ) def A_ ( snake_case : list[int] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCamelCase = (left + right) // 2 __UpperCamelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCamelCase = mid + 1 else: __UpperCamelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(grid[0] ) for i in range(len(snake_case ) ): __UpperCamelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case ) * len(grid[0] )) - total def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 for row in grid: for i, number in enumerate(snake_case ): if number < 0: total += len(snake_case ) - i break return total def A_ ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCamelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
0
import pytest import datasets # Import fixture modules as plugins lowercase = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def __UpperCAmelCase ( a_ , a_): for item in items: if any(marker in item.keywords for marker in ['integration', 'unit']): continue item.add_marker(pytest.mark.unit) def __UpperCAmelCase ( a_): config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12') @pytest.fixture(autouse=a_) def __UpperCAmelCase ( a_ , a_): snake_case_ = tmp_path_factory.getbasetemp() / 'cache' snake_case_ = test_hf_cache_home / 'datasets' snake_case_ = test_hf_cache_home / 'metrics' snake_case_ = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(a_)) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(a_)) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(a_)) snake_case_ = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(a_)) snake_case_ = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(a_)) @pytest.fixture(autouse=a_ , scope='session') def __UpperCAmelCase ( ): datasets.disable_progress_bar() @pytest.fixture(autouse=a_) def __UpperCAmelCase ( a_): monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , a_) @pytest.fixture def __UpperCAmelCase ( a_): monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , a_)
178
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = size if size is not None else {'''shortest_edge''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = crop_pct __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: __UpperCamelCase = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCamelCase = int(size['''height'''] / crop_pct ) else: __UpperCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) else: if "shortest_edge" in size: __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) elif "height" in size and "width" in size: __UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> str: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , )-> PIL.Image.Image: '''simple docstring''' __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
328
0
'''simple docstring''' __lowerCAmelCase = "Input must be a string of 8 numbers plus letter" __lowerCAmelCase = "TRWAGMYFPDXBNJZSQVHLCKE" def __lowerCamelCase ( lowerCAmelCase_ ) -> bool: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _a : int = f"""Expected string as input, found {type(lowerCAmelCase_ ).__name__}""" raise TypeError(lowerCAmelCase_ ) _a : Any = spanish_id.replace('-' , '' ).upper() if len(lowerCAmelCase_ ) != 9: raise ValueError(lowerCAmelCase_ ) try: _a : List[str] = int(spanish_id_clean[0:8] ) _a : int = spanish_id_clean[8] except ValueError as ex: raise ValueError(lowerCAmelCase_ ) from ex if letter.isdigit(): raise ValueError(lowerCAmelCase_ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
89
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowercase__ : Any = getLogger(__name__) lowercase__ : List[str] = "cuda" if torch.cuda.is_available() else "cpu" def A_ ( snake_case : List[str] , snake_case : str , snake_case : str , snake_case : int = 8 , snake_case : str = DEFAULT_DEVICE , snake_case : List[str]=False , snake_case : Union[str, Any]="summarization" , snake_case : str=None , **snake_case : List[Any] , ) -> Dict: '''simple docstring''' __UpperCamelCase = Path(snake_case ).open('''w''' , encoding='''utf-8''' ) __UpperCamelCase = str(snake_case ) __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case ).to(snake_case ) if fpaa: __UpperCamelCase = model.half() __UpperCamelCase = AutoTokenizer.from_pretrained(snake_case ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __UpperCamelCase = time.time() # update config with task specific params use_task_specific_params(snake_case , snake_case ) if prefix is None: __UpperCamelCase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(snake_case , snake_case ) ) ): __UpperCamelCase = [prefix + text for text in examples_chunk] __UpperCamelCase = tokenizer(snake_case , return_tensors='''pt''' , truncation=snake_case , padding='''longest''' ).to(snake_case ) __UpperCamelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case , ) __UpperCamelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __UpperCamelCase = int(time.time() - start_time ) # seconds __UpperCamelCase = len(snake_case ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def A_ ( ) -> Tuple: '''simple docstring''' return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def A_ ( snake_case : str=True ) -> int: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=snake_case , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=snake_case , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=snake_case , required=snake_case , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=snake_case , required=snake_case , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=snake_case , required=snake_case , default=snake_case , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=snake_case , required=snake_case , default=snake_case , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=snake_case , default=8 , required=snake_case , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=snake_case , default=-1 , required=snake_case , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=snake_case , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __UpperCamelCase , __UpperCamelCase = parser.parse_known_args() __UpperCamelCase = parse_numeric_n_bool_cl_kwargs(snake_case ) if parsed_args and verbose: print(f"parsed the following generate kwargs: {parsed_args}" ) __UpperCamelCase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __UpperCamelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=snake_case ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __UpperCamelCase = generate_summaries_or_translations( snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case , ) if args.reference_path is None: return {} # Compute scores __UpperCamelCase = calculate_bleu if '''translation''' in args.task else calculate_rouge __UpperCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __UpperCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case )] __UpperCamelCase = score_fn(snake_case , snake_case ) scores.update(snake_case ) if args.dump_args: scores.update(snake_case ) if args.info: __UpperCamelCase = args.info if verbose: print(snake_case ) if args.score_path is not None: json.dump(snake_case , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
328
0
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( """-m""" , """--pretrained_model_name_or_path""" , type=__a , default=__a , required=__a , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , ) parser.add_argument( """-c""" , """--caption""" , type=__a , default="""robotic cat with wings""" , help="""Text used to generate images.""" , ) parser.add_argument( """-n""" , """--images_num""" , type=__a , default=4 , help="""How much images to generate.""" , ) parser.add_argument( """-s""" , """--seed""" , type=__a , default=42 , help="""Seed for random process.""" , ) parser.add_argument( """-ci""" , """--cuda_id""" , type=__a , default=0 , help="""cuda_id.""" , ) UpperCamelCase__ = parser.parse_args() return args def __magic_name__ ( __a : List[str] , __a : Optional[int] , __a : Tuple ): '''simple docstring''' if not len(__a ) == rows * cols: raise ValueError("""The specified number of rows and columns are not correct.""" ) UpperCamelCase__ , UpperCamelCase__ = imgs[0].size UpperCamelCase__ = Image.new("""RGB""" , size=(cols * w, rows * h) ) UpperCamelCase__ , UpperCamelCase__ = grid.size for i, img in enumerate(__a ): grid.paste(__a , box=(i % cols * w, i // cols * h) ) return grid def __magic_name__ ( __a : str , __a : Optional[Any]="robotic cat with wings" , __a : Tuple=7.5 , __a : Any=50 , __a : List[str]=1 , __a : int=42 , ): '''simple docstring''' UpperCamelCase__ = torch.Generator(pipeline.device ).manual_seed(__a ) UpperCamelCase__ = pipeline( __a , guidance_scale=__a , num_inference_steps=__a , generator=__a , num_images_per_prompt=__a , ).images UpperCamelCase__ = int(math.sqrt(__a ) ) UpperCamelCase__ = image_grid(__a , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images lowerCamelCase_ = parse_args() # Load models and create wrapper for stable diffusion lowerCamelCase_ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') lowerCamelCase_ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') lowerCamelCase_ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') lowerCamelCase_ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') lowerCamelCase_ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowerCamelCase_ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): lowerCamelCase_ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: lowerCamelCase_ = unet.to(torch.device('''cuda''', args.cuda_id)) lowerCamelCase_ = pipeline.to(unet.device) lowerCamelCase_ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) lowerCamelCase_ = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
244
from math import factorial def A_ ( snake_case : int = 100 ) -> int: '''simple docstring''' return sum(int(snake_case ) for x in str(factorial(snake_case ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
328
0
'''simple docstring''' def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = generate_pascal_triangle(UpperCAmelCase_ ) for row_idx in range(UpperCAmelCase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def __snake_case ( UpperCAmelCase_ : int ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError("The input value of \'num_rows\' should be \'int\'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of \'num_rows\' should be greater than or equal to 0" ) lowerCamelCase_ = [] for current_row_idx in range(UpperCAmelCase_ ): lowerCamelCase_ = populate_current_row(UpperCAmelCase_ , UpperCAmelCase_ ) triangle.append(UpperCAmelCase_ ) return triangle def __snake_case ( UpperCAmelCase_ : list[list[int]] , UpperCAmelCase_ : int ): lowerCamelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 lowerCamelCase_ ,lowerCamelCase_ = 1, 1 for current_col_idx in range(1 , UpperCAmelCase_ ): calculate_current_element( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return current_row def __snake_case ( UpperCAmelCase_ : list[list[int]] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , ): lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] lowerCamelCase_ = triangle[current_row_idx - 1][current_col_idx] lowerCamelCase_ = above_to_left_elt + above_to_right_elt def __snake_case ( UpperCAmelCase_ : int ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError("The input value of \'num_rows\' should be \'int\'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of \'num_rows\' should be greater than or equal to 0" ) lowerCamelCase_ = [[1]] for row_index in range(1 , UpperCAmelCase_ ): lowerCamelCase_ = [0] + result[-1] + [0] lowerCamelCase_ = row_index + 1 # Calculate the number of distinct elements in a row lowerCamelCase_ = sum(divmod(UpperCAmelCase_ , 2 ) ) lowerCamelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] lowerCamelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() lowerCamelCase_ = row_first_half + row_second_half result.append(UpperCAmelCase_ ) return result def __snake_case ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCAmelCase_ : Callable , UpperCAmelCase_ : int ) -> None: lowerCamelCase_ = F'''{func.__name__}({value})''' lowerCamelCase_ = timeit(F'''__main__.{call}''' , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(UpperCAmelCase_ , UpperCAmelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
55
def A_ ( snake_case : list ) -> list: '''simple docstring''' __UpperCamelCase = len(snake_case ) for i in range(1 , snake_case ): __UpperCamelCase = collection[i] __UpperCamelCase = 0 __UpperCamelCase = i - 1 while low <= high: __UpperCamelCase = (low + high) // 2 if val < collection[mid]: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 for j in range(snake_case , snake_case , -1 ): __UpperCamelCase = collection[j - 1] __UpperCamelCase = val return collection if __name__ == "__main__": lowercase__ : List[Any] = input("Enter numbers separated by a comma:\n").strip() lowercase__ : str = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
328
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __A ( unittest.TestCase ): def __init__( self : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Optional[Any]=18 , UpperCAmelCase_ : Optional[int]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Optional[Any]=[0.5, 0.5, 0.5] , ): lowerCAmelCase : int = size if size is not None else {'shortest_edge': 18} lowerCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : Tuple = parent lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : Optional[int] = num_channels lowerCAmelCase : List[Any] = image_size lowerCAmelCase : Optional[Any] = min_resolution lowerCAmelCase : str = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Optional[Any] = size lowerCAmelCase : Optional[int] = do_center_crop lowerCAmelCase : int = crop_size lowerCAmelCase : str = do_normalize lowerCAmelCase : Optional[int] = image_mean lowerCAmelCase : str = image_std def lowercase__ ( self : Any ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): lowerCAmelCase_ : Union[str, Any] = LevitImageProcessor if is_vision_available() else None def lowercase__ ( self : List[str] ): lowerCAmelCase : List[Any] = LevitImageProcessingTester(self ) @property def lowercase__ ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'image_mean' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'image_std' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_normalize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'do_center_crop' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'size' ) ) def lowercase__ ( self : List[Any] ): lowerCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : Dict ): pass def lowercase__ ( self : Any ): lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image ) # Test not batched input lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) # Test not batched input lowerCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
138
from __future__ import annotations from collections import deque class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(SCREAMING_SNAKE_CASE_ ) self.set_fail_transitions() def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int | None: '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' __UpperCamelCase = 0 for character in keyword: __UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __UpperCamelCase = len(self.adlist ) - 1 else: __UpperCamelCase = next_state self.adlist[current_state]["output"].append(SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = deque() for node in self.adlist[0]["next_states"]: q.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = 0 while q: __UpperCamelCase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.adlist[r]['''fail_state'''] while ( self.find_next_state(SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) is None and state != 0 ): __UpperCamelCase = self.adlist[state]['''fail_state'''] __UpperCamelCase = self.find_next_state( SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: __UpperCamelCase = 0 __UpperCamelCase = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> dict[str, list[int]]: '''simple docstring''' __UpperCamelCase = {} # returns a dict with keywords and list of its occurrences __UpperCamelCase = 0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): while ( self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) is None and current_state != 0 ): __UpperCamelCase = self.adlist[current_state]['''fail_state'''] __UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) if next_state is None: __UpperCamelCase = 0 else: __UpperCamelCase = next_state for key in self.adlist[current_state]["output"]: if key not in result: __UpperCamelCase = [] result[key].append(i - len(SCREAMING_SNAKE_CASE_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
328
0
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self ): '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=SCREAMING_SNAKE_CASE_ , ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = FalconModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = True __lowerCamelCase = FalconModel(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = FalconForCausalLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = FalconForCausalLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() # first forward pass __lowerCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) __lowerCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , )['''hidden_states'''][0] __lowerCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , )['''hidden_states'''][0] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): lowerCAmelCase__ = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ = (FalconForCausalLM,) if is_torch_available() else () lowerCAmelCase__ = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = FalconModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,*__lowerCamelCase = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: __lowerCamelCase = alibi self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = 3 __lowerCamelCase = input_dict['''input_ids'''] __lowerCamelCase = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowerCamelCase = FalconForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = 3 __lowerCamelCase = '''single_label_classification''' __lowerCamelCase = input_dict['''input_ids'''] __lowerCamelCase = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowerCamelCase = FalconForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = input_dict['''input_ids'''] __lowerCamelCase = FalconForCausalLM(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase = model(SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = input_ids.shape[0] __lowerCamelCase = model._convert_to_rw_cache(result.past_key_values ) __lowerCamelCase = model._convert_cache_to_standard_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for layer in range(len(SCREAMING_SNAKE_CASE_ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = 3 __lowerCamelCase = '''multi_label_classification''' __lowerCamelCase = input_dict['''input_ids'''] __lowerCamelCase = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __lowerCamelCase = FalconForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase ( self ): '''simple docstring''' for model_class in self.all_generative_model_classes: __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(SCREAMING_SNAKE_CASE_ , '''use_cache''' ): return __lowerCamelCase = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) if "use_cache" not in inputs: __lowerCamelCase = True __lowerCamelCase = model(**SCREAMING_SNAKE_CASE_ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return __lowerCamelCase = ( getattr(SCREAMING_SNAKE_CASE_ , '''decoder_layers''' , SCREAMING_SNAKE_CASE_ ) or getattr(SCREAMING_SNAKE_CASE_ , '''num_decoder_layers''' , SCREAMING_SNAKE_CASE_ ) or config.num_hidden_layers ) __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE_ , '''num_kv_heads''' , config.num_attention_heads ) __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE_ , '''d_model''' , config.hidden_size ) __lowerCamelCase = embed_dim // num_attention_heads __lowerCamelCase = outputs['''past_key_values'''] self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase ,__lowerCamelCase = inputs['''input_ids'''].shape for i in range(SCREAMING_SNAKE_CASE_ ): if config.new_decoder_architecture: __lowerCamelCase = config.num_attention_heads elif config.multi_query: __lowerCamelCase = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) __lowerCamelCase = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) __lowerCamelCase = model.generate(**SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , max_new_tokens=19 ) __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )[0] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def lowerCamelCase ( self ): '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: __lowerCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = FalconForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) model.eval() model.to(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , max_new_tokens=4 ) model.generate(**SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , max_new_tokens=4 ) model.generate(**SCREAMING_SNAKE_CASE_ , num_beams=2 , max_new_tokens=4 ) @slow def lowerCamelCase ( self ): '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: __lowerCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = FalconForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) model.eval() model.to(device=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # Test results are the same with and without cache __lowerCamelCase = model.generate(**SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , max_new_tokens=20 , use_cache=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase = model.generate(**SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , max_new_tokens=20 , use_cache=SCREAMING_SNAKE_CASE_ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
330
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> Dict: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self )-> str: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = DistilBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = True _snake_case = True _snake_case = True def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = DistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def A__ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> List[str]: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCamelCase = True __UpperCamelCase = model_class(config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) ) __UpperCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] __UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
328
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __UpperCamelCase = Features({"""audio""": Audio()} ) __UpperCamelCase = Features({"""labels""": ClassLabel} ) __UpperCamelCase = """audio""" __UpperCamelCase = """labels""" def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :Optional[Any] ) -> List[str]: if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , SCREAMING_SNAKE_CASE_ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) UpperCAmelCase = copy.deepcopy(self ) UpperCAmelCase = self.label_schema.copy() UpperCAmelCase = features[self.label_column] UpperCAmelCase = label_schema return task_template @property def UpperCAmelCase__ ( self :Dict ) -> Dict[str, str]: return { self.audio_column: "audio", self.label_column: "labels", }
78
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase__ : Optional[Any] = logging.getLogger(__name__) def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int: '''simple docstring''' def get_dataset(snake_case : Optional[int] ): __UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any: '''simple docstring''' __UpperCamelCase = [] for epoch in range(snake_case ): # Train quickly model.train() for batch in dataloader: __UpperCamelCase , __UpperCamelCase = batch __UpperCamelCase = model(snake_case ) __UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case ) accelerator.backward(snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self )-> Tuple: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' return x * self.a + self.b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self )-> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() # Train baseline __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3] ) __UpperCamelCase = torch.tensor([2, 3, 4] ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(net.parameters() ) __UpperCamelCase = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() __UpperCamelCase = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing" lowercase__ : List[Any] = DummyModel() lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase__ , lowercase__ : str = dummy_dataloaders() lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase__ : int = group["params"][0].device break assert param_device.type == accelerator.device.type lowercase__ : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowercase__ : Any = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowercase__ : List[Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
328
0
from math import factorial def lowercase_ (A : int = 2_0 ): snake_case__ : Union[str, Any] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case__ : Dict = n // 2 return int(factorial(A ) / (factorial(A ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: a_ :List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
277
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]: '''simple docstring''' super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Sql( cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , ) # Build dataset for splits __UpperCamelCase = self.builder.as_dataset( split='''train''' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) __UpperCamelCase = dataset __UpperCamelCase = name __UpperCamelCase = con __UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCamelCase = num_proc __UpperCamelCase = to_sql_kwargs def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.to_sql_kwargs.pop('''sql''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''con''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''index''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs ) return written def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args __UpperCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __UpperCamelCase = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCamelCase = batch.to_pandas() __UpperCamelCase = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return num_rows or len(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
328
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowercase : Any = logging.get_logger(__name__) class A__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , *lowercase , **lowercase) -> None: '''simple docstring''' warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
99
def A_ ( snake_case : str ) -> int: '''simple docstring''' assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , snake_case ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
328
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __a :Tuple = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class _a ( unittest.TestCase ): """simple docstring""" _lowerCamelCase : List[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowerCamelCase : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _lowerCamelCase : Union[str, Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _lowerCamelCase : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def __A ( self : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ): A_ = ZeroShotClassificationPipeline( model=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def __A ( self : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[str] ): A_ = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(SCREAMING_SNAKE_CASE_ , {"sequence": ANY(SCREAMING_SNAKE_CASE_ ), "labels": [ANY(SCREAMING_SNAKE_CASE_ )], "scores": [ANY(SCREAMING_SNAKE_CASE_ )]} ) # No kwarg A_ = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , {"sequence": ANY(SCREAMING_SNAKE_CASE_ ), "labels": [ANY(SCREAMING_SNAKE_CASE_ )], "scores": [ANY(SCREAMING_SNAKE_CASE_ )]} ) A_ = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , {"sequence": ANY(SCREAMING_SNAKE_CASE_ ), "labels": [ANY(SCREAMING_SNAKE_CASE_ )], "scores": [ANY(SCREAMING_SNAKE_CASE_ )]} ) A_ = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( SCREAMING_SNAKE_CASE_ , {"sequence": ANY(SCREAMING_SNAKE_CASE_ ), "labels": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], "scores": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) A_ = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( SCREAMING_SNAKE_CASE_ , {"sequence": ANY(SCREAMING_SNAKE_CASE_ ), "labels": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], "scores": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) A_ = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(SCREAMING_SNAKE_CASE_ , {"sequence": ANY(SCREAMING_SNAKE_CASE_ ), "labels": [ANY(SCREAMING_SNAKE_CASE_ )], "scores": [ANY(SCREAMING_SNAKE_CASE_ )]} ) # https://github.com/huggingface/transformers/issues/13846 A_ = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ {"sequence": ANY(SCREAMING_SNAKE_CASE_ ), "labels": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], "scores": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} for i in range(1 ) ] , ) A_ = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ {"sequence": ANY(SCREAMING_SNAKE_CASE_ ), "labels": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], "scores": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} for i in range(2 ) ] , ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier("" , candidate_labels="politics" ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier(SCREAMING_SNAKE_CASE_ , candidate_labels="politics" ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier("Who are you voting for in 2020?" , candidate_labels=SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=SCREAMING_SNAKE_CASE_ , ) self.run_entailment_id(SCREAMING_SNAKE_CASE_ ) def __A ( self : Union[str, Any] , UpperCAmelCase : Tuple ): A_ = zero_shot_classifier.model.config A_ = config.labelaid A_ = zero_shot_classifier.entailment_id A_ = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) A_ = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A_ = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A_ = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) A_ = original_labelaid self.assertEqual(SCREAMING_SNAKE_CASE_ , zero_shot_classifier.entailment_id ) @require_torch def __A ( self : Optional[Any] ): A_ = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def __A ( self : Any ): A_ = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) A_ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], } , ) @require_tf def __A ( self : List[Any] ): A_ = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) A_ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], } , ) @slow @require_torch def __A ( self : Dict ): A_ = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) A_ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], } , ) A_ = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=SCREAMING_SNAKE_CASE_ , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def __A ( self : Dict ): A_ = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) A_ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], } , ) A_ = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=SCREAMING_SNAKE_CASE_ , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], } , )
312
def A_ ( snake_case : int ) -> None: '''simple docstring''' __UpperCamelCase = generate_pascal_triangle(snake_case ) for row_idx in range(snake_case ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [] for current_row_idx in range(snake_case ): __UpperCamelCase = populate_current_row(snake_case , snake_case ) triangle.append(snake_case ) return triangle def A_ ( snake_case : list[list[int]] , snake_case : int ) -> list[int]: '''simple docstring''' __UpperCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase , __UpperCamelCase = 1, 1 for current_col_idx in range(1 , snake_case ): calculate_current_element( snake_case , snake_case , snake_case , snake_case ) return current_row def A_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , ) -> None: '''simple docstring''' __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase = above_to_left_elt + above_to_right_elt def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [[1]] for row_index in range(1 , snake_case ): __UpperCamelCase = [0] + result[-1] + [0] __UpperCamelCase = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase = sum(divmod(snake_case , 2 ) ) __UpperCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase = row_first_half + row_second_half result.append(snake_case ) return result def A_ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None: __UpperCamelCase = f"{func.__name__}({value})" __UpperCamelCase = timeit(f"__main__.{call}" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case , snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
0
import os import sys import unittest UpperCamelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path UpperCamelCase__ = os.path.join(git_repo_path, 'src', 'diffusers') class A ( unittest.TestCase ): def lowercase_ (self : str ) -> str: """simple docstring""" UpperCAmelCase__ = find_backend(" if not is_torch_available():" ) self.assertEqual(SCREAMING_SNAKE_CASE_ , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") UpperCAmelCase__ = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(SCREAMING_SNAKE_CASE_ , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") UpperCAmelCase__ = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(SCREAMING_SNAKE_CASE_ , "torch_and_transformers_and_onnx" ) def lowercase_ (self : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , SCREAMING_SNAKE_CASE_ ) self.assertIn("torch_and_transformers" , SCREAMING_SNAKE_CASE_ ) self.assertIn("flax_and_transformers" , SCREAMING_SNAKE_CASE_ ) self.assertIn("torch_and_transformers_and_onnx" , SCREAMING_SNAKE_CASE_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def lowercase_ (self : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = create_dummy_object("CONSTANT" , "\'torch\'" ) self.assertEqual(SCREAMING_SNAKE_CASE_ , "\nCONSTANT = None\n" ) UpperCAmelCase__ = create_dummy_object("function" , "\'torch\'" ) self.assertEqual( SCREAMING_SNAKE_CASE_ , "\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n" ) UpperCAmelCase__ = "\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n" UpperCAmelCase__ = create_dummy_object("FakeClass" , "\'torch\'" ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ (self : int ) -> List[str]: """simple docstring""" UpperCAmelCase__ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" UpperCAmelCase__ = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , SCREAMING_SNAKE_CASE_ )
65
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase__ : Any = parser.parse_args() lowercase__ : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase__ : List[str] = CLIPImageProcessor() lowercase__ : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase__ : Optional[Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
328
0
from __future__ import annotations from collections.abc import Callable lowercase = list[list[float | int]] def __UpperCAmelCase ( a_ , a_): snake_case_ = len(a_) snake_case_ = [[0 for _ in range(size + 1)] for _ in range(a_)] snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 for row in range(a_): for col in range(a_): snake_case_ = matrix[row][col] snake_case_ = vector[row][0] snake_case_ = 0 snake_case_ = 0 while row < size and col < size: # pivoting snake_case_ = max((abs(augmented[rowa][col]), rowa) for rowa in range(a_ , a_))[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: snake_case_ , snake_case_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , a_): snake_case_ = augmented[rowa][col] / augmented[row][col] snake_case_ = 0 for cola in range(col + 1 , size + 1): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , a_): for row in range(a_): snake_case_ = augmented[row][col] / augmented[col][col] for cola in range(a_ , size + 1): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10)] for row in range(a_) ] def __UpperCAmelCase ( a_): snake_case_ = len(a_) snake_case_ = [[0 for _ in range(a_)] for _ in range(a_)] snake_case_ = [[0] for _ in range(a_)] snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 for x_val, y_val in enumerate(a_): for col in range(a_): snake_case_ = (x_val + 1) ** (size - col - 1) snake_case_ = y_val snake_case_ = solve(a_ , a_) def interpolated_func(a_) -> int: return sum( round(coeffs[x_val][0]) * (var ** (size - x_val - 1)) for x_val in range(a_)) return interpolated_func def __UpperCAmelCase ( a_): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __UpperCAmelCase ( a_ = question_function , a_ = 10): snake_case_ = [func(a_) for x_val in range(1 , order + 1)] snake_case_ = [ interpolate(data_points[:max_coeff]) for max_coeff in range(1 , order + 1) ] snake_case_ = 0 snake_case_ = 42 snake_case_ = 42 for poly in polynomials: snake_case_ = 1 while func(a_) == poly(a_): x_val += 1 ret += poly(a_) return ret if __name__ == "__main__": print(f'{solution() = }')
178
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowercase__ : Union[str, Any] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" lowercase__ : Optional[Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" lowercase__ : Any = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" lowercase__ : Optional[int] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" lowercase__ : Optional[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[1, 10, 100] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3.0 )-> Union[str, Any]: '''simple docstring''' if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE_ ) as executor: __UpperCamelCase = [] __UpperCamelCase = Counter() __UpperCamelCase = 0 __UpperCamelCase = defaultdict(SCREAMING_SNAKE_CASE_ ) for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ): for candidate in candidates: __UpperCamelCase = candidate + '''\n''' + test_case __UpperCamelCase = (test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase = executor.submit(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) futures.append(SCREAMING_SNAKE_CASE_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) __UpperCamelCase , __UpperCamelCase = [], [] for result in results.values(): result.sort() __UpperCamelCase = [r[1]['''passed'''] for r in result] total.append(len(SCREAMING_SNAKE_CASE_ ) ) correct.append(sum(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = k __UpperCamelCase = {F"pass@{k}": estimate_pass_at_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A_ ( snake_case : Tuple , snake_case : Union[str, Any] , snake_case : List[Any] ) -> Optional[Any]: '''simple docstring''' def estimator(snake_case : int , snake_case : int , snake_case : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(snake_case , snake_case ): __UpperCamelCase = itertools.repeat(snake_case , len(snake_case ) ) else: assert len(snake_case ) == len(snake_case ) __UpperCamelCase = iter(snake_case ) return np.array([estimator(int(snake_case ) , int(snake_case ) , snake_case ) for n, c in zip(snake_case , snake_case )] )
328
0
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __magic_name__ ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Optional[Any] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : List[Any] ,): super().__init__() _a : Union[str, Any] = value_function _a : List[Any] = unet _a : Union[str, Any] = scheduler _a : List[Any] = env _a : Union[str, Any] = env.get_dataset() _a : Any = {} for key in self.data.keys(): try: _a : str = self.data[key].mean() except: # noqa: E722 pass _a : Optional[int] = {} for key in self.data.keys(): try: _a : Dict = self.data[key].std() except: # noqa: E722 pass _a : Dict = env.observation_space.shape[0] _a : Optional[int] = env.action_space.shape[0] def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Optional[Any] ): return (x_in - self.means[key]) / self.stds[key] def __lowercase ( self : Tuple ,_UpperCAmelCase : str ,_UpperCAmelCase : str ): return x_in * self.stds[key] + self.means[key] def __lowercase ( self : Any ,_UpperCAmelCase : Union[str, Any] ): if type(SCREAMING_SNAKE_CASE_ ) is dict: return {k: self.to_torch(SCREAMING_SNAKE_CASE_ ) for k, v in x_in.items()} elif torch.is_tensor(SCREAMING_SNAKE_CASE_ ): return x_in.to(self.unet.device ) return torch.tensor(SCREAMING_SNAKE_CASE_ ,device=self.unet.device ) def __lowercase ( self : Dict ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Dict ,_UpperCAmelCase : str ): for key, val in cond.items(): _a : Optional[int] = val.clone() return x_in def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Tuple ): _a : Optional[Any] = x.shape[0] _a : Any = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model _a : int = torch.full((batch_size,) ,SCREAMING_SNAKE_CASE_ ,device=self.unet.device ,dtype=torch.long ) for _ in range(SCREAMING_SNAKE_CASE_ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _a : Dict = self.value_function(x.permute(0 ,2 ,1 ) ,SCREAMING_SNAKE_CASE_ ).sample _a : Optional[int] = torch.autograd.grad([y.sum()] ,[x] )[0] _a : Optional[int] = self.scheduler._get_variance(SCREAMING_SNAKE_CASE_ ) _a : int = torch.exp(0.5 * posterior_variance ) _a : Optional[int] = model_std * grad _a : Any = 0 _a : int = x.detach() _a : Union[str, Any] = x + scale * grad _a : Dict = self.reset_xa(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,self.action_dim ) _a : str = self.unet(x.permute(0 ,2 ,1 ) ,SCREAMING_SNAKE_CASE_ ).sample.permute(0 ,2 ,1 ) # TODO: verify deprecation of this kwarg _a : Dict = self.scheduler.step(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,predict_epsilon=SCREAMING_SNAKE_CASE_ )['prev_sample'] # apply conditions to the trajectory (set the initial state) _a : Dict = self.reset_xa(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,self.action_dim ) _a : Tuple = self.to_torch(SCREAMING_SNAKE_CASE_ ) return x, y def __call__( self : str ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Union[str, Any]=64 ,_UpperCAmelCase : List[str]=32 ,_UpperCAmelCase : int=2 ,_UpperCAmelCase : str=0.1 ): _a : List[Any] = self.normalize(SCREAMING_SNAKE_CASE_ ,'observations' ) _a : Tuple = obs[None].repeat(SCREAMING_SNAKE_CASE_ ,axis=0 ) _a : List[Any] = {0: self.to_torch(SCREAMING_SNAKE_CASE_ )} _a : Tuple = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _a : int = randn_tensor(SCREAMING_SNAKE_CASE_ ,device=self.unet.device ) _a : Any = self.reset_xa(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,self.action_dim ) _a : Optional[Any] = self.to_torch(SCREAMING_SNAKE_CASE_ ) # run the diffusion process _a , _a : str = self.run_diffusion(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) # sort output trajectories by value _a : Any = y.argsort(0 ,descending=SCREAMING_SNAKE_CASE_ ).squeeze() _a : Optional[Any] = x[sorted_idx] _a : int = sorted_values[:, :, : self.action_dim] _a : str = actions.detach().cpu().numpy() _a : int = self.de_normalize(SCREAMING_SNAKE_CASE_ ,key='actions' ) # select the action with the highest value if y is not None: _a : List[str] = 0 else: # if we didn't run value guiding, select a random action _a : int = np.random.randint(0 ,SCREAMING_SNAKE_CASE_ ) _a : Union[str, Any] = denorm_actions[selected_index, 0] return denorm_actions
89
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__) lowercase__ : Optional[Any] = ["names", "prefix"] lowercase__ : List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowercase__ : Optional[Any] = ["encoding_errors", "on_bad_lines"] lowercase__ : List[str] = ["date_format"] @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): """simple docstring""" _snake_case = "," _snake_case = None _snake_case = "infer" _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = False _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = False _snake_case = True _snake_case = None _snake_case = "." _snake_case = None _snake_case = '"' _snake_case = 0 _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = 0 _snake_case = True _snake_case = False _snake_case = None _snake_case = 10000 _snake_case = None _snake_case = "strict" _snake_case = "error" _snake_case = None def A__ ( self )-> Any: '''simple docstring''' if self.delimiter is not None: __UpperCamelCase = self.delimiter if self.column_names is not None: __UpperCamelCase = self.column_names @property def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): """simple docstring""" _snake_case = CsvConfig def A__ ( self )-> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) __UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ): __UpperCamelCase = data_files if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) ) return splits def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.Table: '''simple docstring''' if self.config.features is not None: __UpperCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE_ ) for feature in self.config.features.values() ): # cheaper cast __UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __UpperCamelCase = table_cast(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return pa_table def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __UpperCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ): __UpperCamelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , iterator=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = pa.Table.from_pandas(SCREAMING_SNAKE_CASE_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}" ) raise
328
0
from abc import ABC, abstractmethod from typing import List, Optional class __A( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__(self ): self.test() def UpperCAmelCase_ (self ): UpperCamelCase__ = 0 UpperCamelCase__ = False while not completed: if counter == 1: self.reset() UpperCamelCase__ = self.advance() if not self.does_advance(SCREAMING_SNAKE_CASE_ ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.update(SCREAMING_SNAKE_CASE_ ) counter += 1 if counter > 1_00_00: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def UpperCAmelCase_ (self ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCAmelCase_ (self ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCAmelCase_ (self ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=False ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class __A( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ ): super(SCREAMING_SNAKE_CASE_ , self ).__init__() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError(F"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) UpperCamelCase__ = token_ids UpperCamelCase__ = len(self.token_ids ) UpperCamelCase__ = -1 # the index of the currently fulfilled step UpperCamelCase__ = False def UpperCAmelCase_ (self ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False if self.does_advance(SCREAMING_SNAKE_CASE_ ): self.fulfilled_idx += 1 UpperCamelCase__ = True if self.fulfilled_idx == (self.seqlen - 1): UpperCamelCase__ = True UpperCamelCase__ = completed else: # failed to make progress. UpperCamelCase__ = True self.reset() return stepped, completed, reset def UpperCAmelCase_ (self ): UpperCamelCase__ = False UpperCamelCase__ = 0 def UpperCAmelCase_ (self ): return self.seqlen - (self.fulfilled_idx + 1) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=False ): UpperCamelCase__ = PhrasalConstraint(self.token_ids ) if stateful: UpperCamelCase__ = self.seqlen UpperCamelCase__ = self.fulfilled_idx UpperCamelCase__ = self.completed return new_constraint class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ): UpperCamelCase__ = max([len(SCREAMING_SNAKE_CASE_ ) for one in nested_token_ids] ) UpperCamelCase__ = {} for token_ids in nested_token_ids: UpperCamelCase__ = root for tidx, token_id in enumerate(SCREAMING_SNAKE_CASE_ ): if token_id not in level: UpperCamelCase__ = {} UpperCamelCase__ = level[token_id] if no_subsets and self.has_subsets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError( """Each list in `nested_token_ids` can\'t be a complete subset of another list, but is""" F" {nested_token_ids}." ) UpperCamelCase__ = root def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.trie for current_token in current_seq: UpperCamelCase__ = start[current_token] UpperCamelCase__ = list(start.keys() ) return next_tokens def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.next_tokens(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 0 def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = list(root.values() ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return 1 else: return sum([self.count_leaves(SCREAMING_SNAKE_CASE_ ) for nn in next_nodes] ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.count_leaves(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) != leaf_count class __A( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ ): super(SCREAMING_SNAKE_CASE_ , self ).__init__() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError(F"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for token_ids in nested_token_ids ): raise ValueError(F"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) UpperCamelCase__ = DisjunctiveTrie(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = nested_token_ids UpperCamelCase__ = self.trie.max_height UpperCamelCase__ = [] UpperCamelCase__ = False def UpperCAmelCase_ (self ): UpperCamelCase__ = self.trie.next_tokens(self.current_seq ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return None else: return token_list def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) UpperCamelCase__ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False if self.does_advance(SCREAMING_SNAKE_CASE_ ): self.current_seq.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = True else: UpperCamelCase__ = True self.reset() UpperCamelCase__ = self.trie.reached_leaf(self.current_seq ) UpperCamelCase__ = completed return stepped, completed, reset def UpperCAmelCase_ (self ): UpperCamelCase__ = False UpperCamelCase__ = [] def UpperCAmelCase_ (self ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=False ): UpperCamelCase__ = DisjunctiveConstraint(self.token_ids ) if stateful: UpperCamelCase__ = self.seqlen UpperCamelCase__ = self.current_seq UpperCamelCase__ = self.completed return new_constraint class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = constraints # max # of steps required to fulfill a given constraint UpperCamelCase__ = max([c.seqlen for c in constraints] ) UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = False self.init_state() def UpperCAmelCase_ (self ): UpperCamelCase__ = [] UpperCamelCase__ = None UpperCamelCase__ = [constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) for constraint in self.constraints] def UpperCAmelCase_ (self ): UpperCamelCase__ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def UpperCAmelCase_ (self ): UpperCamelCase__ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCamelCase__ = constraint.advance() if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.append(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.extend(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase__ = self.inprogress_constraint.advance() if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.append(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.extend(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return None else: return token_list def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCamelCase__ , UpperCamelCase__ = self.add(SCREAMING_SNAKE_CASE_ ) # the entire list of constraints are fulfilled if self.completed: break def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` should be an `int`, but is `{token_id}`." ) UpperCamelCase__ , UpperCamelCase__ = False, False if self.completed: UpperCamelCase__ = True UpperCamelCase__ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.inprogress_constraint.update(SCREAMING_SNAKE_CASE_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCamelCase__ = None if len(self.pending_constraints ) == 0: # we're done! UpperCamelCase__ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = pending_constraint.update(SCREAMING_SNAKE_CASE_ ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = None if not complete and stepped: UpperCamelCase__ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCamelCase__ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCamelCase__ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_=True ): UpperCamelCase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCamelCase__ = [ constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCamelCase__ = self.inprogress_constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [constraint.copy() for constraint in self.pending_constraints] return new_state
244
from __future__ import annotations import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def A_ ( snake_case : int ) -> list[int]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) __UpperCamelCase = [] for num in range(len(snake_case ) ): __UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: __UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case ) == n: return list_nums return [] def A_ ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
328
0
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests a_ : Optional[Any] = open # noqa: we just need to have a builtin inside this module to test it properly
55
from __future__ import annotations from collections.abc import Callable def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float: '''simple docstring''' __UpperCamelCase = x_start __UpperCamelCase = fnc(snake_case ) __UpperCamelCase = 0.0 for _ in range(snake_case ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCamelCase = (x_end - x_start) / steps + xa __UpperCamelCase = fnc(snake_case ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCamelCase = xa __UpperCamelCase = fxa return area if __name__ == "__main__": def A_ ( snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowercase__ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 1_0
328
0
from __future__ import annotations class __A : def __init__( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase , lowerCAmelCase : Optional[int] = text, pattern lowerCAmelCase , lowerCAmelCase : Any = len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) def lowercase__ ( self : str , UpperCAmelCase_ : Optional[int] ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowercase__ ( self : int , UpperCAmelCase_ : Any ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowercase__ ( self : Any ): lowerCAmelCase : Dict = [] for i in range(self.textLen - self.patLen + 1 ): lowerCAmelCase : List[Any] = self.mismatch_in_text(SCREAMING_SNAKE_CASE_ ) if mismatch_index == -1: positions.append(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase : Union[str, Any] = self.match_in_pattern(self.text[mismatch_index] ) lowerCAmelCase : List[str] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __A : int = "ABAABA" __A : int = "AB" __A : Optional[Any] = BoyerMooreSearch(text, pattern) __A : Optional[int] = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
138
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : int = logging.get_logger(__name__) lowercase__ : List[str] = ["model.decoder.embed_positions.weights"] def A_ ( snake_case : Any ) -> List[Any]: '''simple docstring''' if "emb" in name: __UpperCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: __UpperCamelCase = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: __UpperCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: __UpperCamelCase = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: __UpperCamelCase = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: __UpperCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: __UpperCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: __UpperCamelCase = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: __UpperCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: __UpperCamelCase = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: __UpperCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def A_ ( snake_case : OrderedDict , snake_case : int ) -> Tuple[Dict, Dict]: '''simple docstring''' __UpperCamelCase = list(state_dict.keys() ) __UpperCamelCase = {} for key in keys: __UpperCamelCase = state_dict.pop(snake_case ) __UpperCamelCase = rename_keys(snake_case ) if "in_proj_weight" in key: # split fused qkv proj __UpperCamelCase = val[:hidden_size, :] __UpperCamelCase = val[hidden_size : 2 * hidden_size, :] __UpperCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __UpperCamelCase = val else: __UpperCamelCase = val return state_dict, enc_dec_proj_state_dict def A_ ( snake_case : str ) -> MusicgenDecoderConfig: '''simple docstring''' if checkpoint == "small": # default config values __UpperCamelCase = 1024 __UpperCamelCase = 24 __UpperCamelCase = 16 elif checkpoint == "medium": __UpperCamelCase = 1536 __UpperCamelCase = 48 __UpperCamelCase = 24 elif checkpoint == "large": __UpperCamelCase = 2048 __UpperCamelCase = 48 __UpperCamelCase = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) __UpperCamelCase = MusicgenDecoderConfig( hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , ) return config @torch.no_grad() def A_ ( snake_case : Any , snake_case : str=None , snake_case : Any=None , snake_case : Union[str, Any]="cpu" ) -> List[Any]: '''simple docstring''' __UpperCamelCase = MusicGen.get_pretrained(snake_case , device=snake_case ) __UpperCamelCase = decoder_config_from_checkpoint(snake_case ) __UpperCamelCase = fairseq_model.lm.state_dict() __UpperCamelCase , __UpperCamelCase = rename_state_dict( snake_case , hidden_size=decoder_config.hidden_size ) __UpperCamelCase = TaEncoderModel.from_pretrained('''t5-base''' ) __UpperCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) __UpperCamelCase = MusicgenForCausalLM(snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __UpperCamelCase , __UpperCamelCase = decoder.load_state_dict(snake_case , strict=snake_case ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(snake_case ) if len(snake_case ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(snake_case ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model __UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(snake_case ) # check we can do a forward pass __UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __UpperCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __UpperCamelCase = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor __UpperCamelCase = AutoTokenizer.from_pretrained('''t5-base''' ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) __UpperCamelCase = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case ) # set the appropriate bos/pad token ids __UpperCamelCase = 2048 __UpperCamelCase = 2048 # set other default generation config params __UpperCamelCase = int(30 * audio_encoder.config.frame_rate ) __UpperCamelCase = True __UpperCamelCase = 3.0 if pytorch_dump_folder is not None: Path(snake_case ).mkdir(exist_ok=snake_case ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(snake_case ) processor.push_to_hub(snake_case ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowercase__ : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
328
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ = ["""image_processor""", """tokenizer"""] lowerCAmelCase__ = """CLIPImageProcessor""" lowerCAmelCase__ = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase = kwargs.pop('''feature_extractor''' ) __lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __lowerCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if images is not None: __lowerCamelCase = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is not None and images is not None: __lowerCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ) , tensor_type=SCREAMING_SNAKE_CASE_ ) def lowerCamelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowerCamelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.tokenizer.model_input_names __lowerCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase ( self ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , SCREAMING_SNAKE_CASE_ , ) return self.image_processor_class @property def lowerCamelCase ( self ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , SCREAMING_SNAKE_CASE_ , ) return self.image_processor
330
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : List[str] = 1_6 lowercase__ : str = 3_2 def A_ ( snake_case : Accelerator , snake_case : int = 16 ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCamelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase = datasets.map( snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase = 16 elif accelerator.mixed_precision != "no": __UpperCamelCase = 8 else: __UpperCamelCase = None return tokenizer.pad( snake_case , padding='''longest''' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) __UpperCamelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : Union[str, Any] = mocked_dataloaders # noqa: F811 def A_ ( snake_case : List[str] , snake_case : List[Any] ) -> Tuple: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case ) == "1": __UpperCamelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: __UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['''lr'''] __UpperCamelCase = int(config['''num_epochs'''] ) __UpperCamelCase = int(config['''seed'''] ) __UpperCamelCase = int(config['''batch_size'''] ) set_seed(snake_case ) __UpperCamelCase , __UpperCamelCase = get_dataloaders(snake_case , snake_case ) __UpperCamelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case ) # Instantiate scheduler __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __UpperCamelCase = os.path.split(snake_case )[-1].split('''.''' )[0] accelerator.init_trackers(snake_case , snake_case ) # Now we train the model for epoch in range(snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __UpperCamelCase = 0 for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case , references=snake_case , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(snake_case ), '''epoch''': epoch, } , step=snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def A_ ( ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case , default=snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
328
0
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class A_ ( datasets.BeamBasedBuilder ): """simple docstring""" def UpperCAmelCase__ ( self :str ) -> Tuple: return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=SCREAMING_SNAKE_CASE_ , ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :str , lowercase_ :Optional[Any] ) -> Optional[Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :List[Any] , lowercase_ :Optional[int] ) -> Any: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE_ ) class A_ ( datasets.BeamBasedBuilder ): """simple docstring""" def UpperCAmelCase__ ( self :Optional[int] ) -> List[Any]: return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=SCREAMING_SNAKE_CASE_ , ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :List[Any] , lowercase_ :Optional[int] ) -> Any: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def UpperCAmelCase__ ( self :Tuple , lowercase_ :Union[str, Any] , lowercase_ :Dict ) -> List[str]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE_ ) def _lowerCAmelCase ( ): return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] def _lowerCAmelCase ( ): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @require_beam def UpperCAmelCase__ ( self :Optional[Any] ) -> Any: UpperCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE_ , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(SCREAMING_SNAKE_CASE_ , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['train'].num_rows , SCREAMING_SNAKE_CASE_ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def UpperCAmelCase__ ( self :Optional[int] ) -> List[str]: import apache_beam as beam UpperCAmelCase = beam.io.parquetio.WriteToParquet UpperCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE_ , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: UpperCAmelCase = partial(SCREAMING_SNAKE_CASE_ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( SCREAMING_SNAKE_CASE_ , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( SCREAMING_SNAKE_CASE_ , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['train'].num_rows , SCREAMING_SNAKE_CASE_ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , SCREAMING_SNAKE_CASE_ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def UpperCAmelCase__ ( self :List[str] ) -> str: with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE_ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def UpperCAmelCase__ ( self :Dict ) -> Any: UpperCAmelCase = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase = NestedBeamDataset(cache_dir=SCREAMING_SNAKE_CASE_ , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(SCREAMING_SNAKE_CASE_ , builder.name , 'default' , '0.0.0' , f"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['train'].num_rows , SCREAMING_SNAKE_CASE_ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
78
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ : str = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'whisper' _snake_case = ['past_key_values'] _snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE_=51865 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=50257 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1500 , SCREAMING_SNAKE_CASE_=448 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[220, 50256] , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=7 , **SCREAMING_SNAKE_CASE_ , )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = num_mel_bins __UpperCamelCase = d_model __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = use_cache __UpperCamelCase = encoder_layers __UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase = max_source_positions __UpperCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __UpperCamelCase = classifier_proj_size __UpperCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length __UpperCamelCase = mask_feature_min_masks __UpperCamelCase = median_filter_width super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def A__ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' __UpperCamelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: __UpperCamelCase = {0: '''batch'''} else: __UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' ) return common_inputs def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 22050 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 220 , )-> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase = OrderedDict() __UpperCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = encoder_inputs['''input_features'''].shape[2] __UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __UpperCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = encoder_inputs.pop('''input_features''' ) __UpperCamelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: __UpperCamelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def A__ ( self )-> float: '''simple docstring''' return 1E-3
328
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ :Any = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[Any] = ["ConditionalDetrFeatureExtractor"] a_ :Any = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Optional[int] = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys a_ :Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
277
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : Tuple = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'xlnet' _snake_case = ['mems'] _snake_case = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , SCREAMING_SNAKE_CASE_=32000 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="bi" , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=-1 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="tanh" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = n_layer __UpperCamelCase = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) __UpperCamelCase = d_model // n_head __UpperCamelCase = ff_activation __UpperCamelCase = d_inner __UpperCamelCase = untie_r __UpperCamelCase = attn_type __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = dropout __UpperCamelCase = mem_len __UpperCamelCase = reuse_len __UpperCamelCase = bi_data __UpperCamelCase = clamp_len __UpperCamelCase = same_length __UpperCamelCase = summary_type __UpperCamelCase = summary_use_proj __UpperCamelCase = summary_activation __UpperCamelCase = summary_last_dropout __UpperCamelCase = start_n_top __UpperCamelCase = end_n_top __UpperCamelCase = bos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = kwargs['''use_cache'''] __UpperCamelCase = use_mems_eval __UpperCamelCase = use_mems_train super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> Optional[Any]: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
328
0
from functools import lru_cache def A_ ( A__ ) -> set: a__ : str = 2 a__ : Dict = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(A__ ) if n > 1: factors.add(A__ ) return factors @lru_cache def A_ ( A__ ) -> int: return len(unique_prime_factors(A__ ) ) def A_ ( A__ ) -> bool: return len(set(A__ ) ) in (0, 1) def A_ ( A__ ) -> list: a__ : List[Any] = 2 while True: # Increment each value of a generated range a__ : List[str] = [base + i for i in range(A__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. a__ : Tuple = [upf_len(A__ ) for x in group] checker.append(A__ ) # If all numbers in the list are equal, return the group variable. if equality(A__ ): return group # Increment our base variable by 1 base += 1 def A_ ( A__ = 4 ) -> int: a__ : str = run(A__ ) return results[0] if len(A__ ) else None if __name__ == "__main__": print(solution())
99
from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None def __repr__( self )-> str: '''simple docstring''' return F"Node({self.data})" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = None def __iter__( self )-> Any: '''simple docstring''' __UpperCamelCase = self.head while node: yield node.data __UpperCamelCase = node.next def __len__( self )-> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self )-> str: '''simple docstring''' return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] ) def __getitem__( self , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) __UpperCamelCase = self.head for _ in range(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = current.next __UpperCamelCase = data def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' self.insert_nth(0 , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) __UpperCamelCase = Node(SCREAMING_SNAKE_CASE_ ) if self.head is None: __UpperCamelCase = new_node elif index == 0: __UpperCamelCase = self.head # link new_node to head __UpperCamelCase = new_node else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = new_node def A__ ( self )-> None: # print every node data '''simple docstring''' print(self ) def A__ ( self )-> Any: '''simple docstring''' return self.delete_nth(0 ) def A__ ( self )-> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def A__ ( self , SCREAMING_SNAKE_CASE_ = 0 )-> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) __UpperCamelCase = self.head # default first node if index == 0: __UpperCamelCase = self.head.next else: __UpperCamelCase = self.head for _ in range(index - 1 ): __UpperCamelCase = temp.next __UpperCamelCase = temp.next __UpperCamelCase = temp.next.next return delete_node.data def A__ ( self )-> bool: '''simple docstring''' return self.head is None def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = self.head while current: # Store the current node's next node. __UpperCamelCase = current.next # Make the current node's next point backwards __UpperCamelCase = prev # Make the previous node be the current node __UpperCamelCase = current # Make the current node the next node (to progress iteration) __UpperCamelCase = next_node # Return prev in order to put the head at the end __UpperCamelCase = prev def A_ ( ) -> None: '''simple docstring''' __UpperCamelCase = LinkedList() assert linked_list.is_empty() is True assert str(snake_case ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(snake_case ) == i linked_list.insert_nth(snake_case , i + 1 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(snake_case ) == 9 assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCamelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(snake_case ) == "->".join(str(snake_case ) for i in range(-8 , 1 ) ) def A_ ( ) -> None: '''simple docstring''' __UpperCamelCase = [ -9, 100, Node(77345112 ), '''dlrow olleH''', 7, 5555, 0, -192.55555, '''Hello, world!''', 77.9, Node(10 ), None, None, 12.20, ] __UpperCamelCase = LinkedList() for i in test_input: linked_list.insert_tail(snake_case ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCamelCase = linked_list.delete_head() assert result == -9 assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCamelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCamelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(snake_case ) assert ( str(snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(snake_case ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def A_ ( ) -> Any: '''simple docstring''' from doctest import testmod testmod() __UpperCamelCase = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(snake_case ) print('''\nReading/changing Node data using indexing:''' ) print(f"Element at Position 1: {linked_list[1]}" ) __UpperCamelCase = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(snake_case ) print(f"length of linked_list is : {len(snake_case )}" ) if __name__ == "__main__": main()
328
0
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" if not (isinstance(__UpperCamelCase ,__UpperCamelCase ) and isinstance(__UpperCamelCase ,__UpperCamelCase )): raise ValueError("longest_common_substring() takes two strings for inputs" ) A_ = len(__UpperCamelCase ) A_ = len(__UpperCamelCase ) A_ = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] A_ = 0 A_ = 0 for i in range(1 ,texta_length + 1 ): for j in range(1 ,texta_length + 1 ): if texta[i - 1] == texta[j - 1]: A_ = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: A_ = i A_ = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
312
import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num def A_ ( snake_case : int ) -> bool: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = n while left <= right: __UpperCamelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
328
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = "▁" UpperCamelCase__ = {"vocab_file": "spiece.model"} UpperCamelCase__ = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } UpperCamelCase__ = { "google/pegasus-xsum": 5_1_2, } UpperCamelCase__ = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE_ ): __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Optional[int] = ['input_ids', 'attention_mask'] def __init__(self : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : str="<pad>" , __UpperCAmelCase : Optional[Any]="</s>" , __UpperCAmelCase : Any="<unk>" , __UpperCAmelCase : int="<mask_2>" , __UpperCAmelCase : Optional[Any]="<mask_1>" , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : List[Any]=1_0_3 , __UpperCAmelCase : Optional[Any] = None , **__UpperCAmelCase : Dict , ) -> None: """simple docstring""" UpperCAmelCase__ = offset if additional_special_tokens is not None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError( f"""additional_special_tokens should be of type {type(SCREAMING_SNAKE_CASE_ )}, but is""" f""" {type(SCREAMING_SNAKE_CASE_ )}""" ) UpperCAmelCase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(SCREAMING_SNAKE_CASE_ ) , self.offset - 1 ) ] if len(set(SCREAMING_SNAKE_CASE_ ) ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) UpperCAmelCase__ = additional_special_tokens_extended else: UpperCAmelCase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token_sent=SCREAMING_SNAKE_CASE_ , offset=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase__ = mask_token_sent UpperCAmelCase__ = vocab_file UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE_ ) # add special tokens to encoder dict UpperCAmelCase__ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCAmelCase__ = {v: k for k, v in self.encoder.items()} @property def lowercase_ (self : Union[str, Any] ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def lowercase_ (self : str ) -> Dict[str, int]: """simple docstring""" UpperCAmelCase__ = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self : Optional[int] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None return state def __setstate__(self : Tuple , __UpperCAmelCase : Any ) -> str: """simple docstring""" UpperCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ (self : List[Any] , __UpperCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCAmelCase__ = self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE_ ) return sp_id + self.offset def lowercase_ (self : Dict , __UpperCAmelCase : Tuple ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCAmelCase__ = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase_ (self : List[Any] , __UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token UpperCAmelCase__ = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def lowercase_ (self : str , __UpperCAmelCase : Optional[Any]=False ) -> Union[str, Any]: """simple docstring""" return 1 def lowercase_ (self : str , __UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase_ (self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Tuple = None , __UpperCAmelCase : Tuple = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(SCREAMING_SNAKE_CASE_ ) elif token_ids_a is None: return self._special_token_mask(SCREAMING_SNAKE_CASE_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase_ (self : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ (self : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , "wb" ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
65
def A_ ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowercase__ : List[str] = generate_large_matrix() lowercase__ : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A_ ( snake_case : list[list[int]] ) -> None: '''simple docstring''' assert all(row == sorted(snake_case , reverse=snake_case ) for row in grid ) assert all(list(snake_case ) == sorted(snake_case , reverse=snake_case ) for col in zip(*snake_case ) ) def A_ ( snake_case : list[int] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCamelCase = (left + right) // 2 __UpperCamelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCamelCase = mid + 1 else: __UpperCamelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = len(grid[0] ) for i in range(len(snake_case ) ): __UpperCamelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case ) * len(grid[0] )) - total def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def A_ ( snake_case : list[list[int]] ) -> int: '''simple docstring''' __UpperCamelCase = 0 for row in grid: for i, number in enumerate(snake_case ): if number < 0: total += len(snake_case ) - i break return total def A_ ( ) -> None: '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) __UpperCamelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCamelCase = timeit(f"{func}(grid=grid)" , setup=snake_case , number=500 ) print(f"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowercase = False, False, False @dataclass class UpperCamelCase_ : '''simple docstring''' lowerCAmelCase = None lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = None # Automatically constructed lowerCAmelCase = '''dict''' lowerCAmelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) lowerCAmelCase = field(default='''Audio''' , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self ) -> Tuple: return self.pa_type def _UpperCamelCase ( self , a ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('To support encoding audio data, please install \'soundfile\'.' ) from err if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return {"bytes": None, "path": value} elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes snake_case_ = BytesIO() sf.write(SCREAMING_SNAKE_CASE_ , value['array'] , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('pcm' ): # "PCM" only has raw audio bytes if value.get('sampling_rate' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object' ) if value.get('bytes' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) snake_case_ = np.frombuffer(value['bytes'] , dtype=np.intaa ).astype(np.floataa ) / 3_27_67 else: snake_case_ = np.memmap(value['path'] , dtype='h' , mode='r' ).astype(np.floataa ) / 3_27_67 snake_case_ = BytesIO(bytes() ) sf.write(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def _UpperCamelCase ( self , a , a = None ) -> dict: if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.' ) snake_case_ , snake_case_ = (value['path'], BytesIO(value['bytes'] )) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(F'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.' ) from err snake_case_ = xsplitext(SCREAMING_SNAKE_CASE_ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( 'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( 'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) if file is None: snake_case_ = token_per_repo_id or {} snake_case_ = path.split('::' )[-1] try: snake_case_ = string_to_dict(SCREAMING_SNAKE_CASE_ , config.HUB_DATASETS_URL )['repo_id'] snake_case_ = token_per_repo_id[repo_id] except (ValueError, KeyError): snake_case_ = None with xopen(SCREAMING_SNAKE_CASE_ , 'rb' , use_auth_token=SCREAMING_SNAKE_CASE_ ) as f: snake_case_ , snake_case_ = sf.read(SCREAMING_SNAKE_CASE_ ) else: snake_case_ , snake_case_ = sf.read(SCREAMING_SNAKE_CASE_ ) snake_case_ = array.T if self.mono: snake_case_ = librosa.to_mono(SCREAMING_SNAKE_CASE_ ) if self.sampling_rate and self.sampling_rate != sampling_rate: snake_case_ = librosa.resample(SCREAMING_SNAKE_CASE_ , orig_sr=SCREAMING_SNAKE_CASE_ , target_sr=self.sampling_rate ) snake_case_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _UpperCamelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('Cannot flatten a decoded Audio feature.' ) return { "bytes": Value('binary' ), "path": Value('string' ), } def _UpperCamelCase ( self , a ) -> pa.StructArray: if pa.types.is_string(storage.type ): snake_case_ = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.binary() ) snake_case_ = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): snake_case_ = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.string() ) snake_case_ = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('array' ): snake_case_ = pa.array([Audio().encode_example(SCREAMING_SNAKE_CASE_ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: snake_case_ = storage.field('bytes' ) else: snake_case_ = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: snake_case_ = storage.field('path' ) else: snake_case_ = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.string() ) snake_case_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) return array_cast(SCREAMING_SNAKE_CASE_ , self.pa_type ) def _UpperCamelCase ( self , a ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(a ): with xopen(SCREAMING_SNAKE_CASE_ , 'rb' ) as f: snake_case_ = f.read() return bytes_ snake_case_ = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) snake_case_ = pa.array( [os.path.basename(SCREAMING_SNAKE_CASE_ ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) snake_case_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(SCREAMING_SNAKE_CASE_ , self.pa_type )
178
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = size if size is not None else {'''shortest_edge''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = crop_pct __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: __UpperCamelCase = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCamelCase = int(size['''height'''] / crop_pct ) else: __UpperCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) else: if "shortest_edge" in size: __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) elif "height" in size and "width" in size: __UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> str: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , )-> PIL.Image.Image: '''simple docstring''' __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
328
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __lowerCAmelCase = logging.getLogger(__name__) @dataclass class __magic_name__ : lowerCAmelCase : Union[str, Any] = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase : int = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase : List[str] = field( default='NER' , metadata={'help': 'Task type to fine tune in training (e.g. NER, POS, etc)'} ) lowerCAmelCase : Optional[int] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase : int = field(default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Any = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __magic_name__ : lowerCAmelCase : Tuple = field( metadata={'help': 'The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'} ) lowerCAmelCase : Union[str, Any] = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'} , ) lowerCAmelCase : Dict = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase : Dict = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def __lowerCamelCase ( ) -> int: _a : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _a , _a , _a : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _a , _a , _a : Tuple = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) _a : Union[str, Any] = import_module('tasks' ) try: _a : Tuple = getattr(lowerCAmelCase_ , model_args.task_type ) _a : Optional[int] = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , lowerCAmelCase_ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task _a : List[Any] = token_classification_task.get_labels(data_args.labels ) _a : Any = dict(enumerate(lowerCAmelCase_ ) ) _a : str = len(lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , labelaid={label: i for i, label in enumerate(lowerCAmelCase_ )} , cache_dir=model_args.cache_dir , ) _a : Optional[int] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) _a : str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets _a : Tuple = ( TokenClassificationDataset( token_classification_task=lowerCAmelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , labels=lowerCAmelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _a : List[Any] = ( TokenClassificationDataset( token_classification_task=lowerCAmelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , labels=lowerCAmelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple[List[int], List[int]]: _a : Dict = np.argmax(lowerCAmelCase_ , axis=2 ) _a , _a : Union[str, Any] = preds.shape _a : Dict = [[] for _ in range(lowerCAmelCase_ )] _a : Optional[int] = [[] for _ in range(lowerCAmelCase_ )] for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(lowerCAmelCase_ ) -> Dict: _a , _a : List[str] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(lowerCAmelCase_ , lowerCAmelCase_ ), "precision": precision_score(lowerCAmelCase_ , lowerCAmelCase_ ), "recall": recall_score(lowerCAmelCase_ , lowerCAmelCase_ ), "f1": fa_score(lowerCAmelCase_ , lowerCAmelCase_ ), } # Data collator _a : Any = DataCollatorWithPadding(lowerCAmelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _a : Tuple = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=lowerCAmelCase_ , eval_dataset=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _a : List[Any] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _a : Any = trainer.evaluate() _a : Union[str, Any] = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , lowerCAmelCase_ , lowerCAmelCase_ ) writer.write('%s = %s\n' % (key, value) ) results.update(lowerCAmelCase_ ) # Predict if training_args.do_predict: _a : List[str] = TokenClassificationDataset( token_classification_task=lowerCAmelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , labels=lowerCAmelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) _a , _a , _a : Optional[int] = trainer.predict(lowerCAmelCase_ ) _a , _a : List[str] = align_predictions(lowerCAmelCase_ , lowerCAmelCase_ ) _a : Optional[int] = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , lowerCAmelCase_ , lowerCAmelCase_ ) writer.write('%s = %s\n' % (key, value) ) # Save predictions _a : List[Any] = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return results def __lowerCamelCase ( lowerCAmelCase_ ) -> List[Any]: main() if __name__ == "__main__": main()
89
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowercase__ : Any = getLogger(__name__) lowercase__ : List[str] = "cuda" if torch.cuda.is_available() else "cpu" def A_ ( snake_case : List[str] , snake_case : str , snake_case : str , snake_case : int = 8 , snake_case : str = DEFAULT_DEVICE , snake_case : List[str]=False , snake_case : Union[str, Any]="summarization" , snake_case : str=None , **snake_case : List[Any] , ) -> Dict: '''simple docstring''' __UpperCamelCase = Path(snake_case ).open('''w''' , encoding='''utf-8''' ) __UpperCamelCase = str(snake_case ) __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case ).to(snake_case ) if fpaa: __UpperCamelCase = model.half() __UpperCamelCase = AutoTokenizer.from_pretrained(snake_case ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. __UpperCamelCase = time.time() # update config with task specific params use_task_specific_params(snake_case , snake_case ) if prefix is None: __UpperCamelCase = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(snake_case , snake_case ) ) ): __UpperCamelCase = [prefix + text for text in examples_chunk] __UpperCamelCase = tokenizer(snake_case , return_tensors='''pt''' , truncation=snake_case , padding='''longest''' ).to(snake_case ) __UpperCamelCase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **snake_case , ) __UpperCamelCase = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() __UpperCamelCase = int(time.time() - start_time ) # seconds __UpperCamelCase = len(snake_case ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def A_ ( ) -> Tuple: '''simple docstring''' return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def A_ ( snake_case : str=True ) -> int: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=snake_case , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=snake_case , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=snake_case , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=snake_case , required=snake_case , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=snake_case , required=snake_case , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=snake_case , required=snake_case , default=snake_case , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=snake_case , required=snake_case , default=snake_case , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=snake_case , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=snake_case , default=8 , required=snake_case , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=snake_case , default=-1 , required=snake_case , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=snake_case , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __UpperCamelCase , __UpperCamelCase = parser.parse_known_args() __UpperCamelCase = parse_numeric_n_bool_cl_kwargs(snake_case ) if parsed_args and verbose: print(f"parsed the following generate kwargs: {parsed_args}" ) __UpperCamelCase = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __UpperCamelCase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=snake_case ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c." ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) __UpperCamelCase = generate_summaries_or_translations( snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **snake_case , ) if args.reference_path is None: return {} # Compute scores __UpperCamelCase = calculate_bleu if '''translation''' in args.task else calculate_rouge __UpperCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()] __UpperCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(snake_case )] __UpperCamelCase = score_fn(snake_case , snake_case ) scores.update(snake_case ) if args.dump_args: scores.update(snake_case ) if args.info: __UpperCamelCase = args.info if verbose: print(snake_case ) if args.score_path is not None: json.dump(snake_case , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
328
0
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } lowerCamelCase_ = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } lowerCamelCase_ = "</w>" lowerCamelCase_ = "@@ " def __magic_name__ ( __a : Dict ): '''simple docstring''' UpperCamelCase__ = set() UpperCamelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase__ = char return pairs # Speech2Text2 has no max input length lowerCamelCase_ = {"facebook/s2t-wav2vec2-large-en-de": 10_24} class __A( SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ["""input_ids""", """attention_mask"""] def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): super().__init__( unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = do_lower_case with open(SCREAMING_SNAKE_CASE_ , encoding="""utf-8""" ) as vocab_handle: UpperCamelCase__ = json.load(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding." ) UpperCamelCase__ = None UpperCamelCase__ = None else: with open(SCREAMING_SNAKE_CASE_ , encoding="""utf-8""" ) as merges_handle: UpperCamelCase__ = merges_handle.read().split("""\n""" )[:-1] UpperCamelCase__ = [tuple(merge.split()[:2] ) for merge in merges] UpperCamelCase__ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) UpperCamelCase__ = {} @property def UpperCAmelCase_ (self ): return len(self.decoder ) def UpperCAmelCase_ (self ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] UpperCamelCase__ = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: UpperCamelCase__ = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase__ , UpperCamelCase__ = bigram UpperCamelCase__ = [] UpperCamelCase__ = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: UpperCamelCase__ = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase__ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase__ = tuple(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: UpperCamelCase__ = get_pairs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """ """.join(SCREAMING_SNAKE_CASE_ ) if word == "\n " + BPE_TOKEN_MERGES: UpperCamelCase__ = """\n""" + BPE_TOKEN_MERGES if word.endswith(SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = word.replace(SCREAMING_SNAKE_CASE_ , """""" ) UpperCamelCase__ = word.replace(""" """ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = word return word def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): if self.bpe_ranks is None: raise ValueError( """This tokenizer was instantiated without a `merges.txt` file, so""" """ that it can only be used for decoding, not for encoding.""" """Make sure to provide `merges.txt` file at instantiation to enable """ """encoding.""" ) if self.do_lower_case: UpperCamelCase__ = text.lower() UpperCamelCase__ = text.split() UpperCamelCase__ = [] for token in text: if token: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE_ ).split(""" """ ) ) ) return split_tokens def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.decoder.get(SCREAMING_SNAKE_CASE_ , self.unk_token ) return result def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = """ """.join(SCREAMING_SNAKE_CASE_ ) # make sure @@ tokens are concatenated UpperCamelCase__ = """""".join(string.split(SCREAMING_SNAKE_CASE_ ) ) return string def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase__ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(SCREAMING_SNAKE_CASE_ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + """\n""" ) UpperCamelCase__ = 0 if self.bpe_ranks is None: return (vocab_file,) with open(SCREAMING_SNAKE_CASE_ , """w""" , encoding="""utf-8""" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) UpperCamelCase__ = token_index writer.write(""" """.join(SCREAMING_SNAKE_CASE_ ) + """\n""" ) index += 1 return (vocab_file, merges_file)
244
from math import factorial def A_ ( snake_case : int = 100 ) -> int: '''simple docstring''' return sum(int(snake_case ) for x in str(factorial(snake_case ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
328
0
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=99 , UpperCamelCase=13 , UpperCamelCase=7 , UpperCamelCase=9 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=False , UpperCamelCase=32 , UpperCamelCase=5 , UpperCamelCase=4 , UpperCamelCase=37 , UpperCamelCase=8 , UpperCamelCase=0.1 , UpperCamelCase=0.002 , UpperCamelCase=1 , UpperCamelCase=0 , UpperCamelCase=0 , UpperCamelCase=None , UpperCamelCase=None , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = encoder_seq_length lowerCamelCase_ = decoder_seq_length # For common tests lowerCamelCase_ = self.decoder_seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_attention_mask lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = d_ff lowerCamelCase_ = relative_attention_num_buckets lowerCamelCase_ = dropout_rate lowerCamelCase_ = initializer_factor lowerCamelCase_ = eos_token_id lowerCamelCase_ = pad_token_id lowerCamelCase_ = decoder_start_token_id lowerCamelCase_ = None lowerCamelCase_ = decoder_layers def snake_case ( self ): """simple docstring""" return TaConfig.from_pretrained("google/umt5-base" ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , ): """simple docstring""" if attention_mask is None: lowerCamelCase_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCamelCase_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCamelCase_ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE_ ) if decoder_head_mask is None: lowerCamelCase_ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE_ ) if cross_attn_head_mask is None: lowerCamelCase_ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def snake_case ( self ): """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCamelCase_ = input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase_ = self.get_config() lowerCamelCase_ = config.num_attention_heads lowerCamelCase_ = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return config, input_dict def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.prepare_config_and_inputs() return config, inputs_dict def snake_case ( self ): """simple docstring""" return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def snake_case ( self ): """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = UMTaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model( input_ids=SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , decoder_attention_mask=SCREAMING_SNAKE_CASE_ , ) lowerCamelCase_ = model(input_ids=SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = result.last_hidden_state lowerCamelCase_ = result.past_key_values lowerCamelCase_ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = UMTaModel(config=SCREAMING_SNAKE_CASE_ ).get_decoder().to(SCREAMING_SNAKE_CASE_ ).eval() # first forward pass lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) + 1 ) lowerCamelCase_ ,lowerCamelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ )["last_hidden_state"] lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ )["last_hidden_state"] # select random slice lowerCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase_ = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = UMTaModel(config=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ).half().eval() lowerCamelCase_ = model(**SCREAMING_SNAKE_CASE_ )["last_hidden_state"] self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE_ ).any().item() ) @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _lowerCamelCase = (UMTaForConditionalGeneration,) if is_torch_available() else () _lowerCamelCase = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = True _lowerCamelCase = True # The small UMT5 model needs higher percentages for CPU/MP tests _lowerCamelCase = [0.8, 0.9] def snake_case ( self ): """simple docstring""" lowerCamelCase_ = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() lowerCamelCase_ = UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( SCREAMING_SNAKE_CASE_ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=SCREAMING_SNAKE_CASE_ , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE_ ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = ["encoder_attentions", "decoder_attentions", "cross_attentions"] lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() lowerCamelCase_ = config_and_inputs[0] lowerCamelCase_ = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ).eval() model.to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = { "head_mask": torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE_ ), "decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE_ ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE_ ), } for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE_ , head_masking.items() ): lowerCamelCase_ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCamelCase_ = torch.ones( config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model.generate( config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE_ , return_dict_in_generate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCamelCase_ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def snake_case ( self ): """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=SCREAMING_SNAKE_CASE_ , legacy=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] lowerCamelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors="pt" , padding=SCREAMING_SNAKE_CASE_ ).input_ids # fmt: off lowerCamelCase_ = torch.tensor( [ [ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model.generate(input_ids.to(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] lowerCamelCase_ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
55
def A_ ( snake_case : list ) -> list: '''simple docstring''' __UpperCamelCase = len(snake_case ) for i in range(1 , snake_case ): __UpperCamelCase = collection[i] __UpperCamelCase = 0 __UpperCamelCase = i - 1 while low <= high: __UpperCamelCase = (low + high) // 2 if val < collection[mid]: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 for j in range(snake_case , snake_case , -1 ): __UpperCamelCase = collection[j - 1] __UpperCamelCase = val return collection if __name__ == "__main__": lowercase__ : List[Any] = input("Enter numbers separated by a comma:\n").strip() lowercase__ : str = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
328
0
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __A : Optional[List[str]] = None __A : List[str] = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __A : Union[str, Any] = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class __A : lowerCAmelCase_ : Any = True lowerCAmelCase_ : List[Any] = None # Automatically constructed lowerCAmelCase_ : Dict = "PIL.Image.Image" lowerCAmelCase_ : Dict = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) lowerCAmelCase_ : Optional[int] = field(default="Image" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self : Union[str, Any] ): return self.pa_type def lowercase__ ( self : List[Any] , UpperCAmelCase_ : Optional[int] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase : Dict = np.array(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return {"path": value, "bytes": None} elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return {"path": None, "bytes": value} elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(SCREAMING_SNAKE_CASE_ ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int=None ): if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: lowerCAmelCase : Optional[Any] = {} lowerCAmelCase , lowerCAmelCase : Optional[int] = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}." ) else: if is_local_path(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase : List[Any] = PIL.Image.open(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase : Optional[int] = path.split('::' )[-1] try: lowerCAmelCase : Optional[int] = string_to_dict(SCREAMING_SNAKE_CASE_ , config.HUB_DATASETS_URL )['repo_id'] lowerCAmelCase : Tuple = token_per_repo_id.get(SCREAMING_SNAKE_CASE_ ) except ValueError: lowerCAmelCase : Union[str, Any] = None with xopen(SCREAMING_SNAKE_CASE_ , 'rb' , use_auth_token=SCREAMING_SNAKE_CASE_ ) as f: lowerCAmelCase : List[Any] = BytesIO(f.read() ) lowerCAmelCase : Tuple = PIL.Image.open(bytes_ ) else: lowerCAmelCase : List[str] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase__ ( self : List[Any] ): from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def lowercase__ ( self : Any , UpperCAmelCase_ : Optional[Any] ): if pa.types.is_string(storage.type ): lowerCAmelCase : Union[str, Any] = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.binary() ) lowerCAmelCase : List[Any] = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCAmelCase : str = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.string() ) lowerCAmelCase : List[str] = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: lowerCAmelCase : Optional[Any] = storage.field('bytes' ) else: lowerCAmelCase : Dict = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: lowerCAmelCase : Optional[Any] = storage.field('path' ) else: lowerCAmelCase : Tuple = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.string() ) lowerCAmelCase : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowerCAmelCase : Optional[int] = pa.array( [encode_np_array(np.array(SCREAMING_SNAKE_CASE_ ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowerCAmelCase : List[Any] = pa.array([None] * len(SCREAMING_SNAKE_CASE_ ) , type=pa.string() ) lowerCAmelCase : Optional[Any] = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(SCREAMING_SNAKE_CASE_ , self.pa_type ) def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ): @no_op_if_value_is_null def path_to_bytes(UpperCAmelCase_ : Union[str, Any] ): with xopen(SCREAMING_SNAKE_CASE_ , 'rb' ) as f: lowerCAmelCase : Dict = f.read() return bytes_ lowerCAmelCase : Optional[Any] = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCAmelCase : List[str] = pa.array( [os.path.basename(SCREAMING_SNAKE_CASE_ ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) lowerCAmelCase : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(SCREAMING_SNAKE_CASE_ , self.pa_type ) def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowerCAmelCase : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> bytes: '''simple docstring''' lowerCAmelCase : int = BytesIO() if image.format in list_image_compression_formats(): lowerCAmelCase : Union[str, Any] = image.format else: lowerCAmelCase : Tuple = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(_UpperCAmelCase, format=_UpperCAmelCase ) return buffer.getvalue() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> dict: '''simple docstring''' if hasattr(_UpperCAmelCase, 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_UpperCAmelCase )} def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) lowerCAmelCase : int = array.dtype lowerCAmelCase : Optional[int] = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER lowerCAmelCase : str = dtype.kind lowerCAmelCase : Union[str, Any] = dtype.itemsize lowerCAmelCase : Tuple = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowerCAmelCase : List[Any] = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( f"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) if dtype is not dest_dtype: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowerCAmelCase : Optional[int] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowerCAmelCase : Tuple = dtype_byteorder + dtype_kind + str(_UpperCAmelCase ) lowerCAmelCase : Any = np.dtype(_UpperCAmelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) lowerCAmelCase : Union[str, Any] = PIL.Image.fromarray(array.astype(_UpperCAmelCase ) ) return {"path": None, "bytes": image_to_bytes(_UpperCAmelCase )} def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[dict]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: lowerCAmelCase , lowerCAmelCase : List[Any] = first_non_null_value(_UpperCAmelCase ) if isinstance(_UpperCAmelCase, _UpperCAmelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_UpperCAmelCase, np.ndarray ): lowerCAmelCase : Dict = no_op_if_value_is_null(_UpperCAmelCase ) return [obj_to_image_dict_func(_UpperCAmelCase ) for obj in objs] elif isinstance(_UpperCAmelCase, PIL.Image.Image ): lowerCAmelCase : Any = no_op_if_value_is_null(_UpperCAmelCase ) return [obj_to_image_dict_func(_UpperCAmelCase ) for obj in objs] else: return objs else: return objs
138
from __future__ import annotations from collections import deque class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(SCREAMING_SNAKE_CASE_ ) self.set_fail_transitions() def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int | None: '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def A__ ( self , SCREAMING_SNAKE_CASE_ )-> None: '''simple docstring''' __UpperCamelCase = 0 for character in keyword: __UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __UpperCamelCase = len(self.adlist ) - 1 else: __UpperCamelCase = next_state self.adlist[current_state]["output"].append(SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> None: '''simple docstring''' __UpperCamelCase = deque() for node in self.adlist[0]["next_states"]: q.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = 0 while q: __UpperCamelCase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.adlist[r]['''fail_state'''] while ( self.find_next_state(SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) is None and state != 0 ): __UpperCamelCase = self.adlist[state]['''fail_state'''] __UpperCamelCase = self.find_next_state( SCREAMING_SNAKE_CASE_ , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: __UpperCamelCase = 0 __UpperCamelCase = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> dict[str, list[int]]: '''simple docstring''' __UpperCamelCase = {} # returns a dict with keywords and list of its occurrences __UpperCamelCase = 0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): while ( self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) is None and current_state != 0 ): __UpperCamelCase = self.adlist[current_state]['''fail_state'''] __UpperCamelCase = self.find_next_state(SCREAMING_SNAKE_CASE_ , string[i] ) if next_state is None: __UpperCamelCase = 0 else: __UpperCamelCase = next_state for key in self.adlist[current_state]["output"]: if key not in result: __UpperCamelCase = [] result[key].append(i - len(SCREAMING_SNAKE_CASE_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
328
0
def a__ ( _UpperCamelCase : str ): assert column_title.isupper() __lowerCamelCase = 0 __lowerCamelCase = len(_UpperCamelCase ) - 1 __lowerCamelCase = 0 while index >= 0: __lowerCamelCase = (ord(column_title[index] ) - 64) * pow(26 ,_UpperCamelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
330
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , )-> Dict: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self )-> str: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = DistilBertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' __UpperCamelCase = DistilBertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = DistilBertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = True _snake_case = True _snake_case = True def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = DistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , dim=37 ) def A__ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> List[str]: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = DistilBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCamelCase = True __UpperCamelCase = model_class(config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.jit.trace( SCREAMING_SNAKE_CASE_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) ) __UpperCamelCase = torch.jit.load(os.path.join(SCREAMING_SNAKE_CASE_ , '''traced_model.pt''' ) , map_location=SCREAMING_SNAKE_CASE_ ) loaded(inputs_dict['''input_ids'''].to(SCREAMING_SNAKE_CASE_ ) , inputs_dict['''attention_mask'''].to(SCREAMING_SNAKE_CASE_ ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __UpperCamelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] __UpperCamelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
328
0
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py snake_case_ = "src/diffusers" snake_case_ = "." # This is to make sure the diffusers module imported is the one in the repo. snake_case_ = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) snake_case_ = spec.loader.load_module() def _lowerCAmelCase ( lowercase_ , lowercase_ ): return line.startswith(lowercase_ ) or len(lowercase_ ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , lowercase_ ) is not None def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = object_name.split('.' ) UpperCAmelCase = 0 # First let's find the module where our object lives. UpperCAmelCase = parts[i] while i < len(lowercase_ ) and not os.path.isfile(os.path.join(lowercase_ , F"""{module}.py""" ) ): i += 1 if i < len(lowercase_ ): UpperCAmelCase = os.path.join(lowercase_ , parts[i] ) if i >= len(lowercase_ ): raise ValueError(F"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(lowercase_ , F"""{module}.py""" ) , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCAmelCase = f.readlines() # Now let's find the class / func in the code! UpperCAmelCase = '' UpperCAmelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(lowercase_ ) and re.search(RF"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowercase_ ): raise ValueError(F""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). UpperCAmelCase = line_index while line_index < len(lowercase_ ) and _should_continue(lines[line_index] , lowercase_ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase = lines[start_index:line_index] return "".join(lowercase_ ) snake_case_ = re.compile(R"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") snake_case_ = re.compile(R"""^\s*(\S+)->(\S+)(\s+.*|$)""") snake_case_ = re.compile(R"""<FILL\s+[^>]*>""") def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = code.split('\n' ) UpperCAmelCase = 0 while idx < len(lowercase_ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowercase_ ): return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0] return "" def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = len(get_indent(lowercase_ ) ) > 0 if has_indent: UpperCAmelCase = F"""class Bla:\n{code}""" UpperCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=lowercase_ ) UpperCAmelCase = black.format_str(lowercase_ , mode=lowercase_ ) UpperCAmelCase , UpperCAmelCase = style_docstrings_in_code(lowercase_ ) return result[len('class Bla:\n' ) :] if has_indent else result def _lowerCAmelCase ( lowercase_ , lowercase_=False ): with open(lowercase_ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCAmelCase = f.readlines() UpperCAmelCase = [] UpperCAmelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowercase_ ): UpperCAmelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = search.groups() UpperCAmelCase = find_code_in_diffusers(lowercase_ ) UpperCAmelCase = get_indent(lowercase_ ) UpperCAmelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 UpperCAmelCase = theoretical_indent UpperCAmelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. UpperCAmelCase = True while line_index < len(lowercase_ ) and should_continue: line_index += 1 if line_index >= len(lowercase_ ): break UpperCAmelCase = lines[line_index] UpperCAmelCase = _should_continue(lowercase_ , lowercase_ ) and re.search(F"""^{indent}# End copy""" , lowercase_ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase = lines[start_index:line_index] UpperCAmelCase = ''.join(lowercase_ ) # Remove any nested `Copied from` comments to avoid circular copies UpperCAmelCase = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(lowercase_ ) is None] UpperCAmelCase = '\n'.join(lowercase_ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowercase_ ) > 0: UpperCAmelCase = replace_pattern.replace('with' , '' ).split(',' ) UpperCAmelCase = [_re_replace_pattern.search(lowercase_ ) for p in patterns] for pattern in patterns: if pattern is None: continue UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = pattern.groups() UpperCAmelCase = re.sub(lowercase_ , lowercase_ , lowercase_ ) if option.strip() == "all-casing": UpperCAmelCase = re.sub(obja.lower() , obja.lower() , lowercase_ ) UpperCAmelCase = re.sub(obja.upper() , obja.upper() , lowercase_ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line UpperCAmelCase = blackify(lines[start_index - 1] + theoretical_code ) UpperCAmelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: UpperCAmelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] UpperCAmelCase = start_index + 1 if overwrite and len(lowercase_ ) > 0: # Warn the user a file has been modified. print(F"""Detected changes, rewriting {filename}.""" ) with open(lowercase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lowercase_ ) return diffs def _lowerCAmelCase ( lowercase_ = False ): UpperCAmelCase = glob.glob(os.path.join(lowercase_ , '**/*.py' ) , recursive=lowercase_ ) UpperCAmelCase = [] for filename in all_files: UpperCAmelCase = is_copy_consistent(lowercase_ , lowercase_ ) diffs += [F"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(lowercase_ ) > 0: UpperCAmelCase = '\n'.join(lowercase_ ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") snake_case_ = parser.parse_args() check_copies(args.fix_and_overwrite)
78
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowercase__ : Optional[Any] = logging.getLogger(__name__) def A_ ( snake_case : Any=2 , snake_case : Union[str, Any]=3 , snake_case : Union[str, Any]=16 , snake_case : int = 10 , snake_case : int = 2 ) -> int: '''simple docstring''' def get_dataset(snake_case : Optional[int] ): __UpperCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = get_dataset(snake_case ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) __UpperCamelCase = DataLoader(snake_case , shuffle=snake_case , batch_size=snake_case , num_workers=4 ) return (train_dataloader, valid_dataloader) def A_ ( snake_case : List[str] , snake_case : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : str=None ) -> Any: '''simple docstring''' __UpperCamelCase = [] for epoch in range(snake_case ): # Train quickly model.train() for batch in dataloader: __UpperCamelCase , __UpperCamelCase = batch __UpperCamelCase = model(snake_case ) __UpperCamelCase = torch.nn.functional.mse_loss(snake_case , snake_case ) accelerator.backward(snake_case ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self )-> Tuple: '''simple docstring''' super().__init__() __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) __UpperCamelCase = nn.Parameter(torch.randn(1 ) ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' return x * self.a + self.b class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self )-> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() # Train baseline __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = Accelerator() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything __UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() __UpperCamelCase = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((__UpperCamelCase) , (__UpperCamelCase)) = model.a.item(), model.b.item() __UpperCamelCase = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = torch.tensor([1, 2, 3] ) __UpperCamelCase = torch.tensor([2, 3, 4] ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(net.parameters() ) __UpperCamelCase = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __UpperCamelCase = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.9_9 ) __UpperCamelCase , __UpperCamelCase = dummy_dataloaders() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() __UpperCamelCase = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def A__ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __UpperCamelCase = DummyModel() __UpperCamelCase = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline __UpperCamelCase = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": lowercase__ : Optional[int] = "/tmp/accelerate/state_checkpointing" lowercase__ : List[Any] = DummyModel() lowercase__ : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3) lowercase__ : int = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowercase__ , lowercase__ : str = dummy_dataloaders() lowercase__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowercase__ : List[str] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowercase__ , lowercase__ : str = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowercase__ : int = group["params"][0].device break assert param_device.type == accelerator.device.type lowercase__ : Union[str, Any] = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: lowercase__ : Any = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: lowercase__ : List[Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
328
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ :Union[str, Any] = logging.get_logger(__name__) a_ :List[Any] = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class snake_case__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """fnet""" def __init__( self : Optional[int], _snake_case : List[Any]=3_2_0_0_0, _snake_case : Any=7_6_8, _snake_case : Union[str, Any]=1_2, _snake_case : Any=3_0_7_2, _snake_case : Dict="gelu_new", _snake_case : List[Any]=0.1, _snake_case : str=5_1_2, _snake_case : Tuple=4, _snake_case : Any=0.0_2, _snake_case : Union[str, Any]=1e-12, _snake_case : Optional[int]=False, _snake_case : List[Any]=5_1_2, _snake_case : Any=3, _snake_case : str=1, _snake_case : Dict=2, **_snake_case : int, ) ->Optional[Any]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_, bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) snake_case__ : Optional[Any] = vocab_size snake_case__ : int = max_position_embeddings snake_case__ : Optional[int] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : str = intermediate_size snake_case__ : List[Any] = hidden_act snake_case__ : Dict = hidden_dropout_prob snake_case__ : str = initializer_range snake_case__ : List[Any] = type_vocab_size snake_case__ : List[Any] = layer_norm_eps snake_case__ : List[Any] = use_tpu_fourier_optimizations snake_case__ : str = tpu_short_seq_length
277
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , **SCREAMING_SNAKE_CASE_ , )-> Optional[int]: '''simple docstring''' super().__init__(features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = Sql( cache_dir=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , sql=SCREAMING_SNAKE_CASE_ , con=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , ) # Build dataset for splits __UpperCamelCase = self.builder.as_dataset( split='''train''' , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F"num_proc {num_proc} must be an integer > 0." ) __UpperCamelCase = dataset __UpperCamelCase = name __UpperCamelCase = con __UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCamelCase = num_proc __UpperCamelCase = to_sql_kwargs def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase = self.to_sql_kwargs.pop('''sql''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''con''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.to_sql_kwargs.pop('''index''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self._write(index=SCREAMING_SNAKE_CASE_ , **self.to_sql_kwargs ) return written def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args __UpperCamelCase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __UpperCamelCase = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCamelCase = batch.to_pandas() __UpperCamelCase = df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return num_rows or len(SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> int: '''simple docstring''' __UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
328
0
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowercase : List[Any] = Mapping[str, np.ndarray] lowercase : Dict = Mapping[str, Any] # Is a nested dict. lowercase : List[Any] = 0.01 @dataclasses.dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class A__ : """simple docstring""" __A : Any = 4_2 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. __A : Tuple = 4_2 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. __A : Dict = 4_2 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. __A : int = 4_2 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. __A : List[Any] = 4_2 # [num_res, num_atom_type] # Chain indices for multi-chain predictions __A : Union[str, Any] = None # Optional remark about the protein. Included as a comment in output PDB # files __A : str = None # Templates used to generate this protein (prediction-only) __A : List[Any] = None # Chain corresponding to each parent __A : Union[str, Any] = None def A_ ( A__ ) -> Protein: a__ : Dict = R'(\[[A-Z]+\]\n)' a__ : List[Any] = [tag.strip() for tag in re.split(A__ , A__ ) if len(A__ ) > 0] a__ : Dict = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) a__ : Any = ['N', 'CA', 'C'] a__ : int = None a__ : Optional[int] = None a__ : List[Any] = None for g in groups: if "[PRIMARY]" == g[0]: a__ : Union[str, Any] = g[1][0].strip() for i in range(len(A__ ) ): if seq[i] not in residue_constants.restypes: a__ : Any = 'X' # FIXME: strings are immutable a__ : Optional[int] = np.array( [residue_constants.restype_order.get(A__ , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: a__ : Union[str, Any] = [] for axis in range(3 ): tertiary.append(list(map(A__ , g[1][axis].split() ) ) ) a__ : List[str] = np.array(A__ ) a__ : Tuple = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(A__ ): a__ : Optional[int] = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: a__ : int = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) a__ : List[str] = np.zeros( ( len(A__ ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(A__ ): a__ : Union[str, Any] = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=A__ , atom_mask=A__ , aatype=A__ , residue_index=np.arange(len(A__ ) ) , b_factors=A__ , ) def A_ ( A__ , A__ = 0 ) -> List[str]: a__ : Dict = [] a__ : Optional[Any] = prot.remark if remark is not None: pdb_headers.append(F'REMARK {remark}' ) a__ : List[Any] = prot.parents a__ : Optional[Any] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: a__ : Optional[int] = [p for i, p in zip(A__ , A__ ) if i == chain_id] if parents is None or len(A__ ) == 0: a__ : int = ['N/A'] pdb_headers.append(F'PARENT {" ".join(A__ )}' ) return pdb_headers def A_ ( A__ , A__ ) -> str: a__ : List[str] = [] a__ : Any = pdb_str.split('\n' ) a__ : Any = prot.remark if remark is not None: out_pdb_lines.append(F'REMARK {remark}' ) a__ : Any = 42 if prot.parents is not None and len(prot.parents ) > 0: a__ : Tuple = [] if prot.parents_chain_index is not None: a__ : List[Any] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(A__ ) , [] ) parent_dict[str(A__ )].append(A__ ) a__ : List[Any] = max([int(A__ ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): a__ : str = parent_dict.get(str(A__ ) , ['N/A'] ) parents_per_chain.append(A__ ) else: parents_per_chain.append(list(prot.parents ) ) else: a__ : int = [['N/A']] def make_parent_line(A__ ) -> str: return F'PARENT {" ".join(A__ )}' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) a__ : int = 0 for i, l in enumerate(A__ ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(A__ ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(A__ ): a__ : int = parents_per_chain[chain_counter] else: a__ : Dict = ['N/A'] out_pdb_lines.append(make_parent_line(A__ ) ) return "\n".join(A__ ) def A_ ( A__ ) -> str: a__ : Dict = residue_constants.restypes + ['X'] def res_atoa(A__ ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) a__ : Optional[int] = residue_constants.atom_types a__ : int = [] a__ : Dict = prot.atom_mask a__ : str = prot.aatype a__ : int = prot.atom_positions a__ : List[str] = prot.residue_index.astype(np.intaa ) a__ : Any = prot.b_factors a__ : Optional[Any] = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) a__ : int = get_pdb_headers(A__ ) if len(A__ ) > 0: pdb_lines.extend(A__ ) a__ : List[str] = aatype.shape[0] a__ : int = 1 a__ : Optional[Any] = 0 a__ : int = string.ascii_uppercase a__ : Optional[Any] = None # Add all atom sites. for i in range(A__ ): a__ : str = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(A__ , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue a__ : int = 'ATOM' a__ : str = atom_name if len(A__ ) == 4 else F' {atom_name}' a__ : Optional[int] = '' a__ : Tuple = '' a__ : int = 1.00 a__ : List[Any] = atom_name[0] # Protein supports only C, N, O, S, this works. a__ : Union[str, Any] = '' a__ : Optional[Any] = 'A' if chain_index is not None: a__ : Tuple = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! a__ : int = ( F'{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}' F'{res_name_a:>3} {chain_tag:>1}' F'{residue_index[i]:>4}{insertion_code:>1} ' F'{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}' F'{occupancy:>6.2f}{b_factor:>6.2f} ' F'{element:>2}{charge:>2}' ) pdb_lines.append(A__ ) atom_index += 1 a__ : Optional[Any] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: a__ : Dict = True a__ : Optional[int] = chain_index[i + 1] if should_terminate: # Close the chain. a__ : Any = 'TER' a__ : Any = ( F'{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}' ) pdb_lines.append(A__ ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(A__ , A__ ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(A__ ) def A_ ( A__ ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def A_ ( A__ , A__ , A__ = None , A__ = None , A__ = None , A__ = None , A__ = None , ) -> Protein: return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=A__ , remark=A__ , parents=A__ , parents_chain_index=A__ , )
99
def A_ ( snake_case : str ) -> int: '''simple docstring''' assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(snake_case ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , snake_case ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
328
0
from collections.abc import Generator from math import sin def __snake_case ( __UpperCamelCase : bytes ): """simple docstring""" if len(__UpperCamelCase ) != 32: raise ValueError("Input must be of length 32" ) A_ = B"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) A_ = format(__UpperCamelCase ,"08x" )[-8:] A_ = B"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def __snake_case ( __UpperCamelCase : bytes ): """simple docstring""" A_ = B"" for char in message: bit_string += format(__UpperCamelCase ,"08b" ).encode("utf-8" ) A_ = format(len(__UpperCamelCase ) ,"064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__UpperCamelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __snake_case ( __UpperCamelCase : bytes ): """simple docstring""" if len(__UpperCamelCase ) % 512 != 0: raise ValueError("Input must have length that\'s a multiple of 512" ) for pos in range(0 ,len(__UpperCamelCase ) ,512 ): A_ = bit_string[pos : pos + 512] A_ = [] for i in range(0 ,512 ,32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) ,2 ) ) yield block_words def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) A_ = format(__UpperCamelCase ,"032b" ) A_ = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__UpperCamelCase ,2 ) def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ): """simple docstring""" return (a + b) % 2**32 def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ): """simple docstring""" if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __snake_case ( __UpperCamelCase : bytes ): """simple docstring""" A_ = preprocess(__UpperCamelCase ) A_ = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states A_ = 0X6_7_4_5_2_3_0_1 A_ = 0XE_F_C_D_A_B_8_9 A_ = 0X9_8_B_A_D_C_F_E A_ = 0X1_0_3_2_5_4_7_6 A_ = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__UpperCamelCase ): A_ = aa A_ = ba A_ = ca A_ = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f A_ = d ^ (b & (c ^ d)) A_ = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f A_ = c ^ (d & (b ^ c)) A_ = (5 * i + 1) % 16 elif i <= 47: A_ = b ^ c ^ d A_ = (3 * i + 5) % 16 else: A_ = c ^ (b | not_aa(__UpperCamelCase )) A_ = (7 * i) % 16 A_ = (f + a + added_consts[i] + block_words[g]) % 2**32 A_ = d A_ = c A_ = b A_ = sum_aa(__UpperCamelCase ,left_rotate_aa(__UpperCamelCase ,shift_amounts[i] ) ) # Add hashed chunk to running total A_ = sum_aa(__UpperCamelCase ,__UpperCamelCase ) A_ = sum_aa(__UpperCamelCase ,__UpperCamelCase ) A_ = sum_aa(__UpperCamelCase ,__UpperCamelCase ) A_ = sum_aa(__UpperCamelCase ,__UpperCamelCase ) A_ = reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
312
def A_ ( snake_case : int ) -> None: '''simple docstring''' __UpperCamelCase = generate_pascal_triangle(snake_case ) for row_idx in range(snake_case ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [] for current_row_idx in range(snake_case ): __UpperCamelCase = populate_current_row(snake_case , snake_case ) triangle.append(snake_case ) return triangle def A_ ( snake_case : list[list[int]] , snake_case : int ) -> list[int]: '''simple docstring''' __UpperCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase , __UpperCamelCase = 1, 1 for current_col_idx in range(1 , snake_case ): calculate_current_element( snake_case , snake_case , snake_case , snake_case ) return current_row def A_ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : int , snake_case : int , ) -> None: '''simple docstring''' __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase = above_to_left_elt + above_to_right_elt def A_ ( snake_case : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase = [[1]] for row_index in range(1 , snake_case ): __UpperCamelCase = [0] + result[-1] + [0] __UpperCamelCase = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase = sum(divmod(snake_case , 2 ) ) __UpperCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase = row_first_half + row_second_half result.append(snake_case ) return result def A_ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case : Callable , snake_case : int ) -> None: __UpperCamelCase = f"{func.__name__}({value})" __UpperCamelCase = timeit(f"__main__.{call}" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(snake_case , snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer UpperCamelCase__ = ["bert-base-uncased", "bert-base-cased"] UpperCamelCase__ = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class A ( tf.keras.Model ): def __init__(self : List[Any] , __UpperCAmelCase : Any ) -> Any: """simple docstring""" super().__init__() UpperCAmelCase__ = tokenizer UpperCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ = TFAutoModel.from_config(SCREAMING_SNAKE_CASE_ ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : List[Any] ) -> str: """simple docstring""" UpperCAmelCase__ = self.tokenizer(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ = self.bert(**SCREAMING_SNAKE_CASE_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class A ( unittest.TestCase ): def lowercase_ (self : List[str] ) -> Union[str, Any]: """simple docstring""" super().setUp() UpperCAmelCase__ = [ BertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCAmelCase__ = [TFBertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , use_fast_bert_tokenizer=SCREAMING_SNAKE_CASE_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase__ = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we\'re going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] UpperCAmelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowercase_ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCAmelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors="tf" , padding="longest" ) UpperCAmelCase__ = tf_tokenizer(SCREAMING_SNAKE_CASE_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def lowercase_ (self : Optional[Any] ) -> List[str]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase__ = tf_tokenizer(self.paired_sentences ) UpperCAmelCase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def lowercase_ (self : int ) -> Tuple: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase__ = tf.function(SCREAMING_SNAKE_CASE_ ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCAmelCase__ = tf.constant(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ = compiled_tokenizer(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ = tf_tokenizer(SCREAMING_SNAKE_CASE_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowercase_ (self : List[Any] ) -> List[str]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase__ = ModelToSave(tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ = tf.convert_to_tensor(self.test_sentences ) UpperCAmelCase__ = model(SCREAMING_SNAKE_CASE_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase__ = Path(SCREAMING_SNAKE_CASE_ ) / "saved.model" model.save(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ = tf.keras.models.load_model(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ = loaded_model(SCREAMING_SNAKE_CASE_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
65
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase__ : Any = parser.parse_args() lowercase__ : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase__ : List[str] = CLIPImageProcessor() lowercase__ : Optional[Any] = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase__ : Optional[Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
328
0
from __future__ import annotations import math def __UpperCAmelCase ( a_ , a_ , a_ , a_ , a_): if depth < 0: raise ValueError('Depth cannot be less than 0') if len(a_) == 0: raise ValueError('Scores cannot be empty') if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , a_ , a_ , a_) , minimax(depth + 1 , node_index * 2 + 1 , a_ , a_ , a_) , ) return min( minimax(depth + 1 , node_index * 2 , a_ , a_ , a_) , minimax(depth + 1 , node_index * 2 + 1 , a_ , a_ , a_) , ) def __UpperCAmelCase ( ): snake_case_ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case_ = math.log(len(a_) , 2) print('Optimal value : ' , end='') print(minimax(0 , 0 , a_ , a_ , a_)) if __name__ == "__main__": import doctest doctest.testmod() main()
178
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowercase__ : Union[str, Any] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" lowercase__ : Optional[Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" lowercase__ : Any = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" lowercase__ : Optional[int] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" lowercase__ : Optional[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def A__ ( self )-> Tuple: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=[1, 10, 100] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3.0 )-> Union[str, Any]: '''simple docstring''' if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=SCREAMING_SNAKE_CASE_ ) as executor: __UpperCamelCase = [] __UpperCamelCase = Counter() __UpperCamelCase = 0 __UpperCamelCase = defaultdict(SCREAMING_SNAKE_CASE_ ) for task_id, (candidates, test_case) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ): for candidate in candidates: __UpperCamelCase = candidate + '''\n''' + test_case __UpperCamelCase = (test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase = executor.submit(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) futures.append(SCREAMING_SNAKE_CASE_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) __UpperCamelCase , __UpperCamelCase = [], [] for result in results.values(): result.sort() __UpperCamelCase = [r[1]['''passed'''] for r in result] total.append(len(SCREAMING_SNAKE_CASE_ ) ) correct.append(sum(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = np.array(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = k __UpperCamelCase = {F"pass@{k}": estimate_pass_at_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A_ ( snake_case : Tuple , snake_case : Union[str, Any] , snake_case : List[Any] ) -> Optional[Any]: '''simple docstring''' def estimator(snake_case : int , snake_case : int , snake_case : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(snake_case , snake_case ): __UpperCamelCase = itertools.repeat(snake_case , len(snake_case ) ) else: assert len(snake_case ) == len(snake_case ) __UpperCamelCase = iter(snake_case ) return np.array([estimator(int(snake_case ) , int(snake_case ) , snake_case ) for n, c in zip(snake_case , snake_case )] )
328
0
'''simple docstring''' import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __lowerCAmelCase = logging.getLogger(__name__) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _a : str = np.argmax(lowerCAmelCase_ , axis=1 ) return np.sum(outputs == labels ) def __lowerCamelCase ( lowerCAmelCase_ ) -> Union[str, Any]: with open(lowerCAmelCase_ , encoding='utf_8' ) as f: _a : int = csv.reader(lowerCAmelCase_ ) _a : Any = [] next(lowerCAmelCase_ ) # skip the first line for line in tqdm(lowerCAmelCase_ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: _a : Optional[Any] = [] for dataset in encoded_datasets: _a : List[str] = len(lowerCAmelCase_ ) _a : int = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) _a : Any = np.zeros((n_batch, 2) , dtype=np.intaa ) _a : Optional[Any] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) _a : Any = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(lowerCAmelCase_ ): _a : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _a : str = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _a : Optional[Any] = with_conta _a : Union[str, Any] = with_conta _a : int = len(lowerCAmelCase_ ) - 1 _a : str = len(lowerCAmelCase_ ) - 1 _a : Optional[int] = with_conta _a : Optional[int] = with_conta _a : str = mc_label _a : int = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(lowerCAmelCase_ ) for t in all_inputs ) ) return tensor_datasets def __lowerCamelCase ( ) -> Dict: _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--model_name' , type=lowerCAmelCase_ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=lowerCAmelCase_ , default='' ) parser.add_argument('--eval_dataset' , type=lowerCAmelCase_ , default='' ) parser.add_argument('--seed' , type=lowerCAmelCase_ , default=42 ) parser.add_argument('--num_train_epochs' , type=lowerCAmelCase_ , default=3 ) parser.add_argument('--train_batch_size' , type=lowerCAmelCase_ , default=8 ) parser.add_argument('--eval_batch_size' , type=lowerCAmelCase_ , default=16 ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=lowerCAmelCase_ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=lowerCAmelCase_ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=lowerCAmelCase_ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=lowerCAmelCase_ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=lowerCAmelCase_ , default=6.25E-5 ) parser.add_argument('--warmup_steps' , default=0 , type=lowerCAmelCase_ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=lowerCAmelCase_ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=lowerCAmelCase_ , default=0.01 ) parser.add_argument('--lm_coef' , type=lowerCAmelCase_ , default=0.9 ) parser.add_argument('--n_valid' , type=lowerCAmelCase_ , default=374 ) parser.add_argument('--server_ip' , type=lowerCAmelCase_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=lowerCAmelCase_ , default='' , help='Can be used for distant debugging.' ) _a : int = parser.parse_args() print(lowerCAmelCase_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) _a : List[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) _a : Tuple = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(lowerCAmelCase_ , lowerCAmelCase_ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset _a : Optional[Any] = ['_start_', '_delimiter_', '_classify_'] _a : List[Any] = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(lowerCAmelCase_ ) _a : Union[str, Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) _a : List[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) model.to(lowerCAmelCase_ ) # Load and encode the datasets def tokenize_and_encode(lowerCAmelCase_ ): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(lowerCAmelCase_ ) ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return obj return [tokenize_and_encode(lowerCAmelCase_ ) for o in obj] logger.info('Encoding dataset...' ) _a : Tuple = load_rocstories_dataset(args.train_dataset ) _a : List[str] = load_rocstories_dataset(args.eval_dataset ) _a : Dict = (train_dataset, eval_dataset) _a : List[str] = tokenize_and_encode(lowerCAmelCase_ ) # Compute the max input length for the Transformer _a : Any = model.config.n_positions // 2 - 2 _a : Dict = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) _a : Tuple = min(lowerCAmelCase_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders _a : str = pre_process_datasets(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ) _a , _a : Dict = tensor_datasets[0], tensor_datasets[1] _a : Optional[Any] = TensorDataset(*lowerCAmelCase_ ) _a : Tuple = RandomSampler(lowerCAmelCase_ ) _a : Tuple = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.train_batch_size ) _a : List[Any] = TensorDataset(*lowerCAmelCase_ ) _a : Optional[int] = SequentialSampler(lowerCAmelCase_ ) _a : str = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: _a : Optional[int] = args.max_steps _a : List[Any] = args.max_steps // (len(lowerCAmelCase_ ) // args.gradient_accumulation_steps) + 1 else: _a : Union[str, Any] = len(lowerCAmelCase_ ) // args.gradient_accumulation_steps * args.num_train_epochs _a : Any = list(model.named_parameters() ) _a : Tuple = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] _a : List[Any] = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] _a : Optional[Any] = AdamW(lowerCAmelCase_ , lr=args.learning_rate , eps=args.adam_epsilon ) _a : Any = get_linear_schedule_with_warmup( lowerCAmelCase_ , num_warmup_steps=args.warmup_steps , num_training_steps=lowerCAmelCase_ ) if args.do_train: _a , _a , _a : Optional[int] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): _a : Optional[Any] = 0 _a : Optional[int] = 0 _a : Any = tqdm(lowerCAmelCase_ , desc='Training' ) for step, batch in enumerate(lowerCAmelCase_ ): _a : Tuple = tuple(t.to(lowerCAmelCase_ ) for t in batch ) _a , _a , _a , _a : Optional[int] = batch _a : Optional[int] = model(lowerCAmelCase_ , mc_token_ids=lowerCAmelCase_ , lm_labels=lowerCAmelCase_ , mc_labels=lowerCAmelCase_ ) _a : List[str] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() _a : Union[str, Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 _a : Dict = 'Training loss: {:.2e} lr: {:.2e}'.format(lowerCAmelCase_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer _a : Tuple = model.module if hasattr(lowerCAmelCase_ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` _a : Tuple = os.path.join(args.output_dir , lowerCAmelCase_ ) _a : int = os.path.join(args.output_dir , lowerCAmelCase_ ) torch.save(model_to_save.state_dict() , lowerCAmelCase_ ) model_to_save.config.to_json_file(lowerCAmelCase_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned _a : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) _a : Union[str, Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(lowerCAmelCase_ ) if args.do_eval: model.eval() _a , _a : List[Any] = 0, 0 _a , _a : Any = 0, 0 for batch in tqdm(lowerCAmelCase_ , desc='Evaluating' ): _a : Optional[Any] = tuple(t.to(lowerCAmelCase_ ) for t in batch ) _a , _a , _a , _a : List[str] = batch with torch.no_grad(): _a , _a , _a , _a : Optional[int] = model( lowerCAmelCase_ , mc_token_ids=lowerCAmelCase_ , lm_labels=lowerCAmelCase_ , mc_labels=lowerCAmelCase_ ) _a : Union[str, Any] = mc_logits.detach().cpu().numpy() _a : Tuple = mc_labels.to('cpu' ).numpy() _a : List[Any] = accuracy(lowerCAmelCase_ , lowerCAmelCase_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 _a : Any = eval_loss / nb_eval_steps _a : Tuple = eval_accuracy / nb_eval_examples _a : Any = tr_loss / nb_tr_steps if args.do_train else None _a : Optional[Any] = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} _a : Optional[int] = os.path.join(args.output_dir , 'eval_results.txt' ) with open(lowerCAmelCase_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , lowerCAmelCase_ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
89
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal lowercase__ : Optional[int] = datasets.utils.logging.get_logger(__name__) lowercase__ : Optional[Any] = ["names", "prefix"] lowercase__ : List[Any] = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] lowercase__ : Optional[Any] = ["encoding_errors", "on_bad_lines"] lowercase__ : List[str] = ["date_format"] @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): """simple docstring""" _snake_case = "," _snake_case = None _snake_case = "infer" _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = False _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = False _snake_case = True _snake_case = None _snake_case = "." _snake_case = None _snake_case = '"' _snake_case = 0 _snake_case = None _snake_case = None _snake_case = None _snake_case = None _snake_case = True _snake_case = True _snake_case = 0 _snake_case = True _snake_case = False _snake_case = None _snake_case = 10000 _snake_case = None _snake_case = "strict" _snake_case = "error" _snake_case = None def A__ ( self )-> Any: '''simple docstring''' if self.delimiter is not None: __UpperCamelCase = self.delimiter if self.column_names is not None: __UpperCamelCase = self.column_names @property def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , SCREAMING_SNAKE_CASE_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): """simple docstring""" _snake_case = CsvConfig def A__ ( self )-> Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) __UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple) ): __UpperCamelCase = data_files if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = [files] __UpperCamelCase = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) for file in files] splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={'''files''': files} ) ) return splits def A__ ( self , SCREAMING_SNAKE_CASE_ )-> pa.Table: '''simple docstring''' if self.config.features is not None: __UpperCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(SCREAMING_SNAKE_CASE_ ) for feature in self.config.features.values() ): # cheaper cast __UpperCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=SCREAMING_SNAKE_CASE_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __UpperCamelCase = table_cast(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return pa_table def A__ ( self , SCREAMING_SNAKE_CASE_ )-> str: '''simple docstring''' __UpperCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __UpperCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(SCREAMING_SNAKE_CASE_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ): __UpperCamelCase = pd.read_csv(SCREAMING_SNAKE_CASE_ , iterator=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = pa.Table.from_pandas(SCREAMING_SNAKE_CASE_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(SCREAMING_SNAKE_CASE_ ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(SCREAMING_SNAKE_CASE_ )}: {e}" ) raise
328
0
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = ["model.decoder.embed_positions.weights"] def __magic_name__ ( __a : Any ): '''simple docstring''' if "emb" in name: UpperCamelCase__ = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: UpperCamelCase__ = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: UpperCamelCase__ = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: UpperCamelCase__ = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: UpperCamelCase__ = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: UpperCamelCase__ = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: UpperCamelCase__ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: UpperCamelCase__ = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: UpperCamelCase__ = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: UpperCamelCase__ = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: UpperCamelCase__ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def __magic_name__ ( __a : OrderedDict , __a : int ): '''simple docstring''' UpperCamelCase__ = list(state_dict.keys() ) UpperCamelCase__ = {} for key in keys: UpperCamelCase__ = state_dict.pop(__a ) UpperCamelCase__ = rename_keys(__a ) if "in_proj_weight" in key: # split fused qkv proj UpperCamelCase__ = val[:hidden_size, :] UpperCamelCase__ = val[hidden_size : 2 * hidden_size, :] UpperCamelCase__ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCamelCase__ = val else: UpperCamelCase__ = val return state_dict, enc_dec_proj_state_dict def __magic_name__ ( __a : str ): '''simple docstring''' if checkpoint == "small": # default config values UpperCamelCase__ = 1_024 UpperCamelCase__ = 24 UpperCamelCase__ = 16 elif checkpoint == "medium": UpperCamelCase__ = 1_536 UpperCamelCase__ = 48 UpperCamelCase__ = 24 elif checkpoint == "large": UpperCamelCase__ = 2_048 UpperCamelCase__ = 48 UpperCamelCase__ = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) UpperCamelCase__ = MusicgenDecoderConfig( hidden_size=__a , ffn_dim=hidden_size * 4 , num_hidden_layers=__a , num_attention_heads=__a , ) return config @torch.no_grad() def __magic_name__ ( __a : Any , __a : str=None , __a : Any=None , __a : Union[str, Any]="cpu" ): '''simple docstring''' UpperCamelCase__ = MusicGen.get_pretrained(__a , device=__a ) UpperCamelCase__ = decoder_config_from_checkpoint(__a ) UpperCamelCase__ = fairseq_model.lm.state_dict() UpperCamelCase__ , UpperCamelCase__ = rename_state_dict( __a , hidden_size=decoder_config.hidden_size ) UpperCamelCase__ = TaEncoderModel.from_pretrained("""t5-base""" ) UpperCamelCase__ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) UpperCamelCase__ = MusicgenForCausalLM(__a ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCamelCase__ , UpperCamelCase__ = decoder.load_state_dict(__a , strict=__a ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__a ) if len(__a ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(__a ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model UpperCamelCase__ = MusicgenForConditionalGeneration(text_encoder=__a , audio_encoder=__a , decoder=__a ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__a ) # check we can do a forward pass UpperCamelCase__ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) UpperCamelCase__ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): UpperCamelCase__ = model(input_ids=__a , decoder_input_ids=__a ).logits if logits.shape != (8, 1, 2_048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor UpperCamelCase__ = AutoTokenizer.from_pretrained("""t5-base""" ) UpperCamelCase__ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) UpperCamelCase__ = MusicgenProcessor(feature_extractor=__a , tokenizer=__a ) # set the appropriate bos/pad token ids UpperCamelCase__ = 2_048 UpperCamelCase__ = 2_048 # set other default generation config params UpperCamelCase__ = int(30 * audio_encoder.config.frame_rate ) UpperCamelCase__ = True UpperCamelCase__ = 3.0 if pytorch_dump_folder is not None: Path(__a ).mkdir(exist_ok=__a ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(__a ) processor.save_pretrained(__a ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(__a ) processor.push_to_hub(__a ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) lowerCamelCase_ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
244
from __future__ import annotations import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowercase__ : int = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def A_ ( snake_case : int ) -> list[int]: '''simple docstring''' if not isinstance(snake_case , snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) __UpperCamelCase = [] for num in range(len(snake_case ) ): __UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: __UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(snake_case ) == n: return list_nums return [] def A_ ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F"{solution() = }")
328
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Any = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys a_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
55
from __future__ import annotations from collections.abc import Callable def A_ ( snake_case : Callable[[int | float], int | float] , snake_case : int | float , snake_case : int | float , snake_case : int = 100 , ) -> float: '''simple docstring''' __UpperCamelCase = x_start __UpperCamelCase = fnc(snake_case ) __UpperCamelCase = 0.0 for _ in range(snake_case ): # Approximates small segments of curve as linear and solve # for trapezoidal area __UpperCamelCase = (x_end - x_start) / steps + xa __UpperCamelCase = fnc(snake_case ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __UpperCamelCase = xa __UpperCamelCase = fxa return area if __name__ == "__main__": def A_ ( snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowercase__ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 1_0
328
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : def __init__( self : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : int=32 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : Optional[Any]=10 , UpperCAmelCase_ : List[Any]=[10, 20, 30, 40] , UpperCAmelCase_ : Union[str, Any]=[1, 1, 2, 1] , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Dict="relu" , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[Any]=None , ): lowerCAmelCase : str = parent lowerCAmelCase : Any = batch_size lowerCAmelCase : List[Any] = image_size lowerCAmelCase : Any = num_channels lowerCAmelCase : Optional[Any] = embeddings_size lowerCAmelCase : Optional[Any] = hidden_sizes lowerCAmelCase : List[Any] = depths lowerCAmelCase : Dict = is_training lowerCAmelCase : Any = use_labels lowerCAmelCase : Dict = hidden_act lowerCAmelCase : Tuple = num_labels lowerCAmelCase : str = scope lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE_ ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : str = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Optional[int] ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase__ ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict ): lowerCAmelCase : List[str] = TFResNetModel(config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple ): lowerCAmelCase : List[str] = self.num_labels lowerCAmelCase : Dict = TFResNetForImageClassification(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase : Dict = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = config_and_inputs lowerCAmelCase : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): lowerCAmelCase_ : str = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase_ : Dict = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : Any = False def lowercase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = TFResNetModelTester(self ) lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def lowercase__ ( self : int ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Tuple ): return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def lowercase__ ( self : Optional[Any] ): pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def lowercase__ ( self : Tuple ): pass def lowercase__ ( self : List[Any] ): lowerCAmelCase , lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase : int = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Union[str, Any] = [*signature.parameters.keys()] lowerCAmelCase : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def lowercase__ ( self : str ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase__ ( self : Any ): def check_hidden_states_output(UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] ): lowerCAmelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase : Any = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : List[str] = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Tuple = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase : Tuple = layer_type lowerCAmelCase : List[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : int = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase__ ( self : List[str] ): lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def lowercase__ ( self : Optional[Any] ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : str = TFResNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Any ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : Any = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase : List[str] = self.default_image_processor lowerCAmelCase : str = prepare_img() lowerCAmelCase : List[Any] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='tf' ) # forward pass lowerCAmelCase : int = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits lowerCAmelCase : str = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase : List[str] = tf.constant([-11.1069, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
138
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : int = logging.get_logger(__name__) lowercase__ : List[str] = ["model.decoder.embed_positions.weights"] def A_ ( snake_case : Any ) -> List[Any]: '''simple docstring''' if "emb" in name: __UpperCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: __UpperCamelCase = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: __UpperCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: __UpperCamelCase = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: __UpperCamelCase = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: __UpperCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: __UpperCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: __UpperCamelCase = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: __UpperCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: __UpperCamelCase = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: __UpperCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def A_ ( snake_case : OrderedDict , snake_case : int ) -> Tuple[Dict, Dict]: '''simple docstring''' __UpperCamelCase = list(state_dict.keys() ) __UpperCamelCase = {} for key in keys: __UpperCamelCase = state_dict.pop(snake_case ) __UpperCamelCase = rename_keys(snake_case ) if "in_proj_weight" in key: # split fused qkv proj __UpperCamelCase = val[:hidden_size, :] __UpperCamelCase = val[hidden_size : 2 * hidden_size, :] __UpperCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __UpperCamelCase = val else: __UpperCamelCase = val return state_dict, enc_dec_proj_state_dict def A_ ( snake_case : str ) -> MusicgenDecoderConfig: '''simple docstring''' if checkpoint == "small": # default config values __UpperCamelCase = 1024 __UpperCamelCase = 24 __UpperCamelCase = 16 elif checkpoint == "medium": __UpperCamelCase = 1536 __UpperCamelCase = 48 __UpperCamelCase = 24 elif checkpoint == "large": __UpperCamelCase = 2048 __UpperCamelCase = 48 __UpperCamelCase = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) __UpperCamelCase = MusicgenDecoderConfig( hidden_size=snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case , num_attention_heads=snake_case , ) return config @torch.no_grad() def A_ ( snake_case : Any , snake_case : str=None , snake_case : Any=None , snake_case : Union[str, Any]="cpu" ) -> List[Any]: '''simple docstring''' __UpperCamelCase = MusicGen.get_pretrained(snake_case , device=snake_case ) __UpperCamelCase = decoder_config_from_checkpoint(snake_case ) __UpperCamelCase = fairseq_model.lm.state_dict() __UpperCamelCase , __UpperCamelCase = rename_state_dict( snake_case , hidden_size=decoder_config.hidden_size ) __UpperCamelCase = TaEncoderModel.from_pretrained('''t5-base''' ) __UpperCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) __UpperCamelCase = MusicgenForCausalLM(snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __UpperCamelCase , __UpperCamelCase = decoder.load_state_dict(snake_case , strict=snake_case ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(snake_case ) if len(snake_case ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(snake_case ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model __UpperCamelCase = MusicgenForConditionalGeneration(text_encoder=snake_case , audio_encoder=snake_case , decoder=snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(snake_case ) # check we can do a forward pass __UpperCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __UpperCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __UpperCamelCase = model(input_ids=snake_case , decoder_input_ids=snake_case ).logits if logits.shape != (8, 1, 2048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor __UpperCamelCase = AutoTokenizer.from_pretrained('''t5-base''' ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) __UpperCamelCase = MusicgenProcessor(feature_extractor=snake_case , tokenizer=snake_case ) # set the appropriate bos/pad token ids __UpperCamelCase = 2048 __UpperCamelCase = 2048 # set other default generation config params __UpperCamelCase = int(30 * audio_encoder.config.frame_rate ) __UpperCamelCase = True __UpperCamelCase = 3.0 if pytorch_dump_folder is not None: Path(snake_case ).mkdir(exist_ok=snake_case ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(snake_case ) processor.push_to_hub(snake_case ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowercase__ : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
328
0
# using dfs for finding eulerian path traversal def a__ ( _UpperCamelCase : int ,_UpperCamelCase : Any ,_UpperCamelCase : str ,_UpperCamelCase : Optional[Any]=None ): __lowerCamelCase = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: __lowerCamelCase ,__lowerCamelCase = True, True __lowerCamelCase = dfs(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) return path def a__ ( _UpperCamelCase : Optional[Any] ,_UpperCamelCase : Tuple ): __lowerCamelCase = 0 __lowerCamelCase = -1 for i in range(_UpperCamelCase ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 __lowerCamelCase = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : Any ): __lowerCamelCase = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] __lowerCamelCase ,__lowerCamelCase = check_circuit_or_path(_UpperCamelCase ,_UpperCamelCase ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return __lowerCamelCase = 1 if check == 2: __lowerCamelCase = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) __lowerCamelCase = dfs(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) print(_UpperCamelCase ) def a__ ( ): __lowerCamelCase = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} __lowerCamelCase = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} __lowerCamelCase = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} __lowerCamelCase = {1: [2, 3], 2: [1, 3], 3: [1, 2]} __lowerCamelCase = { 1: [], 2: [] # all degree is zero } __lowerCamelCase = 10 check_euler(_UpperCamelCase ,_UpperCamelCase ) check_euler(_UpperCamelCase ,_UpperCamelCase ) check_euler(_UpperCamelCase ,_UpperCamelCase ) check_euler(_UpperCamelCase ,_UpperCamelCase ) check_euler(_UpperCamelCase ,_UpperCamelCase ) if __name__ == "__main__": main()
330
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : List[str] = 1_6 lowercase__ : str = 3_2 def A_ ( snake_case : Accelerator , snake_case : int = 16 ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __UpperCamelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase = datasets.map( snake_case , batched=snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase = 16 elif accelerator.mixed_precision != "no": __UpperCamelCase = 8 else: __UpperCamelCase = None return tokenizer.pad( snake_case , padding='''longest''' , max_length=snake_case , pad_to_multiple_of=snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. __UpperCamelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) __UpperCamelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : Union[str, Any] = mocked_dataloaders # noqa: F811 def A_ ( snake_case : List[str] , snake_case : List[Any] ) -> Tuple: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case ) == "1": __UpperCamelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: __UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase = config['''lr'''] __UpperCamelCase = int(config['''num_epochs'''] ) __UpperCamelCase = int(config['''seed'''] ) __UpperCamelCase = int(config['''batch_size'''] ) set_seed(snake_case ) __UpperCamelCase , __UpperCamelCase = get_dataloaders(snake_case , snake_case ) __UpperCamelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase = AdamW(params=model.parameters() , lr=snake_case ) # Instantiate scheduler __UpperCamelCase = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=100 , num_training_steps=(len(snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __UpperCamelCase = os.path.split(snake_case )[-1].split('''.''' )[0] accelerator.init_trackers(snake_case , snake_case ) # Now we train the model for epoch in range(snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __UpperCamelCase = 0 for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase = model(**snake_case ) __UpperCamelCase = outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case , references=snake_case , ) __UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(snake_case ), '''epoch''': epoch, } , step=snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def A_ ( ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case , default=snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
328
0
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class A_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self :Tuple ) -> List[str]: UpperCAmelCase = 10 def UpperCAmelCase__ ( self :Optional[Any] ) -> List[str]: UpperCAmelCase = [1, 2, 3, 4] UpperCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(SCREAMING_SNAKE_CASE_ , self.block_size , 0 ) , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> Tuple: UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(SCREAMING_SNAKE_CASE_ , self.block_size , 0 ) , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase__ ( self :Union[str, Any] ) -> List[Any]: UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(SCREAMING_SNAKE_CASE_ , self.block_size , 0 ) , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase__ ( self :str ) -> Dict: UpperCAmelCase = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' UpperCAmelCase , UpperCAmelCase = process_story(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [] ) def UpperCAmelCase__ ( self :List[str] ) -> Dict: UpperCAmelCase = '' UpperCAmelCase , UpperCAmelCase = process_story(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , [] ) def UpperCAmelCase__ ( self :str ) -> Optional[Any]: UpperCAmelCase = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) UpperCAmelCase , UpperCAmelCase = process_story(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = ['It was the best of times.'] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase__ ( self :List[str] ) -> Any: UpperCAmelCase = torch.tensor([1, 2, 3, 4] ) UpperCAmelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(SCREAMING_SNAKE_CASE_ , 0 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self :Optional[int] ) -> str: UpperCAmelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) UpperCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(SCREAMING_SNAKE_CASE_ , 23 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self :Tuple ) -> str: UpperCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(SCREAMING_SNAKE_CASE_ , 1 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self :Dict ) -> Optional[int]: UpperCAmelCase = 1_01 UpperCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_01, 5, 6], [1, 1_01, 3, 4, 1_01, 6]] ) UpperCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCAmelCase = compute_token_type_ids(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) np.testing.assert_array_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
78
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType lowercase__ : str = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] lowercase__ : str = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'whisper' _snake_case = ['past_key_values'] _snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE_=51865 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=50257 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1500 , SCREAMING_SNAKE_CASE_=448 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[220, 50256] , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_5 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=7 , **SCREAMING_SNAKE_CASE_ , )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = num_mel_bins __UpperCamelCase = d_model __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = use_cache __UpperCamelCase = encoder_layers __UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase = max_source_positions __UpperCamelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __UpperCamelCase = classifier_proj_size __UpperCamelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length __UpperCamelCase = mask_feature_min_masks __UpperCamelCase = median_filter_width super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def A__ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' __UpperCamelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: __UpperCamelCase = {0: '''batch'''} else: __UpperCamelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' ) return common_inputs def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 22050 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 220 , )-> Mapping[str, Any]: '''simple docstring''' __UpperCamelCase = OrderedDict() __UpperCamelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = encoder_inputs['''input_features'''].shape[2] __UpperCamelCase = encoder_sequence_length // 2 if self.use_past else seq_length __UpperCamelCase = super().generate_dummy_inputs( preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = encoder_inputs.pop('''input_features''' ) __UpperCamelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: __UpperCamelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def A__ ( self )-> float: '''simple docstring''' return 1E-3
328
0
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowercase_ (A : Dict ): if "model" in orig_key: snake_case__ : Tuple = orig_key.replace('model.' , '' ) if "norm1" in orig_key: snake_case__ : str = orig_key.replace('norm1' , 'attention.output.LayerNorm' ) if "norm2" in orig_key: snake_case__ : Union[str, Any] = orig_key.replace('norm2' , 'output.LayerNorm' ) if "norm" in orig_key: snake_case__ : Optional[int] = orig_key.replace('norm' , 'LayerNorm' ) if "transformer" in orig_key: snake_case__ : str = orig_key.split('.' )[0].split('_' )[-1] snake_case__ : str = orig_key.replace(F'''transformer_{layer_num}''' , F'''encoder.layer.{layer_num}''' ) if "mha.attn" in orig_key: snake_case__ : Optional[int] = orig_key.replace('mha.attn' , 'attention.self' ) if "mha" in orig_key: snake_case__ : List[Any] = orig_key.replace('mha' , 'attention' ) if "W_q" in orig_key: snake_case__ : List[str] = orig_key.replace('W_q' , 'self.query' ) if "W_k" in orig_key: snake_case__ : List[Any] = orig_key.replace('W_k' , 'self.key' ) if "W_v" in orig_key: snake_case__ : Optional[Any] = orig_key.replace('W_v' , 'self.value' ) if "ff1" in orig_key: snake_case__ : Union[str, Any] = orig_key.replace('ff1' , 'intermediate.dense' ) if "ff2" in orig_key: snake_case__ : Optional[Any] = orig_key.replace('ff2' , 'output.dense' ) if "ff" in orig_key: snake_case__ : Optional[Any] = orig_key.replace('ff' , 'output.dense' ) if "mlm_class" in orig_key: snake_case__ : Optional[int] = orig_key.replace('mlm.mlm_class' , 'cls.predictions.decoder' ) if "mlm" in orig_key: snake_case__ : Optional[int] = orig_key.replace('mlm' , 'cls.predictions.transform' ) if "cls" not in orig_key: snake_case__ : List[Any] = 'yoso.' + orig_key return orig_key def lowercase_ (A : Union[str, Any] , A : List[str] ): for key in orig_state_dict.copy().keys(): snake_case__ : Any = orig_state_dict.pop(A ) if ("pooler" in key) or ("sen_class" in key): continue else: snake_case__ : List[str] = val snake_case__ : List[str] = orig_state_dict['cls.predictions.decoder.bias'] snake_case__ : int = torch.arange(A ).expand((1, -1) ) + 2 return orig_state_dict def lowercase_ (A : Dict , A : Optional[int] , A : Any ): snake_case__ : List[str] = torch.load(A , map_location='cpu' )['model_state_dict'] snake_case__ : Optional[Any] = YosoConfig.from_json_file(A ) snake_case__ : int = YosoForMaskedLM(A ) snake_case__ : Optional[Any] = convert_checkpoint_helper(config.max_position_embeddings , A ) print(model.load_state_dict(A ) ) model.eval() model.save_pretrained(A ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) if __name__ == "__main__": a_ :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ :List[str] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
277
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : Tuple = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'xlnet' _snake_case = ['mems'] _snake_case = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , SCREAMING_SNAKE_CASE_=32000 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="bi" , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=-1 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="last" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="tanh" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , **SCREAMING_SNAKE_CASE_ , )-> List[str]: '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = n_layer __UpperCamelCase = n_head if d_model % n_head != 0: raise ValueError(F"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) __UpperCamelCase = d_model // n_head __UpperCamelCase = ff_activation __UpperCamelCase = d_inner __UpperCamelCase = untie_r __UpperCamelCase = attn_type __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = dropout __UpperCamelCase = mem_len __UpperCamelCase = reuse_len __UpperCamelCase = bi_data __UpperCamelCase = clamp_len __UpperCamelCase = same_length __UpperCamelCase = summary_type __UpperCamelCase = summary_use_proj __UpperCamelCase = summary_activation __UpperCamelCase = summary_last_dropout __UpperCamelCase = start_n_top __UpperCamelCase = end_n_top __UpperCamelCase = bos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , SCREAMING_SNAKE_CASE_ , ) __UpperCamelCase = kwargs['''use_cache'''] __UpperCamelCase = use_mems_eval __UpperCamelCase = use_mems_train super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> Optional[Any]: '''simple docstring''' logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
328
0