code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import os
from pathlib import Path
def lowerCAmelCase__ ( ) -> Optional[int]:
'''simple docstring'''
from torch.utils.cpp_extension import load
_UpperCAmelCase = Path(a__ ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr'
_UpperCAmelCase = [
root / filename
for filename in [
'vision.cpp',
os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ),
os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ),
]
]
load(
'MultiScaleDeformableAttention' , a__ , with_cuda=a__ , extra_include_paths=[str(a__ )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[
'-DCUDA_HAS_FP16=1',
'-D__CUDA_NO_HALF_OPERATORS__',
'-D__CUDA_NO_HALF_CONVERSIONS__',
'-D__CUDA_NO_HALF2_OPERATORS__',
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 329 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> str:
"""simple docstring"""
_UpperCAmelCase = size if size is not None else {'shortest_edge': 30}
_UpperCAmelCase = crop_size if crop_size is not None else {'height': 30, 'width': 30}
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize_and_center_crop
_UpperCAmelCase = size
_UpperCAmelCase = crop_pct
_UpperCAmelCase = crop_size
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = PoolFormerImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize_and_center_crop' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'crop_pct' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 30} )
self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} )
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 329 | 1 |
from __future__ import annotations
from typing import Any
class __a ( UpperCAmelCase ):
pass
class __a :
def __init__( self , _SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
_UpperCAmelCase = data
_UpperCAmelCase = None
def __iter__( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = self
_UpperCAmelCase = []
while node:
if node in visited:
raise ContainsLoopError
visited.append(_SCREAMING_SNAKE_CASE )
yield node.data
_UpperCAmelCase = node.next_node
@property
def UpperCAmelCase__ ( self ) -> bool:
"""simple docstring"""
try:
list(self )
return False
except ContainsLoopError:
return True
if __name__ == "__main__":
lowerCAmelCase__ :Optional[int] = Node(1)
lowerCAmelCase__ :Dict = Node(2)
lowerCAmelCase__ :Union[str, Any] = Node(3)
lowerCAmelCase__ :Union[str, Any] = Node(4)
print(root_node.has_loop) # False
lowerCAmelCase__ :str = root_node.next_node
print(root_node.has_loop) # True
lowerCAmelCase__ :Any = Node(5)
lowerCAmelCase__ :Optional[int] = Node(6)
lowerCAmelCase__ :Optional[Any] = Node(5)
lowerCAmelCase__ :Optional[Any] = Node(6)
print(root_node.has_loop) # False
lowerCAmelCase__ :str = Node(1)
print(root_node.has_loop) # False
| 329 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = image_size
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize
_UpperCAmelCase = size if size is not None else {'height': 18, 'width': 20}
_UpperCAmelCase = do_thumbnail
_UpperCAmelCase = do_align_axis
_UpperCAmelCase = do_pad
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : List[str] = DonutImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = DonutImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_thumbnail' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_align_long_axis' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 20} )
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
# Previous config had dimensions in (width, height) order
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'height': 84, 'width': 42} )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
pass
@is_flaky()
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
| 329 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase__ :Optional[int] = logging.get_logger(__name__)
lowerCAmelCase__ :List[str] = {
'''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''',
}
class __a ( UpperCAmelCase , UpperCAmelCase ):
_a : List[Any] = 'focalnet'
def __init__( self , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=96 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=[192, 384, 768, 768] , _SCREAMING_SNAKE_CASE=[2, 2, 6, 2] , _SCREAMING_SNAKE_CASE=[2, 2, 2, 2] , _SCREAMING_SNAKE_CASE=[3, 3, 3, 3] , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1e-4 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]:
"""simple docstring"""
super().__init__(**_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = image_size
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = embed_dim
_UpperCAmelCase = use_conv_embed
_UpperCAmelCase = hidden_sizes
_UpperCAmelCase = depths
_UpperCAmelCase = focal_levels
_UpperCAmelCase = focal_windows
_UpperCAmelCase = hidden_act
_UpperCAmelCase = mlp_ratio
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = drop_path_rate
_UpperCAmelCase = use_layerscale
_UpperCAmelCase = layerscale_value
_UpperCAmelCase = use_post_layernorm
_UpperCAmelCase = use_post_layernorm_in_modulation
_UpperCAmelCase = normalize_modulator
_UpperCAmelCase = initializer_range
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = encoder_stride
_UpperCAmelCase = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )]
_UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices(
out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
| 329 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ :Dict = logging.get_logger(__name__)
lowerCAmelCase__ :Optional[int] = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''}
class __a ( UpperCAmelCase ):
_a : List[str] = 'openai-gpt'
_a : int = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _SCREAMING_SNAKE_CASE=40478 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE="cls_index" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , **_SCREAMING_SNAKE_CASE , ) -> str:
"""simple docstring"""
_UpperCAmelCase = vocab_size
_UpperCAmelCase = n_positions
_UpperCAmelCase = n_embd
_UpperCAmelCase = n_layer
_UpperCAmelCase = n_head
_UpperCAmelCase = afn
_UpperCAmelCase = resid_pdrop
_UpperCAmelCase = embd_pdrop
_UpperCAmelCase = attn_pdrop
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = initializer_range
_UpperCAmelCase = summary_type
_UpperCAmelCase = summary_use_proj
_UpperCAmelCase = summary_activation
_UpperCAmelCase = summary_first_dropout
_UpperCAmelCase = summary_proj_to_labels
super().__init__(**_SCREAMING_SNAKE_CASE )
| 329 | 1 |
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ :str = logging.get_logger(__name__)
def lowerCAmelCase__ ( a__: str , a__: str ) -> Dict:
'''simple docstring'''
_UpperCAmelCase = RobertaPreLayerNormConfig.from_pretrained(
a__ , architectures=['RobertaPreLayerNormForMaskedLM'] )
# convert state_dict
_UpperCAmelCase = torch.load(hf_hub_download(repo_id=a__ , filename='pytorch_model.bin' ) )
_UpperCAmelCase = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith('roberta.' ):
_UpperCAmelCase = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ):
continue
_UpperCAmelCase = tensor_value
_UpperCAmelCase = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=a__ , config=a__ , state_dict=a__ )
model.save_pretrained(a__ )
# convert tokenizer
_UpperCAmelCase = AutoTokenizer.from_pretrained(a__ )
tokenizer.save_pretrained(a__ )
if __name__ == "__main__":
lowerCAmelCase__ :int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint-repo''',
default=None,
type=str,
required=True,
help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
lowerCAmelCase__ :Dict = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 329 |
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] )
@pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] )
@pytest.mark.parametrize('revision' , [None, 'v2'] )
def lowerCAmelCase__ ( a__: Any , a__: Tuple , a__: Union[str, Any] ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = hf_hub_url(repo_id=a__ , path=a__ , revision=a__ )
assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(a__ )}'''
| 329 | 1 |
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
lowerCAmelCase__ :Union[str, Any] = TypeVar('''T''')
def lowerCAmelCase__ ( a__: int ) -> int:
'''simple docstring'''
return (position - 1) // 2
def lowerCAmelCase__ ( a__: int ) -> int:
'''simple docstring'''
return (2 * position) + 1
def lowerCAmelCase__ ( a__: int ) -> int:
'''simple docstring'''
return (2 * position) + 2
class __a ( Generic[T] ):
def __init__( self ) -> None:
"""simple docstring"""
_UpperCAmelCase = []
_UpperCAmelCase = {}
_UpperCAmelCase = 0
def __len__( self ) -> int:
"""simple docstring"""
return self.elements
def __repr__( self ) -> str:
"""simple docstring"""
return str(self.heap )
def UpperCAmelCase__ ( self ) -> bool:
"""simple docstring"""
return self.elements == 0
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
self.heap.append((elem, weight) )
_UpperCAmelCase = self.elements
self.elements += 1
self._bubble_up(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> T:
"""simple docstring"""
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
_UpperCAmelCase , _UpperCAmelCase = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
_UpperCAmelCase , _UpperCAmelCase = self.heap[0]
self._bubble_down(_SCREAMING_SNAKE_CASE )
return elem
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
_UpperCAmelCase = self.position_map[elem]
_UpperCAmelCase = (elem, weight)
if position > 0:
_UpperCAmelCase = get_parent_position(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase , _UpperCAmelCase = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(_SCREAMING_SNAKE_CASE )
else:
self._bubble_down(_SCREAMING_SNAKE_CASE )
else:
self._bubble_down(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
_UpperCAmelCase = self.position_map[elem]
if curr_pos == 0:
return None
_UpperCAmelCase = get_parent_position(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase , _UpperCAmelCase = self.heap[curr_pos]
_UpperCAmelCase , _UpperCAmelCase = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return self._bubble_up(_SCREAMING_SNAKE_CASE )
return None
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
_UpperCAmelCase = self.position_map[elem]
_UpperCAmelCase , _UpperCAmelCase = self.heap[curr_pos]
_UpperCAmelCase = get_child_left_position(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = get_child_right_position(_SCREAMING_SNAKE_CASE )
if child_left_position < self.elements and child_right_position < self.elements:
_UpperCAmelCase , _UpperCAmelCase = self.heap[child_left_position]
_UpperCAmelCase , _UpperCAmelCase = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return self._bubble_down(_SCREAMING_SNAKE_CASE )
if child_left_position < self.elements:
_UpperCAmelCase , _UpperCAmelCase = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return self._bubble_down(_SCREAMING_SNAKE_CASE )
else:
return None
if child_right_position < self.elements:
_UpperCAmelCase , _UpperCAmelCase = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return self._bubble_down(_SCREAMING_SNAKE_CASE )
return None
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
_UpperCAmelCase = self.heap[nodea_pos][0]
_UpperCAmelCase = self.heap[nodea_pos][0]
_UpperCAmelCase , _UpperCAmelCase = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
_UpperCAmelCase = nodea_pos
_UpperCAmelCase = nodea_pos
class __a ( Generic[T] ):
def __init__( self ) -> None:
"""simple docstring"""
_UpperCAmelCase = {}
_UpperCAmelCase = 0
def __repr__( self ) -> str:
"""simple docstring"""
return str(self.connections )
def __len__( self ) -> int:
"""simple docstring"""
return self.nodes
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
if node not in self.connections:
_UpperCAmelCase = {}
self.nodes += 1
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
self.add_node(_SCREAMING_SNAKE_CASE )
self.add_node(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = weight
_UpperCAmelCase = weight
def lowerCAmelCase__ ( a__: GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]:
'''simple docstring'''
_UpperCAmelCase = {node: maxsize for node in graph.connections}
_UpperCAmelCase = {node: None for node in graph.connections}
_UpperCAmelCase = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(a__ , a__ )
if priority_queue.is_empty():
return dist, parent
# initialization
_UpperCAmelCase = priority_queue.extract_min()
_UpperCAmelCase = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
_UpperCAmelCase = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(a__ , dist[neighbour] )
_UpperCAmelCase = node
# running prim's algorithm
while not priority_queue.is_empty():
_UpperCAmelCase = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
_UpperCAmelCase = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(a__ , dist[neighbour] )
_UpperCAmelCase = node
return dist, parent
| 329 |
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
lowerCAmelCase__ :Optional[int] = [
'''python''',
'''tqdm''',
'''regex''',
'''requests''',
'''packaging''',
'''filelock''',
'''numpy''',
'''tokenizers''',
'''huggingface-hub''',
'''safetensors''',
'''accelerate''',
'''pyyaml''',
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def lowerCAmelCase__ ( a__: Tuple , a__: Optional[int]=None ) -> Any:
'''simple docstring'''
require_version(deps[pkg] , a__ )
| 329 | 1 |
def lowerCAmelCase__ ( a__: list[int] , a__: list[int] , a__: int ) -> bool:
'''simple docstring'''
return not any(
neighbour == 1 and colored_vertices[i] == color
for i, neighbour in enumerate(a__ ) )
def lowerCAmelCase__ ( a__: list[list[int]] , a__: int , a__: list[int] , a__: int ) -> bool:
'''simple docstring'''
if index == len(a__ ):
return True
# Recursive Step
for i in range(a__ ):
if valid_coloring(graph[index] , a__ , a__ ):
# Color current vertex
_UpperCAmelCase = i
# Validate coloring
if util_color(a__ , a__ , a__ , index + 1 ):
return True
# Backtrack
_UpperCAmelCase = -1
return False
def lowerCAmelCase__ ( a__: list[list[int]] , a__: int ) -> list[int]:
'''simple docstring'''
_UpperCAmelCase = [-1] * len(a__ )
if util_color(a__ , a__ , a__ , 0 ):
return colored_vertices
return []
| 329 |
from __future__ import annotations
def lowerCAmelCase__ ( a__: dict , a__: str ) -> set[str]:
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = set(a__ ), [start]
while stack:
_UpperCAmelCase = stack.pop()
explored.add(a__ )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(a__ )
return explored
lowerCAmelCase__ :Tuple = {
'''A''': ['''B''', '''C''', '''D'''],
'''B''': ['''A''', '''D''', '''E'''],
'''C''': ['''A''', '''F'''],
'''D''': ['''B''', '''D'''],
'''E''': ['''B''', '''F'''],
'''F''': ['''C''', '''E''', '''G'''],
'''G''': ['''F'''],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, '''A'''))
| 329 | 1 |
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ :Optional[int] = logging.get_logger(__name__)
def lowerCAmelCase__ ( a__: str ) -> Dict:
'''simple docstring'''
_UpperCAmelCase = OrderedDict()
for key, value in state_dict.items():
if key.startswith('module.encoder' ):
_UpperCAmelCase = key.replace('module.encoder' , 'glpn.encoder' )
if key.startswith('module.decoder' ):
_UpperCAmelCase = key.replace('module.decoder' , 'decoder.stages' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_UpperCAmelCase = key[key.find('patch_embed' ) + len('patch_embed' )]
_UpperCAmelCase = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a__ )-1}''' )
if "norm" in key:
_UpperCAmelCase = key.replace('norm' , 'layer_norm' )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_UpperCAmelCase = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )]
_UpperCAmelCase = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a__ )-1}''' )
if "layer_norm1" in key:
_UpperCAmelCase = key.replace('layer_norm1' , 'layer_norm_1' )
if "layer_norm2" in key:
_UpperCAmelCase = key.replace('layer_norm2' , 'layer_norm_2' )
if "block" in key:
# replace for example block1 by block.0
_UpperCAmelCase = key[key.find('block' ) + len('block' )]
_UpperCAmelCase = key.replace(F'''block{idx}''' , F'''block.{int(a__ )-1}''' )
if "attn.q" in key:
_UpperCAmelCase = key.replace('attn.q' , 'attention.self.query' )
if "attn.proj" in key:
_UpperCAmelCase = key.replace('attn.proj' , 'attention.output.dense' )
if "attn" in key:
_UpperCAmelCase = key.replace('attn' , 'attention.self' )
if "fc1" in key:
_UpperCAmelCase = key.replace('fc1' , 'dense1' )
if "fc2" in key:
_UpperCAmelCase = key.replace('fc2' , 'dense2' )
if "linear_pred" in key:
_UpperCAmelCase = key.replace('linear_pred' , 'classifier' )
if "linear_fuse" in key:
_UpperCAmelCase = key.replace('linear_fuse.conv' , 'linear_fuse' )
_UpperCAmelCase = key.replace('linear_fuse.bn' , 'batch_norm' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_UpperCAmelCase = key[key.find('linear_c' ) + len('linear_c' )]
_UpperCAmelCase = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a__ )-1}''' )
if "bot_conv" in key:
_UpperCAmelCase = key.replace('bot_conv' , '0.convolution' )
if "skip_conv1" in key:
_UpperCAmelCase = key.replace('skip_conv1' , '1.convolution' )
if "skip_conv2" in key:
_UpperCAmelCase = key.replace('skip_conv2' , '2.convolution' )
if "fusion1" in key:
_UpperCAmelCase = key.replace('fusion1' , '1.fusion' )
if "fusion2" in key:
_UpperCAmelCase = key.replace('fusion2' , '2.fusion' )
if "fusion3" in key:
_UpperCAmelCase = key.replace('fusion3' , '3.fusion' )
if "fusion" in key and "conv" in key:
_UpperCAmelCase = key.replace('conv' , 'convolutional_layer' )
if key.startswith('module.last_layer_depth' ):
_UpperCAmelCase = key.replace('module.last_layer_depth' , 'head.head' )
_UpperCAmelCase = value
return new_state_dict
def lowerCAmelCase__ ( a__: Dict , a__: Union[str, Any] ) -> int:
'''simple docstring'''
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_UpperCAmelCase = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' )
_UpperCAmelCase = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' )
# next, add keys and values (in that order) to the state dict
_UpperCAmelCase = kv_weight[
: config.hidden_sizes[i], :
]
_UpperCAmelCase = kv_bias[: config.hidden_sizes[i]]
_UpperCAmelCase = kv_weight[
config.hidden_sizes[i] :, :
]
_UpperCAmelCase = kv_bias[config.hidden_sizes[i] :]
def lowerCAmelCase__ ( ) -> Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
_UpperCAmelCase = Image.open(requests.get(a__ , stream=a__ ).raw )
return image
@torch.no_grad()
def lowerCAmelCase__ ( a__: str , a__: Any , a__: Tuple=False , a__: Optional[int]=None ) -> Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = GLPNConfig(hidden_sizes=[6_4, 1_2_8, 3_2_0, 5_1_2] , decoder_hidden_size=6_4 , depths=[3, 8, 2_7, 3] )
# load image processor (only resize + rescale)
_UpperCAmelCase = GLPNImageProcessor()
# prepare image
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=a__ , return_tensors='pt' ).pixel_values
logger.info('Converting model...' )
# load original state dict
_UpperCAmelCase = torch.load(a__ , map_location=torch.device('cpu' ) )
# rename keys
_UpperCAmelCase = rename_keys(a__ )
# key and value matrices need special treatment
read_in_k_v(a__ , a__ )
# create HuggingFace model and load state dict
_UpperCAmelCase = GLPNForDepthEstimation(a__ )
model.load_state_dict(a__ )
model.eval()
# forward pass
_UpperCAmelCase = model(a__ )
_UpperCAmelCase = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
_UpperCAmelCase = torch.tensor(
[[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] )
elif "kitti" in model_name:
_UpperCAmelCase = torch.tensor(
[[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] )
else:
raise ValueError(F'''Unknown model name: {model_name}''' )
_UpperCAmelCase = torch.Size([1, 4_8_0, 6_4_0] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3] , a__ , atol=1e-4 )
print('Looks ok!' )
# finally, push to hub if required
if push_to_hub:
logger.info('Pushing model and image processor to the hub...' )
model.push_to_hub(
repo_path_or_name=Path(a__ , a__ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=a__ , )
image_processor.push_to_hub(
repo_path_or_name=Path(a__ , a__ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=a__ , )
if __name__ == "__main__":
lowerCAmelCase__ :Optional[int] = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_path''',
default=None,
type=str,
help='''Path to the original PyTorch checkpoint (.pth file).''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.'''
)
parser.add_argument(
'''--model_name''',
default='''glpn-kitti''',
type=str,
help='''Name of the model in case you\'re pushing to the hub.''',
)
lowerCAmelCase__ :str = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 329 |
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
_UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(_SCREAMING_SNAKE_CASE , os.listdir(_SCREAMING_SNAKE_CASE )[0] , 'snapshots' ) )]
_UpperCAmelCase = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith('.bin' ) for f in files )
@slow
@require_flax
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 4
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1e-3
assert np.abs(np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 49947.875 ) < 5e-1
_UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(_SCREAMING_SNAKE_CASE ) == num_samples
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2383808.2) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = FlaxDDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , )
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = scheduler.create_state()
_UpperCAmelCase = scheduler_state
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2347693.5) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
_UpperCAmelCase = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , use_memory_efficient_attention=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
_UpperCAmelCase = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1e-2
| 329 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase__ :Union[str, Any] = {
'''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''],
'''tokenization_roberta''': ['''RobertaTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ :List[str] = ['''RobertaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ :List[Any] = [
'''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''RobertaForCausalLM''',
'''RobertaForMaskedLM''',
'''RobertaForMultipleChoice''',
'''RobertaForQuestionAnswering''',
'''RobertaForSequenceClassification''',
'''RobertaForTokenClassification''',
'''RobertaModel''',
'''RobertaPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ :int = [
'''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFRobertaForCausalLM''',
'''TFRobertaForMaskedLM''',
'''TFRobertaForMultipleChoice''',
'''TFRobertaForQuestionAnswering''',
'''TFRobertaForSequenceClassification''',
'''TFRobertaForTokenClassification''',
'''TFRobertaMainLayer''',
'''TFRobertaModel''',
'''TFRobertaPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ :Any = [
'''FlaxRobertaForCausalLM''',
'''FlaxRobertaForMaskedLM''',
'''FlaxRobertaForMultipleChoice''',
'''FlaxRobertaForQuestionAnswering''',
'''FlaxRobertaForSequenceClassification''',
'''FlaxRobertaForTokenClassification''',
'''FlaxRobertaModel''',
'''FlaxRobertaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ :Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 329 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowerCAmelCase__ :int = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase )
class __a ( UpperCAmelCase ):
def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> int:
"""simple docstring"""
_UpperCAmelCase = {}
_UpperCAmelCase = {}
if prompt is not None:
_UpperCAmelCase = prompt
if generate_kwargs is not None:
_UpperCAmelCase = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
_UpperCAmelCase = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
'\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,'
' please use only one' )
_UpperCAmelCase = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int:
"""simple docstring"""
_UpperCAmelCase = load_image(_SCREAMING_SNAKE_CASE )
if prompt is not None:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise ValueError(
f'''Received an invalid text input, got - {type(_SCREAMING_SNAKE_CASE )} - but expected a single string. '''
'Note also that one single text can be provided for conditional image to text generation.' )
_UpperCAmelCase = self.model.config.model_type
if model_type == "git":
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
_UpperCAmelCase = self.tokenizer(text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids
_UpperCAmelCase = [self.tokenizer.cls_token_id] + input_ids
_UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ).unsqueeze(0 )
model_inputs.update({'input_ids': input_ids} )
elif model_type == "pix2struct":
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , header_text=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
_UpperCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
model_inputs.update(_SCREAMING_SNAKE_CASE )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
_UpperCAmelCase = None
return model_inputs
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[str]:
"""simple docstring"""
if (
"input_ids" in model_inputs
and isinstance(model_inputs['input_ids'] , _SCREAMING_SNAKE_CASE )
and all(x is None for x in model_inputs['input_ids'] )
):
_UpperCAmelCase = None
if generate_kwargs is None:
_UpperCAmelCase = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
_UpperCAmelCase = model_inputs.pop(self.model.main_input_name )
_UpperCAmelCase = self.model.generate(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
return model_outputs
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = []
for output_ids in model_outputs:
_UpperCAmelCase = {
'generated_text': self.tokenizer.decode(
_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , )
}
records.append(_SCREAMING_SNAKE_CASE )
return records
| 329 | 1 |
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase__ :Tuple = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''')
@require_sentencepiece
@require_tokenizers
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : Optional[int] = PegasusTokenizer
_a : Union[str, Any] = PegasusTokenizerFast
_a : List[str] = True
_a : Tuple = True
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCAmelCase = PegasusTokenizer(_SCREAMING_SNAKE_CASE )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
return PegasusTokenizer.from_pretrained('google/pegasus-large' )
def UpperCAmelCase__ ( self , **_SCREAMING_SNAKE_CASE ) -> PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
return ("This is a test", "This is a test")
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = '</s>'
_UpperCAmelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<pad>' )
self.assertEqual(vocab_keys[1] , '</s>' )
self.assertEqual(vocab_keys[-1] , 'v' )
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1103 )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
_UpperCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname )
_UpperCAmelCase = (
'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important'
' </s> <pad> <pad> <pad>'
)
_UpperCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids[0]
_UpperCAmelCase = py_tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids[0]
self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
_UpperCAmelCase = '<mask_1> To ensure a <mask_2> flow of bank resolutions.'
_UpperCAmelCase = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1]
_UpperCAmelCase = tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE ).input_ids[0]
self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
_UpperCAmelCase = 'To ensure a smooth flow of bank resolutions.'
_UpperCAmelCase = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
_UpperCAmelCase = tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE ).input_ids[0]
self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = ['This is going to be way too long.' * 150, 'short example']
_UpperCAmelCase = ['not super long but more than 5 tokens', 'tiny']
_UpperCAmelCase = self._large_tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors='pt' )
_UpperCAmelCase = self._large_tokenizer(
text_target=_SCREAMING_SNAKE_CASE , max_length=5 , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors='pt' )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(_SCREAMING_SNAKE_CASE ) == 2 # input_ids, attention_mask.
@slow
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = {'input_ids': [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_SCREAMING_SNAKE_CASE , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , )
@require_sentencepiece
@require_tokenizers
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : List[str] = PegasusTokenizer
_a : Tuple = PegasusTokenizerFast
_a : Union[str, Any] = True
_a : List[Any] = True
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCAmelCase = PegasusTokenizer(_SCREAMING_SNAKE_CASE , offset=0 , mask_token_sent=_SCREAMING_SNAKE_CASE , mask_token='[MASK]' )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' )
def UpperCAmelCase__ ( self , **_SCREAMING_SNAKE_CASE ) -> PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
return ("This is a test", "This is a test")
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
_UpperCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname )
_UpperCAmelCase = (
'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>'
' <pad> <pad> <pad>'
)
_UpperCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids[0]
_UpperCAmelCase = py_tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids[0]
self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@require_torch
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = ['This is going to be way too long.' * 1000, 'short example']
_UpperCAmelCase = ['not super long but more than 5 tokens', 'tiny']
_UpperCAmelCase = self._large_tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors='pt' )
_UpperCAmelCase = self._large_tokenizer(
text_target=_SCREAMING_SNAKE_CASE , max_length=5 , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors='pt' )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(_SCREAMING_SNAKE_CASE ) == 2 # input_ids, attention_mask.
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = (
'This is an example string that is used to test the original TF implementation against the HF'
' implementation'
)
_UpperCAmelCase = self._large_tokenizer(_SCREAMING_SNAKE_CASE ).input_ids
self.assertListEqual(
_SCREAMING_SNAKE_CASE , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
| 329 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def lowerCAmelCase__ ( *a__: str , a__: Optional[Union[Dict, Any]] = None , a__: Dict=True , a__: Any=2 ) -> Union[str, Any]:
'''simple docstring'''
from .. import __version__
_UpperCAmelCase = take_from
_UpperCAmelCase = ()
if not isinstance(args[0] , a__ ):
_UpperCAmelCase = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(a__ ).base_version ) >= version.parse(a__ ):
raise ValueError(
F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''''
F''' version {__version__} is >= {version_name}''' )
_UpperCAmelCase = None
if isinstance(a__ , a__ ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(a__ ),)
_UpperCAmelCase = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''
elif hasattr(a__ , a__ ):
values += (getattr(a__ , a__ ),)
_UpperCAmelCase = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''
elif deprecated_kwargs is None:
_UpperCAmelCase = F'''`{attribute}` is deprecated and will be removed in version {version_name}.'''
if warning is not None:
_UpperCAmelCase = warning + ' ' if standard_warn else ''
warnings.warn(warning + message , a__ , stacklevel=a__ )
if isinstance(a__ , a__ ) and len(a__ ) > 0:
_UpperCAmelCase = inspect.getouterframes(inspect.currentframe() )[1]
_UpperCAmelCase = call_frame.filename
_UpperCAmelCase = call_frame.lineno
_UpperCAmelCase = call_frame.function
_UpperCAmelCase , _UpperCAmelCase = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' )
if len(a__ ) == 0:
return
elif len(a__ ) == 1:
return values[0]
return values
| 329 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ :Dict = logging.get_logger(__name__)
lowerCAmelCase__ :Optional[int] = {
'''google/realm-cc-news-pretrained-embedder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'''
),
'''google/realm-cc-news-pretrained-encoder''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'''
),
'''google/realm-cc-news-pretrained-scorer''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'''
),
'''google/realm-cc-news-pretrained-openqa''': (
'''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'''
),
'''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json''',
'''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json''',
'''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json''',
'''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json''',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class __a ( UpperCAmelCase ):
_a : List[Any] = 'realm'
def __init__( self , _SCREAMING_SNAKE_CASE=30522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu_new" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-1_2 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=1e-3 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=320 , _SCREAMING_SNAKE_CASE=13353718 , _SCREAMING_SNAKE_CASE=5000 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , **_SCREAMING_SNAKE_CASE , ) -> Dict:
"""simple docstring"""
super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
# Common config
_UpperCAmelCase = vocab_size
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = hidden_size
_UpperCAmelCase = retriever_proj_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = num_candidates
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = initializer_range
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = layer_norm_eps
# Reader config
_UpperCAmelCase = span_hidden_size
_UpperCAmelCase = max_span_width
_UpperCAmelCase = reader_layer_norm_eps
_UpperCAmelCase = reader_beam_size
_UpperCAmelCase = reader_seq_len
# Retrieval config
_UpperCAmelCase = num_block_records
_UpperCAmelCase = searcher_beam_size
| 329 |
import math
lowerCAmelCase__ :Optional[int] = 1_0
lowerCAmelCase__ :Optional[Any] = 7
lowerCAmelCase__ :Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS
def lowerCAmelCase__ ( a__: int = 2_0 ) -> str:
'''simple docstring'''
_UpperCAmelCase = math.comb(a__ , a__ )
_UpperCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ )
_UpperCAmelCase = NUM_COLOURS * (1 - missing_colour / total)
return F'''{result:.9f}'''
if __name__ == "__main__":
print(solution(2_0))
| 329 | 1 |
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
lowerCAmelCase__ :List[str] = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu'''))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=1_2_8, activation='''relu'''))
classifier.add(layers.Dense(units=1, activation='''sigmoid'''))
# Compiling the CNN
classifier.compile(
optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy''']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
lowerCAmelCase__ :Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
lowerCAmelCase__ :int = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5)
lowerCAmelCase__ :Union[str, Any] = train_datagen.flow_from_directory(
'''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary'''
)
lowerCAmelCase__ :Optional[int] = test_datagen.flow_from_directory(
'''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary'''
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set
)
classifier.save('''cnn.h5''')
# Part 3 - Making new predictions
lowerCAmelCase__ :Optional[int] = tf.keras.preprocessing.image.load_img(
'''dataset/single_prediction/image.png''', target_size=(6_4, 6_4)
)
lowerCAmelCase__ :Tuple = tf.keras.preprocessing.image.img_to_array(test_image)
lowerCAmelCase__ :Optional[int] = np.expand_dims(test_image, axis=0)
lowerCAmelCase__ :Tuple = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
lowerCAmelCase__ :Optional[Any] = '''Normal'''
if result[0][0] == 1:
lowerCAmelCase__ :Union[str, Any] = '''Abnormality detected'''
| 329 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ :str = {
'''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ :Union[str, Any] = [
'''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MegatronBertForCausalLM''',
'''MegatronBertForMaskedLM''',
'''MegatronBertForMultipleChoice''',
'''MegatronBertForNextSentencePrediction''',
'''MegatronBertForPreTraining''',
'''MegatronBertForQuestionAnswering''',
'''MegatronBertForSequenceClassification''',
'''MegatronBertForTokenClassification''',
'''MegatronBertModel''',
'''MegatronBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 329 | 1 |
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class __a :
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
return None
class __a :
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
return None
class __a ( unittest.TestCase ):
_a : int = [
# (model_name, model_kwargs)
('bert-base-cased', {}),
('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(_SCREAMING_SNAKE_CASE , 'tf' , 12 , **_SCREAMING_SNAKE_CASE )
@require_torch
@slow
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(_SCREAMING_SNAKE_CASE , 'pt' , 12 , **_SCREAMING_SNAKE_CASE )
@require_torch
@slow
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
from transformers import BertModel
_UpperCAmelCase = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words']
with NamedTemporaryFile(mode='w+t' ) as vocab_file:
vocab_file.write('\n'.join(_SCREAMING_SNAKE_CASE ) )
vocab_file.flush()
_UpperCAmelCase = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
_UpperCAmelCase = BertModel(BertConfig(vocab_size=len(_SCREAMING_SNAKE_CASE ) ) )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
self._test_export(_SCREAMING_SNAKE_CASE , 'pt' , 12 , _SCREAMING_SNAKE_CASE )
@require_tf
@slow
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
_UpperCAmelCase = self._test_export(_SCREAMING_SNAKE_CASE , 'tf' , 12 , **_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = quantize(Path(_SCREAMING_SNAKE_CASE ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(_SCREAMING_SNAKE_CASE ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
@require_torch
@slow
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
_UpperCAmelCase = self._test_export(_SCREAMING_SNAKE_CASE , 'pt' , 12 , **_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = quantize(_SCREAMING_SNAKE_CASE )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(_SCREAMING_SNAKE_CASE ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
try:
# Compute path
with TemporaryDirectory() as tempdir:
_UpperCAmelCase = Path(_SCREAMING_SNAKE_CASE ).joinpath('model.onnx' )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
return path
except Exception as e:
self.fail(_SCREAMING_SNAKE_CASE )
@require_torch
@require_tokenizers
@slow
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
from transformers import BertModel
_UpperCAmelCase = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
_UpperCAmelCase = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'pt' )
@require_tf
@require_tokenizers
@slow
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
from transformers import TFBertModel
_UpperCAmelCase = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
_UpperCAmelCase = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'tf' )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = FeatureExtractionPipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1']
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = infer_shapes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Assert all variables are present
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , _SCREAMING_SNAKE_CASE )
self.assertSequenceEqual(variable_names[3:] , _SCREAMING_SNAKE_CASE )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} )
self.assertDictEqual(shapes['output_1'] , {0: 'batch'} )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = ['input_ids', 'attention_mask', 'token_type_ids']
_UpperCAmelCase = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]}
_UpperCAmelCase , _UpperCAmelCase = ensure_valid_input(FuncContiguousArgs() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(_SCREAMING_SNAKE_CASE ) , set(_SCREAMING_SNAKE_CASE ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(_SCREAMING_SNAKE_CASE , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
_UpperCAmelCase , _UpperCAmelCase = ensure_valid_input(FuncNonContiguousArgs() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1 )
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens['input_ids'] )
self.assertEqual(ordered_input_names[0] , 'input_ids' )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' )
self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
| 329 |
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def lowerCAmelCase__ ( a__: Tuple , a__: Optional[Any] , a__: Any ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = AutoConfig.from_pretrained(a__ )
_UpperCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=a__ )
_UpperCAmelCase = checkpoints.load_tax_checkpoint(a__ )
_UpperCAmelCase = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp']
if config.model_type == "t5":
_UpperCAmelCase = 'SelfAttention'
if config.model_type == "longt5" and config.encoder_attention_type == "local":
_UpperCAmelCase = 'LocalSelfAttention'
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = 'TransientGlobalSelfAttention'
else:
raise ValueError(
'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`'
' attribute with a value from [\'local\', \'transient-global].' )
# Encoder
for layer_index in range(config.num_layers ):
_UpperCAmelCase = F'''layers_{str(a__ )}'''
# Self-Attention
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel']
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale']
if split_mlp_wi:
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel']
else:
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale']
# Assigning
_UpperCAmelCase = flax_model.params['encoder']['block'][str(a__ )]['layer']
_UpperCAmelCase = tax_attention_key
_UpperCAmelCase = tax_attention_out
_UpperCAmelCase = tax_attention_query
_UpperCAmelCase = tax_attention_value
_UpperCAmelCase = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = tax_global_layer_norm
if split_mlp_wi:
_UpperCAmelCase = tax_mlp_wi_a
_UpperCAmelCase = tax_mlp_wi_a
else:
_UpperCAmelCase = tax_mlp_wi
_UpperCAmelCase = tax_mlp_wo
_UpperCAmelCase = tax_mlp_layer_norm
_UpperCAmelCase = flax_model_encoder_layer_block
# Only for layer 0:
_UpperCAmelCase = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T
_UpperCAmelCase = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T
_UpperCAmelCase = tax_encoder_global_rel_embedding
# Assigning
_UpperCAmelCase = tax_model['target']['encoder']['encoder_norm']['scale']
_UpperCAmelCase = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers ):
_UpperCAmelCase = F'''layers_{str(a__ )}'''
# Self-Attention
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][
'scale'
]
# Encoder-Decoder-Attention
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention']
_UpperCAmelCase = tax_enc_dec_attention_module['key']['kernel']
_UpperCAmelCase = tax_enc_dec_attention_module['out']['kernel']
_UpperCAmelCase = tax_enc_dec_attention_module['query']['kernel']
_UpperCAmelCase = tax_enc_dec_attention_module['value']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale']
# MLP
if split_mlp_wi:
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel']
else:
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale']
# Assigning
_UpperCAmelCase = flax_model.params['decoder']['block'][str(a__ )]['layer']
_UpperCAmelCase = tax_attention_key
_UpperCAmelCase = tax_attention_out
_UpperCAmelCase = tax_attention_query
_UpperCAmelCase = tax_attention_value
_UpperCAmelCase = tax_pre_attention_layer_norm
_UpperCAmelCase = tax_enc_dec_attention_key
_UpperCAmelCase = tax_enc_dec_attention_out
_UpperCAmelCase = tax_enc_dec_attention_query
_UpperCAmelCase = tax_enc_dec_attention_value
_UpperCAmelCase = tax_cross_layer_norm
if split_mlp_wi:
_UpperCAmelCase = tax_mlp_wi_a
_UpperCAmelCase = tax_mlp_wi_a
else:
_UpperCAmelCase = tax_mlp_wi
_UpperCAmelCase = tax_mlp_wo
_UpperCAmelCase = txa_mlp_layer_norm
_UpperCAmelCase = flax_model_decoder_layer_block
# Decoder Normalization
_UpperCAmelCase = tax_model['target']['decoder']['decoder_norm']['scale']
_UpperCAmelCase = txa_decoder_norm
# Only for layer 0:
_UpperCAmelCase = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T
_UpperCAmelCase = tax_decoder_rel_embedding
# Token Embeddings
_UpperCAmelCase = tax_model['target']['token_embedder']['embedding']
_UpperCAmelCase = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
_UpperCAmelCase = tax_model['target']['decoder']['logits_dense']['kernel']
flax_model.save_pretrained(a__ )
print('T5X Model was sucessfully converted!' )
if __name__ == "__main__":
lowerCAmelCase__ :List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.'''
)
parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''')
parser.add_argument(
'''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.'''
)
lowerCAmelCase__ :List[str] = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 329 | 1 |
from __future__ import annotations
from functools import lru_cache
from math import ceil
lowerCAmelCase__ :Tuple = 1_0_0
lowerCAmelCase__ :Tuple = set(range(3, NUM_PRIMES, 2))
primes.add(2)
lowerCAmelCase__ :int
for prime in range(3, ceil(NUM_PRIMES**0.5), 2):
if prime not in primes:
continue
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
@lru_cache(maxsize=1_0_0 )
def lowerCAmelCase__ ( a__: int ) -> set[int]:
'''simple docstring'''
if number_to_partition < 0:
return set()
elif number_to_partition == 0:
return {1}
_UpperCAmelCase = set()
_UpperCAmelCase = 42
_UpperCAmelCase = 42
for prime in primes:
if prime > number_to_partition:
continue
for sub in partition(number_to_partition - prime ):
ret.add(sub * prime )
return ret
def lowerCAmelCase__ ( a__: int = 5_0_0_0 ) -> int | None:
'''simple docstring'''
for number_to_partition in range(1 , a__ ):
if len(partition(a__ ) ) > number_unique_partitions:
return number_to_partition
return None
if __name__ == "__main__":
print(f'''{solution() = }''')
| 329 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ :List[Any] = logging.get_logger(__name__)
lowerCAmelCase__ :Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''}
class __a ( UpperCAmelCase ):
_a : str = 'ctrl'
_a : Tuple = ['past_key_values']
_a : List[Any] = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _SCREAMING_SNAKE_CASE=246534 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=1280 , _SCREAMING_SNAKE_CASE=8192 , _SCREAMING_SNAKE_CASE=48 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = vocab_size
_UpperCAmelCase = n_positions
_UpperCAmelCase = n_embd
_UpperCAmelCase = n_layer
_UpperCAmelCase = n_head
_UpperCAmelCase = dff
_UpperCAmelCase = resid_pdrop
_UpperCAmelCase = embd_pdrop
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = initializer_range
_UpperCAmelCase = use_cache
super().__init__(**_SCREAMING_SNAKE_CASE )
| 329 | 1 |
def lowerCAmelCase__ ( a__: list ) -> list:
'''simple docstring'''
if any(not isinstance(a__ , a__ ) or x < 0 for x in sequence ):
raise TypeError('Sequence must be list of non-negative integers' )
for _ in range(len(a__ ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(a__ , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 329 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 255 , _SCREAMING_SNAKE_CASE=True , ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333}
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize
_UpperCAmelCase = size
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
_UpperCAmelCase = do_rescale
_UpperCAmelCase = rescale_factor
_UpperCAmelCase = do_pad
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any:
"""simple docstring"""
if not batched:
_UpperCAmelCase = image_inputs[0]
if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ):
_UpperCAmelCase , _UpperCAmelCase = image.size
else:
_UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2]
if w < h:
_UpperCAmelCase = int(self.size['shortest_edge'] * h / w )
_UpperCAmelCase = self.size['shortest_edge']
elif w > h:
_UpperCAmelCase = self.size['shortest_edge']
_UpperCAmelCase = int(self.size['shortest_edge'] * w / h )
else:
_UpperCAmelCase = self.size['shortest_edge']
_UpperCAmelCase = self.size['shortest_edge']
else:
_UpperCAmelCase = []
for image in image_inputs:
_UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0]
_UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : str = DeformableDetrImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = DeformableDetrImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_rescale' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} )
self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
_UpperCAmelCase = json.loads(f.read() )
_UpperCAmelCase = {'image_id': 39769, 'annotations': target}
# encode them
_UpperCAmelCase = DeformableDetrImageProcessor()
_UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors='pt' )
# verify pixel values
_UpperCAmelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
# verify area
_UpperCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) )
# verify boxes
_UpperCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) )
# verify image_id
_UpperCAmelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) )
# verify is_crowd
_UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) )
# verify class_labels
_UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) )
# verify orig_size
_UpperCAmelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) )
# verify size
_UpperCAmelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
@slow
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
_UpperCAmelCase = json.loads(f.read() )
_UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target}
_UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
_UpperCAmelCase = DeformableDetrImageProcessor(format='coco_panoptic' )
_UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors='pt' )
# verify pixel values
_UpperCAmelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
# verify area
_UpperCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) )
# verify boxes
_UpperCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) )
# verify image_id
_UpperCAmelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) )
# verify is_crowd
_UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) )
# verify class_labels
_UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) )
# verify masks
_UpperCAmelCase = 822873
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _SCREAMING_SNAKE_CASE )
# verify orig_size
_UpperCAmelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) )
# verify size
_UpperCAmelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
| 329 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ :Any = logging.get_logger(__name__)
def lowerCAmelCase__ ( a__: str ) -> YolosConfig:
'''simple docstring'''
_UpperCAmelCase = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
_UpperCAmelCase = 1_9_2
_UpperCAmelCase = 7_6_8
_UpperCAmelCase = 1_2
_UpperCAmelCase = 3
_UpperCAmelCase = [8_0_0, 1_3_3_3]
_UpperCAmelCase = False
elif yolos_name == "yolos_s_dWr":
_UpperCAmelCase = 3_3_0
_UpperCAmelCase = 1_4
_UpperCAmelCase = 6
_UpperCAmelCase = 1_3_2_0
elif "yolos_s" in yolos_name:
_UpperCAmelCase = 3_8_4
_UpperCAmelCase = 1_5_3_6
_UpperCAmelCase = 1_2
_UpperCAmelCase = 6
elif "yolos_b" in yolos_name:
_UpperCAmelCase = [8_0_0, 1_3_4_4]
_UpperCAmelCase = 9_1
_UpperCAmelCase = 'huggingface/label-files'
_UpperCAmelCase = 'coco-detection-id2label.json'
_UpperCAmelCase = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) )
_UpperCAmelCase = {int(a__ ): v for k, v in idalabel.items()}
_UpperCAmelCase = idalabel
_UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase__ ( a__: dict , a__: YolosConfig , a__: bool = False ) -> Union[str, Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_UpperCAmelCase = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' )
_UpperCAmelCase = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
_UpperCAmelCase = in_proj_weight[: config.hidden_size, :]
_UpperCAmelCase = in_proj_bias[: config.hidden_size]
_UpperCAmelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_UpperCAmelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_UpperCAmelCase = in_proj_weight[-config.hidden_size :, :]
_UpperCAmelCase = in_proj_bias[-config.hidden_size :]
def lowerCAmelCase__ ( a__: str ) -> str:
'''simple docstring'''
if "backbone" in name:
_UpperCAmelCase = name.replace('backbone' , 'vit' )
if "cls_token" in name:
_UpperCAmelCase = name.replace('cls_token' , 'embeddings.cls_token' )
if "det_token" in name:
_UpperCAmelCase = name.replace('det_token' , 'embeddings.detection_tokens' )
if "mid_pos_embed" in name:
_UpperCAmelCase = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' )
if "pos_embed" in name:
_UpperCAmelCase = name.replace('pos_embed' , 'embeddings.position_embeddings' )
if "patch_embed.proj" in name:
_UpperCAmelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "blocks" in name:
_UpperCAmelCase = name.replace('blocks' , 'encoder.layer' )
if "attn.proj" in name:
_UpperCAmelCase = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
_UpperCAmelCase = name.replace('attn' , 'attention.self' )
if "norm1" in name:
_UpperCAmelCase = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
_UpperCAmelCase = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
_UpperCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
_UpperCAmelCase = name.replace('mlp.fc2' , 'output.dense' )
if "class_embed" in name:
_UpperCAmelCase = name.replace('class_embed' , 'class_labels_classifier' )
if "bbox_embed" in name:
_UpperCAmelCase = name.replace('bbox_embed' , 'bbox_predictor' )
if "vit.norm" in name:
_UpperCAmelCase = name.replace('vit.norm' , 'vit.layernorm' )
return name
def lowerCAmelCase__ ( a__: dict , a__: YolosForObjectDetection ) -> dict:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
_UpperCAmelCase = orig_state_dict.pop(a__ )
if "qkv" in key:
_UpperCAmelCase = key.split('.' )
_UpperCAmelCase = int(key_split[2] )
_UpperCAmelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
_UpperCAmelCase = val[:dim, :]
_UpperCAmelCase = val[
dim : dim * 2, :
]
_UpperCAmelCase = val[-dim:, :]
else:
_UpperCAmelCase = val[:dim]
_UpperCAmelCase = val[dim : dim * 2]
_UpperCAmelCase = val[-dim:]
else:
_UpperCAmelCase = val
return orig_state_dict
def lowerCAmelCase__ ( ) -> torch.Tensor:
'''simple docstring'''
_UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
_UpperCAmelCase = Image.open(requests.get(a__ , stream=a__ ).raw )
return im
@torch.no_grad()
def lowerCAmelCase__ ( a__: str , a__: str , a__: str , a__: bool = False ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = get_yolos_config(a__ )
# load original state_dict
_UpperCAmelCase = torch.load(a__ , map_location='cpu' )['model']
# load 🤗 model
_UpperCAmelCase = YolosForObjectDetection(a__ )
model.eval()
_UpperCAmelCase = convert_state_dict(a__ , a__ )
model.load_state_dict(a__ )
# Check outputs on an image, prepared by YolosImageProcessor
_UpperCAmelCase = 8_0_0 if yolos_name != 'yolos_ti' else 5_1_2
_UpperCAmelCase = YolosImageProcessor(format='coco_detection' , size=a__ )
_UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' )
_UpperCAmelCase = model(**a__ )
_UpperCAmelCase , _UpperCAmelCase = outputs.logits, outputs.pred_boxes
_UpperCAmelCase , _UpperCAmelCase = None, None
if yolos_name == "yolos_ti":
_UpperCAmelCase = torch.tensor(
[[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] )
_UpperCAmelCase = torch.tensor(
[[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] )
elif yolos_name == "yolos_s_200_pre":
_UpperCAmelCase = torch.tensor(
[[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] )
_UpperCAmelCase = torch.tensor(
[[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] )
elif yolos_name == "yolos_s_300_pre":
_UpperCAmelCase = torch.tensor(
[[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] )
_UpperCAmelCase = torch.tensor(
[[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] )
elif yolos_name == "yolos_s_dWr":
_UpperCAmelCase = torch.tensor(
[[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] )
_UpperCAmelCase = torch.tensor(
[[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] )
elif yolos_name == "yolos_base":
_UpperCAmelCase = torch.tensor(
[[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] )
_UpperCAmelCase = torch.tensor(
[[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] )
else:
raise ValueError(F'''Unknown yolos_name: {yolos_name}''' )
assert torch.allclose(logits[0, :3, :3] , a__ , atol=1e-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , a__ , atol=1e-4 )
Path(a__ ).mkdir(exist_ok=a__ )
print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(a__ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(a__ )
if push_to_hub:
_UpperCAmelCase = {
'yolos_ti': 'yolos-tiny',
'yolos_s_200_pre': 'yolos-small',
'yolos_s_300_pre': 'yolos-small-300',
'yolos_s_dWr': 'yolos-small-dwr',
'yolos_base': 'yolos-base',
}
print('Pushing to the hub...' )
_UpperCAmelCase = model_mapping[yolos_name]
image_processor.push_to_hub(a__ , organization='hustvl' )
model.push_to_hub(a__ , organization='hustvl' )
if __name__ == "__main__":
lowerCAmelCase__ :List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--yolos_name''',
default='''yolos_s_200_pre''',
type=str,
help=(
'''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\','''
''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
lowerCAmelCase__ :Optional[int] = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 329 |
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class __a ( unittest.TestCase ):
_a : List[str] = JukeboxTokenizer
_a : List[Any] = {
'artist': 'Zac Brown Band',
'genres': 'Country',
'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ',
}
@require_torch
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
import torch
_UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' )
_UpperCAmelCase = tokenizer(**self.metas )['input_ids']
# fmt: off
_UpperCAmelCase = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
import torch
_UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' )
_UpperCAmelCase = tokenizer(**self.metas )['input_ids']
# fmt: off
_UpperCAmelCase = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 329 | 1 |
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __a :
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , _SCREAMING_SNAKE_CASE=[2, 2, 3, 2] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=["stage2", "stage3", "stage4"] , _SCREAMING_SNAKE_CASE=[2, 3, 4] , _SCREAMING_SNAKE_CASE=None , ) -> Any:
"""simple docstring"""
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = num_stages
_UpperCAmelCase = hidden_sizes
_UpperCAmelCase = depths
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = num_labels
_UpperCAmelCase = initializer_range
_UpperCAmelCase = out_features
_UpperCAmelCase = out_indices
_UpperCAmelCase = scope
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = ConvNextVaModel(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
_UpperCAmelCase = ConvNextVaForImageClassification(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = ConvNextVaBackbone(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_UpperCAmelCase = None
_UpperCAmelCase = ConvNextVaBackbone(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {'pixel_values': pixel_values}
return config, inputs_dict
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {'pixel_values': pixel_values, 'labels': labels}
return config, inputs_dict
@require_torch
class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
_a : int = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
_a : str = (
{'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
_a : Any = False
_a : int = False
_a : str = False
_a : List[str] = False
_a : Union[str, Any] = False
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = ConvNextVaModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
return
@unittest.skip(reason='ConvNextV2 does not use inputs_embeds' )
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason='ConvNextV2 does not support input and output embeddings' )
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason='ConvNextV2 does not use feedforward chunking' )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels()
_UpperCAmelCase = True
if model_class.__name__ in [
*get_values(_SCREAMING_SNAKE_CASE ),
*get_values(_SCREAMING_SNAKE_CASE ),
]:
continue
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.train()
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ).loss
loss.backward()
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels()
_UpperCAmelCase = False
_UpperCAmelCase = True
if (
model_class.__name__
in [*get_values(_SCREAMING_SNAKE_CASE ), *get_values(_SCREAMING_SNAKE_CASE )]
or not model_class.supports_gradient_checkpointing
):
continue
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.gradient_checkpointing_enable()
model.train()
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ).loss
loss.backward()
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_UpperCAmelCase = self.model_tester.num_stages
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = True
check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCAmelCase = True
check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE )
@slow
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = ConvNextVaModel.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class __a ( unittest.TestCase ):
@cached_property
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None
@slow
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.default_image_processor
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = preprocessor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE )
# verify the logits
_UpperCAmelCase = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.9996, 0.1966, -0.4386] ).to(_SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 329 |
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
lowerCAmelCase__ :Optional[int] = logging.getLogger(__name__)
def lowerCAmelCase__ ( ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = argparse.ArgumentParser(
description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' )
parser.add_argument(
'--dataset_name' , type=a__ , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , )
parser.add_argument(
'--dataset_config' , type=a__ , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' )
parser.add_argument(
'--tokenizer_name_or_path' , type=a__ , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , )
parser.add_argument(
'--shard_size' , type=a__ , default=1_0_0_0 , help='Number of entries to go in a single shard.' , )
parser.add_argument('--split' , type=a__ , default='train' , choices=['train', 'test', 'validation'] )
parser.add_argument(
'--limit' , default=a__ , type=a__ , help='Limit the number of shards (used for debugging).' , )
parser.add_argument(
'--max_length' , type=a__ , default=5_1_2 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum'
' sequence length that is a multiple of 8.' , )
parser.add_argument(
'--output_dir' , default='tf-tpu' , type=a__ , help='Output directory where the TFRecord shards will be saved. If the'
' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord'
' shards will be directly saved to a Google Cloud Storage bucket.' , )
_UpperCAmelCase = parser.parse_args()
return args
def lowerCAmelCase__ ( a__: Union[str, Any] ) -> List[Any]:
'''simple docstring'''
def fn(a__: str ):
return tokenizer(examples['text'] )
return fn
def lowerCAmelCase__ ( a__: List[str] ) -> Any:
'''simple docstring'''
_UpperCAmelCase = []
for i in range(len(tokenized_data['input_ids'] ) ):
_UpperCAmelCase = {
'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ),
'attention_mask': tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ),
}
_UpperCAmelCase = tf.train.Features(feature=a__ )
_UpperCAmelCase = tf.train.Example(features=a__ )
_UpperCAmelCase = example.SerializeToString()
records.append(a__ )
return records
def lowerCAmelCase__ ( a__: Union[str, Any] ) -> int:
'''simple docstring'''
_UpperCAmelCase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
_UpperCAmelCase = min(len(a__ ) , args.limit )
_UpperCAmelCase = dataset.select(range(a__ ) )
print(F'''Limiting the dataset to {args.limit} entries.''' )
_UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
_UpperCAmelCase = os.path.join(args.output_dir , args.split )
if not os.path.exists(a__ ):
os.makedirs(a__ )
else:
_UpperCAmelCase = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
_UpperCAmelCase = tokenize_function(a__ )
_UpperCAmelCase = dataset.map(a__ , batched=a__ , num_proc=4 , remove_columns=['text'] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(a__: Optional[int] ):
# Concatenate all texts.
_UpperCAmelCase = {k: sum(examples[k] , [] ) for k in examples.keys()}
_UpperCAmelCase = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
_UpperCAmelCase = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
_UpperCAmelCase = {
k: [t[i : i + args.max_length] for i in range(0 , a__ , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
_UpperCAmelCase = dataset_tokenized.map(a__ , batched=a__ , batch_size=1_0_0_0 , num_proc=4 )
_UpperCAmelCase = 0
_UpperCAmelCase = 0
for shard in range(0 , len(a__ ) , args.shard_size ):
_UpperCAmelCase = grouped_dataset[shard : shard + args.shard_size]
_UpperCAmelCase = len(dataset_snapshot['input_ids'] )
_UpperCAmelCase = os.path.join(a__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' )
_UpperCAmelCase = get_serialized_examples(a__ )
with tf.io.TFRecordWriter(a__ ) as out_file:
for i in range(len(a__ ) ):
_UpperCAmelCase = serialized_examples[i]
out_file.write(a__ )
print('Wrote file {} containing {} records'.format(a__ , a__ ) )
shard_count += 1
total_records += records_containing
with open(F'''split-{args.split}-records-count.txt''' , 'w' ) as f:
print(F'''Total {args.split} records: {total_records}''' , file=a__ )
if __name__ == "__main__":
lowerCAmelCase__ :str = parse_args()
main(args)
| 329 | 1 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
lowerCAmelCase__ :Optional[int] = logging.get_logger(__name__)
class __a ( UpperCAmelCase ):
def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
warnings.warn(
'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use VideoMAEImageProcessor instead.' , _SCREAMING_SNAKE_CASE , )
super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
| 329 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any]=1_0 ) -> Any:
'''simple docstring'''
_UpperCAmelCase = []
for _ in range(a__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def lowerCAmelCase__ ( a__: List[str] , a__: Any=1_0 ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = []
for step in range(a__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
_UpperCAmelCase = os.path.join(a__ , 'schedule.bin' )
torch.save(scheduler.state_dict() , a__ )
_UpperCAmelCase = torch.load(a__ )
scheduler.load_state_dict(a__ )
return lrs
@require_torch
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) )
for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] )
_UpperCAmelCase = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_UpperCAmelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 )
for _ in range(100 ):
_UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] )
_UpperCAmelCase = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_UpperCAmelCase = Adafactor(
params=[w] , lr=1e-2 , eps=(1e-3_0, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_SCREAMING_SNAKE_CASE , weight_decay=0.0 , relative_step=_SCREAMING_SNAKE_CASE , scale_parameter=_SCREAMING_SNAKE_CASE , warmup_init=_SCREAMING_SNAKE_CASE , )
for _ in range(1000 ):
_UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
@require_torch
class __a ( unittest.TestCase ):
_a : Dict = nn.Linear(50 , 50 ) if is_torch_available() else None
_a : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
_a : List[Any] = 10
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> str:
"""simple docstring"""
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) )
for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE , msg=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = {'num_warmup_steps': 2, 'num_training_steps': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
_UpperCAmelCase = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1e-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
_UpperCAmelCase , _UpperCAmelCase = data
_UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
_UpperCAmelCase = unwrap_schedule(_SCREAMING_SNAKE_CASE , self.num_steps )
self.assertListAlmostEqual(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
_UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_SCREAMING_SNAKE_CASE ) # wrap to test picklability of the schedule
_UpperCAmelCase = unwrap_and_save_reload_schedule(_SCREAMING_SNAKE_CASE , self.num_steps )
self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , msg=f'''failed for {scheduler_func} in save and reload''' )
class __a :
def __init__( self , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
_UpperCAmelCase = fn
def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
return self.fn(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
@classmethod
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = list(map(self , scheduler.lr_lambdas ) )
| 329 | 1 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __a ( UpperCAmelCase ):
_a : List[str] = ['image_processor', 'tokenizer']
_a : List[Any] = 'BlipImageProcessor'
_a : Tuple = ('BertTokenizer', 'BertTokenizerFast')
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = False
super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.image_processor
def __call__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> BatchEncoding:
"""simple docstring"""
if images is None and text is None:
raise ValueError('You have to specify either images or text.' )
# Get only text
if images is None:
_UpperCAmelCase = self.tokenizer
_UpperCAmelCase = self.tokenizer(
text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_overflowing_tokens=_SCREAMING_SNAKE_CASE , return_special_tokens_mask=_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , return_length=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
return text_encoding
# add pixel_values
_UpperCAmelCase = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE )
if text is not None:
_UpperCAmelCase = self.tokenizer(
text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_overflowing_tokens=_SCREAMING_SNAKE_CASE , return_special_tokens_mask=_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , return_length=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
else:
_UpperCAmelCase = None
if text_encoding is not None:
encoding_image_processor.update(_SCREAMING_SNAKE_CASE )
return encoding_image_processor
def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
@property
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.tokenizer.model_input_names
_UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 329 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ :Any = logging.get_logger(__name__)
def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any] , a__: Dict , a__: Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = original_name.split('.' )[0]
_UpperCAmelCase = key.split('.' )
_UpperCAmelCase = int(key_list[key_list.index(a__ ) - 2] )
_UpperCAmelCase = int(key_list[key_list.index(a__ ) - 1] )
_UpperCAmelCase = orig_block_num - offset
_UpperCAmelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def lowerCAmelCase__ ( a__: Tuple ) -> int:
'''simple docstring'''
_UpperCAmelCase = OrderedDict()
_UpperCAmelCase , _UpperCAmelCase = 0, 0
for key, value in state_dict.items():
if key.startswith('network' ):
_UpperCAmelCase = key.replace('network' , 'poolformer.encoder' )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith('bias' ) and "patch_embed" not in key:
patch_emb_offset += 1
_UpperCAmelCase = key[: key.find('proj' )]
_UpperCAmelCase = key.replace(a__ , F'''patch_embeddings.{total_embed_found}.''' )
_UpperCAmelCase = key.replace('proj' , 'projection' )
if key.endswith('bias' ):
total_embed_found += 1
if "patch_embeddings" in key:
_UpperCAmelCase = 'poolformer.encoder.' + key
if "mlp.fc1" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc1' , 'output.conv1' )
if "mlp.fc2" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc2' , 'output.conv2' )
if "norm1" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm1' , 'before_norm' )
if "norm2" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm2' , 'after_norm' )
if "layer_scale_1" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_1' , 'layer_scale_1' )
if "layer_scale_2" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_2' , 'layer_scale_2' )
if "head" in key:
_UpperCAmelCase = key.replace('head' , 'classifier' )
_UpperCAmelCase = value
return new_state_dict
def lowerCAmelCase__ ( ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
_UpperCAmelCase = Image.open(requests.get(a__ , stream=a__ ).raw )
return image
@torch.no_grad()
def lowerCAmelCase__ ( a__: Optional[int] , a__: Dict , a__: Any ) -> Dict:
'''simple docstring'''
_UpperCAmelCase = PoolFormerConfig()
# set attributes based on model_name
_UpperCAmelCase = 'huggingface/label-files'
_UpperCAmelCase = model_name[-3:]
_UpperCAmelCase = 1_0_0_0
_UpperCAmelCase = 'imagenet-1k-id2label.json'
_UpperCAmelCase = (1, 1_0_0_0)
# set config attributes
_UpperCAmelCase = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) )
_UpperCAmelCase = {int(a__ ): v for k, v in idalabel.items()}
_UpperCAmelCase = idalabel
_UpperCAmelCase = {v: k for k, v in idalabel.items()}
if size == "s12":
_UpperCAmelCase = [2, 2, 6, 2]
_UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 0.9
elif size == "s24":
_UpperCAmelCase = [4, 4, 1_2, 4]
_UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 0.9
elif size == "s36":
_UpperCAmelCase = [6, 6, 1_8, 6]
_UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 1e-6
_UpperCAmelCase = 0.9
elif size == "m36":
_UpperCAmelCase = [6, 6, 1_8, 6]
_UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 1e-6
_UpperCAmelCase = 0.95
elif size == "m48":
_UpperCAmelCase = [8, 8, 2_4, 8]
_UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 1e-6
_UpperCAmelCase = 0.95
else:
raise ValueError(F'''Size {size} not supported''' )
# load image processor
_UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ )
# Prepare image
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=a__ , return_tensors='pt' ).pixel_values
logger.info(F'''Converting model {model_name}...''' )
# load original state dict
_UpperCAmelCase = torch.load(a__ , map_location=torch.device('cpu' ) )
# rename keys
_UpperCAmelCase = rename_keys(a__ )
# create HuggingFace model and load state dict
_UpperCAmelCase = PoolFormerForImageClassification(a__ )
model.load_state_dict(a__ )
model.eval()
# Define image processor
_UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ )
_UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values
# forward pass
_UpperCAmelCase = model(a__ )
_UpperCAmelCase = outputs.logits
# define expected logit slices for different models
if size == "s12":
_UpperCAmelCase = torch.tensor([-0.3_045, -0.6_758, -0.4_869] )
elif size == "s24":
_UpperCAmelCase = torch.tensor([0.4_402, -0.1_374, -0.8_045] )
elif size == "s36":
_UpperCAmelCase = torch.tensor([-0.6_080, -0.5_133, -0.5_898] )
elif size == "m36":
_UpperCAmelCase = torch.tensor([0.3_952, 0.2_263, -1.2_668] )
elif size == "m48":
_UpperCAmelCase = torch.tensor([0.1_167, -0.0_656, -0.3_423] )
else:
raise ValueError(F'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] , a__ , atol=1e-2 )
# finally, save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(a__ ).mkdir(exist_ok=a__ )
model.save_pretrained(a__ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(a__ )
if __name__ == "__main__":
lowerCAmelCase__ :str = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''poolformer_s12''',
type=str,
help='''Name of the model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
lowerCAmelCase__ :Dict = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 329 | 1 |
from heapq import heappop, heappush
import numpy as np
def lowerCAmelCase__ ( a__: np.ndarray , a__: tuple[int, int] , a__: tuple[int, int] , a__: bool , ) -> tuple[float | int, list[tuple[int, int]]]:
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = grid.shape
_UpperCAmelCase = [-1, 1, 0, 0]
_UpperCAmelCase = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
_UpperCAmelCase , _UpperCAmelCase = [(0, source)], set()
_UpperCAmelCase = np.full((rows, cols) , np.inf )
_UpperCAmelCase = 0
_UpperCAmelCase = np.empty((rows, cols) , dtype=a__ )
_UpperCAmelCase = None
while queue:
((_UpperCAmelCase) , (_UpperCAmelCase)) = heappop(a__ )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
_UpperCAmelCase = []
while (x, y) != source:
path.append((x, y) )
_UpperCAmelCase , _UpperCAmelCase = predecessors[x, y]
path.append(a__ ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(a__ ) ):
_UpperCAmelCase , _UpperCAmelCase = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
_UpperCAmelCase = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(a__ , (dist + 1, (nx, ny)) )
_UpperCAmelCase = dist + 1
_UpperCAmelCase = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
_UpperCAmelCase = dataset
_UpperCAmelCase = process
_UpperCAmelCase = params
def __len__( self ) -> Union[str, Any]:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.dataset[i]
_UpperCAmelCase = self.process(_SCREAMING_SNAKE_CASE , **self.params )
return processed
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = loader
_UpperCAmelCase = infer
_UpperCAmelCase = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
_UpperCAmelCase = None
_UpperCAmelCase = loader_batch_size
# Internal bookkeeping
_UpperCAmelCase = None
_UpperCAmelCase = None
def __len__( self ) -> Any:
"""simple docstring"""
return len(self.loader )
def __iter__( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = iter(self.loader )
return self
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
_UpperCAmelCase = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
_UpperCAmelCase = {}
for k, element in self._loader_batch_data.items():
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
# Convert ModelOutput to tuple first
_UpperCAmelCase = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
_UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
_UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
_UpperCAmelCase = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_UpperCAmelCase = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_UpperCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
_UpperCAmelCase = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
_UpperCAmelCase = self._loader_batch_data.__class__(_SCREAMING_SNAKE_CASE )
self._loader_batch_index += 1
return result
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
_UpperCAmelCase = next(self.iterator )
_UpperCAmelCase = self.infer(_SCREAMING_SNAKE_CASE , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
_UpperCAmelCase = processed
else:
_UpperCAmelCase = list(processed.keys() )[0]
_UpperCAmelCase = processed[key]
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = len(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_UpperCAmelCase = observed_batch_size
# Setting internal index to unwrap the batch
_UpperCAmelCase = processed
_UpperCAmelCase = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple:
"""simple docstring"""
super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def __iter__( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = iter(self.loader )
_UpperCAmelCase = None
return self
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
if self.subiterator is None:
_UpperCAmelCase = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
_UpperCAmelCase = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
_UpperCAmelCase = self.infer(next(self.iterator ) , **self.params )
_UpperCAmelCase = next(self.subiterator )
return processed
class __a ( UpperCAmelCase ):
def __iter__( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = iter(self.loader )
return self
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = False
_UpperCAmelCase = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
_UpperCAmelCase = self.loader_batch_item()
_UpperCAmelCase = item.pop('is_last' )
accumulator.append(_SCREAMING_SNAKE_CASE )
if is_last:
return accumulator
while not is_last:
_UpperCAmelCase = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
_UpperCAmelCase = processed
else:
_UpperCAmelCase = list(processed.keys() )[0]
_UpperCAmelCase = processed[key]
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = len(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_UpperCAmelCase = observed_batch_size
_UpperCAmelCase = processed
_UpperCAmelCase = 0
while self._loader_batch_index < self.loader_batch_size:
_UpperCAmelCase = self.loader_batch_item()
_UpperCAmelCase = item.pop('is_last' )
accumulator.append(_SCREAMING_SNAKE_CASE )
if is_last:
return accumulator
else:
_UpperCAmelCase = processed
_UpperCAmelCase = item.pop('is_last' )
accumulator.append(_SCREAMING_SNAKE_CASE )
return accumulator
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = dataset
_UpperCAmelCase = key
def __len__( self ) -> Optional[int]:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
return self.dataset[i][self.key]
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = dataset
_UpperCAmelCase = keya
_UpperCAmelCase = keya
def __len__( self ) -> Optional[int]:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 329 | 1 |
from __future__ import annotations
def lowerCAmelCase__ ( a__: list[int] , a__: int ) -> list[int]:
'''simple docstring'''
_UpperCAmelCase = 0
_UpperCAmelCase = len(a__ ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
_UpperCAmelCase = i + 1
else:
_UpperCAmelCase = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
| 329 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase__ :int = logging.get_logger(__name__)
lowerCAmelCase__ :Optional[Any] = {
'''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''',
}
class __a ( UpperCAmelCase ):
_a : str = 'data2vec-text'
def __init__( self , _SCREAMING_SNAKE_CASE=30522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-1_2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = hidden_act
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = position_embedding_type
_UpperCAmelCase = use_cache
_UpperCAmelCase = classifier_dropout
class __a ( UpperCAmelCase ):
@property
def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_UpperCAmelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 329 | 1 |
def lowerCAmelCase__ ( a__: bytes ) -> str:
'''simple docstring'''
return "".join([hex(a__ )[2:].zfill(2 ).upper() for byte in list(a__ )] )
def lowerCAmelCase__ ( a__: str ) -> bytes:
'''simple docstring'''
if (len(a__ ) % 2) != 0:
raise ValueError(
'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' )
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(a__ ) <= set('0123456789ABCDEF' ):
raise ValueError(
'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' )
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1] , 1_6 ) for i in range(0 , len(a__ ) , 2 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class __a :
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , _SCREAMING_SNAKE_CASE=[1, 2, 3] , ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = embed_dim
_UpperCAmelCase = depths
_UpperCAmelCase = num_heads
_UpperCAmelCase = window_size
_UpperCAmelCase = mlp_ratio
_UpperCAmelCase = qkv_bias
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = drop_path_rate
_UpperCAmelCase = hidden_act
_UpperCAmelCase = use_absolute_embeddings
_UpperCAmelCase = patch_norm
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = initializer_range
_UpperCAmelCase = is_training
_UpperCAmelCase = scope
_UpperCAmelCase = use_labels
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = encoder_stride
_UpperCAmelCase = out_features
_UpperCAmelCase = out_indices
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
_UpperCAmelCase = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
_UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = ['stem']
_UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
_a : int = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
_a : str = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {}
_a : Optional[int] = False
_a : List[str] = False
_a : List[str] = False
_a : Optional[int] = False
_a : Tuple = False
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = MaskFormerSwinModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
'`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with'
' `nn.DataParallel`'
) )
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
return
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE )
@unittest.skip('Swin does not use inputs_embeds' )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
pass
@unittest.skip('Swin does not support feedforward chunking' )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE )
@unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
pass
@unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = outputs.hidden_states
_UpperCAmelCase = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
# Swin has a different seq_length
_UpperCAmelCase = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
_UpperCAmelCase = True
self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCAmelCase = True
self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = 3
_UpperCAmelCase = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
_UpperCAmelCase = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
_UpperCAmelCase = True
self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCAmelCase = True
self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) )
@unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = 0
return t
def check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE={} ):
with torch.no_grad():
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple()
def recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=(
'Tuple and dict output are not equal. Difference:'
f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'''
f''' {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has'''
f''' `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}.'''
) , )
recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} )
@require_torch
class __a ( unittest.TestCase , UpperCAmelCase ):
_a : Any = (MaskFormerSwinBackbone,) if is_torch_available() else ()
_a : Any = MaskFormerSwinConfig
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = MaskFormerSwinModelTester(self )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = inputs_dict['pixel_values'].shape[0]
for backbone_class in self.all_model_classes:
_UpperCAmelCase = backbone_class(_SCREAMING_SNAKE_CASE )
backbone.to(_SCREAMING_SNAKE_CASE )
backbone.eval()
_UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
_UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
_UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(outputs.attentions )
| 329 | 1 |
lowerCAmelCase__ :str = 2_5_6
# Modulus to hash a string
lowerCAmelCase__ :str = 1_0_0_0_0_0_3
def lowerCAmelCase__ ( a__: str , a__: str ) -> bool:
'''simple docstring'''
_UpperCAmelCase = len(a__ )
_UpperCAmelCase = len(a__ )
if p_len > t_len:
return False
_UpperCAmelCase = 0
_UpperCAmelCase = 0
_UpperCAmelCase = 1
# Calculating the hash of pattern and substring of text
for i in range(a__ ):
_UpperCAmelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
_UpperCAmelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
_UpperCAmelCase = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
_UpperCAmelCase = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def lowerCAmelCase__ ( ) -> None:
'''simple docstring'''
_UpperCAmelCase = 'abc1abc12'
_UpperCAmelCase = 'alskfjaldsabc1abc1abc12k23adsfabcabc'
_UpperCAmelCase = 'alskfjaldsk23adsfabcabc'
assert rabin_karp(a__ , a__ ) and not rabin_karp(a__ , a__ )
# Test 2)
_UpperCAmelCase = 'ABABX'
_UpperCAmelCase = 'ABABZABABYABABX'
assert rabin_karp(a__ , a__ )
# Test 3)
_UpperCAmelCase = 'AAAB'
_UpperCAmelCase = 'ABAAAAAB'
assert rabin_karp(a__ , a__ )
# Test 4)
_UpperCAmelCase = 'abcdabcy'
_UpperCAmelCase = 'abcxabcdabxabcdabcdabcy'
assert rabin_karp(a__ , a__ )
# Test 5)
_UpperCAmelCase = 'Lü'
_UpperCAmelCase = 'Lüsai'
assert rabin_karp(a__ , a__ )
_UpperCAmelCase = 'Lue'
assert not rabin_karp(a__ , a__ )
print('Success.' )
if __name__ == "__main__":
test_rabin_karp()
| 329 |
from collections.abc import Generator
def lowerCAmelCase__ ( ) -> Generator[int, None, None]:
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = 0, 1
while True:
_UpperCAmelCase , _UpperCAmelCase = b, a + b
yield b
def lowerCAmelCase__ ( a__: int = 1_0_0_0 ) -> int:
'''simple docstring'''
_UpperCAmelCase = 1
_UpperCAmelCase = fibonacci_generator()
while len(str(next(a__ ) ) ) < n:
answer += 1
return answer + 1
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 329 | 1 |
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(UpperCAmelCase ) , 'Tatoeba directory does not exist.' )
class __a ( unittest.TestCase ):
@cached_property
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = tempfile.mkdtemp()
return TatoebaConverter(save_dir=_SCREAMING_SNAKE_CASE )
@slow
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
self.resolver.convert_models(['heb-eng'] )
@slow
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.resolver.write_model_card('opus-mt-he-en' , dry_run=_SCREAMING_SNAKE_CASE )
assert mmeta["long_pair"] == "heb-eng"
| 329 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> str:
"""simple docstring"""
_UpperCAmelCase = size if size is not None else {'shortest_edge': 30}
_UpperCAmelCase = crop_size if crop_size is not None else {'height': 30, 'width': 30}
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize_and_center_crop
_UpperCAmelCase = size
_UpperCAmelCase = crop_pct
_UpperCAmelCase = crop_size
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = PoolFormerImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize_and_center_crop' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'crop_pct' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 30} )
self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} )
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 329 | 1 |
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __a :
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=36 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1000 , ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = image_size
_UpperCAmelCase = patch_size
_UpperCAmelCase = is_training
_UpperCAmelCase = use_input_mask
_UpperCAmelCase = use_token_type_ids
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = coordinate_size
_UpperCAmelCase = shape_size
_UpperCAmelCase = num_labels
_UpperCAmelCase = num_choices
_UpperCAmelCase = scope
_UpperCAmelCase = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
_UpperCAmelCase = text_seq_length
_UpperCAmelCase = (image_size // patch_size) ** 2 + 1
_UpperCAmelCase = self.text_seq_length + self.image_seq_length
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
_UpperCAmelCase = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
_UpperCAmelCase = bbox[i, j, 3]
_UpperCAmelCase = bbox[i, j, 1]
_UpperCAmelCase = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
_UpperCAmelCase = bbox[i, j, 2]
_UpperCAmelCase = bbox[i, j, 0]
_UpperCAmelCase = tmp_coordinate
_UpperCAmelCase = tf.constant(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_input_mask:
_UpperCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] )
_UpperCAmelCase = None
if self.use_token_type_ids:
_UpperCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
_UpperCAmelCase = None
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
_UpperCAmelCase = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
_UpperCAmelCase = TFLayoutLMvaModel(config=_SCREAMING_SNAKE_CASE )
# text + image
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model(
_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
_UpperCAmelCase = model({'pixel_values': pixel_values} , training=_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = TFLayoutLMvaForSequenceClassification(config=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model(
_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = TFLayoutLMvaForTokenClassification(config=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model(
_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = 2
_UpperCAmelCase = TFLayoutLMvaForQuestionAnswering(config=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model(
_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = self.prepare_config_and_inputs()
((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = config_and_inputs
_UpperCAmelCase = {
'input_ids': input_ids,
'bbox': bbox,
'pixel_values': pixel_values,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_tf
class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
_a : Optional[int] = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
_a : Union[str, Any] = (
{'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
_a : Any = False
_a : List[Any] = False
_a : Optional[Any] = False
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
return True
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> dict:
"""simple docstring"""
_UpperCAmelCase = copy.deepcopy(_SCREAMING_SNAKE_CASE )
if model_class in get_values(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = {
k: tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(_SCREAMING_SNAKE_CASE , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
_UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = TFLayoutLMvaModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
if getattr(_SCREAMING_SNAKE_CASE , 'hf_compute_loss' , _SCREAMING_SNAKE_CASE ):
# The number of elements in the loss should be the same as the number of elements in the label
_UpperCAmelCase = self._prepare_for_class(inputs_dict.copy() , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_SCREAMING_SNAKE_CASE )[0]
]
_UpperCAmelCase = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
_UpperCAmelCase = self._prepare_for_class(inputs_dict.copy() , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = prepared_for_class.pop('input_ids' )
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
_UpperCAmelCase = self._prepare_for_class(inputs_dict.copy() , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = prepared_for_class.pop('input_ids' )
if "labels" in prepared_for_class:
_UpperCAmelCase = prepared_for_class['labels'].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
_UpperCAmelCase = -100
_UpperCAmelCase = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
_UpperCAmelCase = self._prepare_for_class(inputs_dict.copy() , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
_UpperCAmelCase = self._prepare_for_class(inputs_dict.copy() , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
# Get keys that were added with the _prepare_for_class function
_UpperCAmelCase = prepared_for_class.keys() - inputs_dict.keys()
_UpperCAmelCase = inspect.signature(model.call ).parameters
_UpperCAmelCase = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
_UpperCAmelCase = {0: 'input_ids'}
for label_key in label_keys:
_UpperCAmelCase = signature_names.index(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = label_key
_UpperCAmelCase = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
_UpperCAmelCase = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
_UpperCAmelCase = prepared_for_class[value]
_UpperCAmelCase = tuple(_SCREAMING_SNAKE_CASE )
# Send to model
_UpperCAmelCase = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_UpperCAmelCase = type
self.model_tester.create_and_check_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@slow
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = TFLayoutLMvaModel.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( ) -> List[str]:
'''simple docstring'''
_UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
class __a ( unittest.TestCase ):
@cached_property
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
return LayoutLMvaImageProcessor(apply_ocr=_SCREAMING_SNAKE_CASE ) if is_vision_available() else None
@slow
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' )
_UpperCAmelCase = self.default_image_processor
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='tf' ).pixel_values
_UpperCAmelCase = tf.constant([[1, 2]] )
_UpperCAmelCase = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
_UpperCAmelCase = model(input_ids=_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE )
# verify the logits
_UpperCAmelCase = (1, 199, 768)
self.assertEqual(outputs.last_hidden_state.shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 329 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = image_size
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize
_UpperCAmelCase = size if size is not None else {'height': 18, 'width': 20}
_UpperCAmelCase = do_thumbnail
_UpperCAmelCase = do_align_axis
_UpperCAmelCase = do_pad
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : List[str] = DonutImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = DonutImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_thumbnail' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_align_long_axis' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 20} )
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
# Previous config had dimensions in (width, height) order
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'height': 84, 'width': 42} )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
pass
@is_flaky()
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
| 329 | 1 |
import numpy as np
def lowerCAmelCase__ ( a__: np.array ) -> np.array:
'''simple docstring'''
return (2 / (1 + np.exp(-2 * vector ))) - 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ :Dict = logging.get_logger(__name__)
lowerCAmelCase__ :Optional[int] = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''}
class __a ( UpperCAmelCase ):
_a : List[str] = 'openai-gpt'
_a : int = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _SCREAMING_SNAKE_CASE=40478 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE="cls_index" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , **_SCREAMING_SNAKE_CASE , ) -> str:
"""simple docstring"""
_UpperCAmelCase = vocab_size
_UpperCAmelCase = n_positions
_UpperCAmelCase = n_embd
_UpperCAmelCase = n_layer
_UpperCAmelCase = n_head
_UpperCAmelCase = afn
_UpperCAmelCase = resid_pdrop
_UpperCAmelCase = embd_pdrop
_UpperCAmelCase = attn_pdrop
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = initializer_range
_UpperCAmelCase = summary_type
_UpperCAmelCase = summary_use_proj
_UpperCAmelCase = summary_activation
_UpperCAmelCase = summary_first_dropout
_UpperCAmelCase = summary_proj_to_labels
super().__init__(**_SCREAMING_SNAKE_CASE )
| 329 | 1 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
lowerCAmelCase__ :Tuple = logging.get_logger(__name__)
class __a ( UpperCAmelCase ):
def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
warnings.warn(
'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use MobileViTImageProcessor instead.' , _SCREAMING_SNAKE_CASE , )
super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
| 329 |
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] )
@pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] )
@pytest.mark.parametrize('revision' , [None, 'v2'] )
def lowerCAmelCase__ ( a__: Any , a__: Tuple , a__: Union[str, Any] ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = hf_hub_url(repo_id=a__ , path=a__ , revision=a__ )
assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(a__ )}'''
| 329 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ :str = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ :Dict = [
'''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''WavLMForAudioFrameClassification''',
'''WavLMForCTC''',
'''WavLMForSequenceClassification''',
'''WavLMForXVector''',
'''WavLMModel''',
'''WavLMPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavlm import (
WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST,
WavLMForAudioFrameClassification,
WavLMForCTC,
WavLMForSequenceClassification,
WavLMForXVector,
WavLMModel,
WavLMPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ :Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 329 |
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
lowerCAmelCase__ :Optional[int] = [
'''python''',
'''tqdm''',
'''regex''',
'''requests''',
'''packaging''',
'''filelock''',
'''numpy''',
'''tokenizers''',
'''huggingface-hub''',
'''safetensors''',
'''accelerate''',
'''pyyaml''',
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def lowerCAmelCase__ ( a__: Tuple , a__: Optional[int]=None ) -> Any:
'''simple docstring'''
require_version(deps[pkg] , a__ )
| 329 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
lowerCAmelCase__ :int = logging.get_logger(__name__)
lowerCAmelCase__ :List[str] = {'''vocab_file''': '''vocab.txt'''}
lowerCAmelCase__ :int = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
lowerCAmelCase__ :List[str] = {
'''YituTech/conv-bert-base''': 5_1_2,
'''YituTech/conv-bert-medium-small''': 5_1_2,
'''YituTech/conv-bert-small''': 5_1_2,
}
lowerCAmelCase__ :Union[str, Any] = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class __a ( UpperCAmelCase ):
_a : Any = VOCAB_FILES_NAMES
_a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_a : Tuple = PRETRAINED_INIT_CONFIGURATION
_a : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a : Any = ConvBertTokenizer
def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="[UNK]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[PAD]" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _SCREAMING_SNAKE_CASE ) != do_lower_case
or normalizer_state.get('strip_accents' , _SCREAMING_SNAKE_CASE ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars
):
_UpperCAmelCase = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop('type' ) )
_UpperCAmelCase = do_lower_case
_UpperCAmelCase = strip_accents
_UpperCAmelCase = tokenize_chinese_chars
_UpperCAmelCase = normalizer_class(**_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = do_lower_case
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]:
"""simple docstring"""
_UpperCAmelCase = [self.sep_token_id]
_UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]:
"""simple docstring"""
_UpperCAmelCase = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE )
return tuple(_SCREAMING_SNAKE_CASE )
| 329 |
from __future__ import annotations
def lowerCAmelCase__ ( a__: dict , a__: str ) -> set[str]:
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = set(a__ ), [start]
while stack:
_UpperCAmelCase = stack.pop()
explored.add(a__ )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(a__ )
return explored
lowerCAmelCase__ :Tuple = {
'''A''': ['''B''', '''C''', '''D'''],
'''B''': ['''A''', '''D''', '''E'''],
'''C''': ['''A''', '''F'''],
'''D''': ['''B''', '''D'''],
'''E''': ['''B''', '''F'''],
'''F''': ['''C''', '''E''', '''G'''],
'''G''': ['''F'''],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, '''A'''))
| 329 | 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ :List[str] = logging.get_logger(__name__)
lowerCAmelCase__ :Optional[Any] = {
'''microsoft/unispeech-sat-base-100h-libri-ft''': (
'''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'''
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class __a ( UpperCAmelCase ):
_a : List[str] = 'unispeech-sat'
def __init__( self , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE="group" , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 512, 512, 512) , _SCREAMING_SNAKE_CASE=(5, 2, 2, 2, 2, 2, 2) , _SCREAMING_SNAKE_CASE=(10, 3, 3, 3, 3, 2, 2) , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=320 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=100 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="mean" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 1500) , _SCREAMING_SNAKE_CASE=(5, 3, 3, 1, 1) , _SCREAMING_SNAKE_CASE=(1, 2, 3, 1, 1) , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=504 , **_SCREAMING_SNAKE_CASE , ) -> str:
"""simple docstring"""
super().__init__(**_SCREAMING_SNAKE_CASE , pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = hidden_size
_UpperCAmelCase = feat_extract_norm
_UpperCAmelCase = feat_extract_activation
_UpperCAmelCase = list(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = list(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = list(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = conv_bias
_UpperCAmelCase = num_conv_pos_embeddings
_UpperCAmelCase = num_conv_pos_embedding_groups
_UpperCAmelCase = len(self.conv_dim )
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = hidden_dropout
_UpperCAmelCase = attention_dropout
_UpperCAmelCase = activation_dropout
_UpperCAmelCase = feat_proj_dropout
_UpperCAmelCase = final_dropout
_UpperCAmelCase = layerdrop
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = initializer_range
_UpperCAmelCase = vocab_size
_UpperCAmelCase = num_clusters
_UpperCAmelCase = do_stable_layer_norm
_UpperCAmelCase = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_UpperCAmelCase = apply_spec_augment
_UpperCAmelCase = mask_time_prob
_UpperCAmelCase = mask_time_length
_UpperCAmelCase = mask_time_min_masks
_UpperCAmelCase = mask_feature_prob
_UpperCAmelCase = mask_feature_length
_UpperCAmelCase = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
_UpperCAmelCase = num_codevectors_per_group
_UpperCAmelCase = num_codevector_groups
_UpperCAmelCase = contrastive_logits_temperature
_UpperCAmelCase = feat_quantizer_dropout
_UpperCAmelCase = num_negatives
_UpperCAmelCase = codevector_dim
_UpperCAmelCase = proj_codevector_dim
_UpperCAmelCase = diversity_loss_weight
# ctc loss
_UpperCAmelCase = ctc_loss_reduction
_UpperCAmelCase = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_UpperCAmelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_UpperCAmelCase = list(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = list(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = list(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = xvector_output_dim
@property
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 329 |
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
_UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(_SCREAMING_SNAKE_CASE , os.listdir(_SCREAMING_SNAKE_CASE )[0] , 'snapshots' ) )]
_UpperCAmelCase = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith('.bin' ) for f in files )
@slow
@require_flax
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 4
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1e-3
assert np.abs(np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 49947.875 ) < 5e-1
_UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(_SCREAMING_SNAKE_CASE ) == num_samples
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2383808.2) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = FlaxDDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , )
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = scheduler.create_state()
_UpperCAmelCase = scheduler_state
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2347693.5) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
_UpperCAmelCase = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , use_memory_efficient_attention=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
_UpperCAmelCase = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1e-2
| 329 | 1 |
from __future__ import annotations
def lowerCAmelCase__ ( a__: list[int] , a__: int ) -> bool:
'''simple docstring'''
if len(a__ ) == 0:
return False
_UpperCAmelCase = len(a__ ) // 2
if a_list[midpoint] == item:
return True
if item < a_list[midpoint]:
return binary_search(a_list[:midpoint] , a__ )
else:
return binary_search(a_list[midpoint + 1 :] , a__ )
if __name__ == "__main__":
lowerCAmelCase__ :Union[str, Any] = input('''Enter numbers separated by comma:\n''').strip()
lowerCAmelCase__ :Union[str, Any] = [int(item.strip()) for item in user_input.split(''',''')]
lowerCAmelCase__ :List[Any] = int(input('''Enter the number to be found in the list:\n''').strip())
lowerCAmelCase__ :Dict = '''''' if binary_search(sequence, target) else '''not '''
print(f'''{target} was {not_str}found in {sequence}''')
| 329 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowerCAmelCase__ :int = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase )
class __a ( UpperCAmelCase ):
def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> int:
"""simple docstring"""
_UpperCAmelCase = {}
_UpperCAmelCase = {}
if prompt is not None:
_UpperCAmelCase = prompt
if generate_kwargs is not None:
_UpperCAmelCase = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
_UpperCAmelCase = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
'\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,'
' please use only one' )
_UpperCAmelCase = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int:
"""simple docstring"""
_UpperCAmelCase = load_image(_SCREAMING_SNAKE_CASE )
if prompt is not None:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise ValueError(
f'''Received an invalid text input, got - {type(_SCREAMING_SNAKE_CASE )} - but expected a single string. '''
'Note also that one single text can be provided for conditional image to text generation.' )
_UpperCAmelCase = self.model.config.model_type
if model_type == "git":
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
_UpperCAmelCase = self.tokenizer(text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids
_UpperCAmelCase = [self.tokenizer.cls_token_id] + input_ids
_UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ).unsqueeze(0 )
model_inputs.update({'input_ids': input_ids} )
elif model_type == "pix2struct":
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , header_text=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
_UpperCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
model_inputs.update(_SCREAMING_SNAKE_CASE )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
_UpperCAmelCase = None
return model_inputs
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[str]:
"""simple docstring"""
if (
"input_ids" in model_inputs
and isinstance(model_inputs['input_ids'] , _SCREAMING_SNAKE_CASE )
and all(x is None for x in model_inputs['input_ids'] )
):
_UpperCAmelCase = None
if generate_kwargs is None:
_UpperCAmelCase = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
_UpperCAmelCase = model_inputs.pop(self.model.main_input_name )
_UpperCAmelCase = self.model.generate(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
return model_outputs
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = []
for output_ids in model_outputs:
_UpperCAmelCase = {
'generated_text': self.tokenizer.decode(
_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , )
}
records.append(_SCREAMING_SNAKE_CASE )
return records
| 329 | 1 |
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] )
@pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] )
@pytest.mark.parametrize('revision' , [None, 'v2'] )
def lowerCAmelCase__ ( a__: Any , a__: Tuple , a__: Union[str, Any] ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = hf_hub_url(repo_id=a__ , path=a__ , revision=a__ )
assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(a__ )}'''
| 329 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def lowerCAmelCase__ ( *a__: str , a__: Optional[Union[Dict, Any]] = None , a__: Dict=True , a__: Any=2 ) -> Union[str, Any]:
'''simple docstring'''
from .. import __version__
_UpperCAmelCase = take_from
_UpperCAmelCase = ()
if not isinstance(args[0] , a__ ):
_UpperCAmelCase = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(a__ ).base_version ) >= version.parse(a__ ):
raise ValueError(
F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''''
F''' version {__version__} is >= {version_name}''' )
_UpperCAmelCase = None
if isinstance(a__ , a__ ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(a__ ),)
_UpperCAmelCase = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''
elif hasattr(a__ , a__ ):
values += (getattr(a__ , a__ ),)
_UpperCAmelCase = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''
elif deprecated_kwargs is None:
_UpperCAmelCase = F'''`{attribute}` is deprecated and will be removed in version {version_name}.'''
if warning is not None:
_UpperCAmelCase = warning + ' ' if standard_warn else ''
warnings.warn(warning + message , a__ , stacklevel=a__ )
if isinstance(a__ , a__ ) and len(a__ ) > 0:
_UpperCAmelCase = inspect.getouterframes(inspect.currentframe() )[1]
_UpperCAmelCase = call_frame.filename
_UpperCAmelCase = call_frame.lineno
_UpperCAmelCase = call_frame.function
_UpperCAmelCase , _UpperCAmelCase = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' )
if len(a__ ) == 0:
return
elif len(a__ ) == 1:
return values[0]
return values
| 329 | 1 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def lowerCAmelCase__ ( a__: int , a__: Union[str, Any]=False ) -> Dict:
'''simple docstring'''
_UpperCAmelCase = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
('module.cls_token', 'vit.embeddings.cls_token'),
('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'),
('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'),
('module.pos_embed', 'vit.embeddings.position_embeddings'),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('module.norm.weight', 'layernorm.weight'),
('module.norm.bias', 'layernorm.bias'),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
_UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('norm.weight', 'vit.layernorm.weight'),
('norm.bias', 'vit.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
] )
return rename_keys
def lowerCAmelCase__ ( a__: Any , a__: Any , a__: Dict=False ) -> int:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
_UpperCAmelCase = ''
else:
_UpperCAmelCase = 'vit.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_UpperCAmelCase = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' )
_UpperCAmelCase = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
_UpperCAmelCase = in_proj_weight[
: config.hidden_size, :
]
_UpperCAmelCase = in_proj_bias[: config.hidden_size]
_UpperCAmelCase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_UpperCAmelCase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_UpperCAmelCase = in_proj_weight[
-config.hidden_size :, :
]
_UpperCAmelCase = in_proj_bias[-config.hidden_size :]
def lowerCAmelCase__ ( a__: Optional[int] ) -> Any:
'''simple docstring'''
_UpperCAmelCase = ['head.weight', 'head.bias']
for k in ignore_keys:
state_dict.pop(a__ , a__ )
def lowerCAmelCase__ ( a__: List[str] ) -> str:
'''simple docstring'''
_UpperCAmelCase = [
'module.fc.fc1.weight',
'module.fc.fc1.bias',
'module.fc.bn1.weight',
'module.fc.bn1.bias',
'module.fc.bn1.running_mean',
'module.fc.bn1.running_var',
'module.fc.bn1.num_batches_tracked',
'module.fc.fc2.weight',
'module.fc.fc2.bias',
'module.fc.bn2.weight',
'module.fc.bn2.bias',
'module.fc.bn2.running_mean',
'module.fc.bn2.running_var',
'module.fc.bn2.num_batches_tracked',
'module.fc.fc3.weight',
'module.fc.fc3.bias',
]
for k in ignore_keys:
state_dict.pop(a__ , a__ )
def lowerCAmelCase__ ( a__: str , a__: Optional[Any] , a__: Optional[Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCAmelCase = dct.pop(a__ )
_UpperCAmelCase = val
def lowerCAmelCase__ ( a__: Tuple , a__: List[str] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = ViTMSNConfig()
_UpperCAmelCase = 1_0_0_0
_UpperCAmelCase = 'datasets/huggingface/label-files'
_UpperCAmelCase = 'imagenet-1k-id2label.json'
_UpperCAmelCase = json.load(open(hf_hub_download(a__ , a__ ) , 'r' ) )
_UpperCAmelCase = {int(a__ ): v for k, v in idalabel.items()}
_UpperCAmelCase = idalabel
_UpperCAmelCase = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
_UpperCAmelCase = 3_8_4
_UpperCAmelCase = 1_5_3_6
_UpperCAmelCase = 6
elif "l16" in checkpoint_url:
_UpperCAmelCase = 1_0_2_4
_UpperCAmelCase = 4_0_9_6
_UpperCAmelCase = 2_4
_UpperCAmelCase = 1_6
_UpperCAmelCase = 0.1
elif "b4" in checkpoint_url:
_UpperCAmelCase = 4
elif "l7" in checkpoint_url:
_UpperCAmelCase = 7
_UpperCAmelCase = 1_0_2_4
_UpperCAmelCase = 4_0_9_6
_UpperCAmelCase = 2_4
_UpperCAmelCase = 1_6
_UpperCAmelCase = 0.1
_UpperCAmelCase = ViTMSNModel(a__ )
_UpperCAmelCase = torch.hub.load_state_dict_from_url(a__ , map_location='cpu' )['target_encoder']
_UpperCAmelCase = ViTImageProcessor(size=config.image_size )
remove_projection_head(a__ )
_UpperCAmelCase = create_rename_keys(a__ , base_model=a__ )
for src, dest in rename_keys:
rename_key(a__ , a__ , a__ )
read_in_q_k_v(a__ , a__ , base_model=a__ )
model.load_state_dict(a__ )
model.eval()
_UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
_UpperCAmelCase = Image.open(requests.get(a__ , stream=a__ ).raw )
_UpperCAmelCase = ViTImageProcessor(
size=config.image_size , image_mean=a__ , image_std=a__ )
_UpperCAmelCase = image_processor(images=a__ , return_tensors='pt' )
# forward pass
torch.manual_seed(2 )
_UpperCAmelCase = model(**a__ )
_UpperCAmelCase = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
_UpperCAmelCase = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] )
elif "b16" in checkpoint_url:
_UpperCAmelCase = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
_UpperCAmelCase = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
_UpperCAmelCase = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] )
else:
_UpperCAmelCase = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , a__ , atol=1e-4 )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(a__ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(a__ )
if __name__ == "__main__":
lowerCAmelCase__ :List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
lowerCAmelCase__ :int = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 329 |
import math
lowerCAmelCase__ :Optional[int] = 1_0
lowerCAmelCase__ :Optional[Any] = 7
lowerCAmelCase__ :Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS
def lowerCAmelCase__ ( a__: int = 2_0 ) -> str:
'''simple docstring'''
_UpperCAmelCase = math.comb(a__ , a__ )
_UpperCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ )
_UpperCAmelCase = NUM_COLOURS * (1 - missing_colour / total)
return F'''{result:.9f}'''
if __name__ == "__main__":
print(solution(2_0))
| 329 | 1 |
from __future__ import annotations
def lowerCAmelCase__ ( a__: int = 4 ) -> list[list[int]]:
'''simple docstring'''
_UpperCAmelCase = abs(a__ ) or 4
return [[1 + x + y * row_size for x in range(a__ )] for y in range(a__ )]
def lowerCAmelCase__ ( a__: list[list[int]] ) -> list[list[int]]:
'''simple docstring'''
return reverse_row(transpose(a__ ) )
# OR.. transpose(reverse_column(matrix))
def lowerCAmelCase__ ( a__: list[list[int]] ) -> list[list[int]]:
'''simple docstring'''
return reverse_row(reverse_column(a__ ) )
# OR.. reverse_column(reverse_row(matrix))
def lowerCAmelCase__ ( a__: list[list[int]] ) -> list[list[int]]:
'''simple docstring'''
return reverse_column(transpose(a__ ) )
# OR.. transpose(reverse_row(matrix))
def lowerCAmelCase__ ( a__: list[list[int]] ) -> list[list[int]]:
'''simple docstring'''
_UpperCAmelCase = [list(a__ ) for x in zip(*a__ )]
return matrix
def lowerCAmelCase__ ( a__: list[list[int]] ) -> list[list[int]]:
'''simple docstring'''
_UpperCAmelCase = matrix[::-1]
return matrix
def lowerCAmelCase__ ( a__: list[list[int]] ) -> list[list[int]]:
'''simple docstring'''
_UpperCAmelCase = [x[::-1] for x in matrix]
return matrix
def lowerCAmelCase__ ( a__: list[list[int]] ) -> None:
'''simple docstring'''
for i in matrix:
print(*a__ )
if __name__ == "__main__":
lowerCAmelCase__ :Optional[Any] = make_matrix()
print('''\norigin:\n''')
print_matrix(matrix)
print('''\nrotate 90 counterclockwise:\n''')
print_matrix(rotate_aa(matrix))
lowerCAmelCase__ :Union[str, Any] = make_matrix()
print('''\norigin:\n''')
print_matrix(matrix)
print('''\nrotate 180:\n''')
print_matrix(rotate_aaa(matrix))
lowerCAmelCase__ :List[Any] = make_matrix()
print('''\norigin:\n''')
print_matrix(matrix)
print('''\nrotate 270 counterclockwise:\n''')
print_matrix(rotate_aaa(matrix))
| 329 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ :str = {
'''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ :Union[str, Any] = [
'''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MegatronBertForCausalLM''',
'''MegatronBertForMaskedLM''',
'''MegatronBertForMultipleChoice''',
'''MegatronBertForNextSentencePrediction''',
'''MegatronBertForPreTraining''',
'''MegatronBertForQuestionAnswering''',
'''MegatronBertForSequenceClassification''',
'''MegatronBertForTokenClassification''',
'''MegatronBertModel''',
'''MegatronBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 329 | 1 |
import logging
import os
from typing import Dict, List, Optional, Union
import torch
import torch.nn as nn
from accelerate.utils.imports import (
is_abit_bnb_available,
is_abit_bnb_available,
is_bnb_available,
)
from ..big_modeling import dispatch_model, init_empty_weights
from .dataclasses import BnbQuantizationConfig
from .modeling import (
find_tied_parameters,
get_balanced_memory,
infer_auto_device_map,
load_checkpoint_in_model,
offload_weight,
set_module_tensor_to_device,
)
if is_bnb_available():
import bitsandbytes as bnb
from copy import deepcopy
lowerCAmelCase__ :List[Any] = logging.getLogger(__name__)
def lowerCAmelCase__ ( a__: torch.nn.Module , a__: BnbQuantizationConfig , a__: Union[str, os.PathLike] = None , a__: Optional[Dict[str, Union[int, str, torch.device]]] = None , a__: Optional[List[str]] = None , a__: Optional[Dict[Union[int, str], Union[int, str]]] = None , a__: Optional[Union[str, os.PathLike]] = None , a__: bool = False , ) -> List[str]:
'''simple docstring'''
_UpperCAmelCase = bnb_quantization_config.load_in_abit
_UpperCAmelCase = bnb_quantization_config.load_in_abit
if load_in_abit and not is_abit_bnb_available():
raise ImportError(
'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,'
' make sure you have the latest version of `bitsandbytes` installed.' )
if load_in_abit and not is_abit_bnb_available():
raise ValueError(
'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,'
'make sure you have the latest version of `bitsandbytes` installed.' )
_UpperCAmelCase = []
# custom device map
if isinstance(a__ , a__ ) and len(device_map.keys() ) > 1:
_UpperCAmelCase = [key for key, value in device_map.items() if value in ['disk', 'cpu']]
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if bnb_quantization_config.skip_modules is None:
_UpperCAmelCase = get_keys_to_not_convert(a__ )
# add cpu modules to skip modules only for 4-bit modules
if load_in_abit:
bnb_quantization_config.skip_modules.extend(a__ )
_UpperCAmelCase = bnb_quantization_config.skip_modules
# We add the modules we want to keep in full precision
if bnb_quantization_config.keep_in_fpaa_modules is None:
_UpperCAmelCase = []
_UpperCAmelCase = bnb_quantization_config.keep_in_fpaa_modules
modules_to_not_convert.extend(a__ )
# compatibility with peft
_UpperCAmelCase = load_in_abit
_UpperCAmelCase = load_in_abit
_UpperCAmelCase = get_parameter_device(a__ )
if model_device.type != "meta":
# quantization of an already loaded model
logger.warning(
'It is not recommended to quantize a loaded model. '
'The model should be instantiated under the `init_empty_weights` context manager.' )
_UpperCAmelCase = replace_with_bnb_layers(a__ , a__ , modules_to_not_convert=a__ )
# convert param to the right dtype
_UpperCAmelCase = bnb_quantization_config.torch_dtype
for name, param in model.state_dict().items():
if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ):
param.to(torch.floataa )
if param.dtype != torch.floataa:
_UpperCAmelCase = name.replace('.weight' , '' ).replace('.bias' , '' )
_UpperCAmelCase = getattr(a__ , a__ , a__ )
if param is not None:
param.to(torch.floataa )
elif torch.is_floating_point(a__ ):
param.to(a__ )
if model_device.type == "cuda":
# move everything to cpu in the first place because we can't do quantization if the weights are already on cuda
model.cuda(torch.cuda.current_device() )
torch.cuda.empty_cache()
elif torch.cuda.is_available():
model.to(torch.cuda.current_device() )
else:
raise RuntimeError('No GPU found. A GPU is needed for quantization.' )
logger.info(
F'''The model device type is {model_device.type}. However, cuda is needed for quantization.'''
'We move the model to cuda.' )
return model
elif weights_location is None:
raise RuntimeError(
F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' )
else:
with init_empty_weights():
_UpperCAmelCase = replace_with_bnb_layers(
a__ , a__ , modules_to_not_convert=a__ )
_UpperCAmelCase = get_quantized_model_device_map(
a__ , a__ , a__ , max_memory=a__ , no_split_module_classes=a__ , )
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
_UpperCAmelCase = True
_UpperCAmelCase = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] )
load_checkpoint_in_model(
a__ , a__ , a__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=a__ , offload_state_dict=a__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , )
return dispatch_model(a__ , device_map=a__ , offload_dir=a__ )
def lowerCAmelCase__ ( a__: List[str] , a__: int , a__: str=None , a__: Optional[int]=None , a__: List[str]=None ) -> int:
'''simple docstring'''
if device_map is None:
if torch.cuda.is_available():
_UpperCAmelCase = {'': torch.cuda.current_device()}
else:
raise RuntimeError('No GPU found. A GPU is needed for quantization.' )
logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' )
if isinstance(a__ , a__ ):
if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
raise ValueError(
'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or '
'\'sequential\'.' )
_UpperCAmelCase = {}
special_dtypes.update(
{
name: bnb_quantization_config.torch_dtype
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.skip_modules )
} )
special_dtypes.update(
{
name: torch.floataa
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules )
} )
_UpperCAmelCase = {}
_UpperCAmelCase = special_dtypes
_UpperCAmelCase = no_split_module_classes
_UpperCAmelCase = bnb_quantization_config.target_dtype
# get max_memory for each device.
if device_map != "sequential":
_UpperCAmelCase = get_balanced_memory(
a__ , low_zero=(device_map == 'balanced_low_0') , max_memory=a__ , **a__ , )
_UpperCAmelCase = max_memory
_UpperCAmelCase = infer_auto_device_map(a__ , **a__ )
if isinstance(a__ , a__ ):
# check if don't have any quantized module on the cpu
_UpperCAmelCase = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules
_UpperCAmelCase = {
key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert
}
for device in ["cpu", "disk"]:
if device in device_map_without_some_modules.values():
if bnb_quantization_config.load_in_abit:
raise ValueError(
'\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' )
else:
logger.info(
'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' )
del device_map_without_some_modules
return device_map
def lowerCAmelCase__ ( a__: Any , a__: Dict , a__: Union[str, Any]=None , a__: List[Any]=None ) -> List[str]:
'''simple docstring'''
if modules_to_not_convert is None:
_UpperCAmelCase = []
_UpperCAmelCase , _UpperCAmelCase = _replace_with_bnb_layers(
a__ , a__ , a__ , a__ )
if not has_been_replaced:
logger.warning(
'You are loading your model in 8bit or 4bit but no linear modules were found in your model.'
' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.'
' Please double check your model architecture, or submit an issue on github if you think this is'
' a bug.' )
return model
def lowerCAmelCase__ ( a__: Union[str, Any] , a__: List[str] , a__: Dict=None , a__: Union[str, Any]=None , ) -> str:
'''simple docstring'''
_UpperCAmelCase = False
for name, module in model.named_children():
if current_key_name is None:
_UpperCAmelCase = []
current_key_name.append(a__ )
if isinstance(a__ , nn.Linear ) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
_UpperCAmelCase = '.'.join(a__ )
_UpperCAmelCase = True
for key in modules_to_not_convert:
if (
(key in current_key_name_str) and (key + "." in current_key_name_str)
) or key == current_key_name_str:
_UpperCAmelCase = False
break
if proceed:
# Load bnb module with empty weight and replace ``nn.Linear` module
if bnb_quantization_config.load_in_abit:
_UpperCAmelCase = bnb.nn.LinearabitLt(
module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=a__ , threshold=bnb_quantization_config.llm_inta_threshold , )
elif bnb_quantization_config.load_in_abit:
_UpperCAmelCase = bnb.nn.Linearabit(
module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , )
else:
raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' )
_UpperCAmelCase = module.weight.data
if module.bias is not None:
_UpperCAmelCase = module.bias.data
bnb_module.requires_grad_(a__ )
setattr(a__ , a__ , a__ )
_UpperCAmelCase = True
if len(list(module.children() ) ) > 0:
_UpperCAmelCase , _UpperCAmelCase = _replace_with_bnb_layers(
a__ , a__ , a__ , a__ )
_UpperCAmelCase = has_been_replaced | _has_been_replaced
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def lowerCAmelCase__ ( a__: Tuple ) -> int:
'''simple docstring'''
with init_empty_weights():
_UpperCAmelCase = deepcopy(a__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
_UpperCAmelCase = find_tied_parameters(a__ )
# For compatibility with Accelerate < 0.18
if isinstance(a__ , a__ ):
_UpperCAmelCase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
_UpperCAmelCase = sum(a__ , [] )
_UpperCAmelCase = len(a__ ) > 0
# Check if it is a base model
_UpperCAmelCase = False
if hasattr(a__ , 'base_model_prefix' ):
_UpperCAmelCase = not hasattr(a__ , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
_UpperCAmelCase = list(model.named_children() )
_UpperCAmelCase = [list_modules[-1][0]]
# add last module together with tied weights
_UpperCAmelCase = set(a__ ) - set(a__ )
_UpperCAmelCase = list(set(a__ ) ) + list(a__ )
# remove ".weight" from the keys
_UpperCAmelCase = ['.weight', '.bias']
_UpperCAmelCase = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
_UpperCAmelCase = name.replace(a__ , '' )
filtered_module_names.append(a__ )
return filtered_module_names
def lowerCAmelCase__ ( a__: Tuple ) -> Dict:
'''simple docstring'''
for m in model.modules():
if isinstance(a__ , bnb.nn.Linearabit ):
return True
return False
def lowerCAmelCase__ ( a__: nn.Module ) -> Optional[Any]:
'''simple docstring'''
return next(parameter.parameters() ).device
def lowerCAmelCase__ ( a__: List[str] , a__: Any , a__: str , a__: Union[str, Any] , a__: Optional[Any] , a__: Tuple , a__: Optional[Any] ) -> int:
'''simple docstring'''
if fpaa_statistics is None:
set_module_tensor_to_device(a__ , a__ , 0 , dtype=a__ , value=a__ )
_UpperCAmelCase = param_name
_UpperCAmelCase = model
if "." in tensor_name:
_UpperCAmelCase = tensor_name.split('.' )
for split in splits[:-1]:
_UpperCAmelCase = getattr(a__ , a__ )
if new_module is None:
raise ValueError(F'''{module} has no attribute {split}.''' )
_UpperCAmelCase = new_module
_UpperCAmelCase = splits[-1]
# offload weights
_UpperCAmelCase = False
offload_weight(module._parameters[tensor_name] , a__ , a__ , index=a__ )
if hasattr(module._parameters[tensor_name] , 'SCB' ):
offload_weight(
module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , a__ , index=a__ , )
else:
offload_weight(a__ , a__ , a__ , index=a__ )
offload_weight(a__ , param_name.replace('weight' , 'SCB' ) , a__ , index=a__ )
set_module_tensor_to_device(a__ , a__ , 'meta' , dtype=a__ , value=torch.empty(*param.size() ) )
| 329 |
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def lowerCAmelCase__ ( a__: Tuple , a__: Optional[Any] , a__: Any ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = AutoConfig.from_pretrained(a__ )
_UpperCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=a__ )
_UpperCAmelCase = checkpoints.load_tax_checkpoint(a__ )
_UpperCAmelCase = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp']
if config.model_type == "t5":
_UpperCAmelCase = 'SelfAttention'
if config.model_type == "longt5" and config.encoder_attention_type == "local":
_UpperCAmelCase = 'LocalSelfAttention'
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = 'TransientGlobalSelfAttention'
else:
raise ValueError(
'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`'
' attribute with a value from [\'local\', \'transient-global].' )
# Encoder
for layer_index in range(config.num_layers ):
_UpperCAmelCase = F'''layers_{str(a__ )}'''
# Self-Attention
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel']
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale']
if split_mlp_wi:
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel']
else:
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale']
# Assigning
_UpperCAmelCase = flax_model.params['encoder']['block'][str(a__ )]['layer']
_UpperCAmelCase = tax_attention_key
_UpperCAmelCase = tax_attention_out
_UpperCAmelCase = tax_attention_query
_UpperCAmelCase = tax_attention_value
_UpperCAmelCase = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = tax_global_layer_norm
if split_mlp_wi:
_UpperCAmelCase = tax_mlp_wi_a
_UpperCAmelCase = tax_mlp_wi_a
else:
_UpperCAmelCase = tax_mlp_wi
_UpperCAmelCase = tax_mlp_wo
_UpperCAmelCase = tax_mlp_layer_norm
_UpperCAmelCase = flax_model_encoder_layer_block
# Only for layer 0:
_UpperCAmelCase = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T
_UpperCAmelCase = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T
_UpperCAmelCase = tax_encoder_global_rel_embedding
# Assigning
_UpperCAmelCase = tax_model['target']['encoder']['encoder_norm']['scale']
_UpperCAmelCase = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers ):
_UpperCAmelCase = F'''layers_{str(a__ )}'''
# Self-Attention
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][
'scale'
]
# Encoder-Decoder-Attention
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention']
_UpperCAmelCase = tax_enc_dec_attention_module['key']['kernel']
_UpperCAmelCase = tax_enc_dec_attention_module['out']['kernel']
_UpperCAmelCase = tax_enc_dec_attention_module['query']['kernel']
_UpperCAmelCase = tax_enc_dec_attention_module['value']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale']
# MLP
if split_mlp_wi:
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel']
else:
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale']
# Assigning
_UpperCAmelCase = flax_model.params['decoder']['block'][str(a__ )]['layer']
_UpperCAmelCase = tax_attention_key
_UpperCAmelCase = tax_attention_out
_UpperCAmelCase = tax_attention_query
_UpperCAmelCase = tax_attention_value
_UpperCAmelCase = tax_pre_attention_layer_norm
_UpperCAmelCase = tax_enc_dec_attention_key
_UpperCAmelCase = tax_enc_dec_attention_out
_UpperCAmelCase = tax_enc_dec_attention_query
_UpperCAmelCase = tax_enc_dec_attention_value
_UpperCAmelCase = tax_cross_layer_norm
if split_mlp_wi:
_UpperCAmelCase = tax_mlp_wi_a
_UpperCAmelCase = tax_mlp_wi_a
else:
_UpperCAmelCase = tax_mlp_wi
_UpperCAmelCase = tax_mlp_wo
_UpperCAmelCase = txa_mlp_layer_norm
_UpperCAmelCase = flax_model_decoder_layer_block
# Decoder Normalization
_UpperCAmelCase = tax_model['target']['decoder']['decoder_norm']['scale']
_UpperCAmelCase = txa_decoder_norm
# Only for layer 0:
_UpperCAmelCase = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T
_UpperCAmelCase = tax_decoder_rel_embedding
# Token Embeddings
_UpperCAmelCase = tax_model['target']['token_embedder']['embedding']
_UpperCAmelCase = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
_UpperCAmelCase = tax_model['target']['decoder']['logits_dense']['kernel']
flax_model.save_pretrained(a__ )
print('T5X Model was sucessfully converted!' )
if __name__ == "__main__":
lowerCAmelCase__ :List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.'''
)
parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''')
parser.add_argument(
'''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.'''
)
lowerCAmelCase__ :List[str] = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 329 | 1 |
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def lowerCAmelCase__ ( a__: Optional[Any] , a__: Any , a__: Dict , a__: Optional[int] , a__: Optional[Any]=True , a__: Any="pt" ) -> int:
'''simple docstring'''
_UpperCAmelCase = {'add_prefix_space': True} if isinstance(a__ , a__ ) and not line.startswith(' ' ) else {}
_UpperCAmelCase = padding_side
return tokenizer(
[line] , max_length=a__ , padding='max_length' if pad_to_max_length else None , truncation=a__ , return_tensors=a__ , add_special_tokens=a__ , **a__ , )
def lowerCAmelCase__ ( a__: Any , a__: Dict , a__: List[Any]=None , ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = input_ids.ne(a__ ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="train" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="" , ) -> Dict:
"""simple docstring"""
super().__init__()
_UpperCAmelCase = Path(_SCREAMING_SNAKE_CASE ).joinpath(type_path + '.source' )
_UpperCAmelCase = Path(_SCREAMING_SNAKE_CASE ).joinpath(type_path + '.target' )
_UpperCAmelCase = self.get_char_lens(self.src_file )
_UpperCAmelCase = max_source_length
_UpperCAmelCase = max_target_length
assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}'''
_UpperCAmelCase = tokenizer
_UpperCAmelCase = prefix
if n_obs is not None:
_UpperCAmelCase = self.src_lens[:n_obs]
_UpperCAmelCase = src_lang
_UpperCAmelCase = tgt_lang
def __len__( self ) -> List[str]:
"""simple docstring"""
return len(self.src_lens )
def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Dict[str, torch.Tensor]:
"""simple docstring"""
_UpperCAmelCase = index + 1 # linecache starts at 1
_UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , _SCREAMING_SNAKE_CASE ).rstrip('\n' )
_UpperCAmelCase = linecache.getline(str(self.tgt_file ) , _SCREAMING_SNAKE_CASE ).rstrip('\n' )
assert source_line, f'''empty source line for index {index}'''
assert tgt_line, f'''empty tgt line for index {index}'''
# Need to add eos token manually for T5
if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
_UpperCAmelCase = (
self.tokenizer.question_encoder if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer
)
_UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer
_UpperCAmelCase = encode_line(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.max_source_length , 'right' )
_UpperCAmelCase = encode_line(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.max_target_length , 'right' )
_UpperCAmelCase = source_inputs['input_ids'].squeeze()
_UpperCAmelCase = target_inputs['input_ids'].squeeze()
_UpperCAmelCase = source_inputs['attention_mask'].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
return [len(_SCREAMING_SNAKE_CASE ) for x in Path(_SCREAMING_SNAKE_CASE ).open().readlines()]
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict[str, torch.Tensor]:
"""simple docstring"""
_UpperCAmelCase = torch.stack([x['input_ids'] for x in batch] )
_UpperCAmelCase = torch.stack([x['attention_mask'] for x in batch] )
_UpperCAmelCase = torch.stack([x['decoder_input_ids'] for x in batch] )
_UpperCAmelCase = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE )
else self.tokenizer.pad_token_id
)
_UpperCAmelCase = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE )
else self.tokenizer.pad_token_id
)
_UpperCAmelCase = trim_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase , _UpperCAmelCase = trim_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = {
'input_ids': source_ids,
'attention_mask': source_mask,
'decoder_input_ids': y,
}
return batch
lowerCAmelCase__ :str = getLogger(__name__)
def lowerCAmelCase__ ( a__: List[List] ) -> Tuple:
'''simple docstring'''
return list(itertools.chain.from_iterable(a__ ) )
def lowerCAmelCase__ ( a__: str ) -> None:
'''simple docstring'''
_UpperCAmelCase = get_git_info()
save_json(a__ , os.path.join(a__ , 'git_log.json' ) )
def lowerCAmelCase__ ( a__: List[str] , a__: Dict , a__: Any=4 , **a__: Any ) -> List[Any]:
'''simple docstring'''
with open(a__ , 'w' ) as f:
json.dump(a__ , a__ , indent=a__ , **a__ )
def lowerCAmelCase__ ( a__: Optional[Any] ) -> Tuple:
'''simple docstring'''
with open(a__ ) as f:
return json.load(a__ )
def lowerCAmelCase__ ( ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = git.Repo(search_parent_directories=a__ )
_UpperCAmelCase = {
'repo_id': str(a__ ),
'repo_sha': str(repo.head.object.hexsha ),
'repo_branch': str(repo.active_branch ),
'hostname': str(socket.gethostname() ),
}
return repo_infos
def lowerCAmelCase__ ( a__: Callable , a__: Iterable ) -> List:
'''simple docstring'''
return list(map(a__ , a__ ) )
def lowerCAmelCase__ ( a__: Tuple , a__: Dict ) -> str:
'''simple docstring'''
with open(a__ , 'wb' ) as f:
return pickle.dump(a__ , a__ )
def lowerCAmelCase__ ( a__: List[Any] ) -> Dict:
'''simple docstring'''
def remove_articles(a__: Dict ):
return re.sub(R'\b(a|an|the)\b' , ' ' , a__ )
def white_space_fix(a__: int ):
return " ".join(text.split() )
def remove_punc(a__: int ):
_UpperCAmelCase = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(a__: List[Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(a__ ) ) ) )
def lowerCAmelCase__ ( a__: List[str] , a__: int ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = normalize_answer(a__ ).split()
_UpperCAmelCase = normalize_answer(a__ ).split()
_UpperCAmelCase = Counter(a__ ) & Counter(a__ )
_UpperCAmelCase = sum(common.values() )
if num_same == 0:
return 0
_UpperCAmelCase = 1.0 * num_same / len(a__ )
_UpperCAmelCase = 1.0 * num_same / len(a__ )
_UpperCAmelCase = (2 * precision * recall) / (precision + recall)
return fa
def lowerCAmelCase__ ( a__: Union[str, Any] , a__: Tuple ) -> List[Any]:
'''simple docstring'''
return normalize_answer(a__ ) == normalize_answer(a__ )
def lowerCAmelCase__ ( a__: List[str] , a__: List[str] ) -> Dict:
'''simple docstring'''
assert len(a__ ) == len(a__ )
_UpperCAmelCase = 0
for hypo, pred in zip(a__ , a__ ):
em += exact_match_score(a__ , a__ )
if len(a__ ) > 0:
em /= len(a__ )
return {"em": em}
def lowerCAmelCase__ ( a__: List[str] ) -> int:
'''simple docstring'''
return model_prefix.startswith('rag' )
def lowerCAmelCase__ ( a__: Optional[int] , a__: Dict , a__: List[Any] ) -> List[str]:
'''simple docstring'''
_UpperCAmelCase = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
_UpperCAmelCase = 'dropout_rate'
for p in extra_params:
if getattr(a__ , a__ , a__ ):
if not hasattr(a__ , a__ ) and not hasattr(a__ , equivalent_param[p] ):
logger.info('config doesn\'t have a `{}` attribute'.format(a__ ) )
delattr(a__ , a__ )
continue
_UpperCAmelCase = p if hasattr(a__ , a__ ) else equivalent_param[p]
setattr(a__ , a__ , getattr(a__ , a__ ) )
delattr(a__ , a__ )
return hparams, config
| 329 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ :List[Any] = logging.get_logger(__name__)
lowerCAmelCase__ :Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''}
class __a ( UpperCAmelCase ):
_a : str = 'ctrl'
_a : Tuple = ['past_key_values']
_a : List[Any] = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _SCREAMING_SNAKE_CASE=246534 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=1280 , _SCREAMING_SNAKE_CASE=8192 , _SCREAMING_SNAKE_CASE=48 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = vocab_size
_UpperCAmelCase = n_positions
_UpperCAmelCase = n_embd
_UpperCAmelCase = n_layer
_UpperCAmelCase = n_head
_UpperCAmelCase = dff
_UpperCAmelCase = resid_pdrop
_UpperCAmelCase = embd_pdrop
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = initializer_range
_UpperCAmelCase = use_cache
super().__init__(**_SCREAMING_SNAKE_CASE )
| 329 | 1 |
import math
lowerCAmelCase__ :Optional[int] = 1_0
lowerCAmelCase__ :Optional[Any] = 7
lowerCAmelCase__ :Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS
def lowerCAmelCase__ ( a__: int = 2_0 ) -> str:
'''simple docstring'''
_UpperCAmelCase = math.comb(a__ , a__ )
_UpperCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ )
_UpperCAmelCase = NUM_COLOURS * (1 - missing_colour / total)
return F'''{result:.9f}'''
if __name__ == "__main__":
print(solution(2_0))
| 329 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 255 , _SCREAMING_SNAKE_CASE=True , ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333}
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize
_UpperCAmelCase = size
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
_UpperCAmelCase = do_rescale
_UpperCAmelCase = rescale_factor
_UpperCAmelCase = do_pad
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any:
"""simple docstring"""
if not batched:
_UpperCAmelCase = image_inputs[0]
if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ):
_UpperCAmelCase , _UpperCAmelCase = image.size
else:
_UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2]
if w < h:
_UpperCAmelCase = int(self.size['shortest_edge'] * h / w )
_UpperCAmelCase = self.size['shortest_edge']
elif w > h:
_UpperCAmelCase = self.size['shortest_edge']
_UpperCAmelCase = int(self.size['shortest_edge'] * w / h )
else:
_UpperCAmelCase = self.size['shortest_edge']
_UpperCAmelCase = self.size['shortest_edge']
else:
_UpperCAmelCase = []
for image in image_inputs:
_UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0]
_UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : str = DeformableDetrImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = DeformableDetrImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_rescale' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} )
self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
_UpperCAmelCase = json.loads(f.read() )
_UpperCAmelCase = {'image_id': 39769, 'annotations': target}
# encode them
_UpperCAmelCase = DeformableDetrImageProcessor()
_UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors='pt' )
# verify pixel values
_UpperCAmelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
# verify area
_UpperCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) )
# verify boxes
_UpperCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) )
# verify image_id
_UpperCAmelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) )
# verify is_crowd
_UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) )
# verify class_labels
_UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) )
# verify orig_size
_UpperCAmelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) )
# verify size
_UpperCAmelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
@slow
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
_UpperCAmelCase = json.loads(f.read() )
_UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target}
_UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
_UpperCAmelCase = DeformableDetrImageProcessor(format='coco_panoptic' )
_UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors='pt' )
# verify pixel values
_UpperCAmelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
# verify area
_UpperCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) )
# verify boxes
_UpperCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) )
# verify image_id
_UpperCAmelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) )
# verify is_crowd
_UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) )
# verify class_labels
_UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) )
# verify masks
_UpperCAmelCase = 822873
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _SCREAMING_SNAKE_CASE )
# verify orig_size
_UpperCAmelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) )
# verify size
_UpperCAmelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
| 329 | 1 |
import argparse
import os
import re
import packaging.version
lowerCAmelCase__ :Union[str, Any] = '''examples/'''
lowerCAmelCase__ :Tuple = {
'''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''),
'''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
lowerCAmelCase__ :str = {
'''init''': '''src/transformers/__init__.py''',
'''setup''': '''setup.py''',
}
lowerCAmelCase__ :Optional[int] = '''README.md'''
def lowerCAmelCase__ ( a__: Tuple , a__: str , a__: List[Any] ) -> Dict:
'''simple docstring'''
with open(a__ , 'r' , encoding='utf-8' , newline='\n' ) as f:
_UpperCAmelCase = f.read()
_UpperCAmelCase , _UpperCAmelCase = REPLACE_PATTERNS[pattern]
_UpperCAmelCase = replace.replace('VERSION' , a__ )
_UpperCAmelCase = re_pattern.sub(a__ , a__ )
with open(a__ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(a__ )
def lowerCAmelCase__ ( a__: Any ) -> Optional[int]:
'''simple docstring'''
for folder, directories, fnames in os.walk(a__ ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('research_projects' )
if "legacy" in directories:
directories.remove('legacy' )
for fname in fnames:
if fname.endswith('.py' ):
update_version_in_file(os.path.join(a__ , a__ ) , a__ , pattern='examples' )
def lowerCAmelCase__ ( a__: Dict , a__: Optional[int]=False ) -> str:
'''simple docstring'''
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(a__ , a__ , a__ )
if not patch:
update_version_in_examples(a__ )
def lowerCAmelCase__ ( ) -> List[str]:
'''simple docstring'''
_UpperCAmelCase = '🤗 Transformers currently provides the following architectures'
_UpperCAmelCase = '1. Want to contribute a new model?'
with open(a__ , 'r' , encoding='utf-8' , newline='\n' ) as f:
_UpperCAmelCase = f.readlines()
# Find the start of the list.
_UpperCAmelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
_UpperCAmelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('1.' ):
_UpperCAmelCase = lines[index].replace(
'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , )
index += 1
with open(a__ , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(a__ )
def lowerCAmelCase__ ( ) -> int:
'''simple docstring'''
with open(REPLACE_FILES['init'] , 'r' ) as f:
_UpperCAmelCase = f.read()
_UpperCAmelCase = REPLACE_PATTERNS['init'][0].search(a__ ).groups()[0]
return packaging.version.parse(a__ )
def lowerCAmelCase__ ( a__: int=False ) -> Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' )
if default_version.is_devrelease:
_UpperCAmelCase = default_version.base_version
elif patch:
_UpperCAmelCase = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}'''
else:
_UpperCAmelCase = F'''{default_version.major}.{default_version.minor + 1}.0'''
# Now let's ask nicely if that's the right one.
_UpperCAmelCase = input(F'''Which version are you releasing? [{default_version}]''' )
if len(a__ ) == 0:
_UpperCAmelCase = default_version
print(F'''Updating version to {version}.''' )
global_version_update(a__ , patch=a__ )
if not patch:
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
def lowerCAmelCase__ ( ) -> Dict:
'''simple docstring'''
_UpperCAmelCase = get_version()
_UpperCAmelCase = F'''{current_version.major}.{current_version.minor + 1}.0.dev0'''
_UpperCAmelCase = current_version.base_version
# Check with the user we got that right.
_UpperCAmelCase = input(F'''Which version are we developing now? [{dev_version}]''' )
if len(a__ ) == 0:
_UpperCAmelCase = dev_version
print(F'''Updating version to {version}.''' )
global_version_update(a__ )
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
lowerCAmelCase__ :Optional[Any] = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
lowerCAmelCase__ :List[str] = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work()
| 329 |
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class __a ( unittest.TestCase ):
_a : List[str] = JukeboxTokenizer
_a : List[Any] = {
'artist': 'Zac Brown Band',
'genres': 'Country',
'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ',
}
@require_torch
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
import torch
_UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' )
_UpperCAmelCase = tokenizer(**self.metas )['input_ids']
# fmt: off
_UpperCAmelCase = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
import torch
_UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' )
_UpperCAmelCase = tokenizer(**self.metas )['input_ids']
# fmt: off
_UpperCAmelCase = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 329 | 1 |
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
lowerCAmelCase__ :List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
def lowerCAmelCase__ ( a__: Union[List, PIL.Image.Image, torch.Tensor] ) -> Dict:
'''simple docstring'''
warnings.warn(
'The preprocess method is deprecated and will be removed in a future version. Please'
' use VaeImageProcessor.preprocess instead' , a__ , )
if isinstance(a__ , torch.Tensor ):
return image
elif isinstance(a__ , PIL.Image.Image ):
_UpperCAmelCase = [image]
if isinstance(image[0] , PIL.Image.Image ):
_UpperCAmelCase , _UpperCAmelCase = image[0].size
_UpperCAmelCase , _UpperCAmelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
_UpperCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image]
_UpperCAmelCase = np.concatenate(a__ , axis=0 )
_UpperCAmelCase = np.array(a__ ).astype(np.floataa ) / 255.0
_UpperCAmelCase = image.transpose(0 , 3 , 1 , 2 )
_UpperCAmelCase = 2.0 * image - 1.0
_UpperCAmelCase = torch.from_numpy(a__ )
elif isinstance(image[0] , torch.Tensor ):
_UpperCAmelCase = torch.cat(a__ , dim=0 )
return image
def lowerCAmelCase__ ( a__: Union[List, PIL.Image.Image, torch.Tensor] ) -> int:
'''simple docstring'''
if isinstance(a__ , torch.Tensor ):
return mask
elif isinstance(a__ , PIL.Image.Image ):
_UpperCAmelCase = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
_UpperCAmelCase , _UpperCAmelCase = mask[0].size
_UpperCAmelCase , _UpperCAmelCase = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32
_UpperCAmelCase = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask]
_UpperCAmelCase = np.concatenate(a__ , axis=0 )
_UpperCAmelCase = mask.astype(np.floataa ) / 255.0
_UpperCAmelCase = 0
_UpperCAmelCase = 1
_UpperCAmelCase = torch.from_numpy(a__ )
elif isinstance(mask[0] , torch.Tensor ):
_UpperCAmelCase = torch.cat(a__ , dim=0 )
return mask
class __a ( UpperCAmelCase ):
_a : UNetaDModel
_a : RePaintScheduler
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__()
self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 250 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 10 , _SCREAMING_SNAKE_CASE = 10 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
_UpperCAmelCase = image
_UpperCAmelCase = _preprocess_image(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = original_image.to(device=self.device , dtype=self.unet.dtype )
_UpperCAmelCase = _preprocess_mask(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = mask_image.to(device=self.device , dtype=self.unet.dtype )
_UpperCAmelCase = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
_UpperCAmelCase = original_image.shape
_UpperCAmelCase = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.device )
_UpperCAmelCase = eta
_UpperCAmelCase = self.scheduler.timesteps[0] + 1
_UpperCAmelCase = generator[0] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
_UpperCAmelCase = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample
# compute previous image: x_t -> x_t-1
_UpperCAmelCase = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
_UpperCAmelCase = self.scheduler.undo_step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = t
_UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
_UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_UpperCAmelCase = self.numpy_to_pil(_SCREAMING_SNAKE_CASE )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
| 329 |
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
lowerCAmelCase__ :Optional[int] = logging.getLogger(__name__)
def lowerCAmelCase__ ( ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = argparse.ArgumentParser(
description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' )
parser.add_argument(
'--dataset_name' , type=a__ , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , )
parser.add_argument(
'--dataset_config' , type=a__ , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' )
parser.add_argument(
'--tokenizer_name_or_path' , type=a__ , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , )
parser.add_argument(
'--shard_size' , type=a__ , default=1_0_0_0 , help='Number of entries to go in a single shard.' , )
parser.add_argument('--split' , type=a__ , default='train' , choices=['train', 'test', 'validation'] )
parser.add_argument(
'--limit' , default=a__ , type=a__ , help='Limit the number of shards (used for debugging).' , )
parser.add_argument(
'--max_length' , type=a__ , default=5_1_2 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum'
' sequence length that is a multiple of 8.' , )
parser.add_argument(
'--output_dir' , default='tf-tpu' , type=a__ , help='Output directory where the TFRecord shards will be saved. If the'
' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord'
' shards will be directly saved to a Google Cloud Storage bucket.' , )
_UpperCAmelCase = parser.parse_args()
return args
def lowerCAmelCase__ ( a__: Union[str, Any] ) -> List[Any]:
'''simple docstring'''
def fn(a__: str ):
return tokenizer(examples['text'] )
return fn
def lowerCAmelCase__ ( a__: List[str] ) -> Any:
'''simple docstring'''
_UpperCAmelCase = []
for i in range(len(tokenized_data['input_ids'] ) ):
_UpperCAmelCase = {
'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ),
'attention_mask': tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ),
}
_UpperCAmelCase = tf.train.Features(feature=a__ )
_UpperCAmelCase = tf.train.Example(features=a__ )
_UpperCAmelCase = example.SerializeToString()
records.append(a__ )
return records
def lowerCAmelCase__ ( a__: Union[str, Any] ) -> int:
'''simple docstring'''
_UpperCAmelCase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
_UpperCAmelCase = min(len(a__ ) , args.limit )
_UpperCAmelCase = dataset.select(range(a__ ) )
print(F'''Limiting the dataset to {args.limit} entries.''' )
_UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
_UpperCAmelCase = os.path.join(args.output_dir , args.split )
if not os.path.exists(a__ ):
os.makedirs(a__ )
else:
_UpperCAmelCase = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
_UpperCAmelCase = tokenize_function(a__ )
_UpperCAmelCase = dataset.map(a__ , batched=a__ , num_proc=4 , remove_columns=['text'] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(a__: Optional[int] ):
# Concatenate all texts.
_UpperCAmelCase = {k: sum(examples[k] , [] ) for k in examples.keys()}
_UpperCAmelCase = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
_UpperCAmelCase = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
_UpperCAmelCase = {
k: [t[i : i + args.max_length] for i in range(0 , a__ , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
_UpperCAmelCase = dataset_tokenized.map(a__ , batched=a__ , batch_size=1_0_0_0 , num_proc=4 )
_UpperCAmelCase = 0
_UpperCAmelCase = 0
for shard in range(0 , len(a__ ) , args.shard_size ):
_UpperCAmelCase = grouped_dataset[shard : shard + args.shard_size]
_UpperCAmelCase = len(dataset_snapshot['input_ids'] )
_UpperCAmelCase = os.path.join(a__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' )
_UpperCAmelCase = get_serialized_examples(a__ )
with tf.io.TFRecordWriter(a__ ) as out_file:
for i in range(len(a__ ) ):
_UpperCAmelCase = serialized_examples[i]
out_file.write(a__ )
print('Wrote file {} containing {} records'.format(a__ , a__ ) )
shard_count += 1
total_records += records_containing
with open(F'''split-{args.split}-records-count.txt''' , 'w' ) as f:
print(F'''Total {args.split} records: {total_records}''' , file=a__ )
if __name__ == "__main__":
lowerCAmelCase__ :str = parse_args()
main(args)
| 329 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
lowerCAmelCase__ :str = None
lowerCAmelCase__ :Dict = logging.get_logger(__name__)
lowerCAmelCase__ :Tuple = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
lowerCAmelCase__ :Union[str, Any] = {
'''vocab_file''': {
'''facebook/nllb-200-distilled-600M''': (
'''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model'''
),
},
'''tokenizer_file''': {
'''facebook/nllb-200-distilled-600M''': (
'''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json'''
),
},
}
lowerCAmelCase__ :Union[str, Any] = {
'''facebook/nllb-large-en-ro''': 1_0_2_4,
'''facebook/nllb-200-distilled-600M''': 1_0_2_4,
}
# fmt: off
lowerCAmelCase__ :Dict = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn''']
class __a ( UpperCAmelCase ):
_a : List[Any] = VOCAB_FILES_NAMES
_a : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
_a : Any = ['input_ids', 'attention_mask']
_a : Dict = NllbTokenizer
_a : List[int] = []
_a : List[int] = []
def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
_UpperCAmelCase = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token
_UpperCAmelCase = legacy_behaviour
super().__init__(
vocab_file=_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , src_lang=_SCREAMING_SNAKE_CASE , tgt_lang=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , legacy_behaviour=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = vocab_file
_UpperCAmelCase = False if not self.vocab_file else True
_UpperCAmelCase = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} )
_UpperCAmelCase = {
lang_code: self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_UpperCAmelCase = src_lang if src_lang is not None else 'eng_Latn'
_UpperCAmelCase = self.convert_tokens_to_ids(self._src_lang )
_UpperCAmelCase = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
return self._src_lang
@src_lang.setter
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
_UpperCAmelCase = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]:
"""simple docstring"""
_UpperCAmelCase = [self.sep_token_id]
_UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
_UpperCAmelCase = src_lang
_UpperCAmelCase = self(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = tgt_lang_id
return inputs
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "eng_Latn" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "fra_Latn" , **_SCREAMING_SNAKE_CASE , ) -> BatchEncoding:
"""simple docstring"""
_UpperCAmelCase = src_lang
_UpperCAmelCase = tgt_lang
return super().prepare_seqaseq_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
_UpperCAmelCase = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE )
if self.legacy_behaviour:
_UpperCAmelCase = []
_UpperCAmelCase = [self.eos_token_id, self.cur_lang_code]
else:
_UpperCAmelCase = [self.cur_lang_code]
_UpperCAmelCase = [self.eos_token_id]
_UpperCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens )
_UpperCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens )
_UpperCAmelCase = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
_UpperCAmelCase = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE )
if self.legacy_behaviour:
_UpperCAmelCase = []
_UpperCAmelCase = [self.eos_token_id, self.cur_lang_code]
else:
_UpperCAmelCase = [self.cur_lang_code]
_UpperCAmelCase = [self.eos_token_id]
_UpperCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens )
_UpperCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens )
_UpperCAmelCase = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' )
return
_UpperCAmelCase = os.path.join(
_SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ):
copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 329 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any]=1_0 ) -> Any:
'''simple docstring'''
_UpperCAmelCase = []
for _ in range(a__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def lowerCAmelCase__ ( a__: List[str] , a__: Any=1_0 ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = []
for step in range(a__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
_UpperCAmelCase = os.path.join(a__ , 'schedule.bin' )
torch.save(scheduler.state_dict() , a__ )
_UpperCAmelCase = torch.load(a__ )
scheduler.load_state_dict(a__ )
return lrs
@require_torch
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) )
for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] )
_UpperCAmelCase = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_UpperCAmelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 )
for _ in range(100 ):
_UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] )
_UpperCAmelCase = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_UpperCAmelCase = Adafactor(
params=[w] , lr=1e-2 , eps=(1e-3_0, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_SCREAMING_SNAKE_CASE , weight_decay=0.0 , relative_step=_SCREAMING_SNAKE_CASE , scale_parameter=_SCREAMING_SNAKE_CASE , warmup_init=_SCREAMING_SNAKE_CASE , )
for _ in range(1000 ):
_UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
@require_torch
class __a ( unittest.TestCase ):
_a : Dict = nn.Linear(50 , 50 ) if is_torch_available() else None
_a : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
_a : List[Any] = 10
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> str:
"""simple docstring"""
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) )
for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE , msg=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = {'num_warmup_steps': 2, 'num_training_steps': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
_UpperCAmelCase = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1e-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
_UpperCAmelCase , _UpperCAmelCase = data
_UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
_UpperCAmelCase = unwrap_schedule(_SCREAMING_SNAKE_CASE , self.num_steps )
self.assertListAlmostEqual(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
_UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_SCREAMING_SNAKE_CASE ) # wrap to test picklability of the schedule
_UpperCAmelCase = unwrap_and_save_reload_schedule(_SCREAMING_SNAKE_CASE , self.num_steps )
self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , msg=f'''failed for {scheduler_func} in save and reload''' )
class __a :
def __init__( self , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
_UpperCAmelCase = fn
def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
return self.fn(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
@classmethod
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = list(map(self , scheduler.lr_lambdas ) )
| 329 | 1 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class __a ( UpperCAmelCase ):
_a : torch.FloatTensor
_a : Optional[torch.FloatTensor] = None
def lowerCAmelCase__ ( a__: Union[str, Any] , a__: Optional[int]=0.999 , a__: List[str]="cosine" , ) -> Union[str, Any]:
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(a__: Any ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(a__: List[str] ):
return math.exp(t * -12.0 )
else:
raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
_UpperCAmelCase = []
for i in range(a__ ):
_UpperCAmelCase = i / num_diffusion_timesteps
_UpperCAmelCase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(a__ ) / alpha_bar_fn(a__ ) , a__ ) )
return torch.tensor(a__ , dtype=torch.floataa )
class __a ( UpperCAmelCase , UpperCAmelCase ):
@register_to_config
def __init__( self , _SCREAMING_SNAKE_CASE = 1000 , _SCREAMING_SNAKE_CASE = "fixed_small_log" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1.0 , _SCREAMING_SNAKE_CASE = "epsilon" , _SCREAMING_SNAKE_CASE = "squaredcos_cap_v2" , ) -> List[Any]:
"""simple docstring"""
if beta_schedule != "squaredcos_cap_v2":
raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' )
_UpperCAmelCase = betas_for_alpha_bar(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = 1.0 - self.betas
_UpperCAmelCase = torch.cumprod(self.alphas , dim=0 )
_UpperCAmelCase = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
_UpperCAmelCase = 1.0
# setable values
_UpperCAmelCase = None
_UpperCAmelCase = torch.from_numpy(np.arange(0 , _SCREAMING_SNAKE_CASE )[::-1].copy() )
_UpperCAmelCase = variance_type
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> torch.FloatTensor:
"""simple docstring"""
return sample
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = num_inference_steps
_UpperCAmelCase = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
_UpperCAmelCase = (np.arange(0 , _SCREAMING_SNAKE_CASE ) * step_ratio).round()[::-1].copy().astype(np.intaa )
_UpperCAmelCase = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Tuple:
"""simple docstring"""
if prev_timestep is None:
_UpperCAmelCase = t - 1
_UpperCAmelCase = self.alphas_cumprod[t]
_UpperCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
_UpperCAmelCase = 1 - alpha_prod_t
_UpperCAmelCase = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
_UpperCAmelCase = self.betas[t]
else:
_UpperCAmelCase = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_UpperCAmelCase = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
_UpperCAmelCase = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
_UpperCAmelCase = torch.log(torch.clamp(_SCREAMING_SNAKE_CASE , min=1e-2_0 ) )
_UpperCAmelCase = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
_UpperCAmelCase = variance.log()
_UpperCAmelCase = beta.log()
_UpperCAmelCase = (predicted_variance + 1) / 2
_UpperCAmelCase = frac * max_log + (1 - frac) * min_log
return variance
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]:
"""simple docstring"""
_UpperCAmelCase = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
_UpperCAmelCase , _UpperCAmelCase = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 )
else:
_UpperCAmelCase = None
# 1. compute alphas, betas
if prev_timestep is None:
_UpperCAmelCase = t - 1
_UpperCAmelCase = self.alphas_cumprod[t]
_UpperCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
_UpperCAmelCase = 1 - alpha_prod_t
_UpperCAmelCase = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
_UpperCAmelCase = self.betas[t]
_UpperCAmelCase = self.alphas[t]
else:
_UpperCAmelCase = 1 - alpha_prod_t / alpha_prod_t_prev
_UpperCAmelCase = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_UpperCAmelCase = model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'''
' for the UnCLIPScheduler.' )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_UpperCAmelCase = torch.clamp(
_SCREAMING_SNAKE_CASE , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_UpperCAmelCase = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
_UpperCAmelCase = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_UpperCAmelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_UpperCAmelCase = 0
if t > 0:
_UpperCAmelCase = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE , device=model_output.device )
_UpperCAmelCase = self._get_variance(
_SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE , prev_timestep=_SCREAMING_SNAKE_CASE , )
if self.variance_type == "fixed_small_log":
_UpperCAmelCase = variance
elif self.variance_type == "learned_range":
_UpperCAmelCase = (0.5 * variance).exp()
else:
raise ValueError(
f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'''
' for the UnCLIPScheduler.' )
_UpperCAmelCase = variance * variance_noise
_UpperCAmelCase = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> torch.FloatTensor:
"""simple docstring"""
_UpperCAmelCase = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
_UpperCAmelCase = timesteps.to(original_samples.device )
_UpperCAmelCase = alphas_cumprod[timesteps] ** 0.5
_UpperCAmelCase = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
_UpperCAmelCase = sqrt_alpha_prod.unsqueeze(-1 )
_UpperCAmelCase = (1 - alphas_cumprod[timesteps]) ** 0.5
_UpperCAmelCase = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
_UpperCAmelCase = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
_UpperCAmelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 329 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ :Any = logging.get_logger(__name__)
def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any] , a__: Dict , a__: Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = original_name.split('.' )[0]
_UpperCAmelCase = key.split('.' )
_UpperCAmelCase = int(key_list[key_list.index(a__ ) - 2] )
_UpperCAmelCase = int(key_list[key_list.index(a__ ) - 1] )
_UpperCAmelCase = orig_block_num - offset
_UpperCAmelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def lowerCAmelCase__ ( a__: Tuple ) -> int:
'''simple docstring'''
_UpperCAmelCase = OrderedDict()
_UpperCAmelCase , _UpperCAmelCase = 0, 0
for key, value in state_dict.items():
if key.startswith('network' ):
_UpperCAmelCase = key.replace('network' , 'poolformer.encoder' )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith('bias' ) and "patch_embed" not in key:
patch_emb_offset += 1
_UpperCAmelCase = key[: key.find('proj' )]
_UpperCAmelCase = key.replace(a__ , F'''patch_embeddings.{total_embed_found}.''' )
_UpperCAmelCase = key.replace('proj' , 'projection' )
if key.endswith('bias' ):
total_embed_found += 1
if "patch_embeddings" in key:
_UpperCAmelCase = 'poolformer.encoder.' + key
if "mlp.fc1" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc1' , 'output.conv1' )
if "mlp.fc2" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc2' , 'output.conv2' )
if "norm1" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm1' , 'before_norm' )
if "norm2" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm2' , 'after_norm' )
if "layer_scale_1" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_1' , 'layer_scale_1' )
if "layer_scale_2" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_2' , 'layer_scale_2' )
if "head" in key:
_UpperCAmelCase = key.replace('head' , 'classifier' )
_UpperCAmelCase = value
return new_state_dict
def lowerCAmelCase__ ( ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
_UpperCAmelCase = Image.open(requests.get(a__ , stream=a__ ).raw )
return image
@torch.no_grad()
def lowerCAmelCase__ ( a__: Optional[int] , a__: Dict , a__: Any ) -> Dict:
'''simple docstring'''
_UpperCAmelCase = PoolFormerConfig()
# set attributes based on model_name
_UpperCAmelCase = 'huggingface/label-files'
_UpperCAmelCase = model_name[-3:]
_UpperCAmelCase = 1_0_0_0
_UpperCAmelCase = 'imagenet-1k-id2label.json'
_UpperCAmelCase = (1, 1_0_0_0)
# set config attributes
_UpperCAmelCase = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) )
_UpperCAmelCase = {int(a__ ): v for k, v in idalabel.items()}
_UpperCAmelCase = idalabel
_UpperCAmelCase = {v: k for k, v in idalabel.items()}
if size == "s12":
_UpperCAmelCase = [2, 2, 6, 2]
_UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 0.9
elif size == "s24":
_UpperCAmelCase = [4, 4, 1_2, 4]
_UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 0.9
elif size == "s36":
_UpperCAmelCase = [6, 6, 1_8, 6]
_UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 1e-6
_UpperCAmelCase = 0.9
elif size == "m36":
_UpperCAmelCase = [6, 6, 1_8, 6]
_UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 1e-6
_UpperCAmelCase = 0.95
elif size == "m48":
_UpperCAmelCase = [8, 8, 2_4, 8]
_UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 1e-6
_UpperCAmelCase = 0.95
else:
raise ValueError(F'''Size {size} not supported''' )
# load image processor
_UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ )
# Prepare image
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=a__ , return_tensors='pt' ).pixel_values
logger.info(F'''Converting model {model_name}...''' )
# load original state dict
_UpperCAmelCase = torch.load(a__ , map_location=torch.device('cpu' ) )
# rename keys
_UpperCAmelCase = rename_keys(a__ )
# create HuggingFace model and load state dict
_UpperCAmelCase = PoolFormerForImageClassification(a__ )
model.load_state_dict(a__ )
model.eval()
# Define image processor
_UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ )
_UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values
# forward pass
_UpperCAmelCase = model(a__ )
_UpperCAmelCase = outputs.logits
# define expected logit slices for different models
if size == "s12":
_UpperCAmelCase = torch.tensor([-0.3_045, -0.6_758, -0.4_869] )
elif size == "s24":
_UpperCAmelCase = torch.tensor([0.4_402, -0.1_374, -0.8_045] )
elif size == "s36":
_UpperCAmelCase = torch.tensor([-0.6_080, -0.5_133, -0.5_898] )
elif size == "m36":
_UpperCAmelCase = torch.tensor([0.3_952, 0.2_263, -1.2_668] )
elif size == "m48":
_UpperCAmelCase = torch.tensor([0.1_167, -0.0_656, -0.3_423] )
else:
raise ValueError(F'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] , a__ , atol=1e-2 )
# finally, save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(a__ ).mkdir(exist_ok=a__ )
model.save_pretrained(a__ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(a__ )
if __name__ == "__main__":
lowerCAmelCase__ :str = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''poolformer_s12''',
type=str,
help='''Name of the model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
lowerCAmelCase__ :Dict = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 329 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ :Dict = {
'''configuration_instructblip''': [
'''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''InstructBlipConfig''',
'''InstructBlipQFormerConfig''',
'''InstructBlipVisionConfig''',
],
'''processing_instructblip''': ['''InstructBlipProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ :Dict = [
'''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''InstructBlipQFormerModel''',
'''InstructBlipPreTrainedModel''',
'''InstructBlipForConditionalGeneration''',
'''InstructBlipVisionModel''',
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
lowerCAmelCase__ :List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 329 |
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
_UpperCAmelCase = dataset
_UpperCAmelCase = process
_UpperCAmelCase = params
def __len__( self ) -> Union[str, Any]:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.dataset[i]
_UpperCAmelCase = self.process(_SCREAMING_SNAKE_CASE , **self.params )
return processed
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = loader
_UpperCAmelCase = infer
_UpperCAmelCase = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
_UpperCAmelCase = None
_UpperCAmelCase = loader_batch_size
# Internal bookkeeping
_UpperCAmelCase = None
_UpperCAmelCase = None
def __len__( self ) -> Any:
"""simple docstring"""
return len(self.loader )
def __iter__( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = iter(self.loader )
return self
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
_UpperCAmelCase = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
_UpperCAmelCase = {}
for k, element in self._loader_batch_data.items():
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
# Convert ModelOutput to tuple first
_UpperCAmelCase = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
_UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
_UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
_UpperCAmelCase = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_UpperCAmelCase = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_UpperCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
_UpperCAmelCase = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
_UpperCAmelCase = self._loader_batch_data.__class__(_SCREAMING_SNAKE_CASE )
self._loader_batch_index += 1
return result
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
_UpperCAmelCase = next(self.iterator )
_UpperCAmelCase = self.infer(_SCREAMING_SNAKE_CASE , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
_UpperCAmelCase = processed
else:
_UpperCAmelCase = list(processed.keys() )[0]
_UpperCAmelCase = processed[key]
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = len(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_UpperCAmelCase = observed_batch_size
# Setting internal index to unwrap the batch
_UpperCAmelCase = processed
_UpperCAmelCase = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple:
"""simple docstring"""
super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def __iter__( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = iter(self.loader )
_UpperCAmelCase = None
return self
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
if self.subiterator is None:
_UpperCAmelCase = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
_UpperCAmelCase = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
_UpperCAmelCase = self.infer(next(self.iterator ) , **self.params )
_UpperCAmelCase = next(self.subiterator )
return processed
class __a ( UpperCAmelCase ):
def __iter__( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = iter(self.loader )
return self
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = False
_UpperCAmelCase = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
_UpperCAmelCase = self.loader_batch_item()
_UpperCAmelCase = item.pop('is_last' )
accumulator.append(_SCREAMING_SNAKE_CASE )
if is_last:
return accumulator
while not is_last:
_UpperCAmelCase = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
_UpperCAmelCase = processed
else:
_UpperCAmelCase = list(processed.keys() )[0]
_UpperCAmelCase = processed[key]
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = len(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_UpperCAmelCase = observed_batch_size
_UpperCAmelCase = processed
_UpperCAmelCase = 0
while self._loader_batch_index < self.loader_batch_size:
_UpperCAmelCase = self.loader_batch_item()
_UpperCAmelCase = item.pop('is_last' )
accumulator.append(_SCREAMING_SNAKE_CASE )
if is_last:
return accumulator
else:
_UpperCAmelCase = processed
_UpperCAmelCase = item.pop('is_last' )
accumulator.append(_SCREAMING_SNAKE_CASE )
return accumulator
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = dataset
_UpperCAmelCase = key
def __len__( self ) -> Optional[int]:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
return self.dataset[i][self.key]
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = dataset
_UpperCAmelCase = keya
_UpperCAmelCase = keya
def __len__( self ) -> Optional[int]:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 329 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase__ :List[str] = {
'''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''],
'''tokenization_biogpt''': ['''BioGptTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ :Union[str, Any] = [
'''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BioGptForCausalLM''',
'''BioGptForTokenClassification''',
'''BioGptForSequenceClassification''',
'''BioGptModel''',
'''BioGptPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ :Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 329 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase__ :int = logging.get_logger(__name__)
lowerCAmelCase__ :Optional[Any] = {
'''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''',
}
class __a ( UpperCAmelCase ):
_a : str = 'data2vec-text'
def __init__( self , _SCREAMING_SNAKE_CASE=30522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-1_2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = hidden_act
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = position_embedding_type
_UpperCAmelCase = use_cache
_UpperCAmelCase = classifier_dropout
class __a ( UpperCAmelCase ):
@property
def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_UpperCAmelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 329 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase__ :List[Any] = {
'''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ :List[Any] = ['''MobileViTFeatureExtractor''']
lowerCAmelCase__ :Dict = ['''MobileViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ :List[str] = [
'''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MobileViTForImageClassification''',
'''MobileViTForSemanticSegmentation''',
'''MobileViTModel''',
'''MobileViTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ :int = [
'''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFMobileViTForImageClassification''',
'''TFMobileViTForSemanticSegmentation''',
'''TFMobileViTModel''',
'''TFMobileViTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 329 |
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class __a :
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , _SCREAMING_SNAKE_CASE=[1, 2, 3] , ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = embed_dim
_UpperCAmelCase = depths
_UpperCAmelCase = num_heads
_UpperCAmelCase = window_size
_UpperCAmelCase = mlp_ratio
_UpperCAmelCase = qkv_bias
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = drop_path_rate
_UpperCAmelCase = hidden_act
_UpperCAmelCase = use_absolute_embeddings
_UpperCAmelCase = patch_norm
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = initializer_range
_UpperCAmelCase = is_training
_UpperCAmelCase = scope
_UpperCAmelCase = use_labels
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = encoder_stride
_UpperCAmelCase = out_features
_UpperCAmelCase = out_indices
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
_UpperCAmelCase = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
_UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = ['stem']
_UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
_a : int = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
_a : str = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {}
_a : Optional[int] = False
_a : List[str] = False
_a : List[str] = False
_a : Optional[int] = False
_a : Tuple = False
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = MaskFormerSwinModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
'`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with'
' `nn.DataParallel`'
) )
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
return
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE )
@unittest.skip('Swin does not use inputs_embeds' )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
pass
@unittest.skip('Swin does not support feedforward chunking' )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE )
@unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
pass
@unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = outputs.hidden_states
_UpperCAmelCase = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
# Swin has a different seq_length
_UpperCAmelCase = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
_UpperCAmelCase = True
self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCAmelCase = True
self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = 3
_UpperCAmelCase = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
_UpperCAmelCase = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
_UpperCAmelCase = True
self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCAmelCase = True
self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) )
@unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = 0
return t
def check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE={} ):
with torch.no_grad():
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple()
def recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=(
'Tuple and dict output are not equal. Difference:'
f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'''
f''' {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has'''
f''' `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}.'''
) , )
recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} )
@require_torch
class __a ( unittest.TestCase , UpperCAmelCase ):
_a : Any = (MaskFormerSwinBackbone,) if is_torch_available() else ()
_a : Any = MaskFormerSwinConfig
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = MaskFormerSwinModelTester(self )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = inputs_dict['pixel_values'].shape[0]
for backbone_class in self.all_model_classes:
_UpperCAmelCase = backbone_class(_SCREAMING_SNAKE_CASE )
backbone.to(_SCREAMING_SNAKE_CASE )
backbone.eval()
_UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
_UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
_UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(outputs.attentions )
| 329 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ :Dict = logging.get_logger(__name__)
lowerCAmelCase__ :Optional[int] = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''}
class __a ( UpperCAmelCase ):
_a : List[str] = 'openai-gpt'
_a : int = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _SCREAMING_SNAKE_CASE=40478 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE="cls_index" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , **_SCREAMING_SNAKE_CASE , ) -> str:
"""simple docstring"""
_UpperCAmelCase = vocab_size
_UpperCAmelCase = n_positions
_UpperCAmelCase = n_embd
_UpperCAmelCase = n_layer
_UpperCAmelCase = n_head
_UpperCAmelCase = afn
_UpperCAmelCase = resid_pdrop
_UpperCAmelCase = embd_pdrop
_UpperCAmelCase = attn_pdrop
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = initializer_range
_UpperCAmelCase = summary_type
_UpperCAmelCase = summary_use_proj
_UpperCAmelCase = summary_activation
_UpperCAmelCase = summary_first_dropout
_UpperCAmelCase = summary_proj_to_labels
super().__init__(**_SCREAMING_SNAKE_CASE )
| 329 |
from collections.abc import Generator
def lowerCAmelCase__ ( ) -> Generator[int, None, None]:
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = 0, 1
while True:
_UpperCAmelCase , _UpperCAmelCase = b, a + b
yield b
def lowerCAmelCase__ ( a__: int = 1_0_0_0 ) -> int:
'''simple docstring'''
_UpperCAmelCase = 1
_UpperCAmelCase = fibonacci_generator()
while len(str(next(a__ ) ) ) < n:
answer += 1
return answer + 1
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 329 | 1 |
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def lowerCAmelCase__ ( a__: int ) -> List[str]:
'''simple docstring'''
def is_in_circle(a__: float , a__: float ) -> bool:
_UpperCAmelCase = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
_UpperCAmelCase = mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(a__ ) )
# The ratio of the area for circle to square is pi/4.
_UpperCAmelCase = proportion * 4
print(F'''The estimated value of pi is {pi_estimate}''' )
print(F'''The numpy value of pi is {pi}''' )
print(F'''The total error is {abs(pi - pi_estimate )}''' )
def lowerCAmelCase__ ( a__: int , a__: Callable[[float], float] , a__: float = 0.0 , a__: float = 1.0 , ) -> float:
'''simple docstring'''
return mean(
function_to_integrate(uniform(a__ , a__ ) ) for _ in range(a__ ) ) * (max_value - min_value)
def lowerCAmelCase__ ( a__: int , a__: float = 0.0 , a__: float = 1.0 ) -> None:
'''simple docstring'''
def identity_function(a__: float ) -> float:
return x
_UpperCAmelCase = area_under_curve_estimator(
a__ , a__ , a__ , a__ )
_UpperCAmelCase = (max_value * max_value - min_value * min_value) / 2
print('******************' )
print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''' )
print(F'''Estimated value is {estimated_value}''' )
print(F'''Expected value is {expected_value}''' )
print(F'''Total error is {abs(estimated_value - expected_value )}''' )
print('******************' )
def lowerCAmelCase__ ( a__: int ) -> None:
'''simple docstring'''
def function_to_integrate(a__: float ) -> float:
return sqrt(4.0 - x * x )
_UpperCAmelCase = area_under_curve_estimator(
a__ , a__ , 0.0 , 2.0 )
print('******************' )
print('Estimating pi using area_under_curve_estimator' )
print(F'''Estimated value is {estimated_value}''' )
print(F'''Expected value is {pi}''' )
print(F'''Total error is {abs(estimated_value - pi )}''' )
print('******************' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> str:
"""simple docstring"""
_UpperCAmelCase = size if size is not None else {'shortest_edge': 30}
_UpperCAmelCase = crop_size if crop_size is not None else {'height': 30, 'width': 30}
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize_and_center_crop
_UpperCAmelCase = size
_UpperCAmelCase = crop_pct
_UpperCAmelCase = crop_size
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = PoolFormerImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize_and_center_crop' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'crop_pct' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 30} )
self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} )
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 329 | 1 |
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class __a ( nn.Module ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "geglu" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = "layer_norm" , _SCREAMING_SNAKE_CASE = False , ) -> List[str]:
"""simple docstring"""
super().__init__()
_UpperCAmelCase = only_cross_attention
_UpperCAmelCase = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero'
_UpperCAmelCase = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm'
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to'''
f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
_UpperCAmelCase = AdaLayerNorm(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif self.use_ada_layer_norm_zero:
_UpperCAmelCase = AdaLayerNormZero(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = Attention(
query_dim=_SCREAMING_SNAKE_CASE , heads=_SCREAMING_SNAKE_CASE , dim_head=_SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_SCREAMING_SNAKE_CASE , )
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
_UpperCAmelCase = (
AdaLayerNorm(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if self.use_ada_layer_norm
else nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE )
)
_UpperCAmelCase = Attention(
query_dim=_SCREAMING_SNAKE_CASE , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_SCREAMING_SNAKE_CASE , dim_head=_SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE , upcast_attention=_SCREAMING_SNAKE_CASE , ) # is self-attn if encoder_hidden_states is none
else:
_UpperCAmelCase = None
_UpperCAmelCase = None
# 3. Feed-forward
_UpperCAmelCase = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = FeedForward(_SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , activation_fn=_SCREAMING_SNAKE_CASE , final_dropout=_SCREAMING_SNAKE_CASE )
# let chunk size default to None
_UpperCAmelCase = None
_UpperCAmelCase = 0
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
_UpperCAmelCase = chunk_size
_UpperCAmelCase = dim
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , ) -> Any:
"""simple docstring"""
if self.use_ada_layer_norm:
_UpperCAmelCase = self.norma(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif self.use_ada_layer_norm_zero:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.norma(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hidden_dtype=hidden_states.dtype )
else:
_UpperCAmelCase = self.norma(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = cross_attention_kwargs if cross_attention_kwargs is not None else {}
_UpperCAmelCase = self.attna(
_SCREAMING_SNAKE_CASE , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
if self.use_ada_layer_norm_zero:
_UpperCAmelCase = gate_msa.unsqueeze(1 ) * attn_output
_UpperCAmelCase = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
_UpperCAmelCase = (
self.norma(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm else self.norma(_SCREAMING_SNAKE_CASE )
)
_UpperCAmelCase = self.attna(
_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = attn_output + hidden_states
# 3. Feed-forward
_UpperCAmelCase = self.norma(_SCREAMING_SNAKE_CASE )
if self.use_ada_layer_norm_zero:
_UpperCAmelCase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' )
_UpperCAmelCase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
_UpperCAmelCase = torch.cat(
[self.ff(_SCREAMING_SNAKE_CASE ) for hid_slice in norm_hidden_states.chunk(_SCREAMING_SNAKE_CASE , dim=self._chunk_dim )] , dim=self._chunk_dim , )
else:
_UpperCAmelCase = self.ff(_SCREAMING_SNAKE_CASE )
if self.use_ada_layer_norm_zero:
_UpperCAmelCase = gate_mlp.unsqueeze(1 ) * ff_output
_UpperCAmelCase = ff_output + hidden_states
return hidden_states
class __a ( nn.Module ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 4 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = "geglu" , _SCREAMING_SNAKE_CASE = False , ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
_UpperCAmelCase = int(dim * mult )
_UpperCAmelCase = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
_UpperCAmelCase = GELU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if activation_fn == "gelu-approximate":
_UpperCAmelCase = GELU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , approximate='tanh' )
elif activation_fn == "geglu":
_UpperCAmelCase = GEGLU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif activation_fn == "geglu-approximate":
_UpperCAmelCase = ApproximateGELU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = nn.ModuleList([] )
# project in
self.net.append(_SCREAMING_SNAKE_CASE )
# project dropout
self.net.append(nn.Dropout(_SCREAMING_SNAKE_CASE ) )
# project out
self.net.append(nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(_SCREAMING_SNAKE_CASE ) )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
for module in self.net:
_UpperCAmelCase = module(_SCREAMING_SNAKE_CASE )
return hidden_states
class __a ( nn.Module ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "none" ) -> Tuple:
"""simple docstring"""
super().__init__()
_UpperCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = approximate
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
if gate.device.type != "mps":
return F.gelu(_SCREAMING_SNAKE_CASE , approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = self.proj(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.gelu(_SCREAMING_SNAKE_CASE )
return hidden_states
class __a ( nn.Module ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
super().__init__()
_UpperCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , dim_out * 2 )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
if gate.device.type != "mps":
return F.gelu(_SCREAMING_SNAKE_CASE )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.proj(_SCREAMING_SNAKE_CASE ).chunk(2 , dim=-1 )
return hidden_states * self.gelu(_SCREAMING_SNAKE_CASE )
class __a ( nn.Module ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
super().__init__()
_UpperCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = self.proj(_SCREAMING_SNAKE_CASE )
return x * torch.sigmoid(1.702 * x )
class __a ( nn.Module ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
super().__init__()
_UpperCAmelCase = nn.Embedding(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = nn.SiLU()
_UpperCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , embedding_dim * 2 )
_UpperCAmelCase = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = self.linear(self.silu(self.emb(_SCREAMING_SNAKE_CASE ) ) )
_UpperCAmelCase , _UpperCAmelCase = torch.chunk(_SCREAMING_SNAKE_CASE , 2 )
_UpperCAmelCase = self.norm(_SCREAMING_SNAKE_CASE ) * (1 + scale) + shift
return x
class __a ( nn.Module ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__()
_UpperCAmelCase = CombinedTimestepLabelEmbeddings(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = nn.SiLU()
_UpperCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , 6 * embedding_dim , bias=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE , eps=1e-6 )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.linear(self.silu(self.emb(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hidden_dtype=_SCREAMING_SNAKE_CASE ) ) )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = emb.chunk(6 , dim=1 )
_UpperCAmelCase = self.norm(_SCREAMING_SNAKE_CASE ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class __a ( nn.Module ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1e-5 ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
_UpperCAmelCase = num_groups
_UpperCAmelCase = eps
if act_fn is None:
_UpperCAmelCase = None
else:
_UpperCAmelCase = get_activation(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , out_dim * 2 )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
if self.act:
_UpperCAmelCase = self.act(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.linear(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = emb[:, :, None, None]
_UpperCAmelCase , _UpperCAmelCase = emb.chunk(2 , dim=1 )
_UpperCAmelCase = F.group_norm(_SCREAMING_SNAKE_CASE , self.num_groups , eps=self.eps )
_UpperCAmelCase = x * (1 + scale) + shift
return x
| 329 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = image_size
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize
_UpperCAmelCase = size if size is not None else {'height': 18, 'width': 20}
_UpperCAmelCase = do_thumbnail
_UpperCAmelCase = do_align_axis
_UpperCAmelCase = do_pad
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : List[str] = DonutImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = DonutImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_thumbnail' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_align_long_axis' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 20} )
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
# Previous config had dimensions in (width, height) order
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'height': 84, 'width': 42} )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
pass
@is_flaky()
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
| 329 | 1 |
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ :Union[str, Any] = logging.get_logger(__name__)
lowerCAmelCase__ :str = '''https://openaipublic.azureedge.net/jukebox/models/'''
lowerCAmelCase__ :Optional[Any] = {
'''jukebox-1b-lyrics''': [
'''5b/vqvae.pth.tar''',
'''5b/prior_level_0.pth.tar''',
'''5b/prior_level_1.pth.tar''',
'''1b_lyrics/prior_level_2.pth.tar''',
],
'''jukebox-5b-lyrics''': [
'''5b/vqvae.pth.tar''',
'''5b/prior_level_0.pth.tar''',
'''5b/prior_level_1.pth.tar''',
'''5b_lyrics/prior_level_2.pth.tar''',
],
}
def lowerCAmelCase__ ( a__: Tuple ) -> Dict:
'''simple docstring'''
if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 1_0:
_UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' )
elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 1_0:
_UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' )
elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 1_0:
_UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' )
elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 1_0:
_UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' )
if "conditioner_blocks.0." in key:
_UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' )
if "prime_prior" in key:
_UpperCAmelCase = key.replace('prime_prior' , 'encoder' )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
_UpperCAmelCase = key.replace('.emb.' , '.' )
if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace('.k' , '.codebook' )
if "y_emb." in key:
return key.replace('y_emb.' , 'metadata_embedding.' )
if "x_emb.emb." in key:
_UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' )
if "prime_state_ln" in key:
return key.replace('prime_state_ln' , 'encoder.final_layer_norm' )
if ".ln" in key:
return key.replace('.ln' , '.layer_norm' )
if "_ln" in key:
return key.replace('_ln' , '_layer_norm' )
if "prime_state_proj" in key:
return key.replace('prime_state_proj' , 'encoder.proj_in' )
if "prime_x_out" in key:
return key.replace('prime_x_out' , 'encoder.lm_head' )
if "prior.x_out" in key:
return key.replace('x_out' , 'fc_proj_out' )
if "x_emb" in key:
return key.replace('x_emb' , 'embed_tokens' )
return key
def lowerCAmelCase__ ( a__: Tuple , a__: Dict , a__: int , a__: int ) -> Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = {}
import re
_UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' )
_UpperCAmelCase = re.compile(
R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' )
_UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' )
_UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' )
_UpperCAmelCase = re.compile(
R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' )
_UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' )
_UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' )
_UpperCAmelCase = re.compile(
R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' )
_UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(a__ ):
_UpperCAmelCase = re_encoder_block_conv_in.match(a__ )
_UpperCAmelCase = regex_match.groups()
_UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] )
_UpperCAmelCase = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}'''
_UpperCAmelCase = re_encoder_block_conv_in.sub(a__ , a__ )
elif re_encoder_block_resnet.fullmatch(a__ ):
_UpperCAmelCase = re_encoder_block_resnet.match(a__ )
_UpperCAmelCase = regex_match.groups()
_UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] )
_UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]]
_UpperCAmelCase = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.'''
_UpperCAmelCase = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
_UpperCAmelCase = prefix + resnet_block
_UpperCAmelCase = re_encoder_block_resnet.sub(a__ , a__ )
elif re_encoder_block_proj_out.fullmatch(a__ ):
_UpperCAmelCase = re_encoder_block_proj_out.match(a__ )
_UpperCAmelCase = regex_match.groups()
_UpperCAmelCase = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}'''
_UpperCAmelCase = re_encoder_block_proj_out.sub(a__ , a__ )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(a__ ):
_UpperCAmelCase = re_decoder_block_conv_out.match(a__ )
_UpperCAmelCase = regex_match.groups()
_UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2
_UpperCAmelCase = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}'''
_UpperCAmelCase = re_decoder_block_conv_out.sub(a__ , a__ )
elif re_decoder_block_resnet.fullmatch(a__ ):
_UpperCAmelCase = re_decoder_block_resnet.match(a__ )
_UpperCAmelCase = regex_match.groups()
_UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2
_UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]]
_UpperCAmelCase = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.'''
_UpperCAmelCase = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
_UpperCAmelCase = prefix + resnet_block
_UpperCAmelCase = re_decoder_block_resnet.sub(a__ , a__ )
elif re_decoder_block_proj_in.fullmatch(a__ ):
_UpperCAmelCase = re_decoder_block_proj_in.match(a__ )
_UpperCAmelCase = regex_match.groups()
_UpperCAmelCase = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}'''
_UpperCAmelCase = re_decoder_block_proj_in.sub(a__ , a__ )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(a__ ):
_UpperCAmelCase = re_prior_cond_conv_out.match(a__ )
_UpperCAmelCase = regex_match.groups()
_UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2
_UpperCAmelCase = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}'''
_UpperCAmelCase = re_prior_cond_conv_out.sub(a__ , a__ )
elif re_prior_cond_resnet.fullmatch(a__ ):
_UpperCAmelCase = re_prior_cond_resnet.match(a__ )
_UpperCAmelCase = regex_match.groups()
_UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2
_UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]]
_UpperCAmelCase = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.'''
_UpperCAmelCase = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
_UpperCAmelCase = prefix + resnet_block
_UpperCAmelCase = re_prior_cond_resnet.sub(a__ , a__ )
elif re_prior_cond_proj_in.fullmatch(a__ ):
_UpperCAmelCase = re_prior_cond_proj_in.match(a__ )
_UpperCAmelCase = regex_match.groups()
_UpperCAmelCase = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}'''
_UpperCAmelCase = re_prior_cond_proj_in.sub(a__ , a__ )
# keep original key
else:
_UpperCAmelCase = original_key
_UpperCAmelCase = replace_key(a__ )
if F'''{key_prefix}.{key}''' not in model_state_dict or key is None:
print(F'''failed converting {original_key} to {key}, does not match''' )
# handle missmatched shape
elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape:
_UpperCAmelCase = model_state_dict[F'''{key_prefix}.{key}''']
print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' )
_UpperCAmelCase = original_key
_UpperCAmelCase = original_key
_UpperCAmelCase = value
return new_dict
@torch.no_grad()
def lowerCAmelCase__ ( a__: Tuple=None , a__: Any=None ) -> Tuple:
'''simple docstring'''
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ):
_UpperCAmelCase = requests.get(F'''{PREFIX}{file}''' , allow_redirects=a__ )
os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=a__ )
open(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' , 'wb' ).write(r.content )
_UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]]
_UpperCAmelCase = JukeboxConfig.from_pretrained(a__ )
_UpperCAmelCase = JukeboxModel(a__ )
_UpperCAmelCase = []
_UpperCAmelCase = {}
for i, dict_name in enumerate(a__ ):
_UpperCAmelCase = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )['model']
_UpperCAmelCase = {}
for k in old_dic.keys():
if k.endswith('.b' ):
_UpperCAmelCase = old_dic[k]
elif k.endswith('.w' ):
_UpperCAmelCase = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
_UpperCAmelCase = old_dic[k]
else:
_UpperCAmelCase = old_dic[k]
_UpperCAmelCase = 'vqvae' if i == 0 else F'''priors.{3 - i}'''
_UpperCAmelCase = fix_jukebox_keys(a__ , model.state_dict() , a__ , a__ )
weight_dict.append(a__ )
_UpperCAmelCase = weight_dict.pop(0 )
model.vqvae.load_state_dict(a__ )
for i in range(len(a__ ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(a__ ).mkdir(exist_ok=a__ )
with open(F'''{pytorch_dump_folder_path}/mapping.json''' , 'w' ) as txtfile:
json.dump(a__ , a__ )
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(a__ )
return weight_dict
if __name__ == "__main__":
lowerCAmelCase__ :str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''jukebox-5b-lyrics''',
type=str,
help='''Name of the model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''jukebox-5b-lyrics-converted''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
lowerCAmelCase__ :Any = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 329 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ :Dict = logging.get_logger(__name__)
lowerCAmelCase__ :Optional[int] = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''}
class __a ( UpperCAmelCase ):
_a : List[str] = 'openai-gpt'
_a : int = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _SCREAMING_SNAKE_CASE=40478 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE="cls_index" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , **_SCREAMING_SNAKE_CASE , ) -> str:
"""simple docstring"""
_UpperCAmelCase = vocab_size
_UpperCAmelCase = n_positions
_UpperCAmelCase = n_embd
_UpperCAmelCase = n_layer
_UpperCAmelCase = n_head
_UpperCAmelCase = afn
_UpperCAmelCase = resid_pdrop
_UpperCAmelCase = embd_pdrop
_UpperCAmelCase = attn_pdrop
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = initializer_range
_UpperCAmelCase = summary_type
_UpperCAmelCase = summary_use_proj
_UpperCAmelCase = summary_activation
_UpperCAmelCase = summary_first_dropout
_UpperCAmelCase = summary_proj_to_labels
super().__init__(**_SCREAMING_SNAKE_CASE )
| 329 | 1 |
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append('''.''')
def lowerCAmelCase__ ( a__: Tuple ) -> str:
'''simple docstring'''
_UpperCAmelCase = test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
'`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got '
F'''{test_file} instead.''' )
_UpperCAmelCase = components[-1]
if not test_fn.endswith('py' ):
raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' )
if not test_fn.startswith('test_modeling_' ):
raise ValueError(
F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' )
_UpperCAmelCase = components[:-1] + [test_fn.replace('.py' , '' )]
_UpperCAmelCase = '.'.join(a__ )
return test_module_path
def lowerCAmelCase__ ( a__: str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = get_module_path(a__ )
_UpperCAmelCase = importlib.import_module(a__ )
return test_module
def lowerCAmelCase__ ( a__: Any ) -> int:
'''simple docstring'''
_UpperCAmelCase = []
_UpperCAmelCase = get_test_module(a__ )
for attr in dir(a__ ):
if attr.endswith('ModelTester' ):
tester_classes.append(getattr(a__ , a__ ) )
# sort with class names
return sorted(a__ , key=lambda a__ : x.__name__ )
def lowerCAmelCase__ ( a__: Optional[int] ) -> Optional[int]:
'''simple docstring'''
_UpperCAmelCase = []
_UpperCAmelCase = get_test_module(a__ )
for attr in dir(a__ ):
_UpperCAmelCase = getattr(a__ , a__ )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
_UpperCAmelCase = getattr(a__ , 'all_model_classes' , [] )
if len(a__ ) > 0:
test_classes.append(a__ )
# sort with class names
return sorted(a__ , key=lambda a__ : x.__name__ )
def lowerCAmelCase__ ( a__: Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCAmelCase = get_test_classes(a__ )
_UpperCAmelCase = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(a__ , key=lambda a__ : x.__name__ )
def lowerCAmelCase__ ( a__: Optional[int] ) -> Dict:
'''simple docstring'''
_UpperCAmelCase = test_class()
if hasattr(a__ , 'setUp' ):
test.setUp()
_UpperCAmelCase = None
if hasattr(a__ , 'model_tester' ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
_UpperCAmelCase = test.model_tester.__class__
return model_tester
def lowerCAmelCase__ ( a__: str , a__: Any ) -> str:
'''simple docstring'''
_UpperCAmelCase = get_test_classes(a__ )
_UpperCAmelCase = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(a__ )
# sort with class names
return sorted(a__ , key=lambda a__ : x.__name__ )
def lowerCAmelCase__ ( a__: str , a__: Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCAmelCase = get_test_classes_for_model(a__ , a__ )
_UpperCAmelCase = []
for test_class in test_classes:
_UpperCAmelCase = get_model_tester_from_test_class(a__ )
if tester_class is not None:
tester_classes.append(a__ )
# sort with class names
return sorted(a__ , key=lambda a__ : x.__name__ )
def lowerCAmelCase__ ( a__: Optional[int] ) -> int:
'''simple docstring'''
_UpperCAmelCase = get_test_classes(a__ )
_UpperCAmelCase = {test_class: get_model_tester_from_test_class(a__ ) for test_class in test_classes}
return test_tester_mapping
def lowerCAmelCase__ ( a__: int ) -> int:
'''simple docstring'''
_UpperCAmelCase = get_model_classes(a__ )
_UpperCAmelCase = {
model_class: get_test_classes_for_model(a__ , a__ ) for model_class in model_classes
}
return model_test_mapping
def lowerCAmelCase__ ( a__: Dict ) -> Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = get_model_classes(a__ )
_UpperCAmelCase = {
model_class: get_tester_classes_for_model(a__ , a__ ) for model_class in model_classes
}
return model_to_tester_mapping
def lowerCAmelCase__ ( a__: Optional[int] ) -> str:
'''simple docstring'''
if isinstance(a__ , a__ ):
return o
elif isinstance(a__ , a__ ):
return o.__name__
elif isinstance(a__ , (list, tuple) ):
return [to_json(a__ ) for x in o]
elif isinstance(a__ , a__ ):
return {to_json(a__ ): to_json(a__ ) for k, v in o.items()}
else:
return o
| 329 |
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] )
@pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] )
@pytest.mark.parametrize('revision' , [None, 'v2'] )
def lowerCAmelCase__ ( a__: Any , a__: Tuple , a__: Union[str, Any] ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = hf_hub_url(repo_id=a__ , path=a__ , revision=a__ )
assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(a__ )}'''
| 329 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : Optional[Any] = KandinskyVaaControlnetPipeline
_a : Optional[Any] = ['image_embeds', 'negative_image_embeds', 'hint']
_a : List[str] = ['image_embeds', 'negative_image_embeds', 'hint']
_a : Tuple = [
'generator',
'height',
'width',
'latents',
'guidance_scale',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
_a : List[Any] = False
@property
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
return 32
@property
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
return 32
@property
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
return self.time_input_dim
@property
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
return 100
@property
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
torch.manual_seed(0 )
_UpperCAmelCase = {
'in_channels': 8,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image_hint',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
_UpperCAmelCase = UNetaDConditionModel(**_SCREAMING_SNAKE_CASE )
return model
@property
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
torch.manual_seed(0 )
_UpperCAmelCase = VQModel(**self.dummy_movq_kwargs )
return model
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = self.dummy_unet
_UpperCAmelCase = self.dummy_movq
_UpperCAmelCase = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.00085 , beta_end=0.012 , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , prediction_type='epsilon' , thresholding=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
_SCREAMING_SNAKE_CASE )
# create hint
_UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE )
if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ):
_UpperCAmelCase = torch.manual_seed(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = {
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'hint': hint,
'generator': generator,
'height': 64,
'width': 64,
'guidance_scale': 4.0,
'num_inference_steps': 2,
'output_type': 'np',
}
return inputs
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = 'cpu'
_UpperCAmelCase = self.get_dummy_components()
_UpperCAmelCase = self.pipeline_class(**_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipe.to(_SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = output.images
_UpperCAmelCase = pipe(
**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) , return_dict=_SCREAMING_SNAKE_CASE , )[0]
_UpperCAmelCase = image[0, -3:, -3:, -1]
_UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_UpperCAmelCase = np.array(
[0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' )
_UpperCAmelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/hint_image_cat.png' )
_UpperCAmelCase = torch.from_numpy(np.array(_SCREAMING_SNAKE_CASE ) ).float() / 255.0
_UpperCAmelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
_UpperCAmelCase = KandinskyVaaPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa )
pipe_prior.to(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = KandinskyVaaControlnetPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa )
_UpperCAmelCase = pipeline.to(_SCREAMING_SNAKE_CASE )
pipeline.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = 'A robot, 4k photo'
_UpperCAmelCase = torch.Generator(device='cuda' ).manual_seed(0 )
_UpperCAmelCase , _UpperCAmelCase = pipe_prior(
_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt='' , ).to_tuple()
_UpperCAmelCase = torch.Generator(device='cuda' ).manual_seed(0 )
_UpperCAmelCase = pipeline(
image_embeds=_SCREAMING_SNAKE_CASE , negative_image_embeds=_SCREAMING_SNAKE_CASE , hint=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=100 , output_type='np' , )
_UpperCAmelCase = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
| 329 |
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
lowerCAmelCase__ :Optional[int] = [
'''python''',
'''tqdm''',
'''regex''',
'''requests''',
'''packaging''',
'''filelock''',
'''numpy''',
'''tokenizers''',
'''huggingface-hub''',
'''safetensors''',
'''accelerate''',
'''pyyaml''',
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def lowerCAmelCase__ ( a__: Tuple , a__: Optional[int]=None ) -> Any:
'''simple docstring'''
require_version(deps[pkg] , a__ )
| 329 | 1 |
import requests
from bsa import BeautifulSoup
def lowerCAmelCase__ ( a__: str = "AAPL" ) -> str:
'''simple docstring'''
_UpperCAmelCase = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'''
_UpperCAmelCase = BeautifulSoup(requests.get(a__ ).text , 'html.parser' )
_UpperCAmelCase = 'My(6px) Pos(r) smartphone_Mt(6px)'
return soup.find('div' , class_=class_ ).find('span' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
| 329 |
from __future__ import annotations
def lowerCAmelCase__ ( a__: dict , a__: str ) -> set[str]:
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = set(a__ ), [start]
while stack:
_UpperCAmelCase = stack.pop()
explored.add(a__ )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(a__ )
return explored
lowerCAmelCase__ :Tuple = {
'''A''': ['''B''', '''C''', '''D'''],
'''B''': ['''A''', '''D''', '''E'''],
'''C''': ['''A''', '''F'''],
'''D''': ['''B''', '''D'''],
'''E''': ['''B''', '''F'''],
'''F''': ['''C''', '''E''', '''G'''],
'''G''': ['''F'''],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, '''A'''))
| 329 | 1 |
import itertools
import math
def lowerCAmelCase__ ( a__: int ) -> bool:
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowerCAmelCase__ ( ) -> int:
'''simple docstring'''
_UpperCAmelCase = 2
while True:
if is_prime(a__ ):
yield num
num += 1
def lowerCAmelCase__ ( a__: int = 1_0_0_0_1 ) -> int:
'''simple docstring'''
return next(itertools.islice(prime_generator() , nth - 1 , a__ ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 329 |
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
_UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(_SCREAMING_SNAKE_CASE , os.listdir(_SCREAMING_SNAKE_CASE )[0] , 'snapshots' ) )]
_UpperCAmelCase = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith('.bin' ) for f in files )
@slow
@require_flax
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 4
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1e-3
assert np.abs(np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 49947.875 ) < 5e-1
_UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(_SCREAMING_SNAKE_CASE ) == num_samples
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2383808.2) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = FlaxDDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , )
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = scheduler.create_state()
_UpperCAmelCase = scheduler_state
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2347693.5) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
_UpperCAmelCase = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , use_memory_efficient_attention=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
_UpperCAmelCase = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1e-2
| 329 | 1 |
lowerCAmelCase__ :Optional[Any] = '''Input must be a string of 8 numbers plus letter'''
lowerCAmelCase__ :List[Any] = '''TRWAGMYFPDXBNJZSQVHLCKE'''
def lowerCAmelCase__ ( a__: str ) -> bool:
'''simple docstring'''
if not isinstance(a__ , a__ ):
_UpperCAmelCase = F'''Expected string as input, found {type(a__ ).__name__}'''
raise TypeError(a__ )
_UpperCAmelCase = spanish_id.replace('-' , '' ).upper()
if len(a__ ) != 9:
raise ValueError(a__ )
try:
_UpperCAmelCase = int(spanish_id_clean[0:8] )
_UpperCAmelCase = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(a__ ) from ex
if letter.isdigit():
raise ValueError(a__ )
return letter == LOOKUP_LETTERS[number % 2_3]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowerCAmelCase__ :int = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase )
class __a ( UpperCAmelCase ):
def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> int:
"""simple docstring"""
_UpperCAmelCase = {}
_UpperCAmelCase = {}
if prompt is not None:
_UpperCAmelCase = prompt
if generate_kwargs is not None:
_UpperCAmelCase = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
_UpperCAmelCase = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
'\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,'
' please use only one' )
_UpperCAmelCase = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int:
"""simple docstring"""
_UpperCAmelCase = load_image(_SCREAMING_SNAKE_CASE )
if prompt is not None:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise ValueError(
f'''Received an invalid text input, got - {type(_SCREAMING_SNAKE_CASE )} - but expected a single string. '''
'Note also that one single text can be provided for conditional image to text generation.' )
_UpperCAmelCase = self.model.config.model_type
if model_type == "git":
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
_UpperCAmelCase = self.tokenizer(text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids
_UpperCAmelCase = [self.tokenizer.cls_token_id] + input_ids
_UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ).unsqueeze(0 )
model_inputs.update({'input_ids': input_ids} )
elif model_type == "pix2struct":
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , header_text=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
_UpperCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
model_inputs.update(_SCREAMING_SNAKE_CASE )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
_UpperCAmelCase = None
return model_inputs
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[str]:
"""simple docstring"""
if (
"input_ids" in model_inputs
and isinstance(model_inputs['input_ids'] , _SCREAMING_SNAKE_CASE )
and all(x is None for x in model_inputs['input_ids'] )
):
_UpperCAmelCase = None
if generate_kwargs is None:
_UpperCAmelCase = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
_UpperCAmelCase = model_inputs.pop(self.model.main_input_name )
_UpperCAmelCase = self.model.generate(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
return model_outputs
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = []
for output_ids in model_outputs:
_UpperCAmelCase = {
'generated_text': self.tokenizer.decode(
_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , )
}
records.append(_SCREAMING_SNAKE_CASE )
return records
| 329 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> str:
"""simple docstring"""
_UpperCAmelCase = size if size is not None else {'shortest_edge': 30}
_UpperCAmelCase = crop_size if crop_size is not None else {'height': 30, 'width': 30}
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize_and_center_crop
_UpperCAmelCase = size
_UpperCAmelCase = crop_pct
_UpperCAmelCase = crop_size
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = PoolFormerImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize_and_center_crop' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'crop_pct' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 30} )
self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} )
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 329 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def lowerCAmelCase__ ( *a__: str , a__: Optional[Union[Dict, Any]] = None , a__: Dict=True , a__: Any=2 ) -> Union[str, Any]:
'''simple docstring'''
from .. import __version__
_UpperCAmelCase = take_from
_UpperCAmelCase = ()
if not isinstance(args[0] , a__ ):
_UpperCAmelCase = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(a__ ).base_version ) >= version.parse(a__ ):
raise ValueError(
F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''''
F''' version {__version__} is >= {version_name}''' )
_UpperCAmelCase = None
if isinstance(a__ , a__ ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(a__ ),)
_UpperCAmelCase = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''
elif hasattr(a__ , a__ ):
values += (getattr(a__ , a__ ),)
_UpperCAmelCase = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''
elif deprecated_kwargs is None:
_UpperCAmelCase = F'''`{attribute}` is deprecated and will be removed in version {version_name}.'''
if warning is not None:
_UpperCAmelCase = warning + ' ' if standard_warn else ''
warnings.warn(warning + message , a__ , stacklevel=a__ )
if isinstance(a__ , a__ ) and len(a__ ) > 0:
_UpperCAmelCase = inspect.getouterframes(inspect.currentframe() )[1]
_UpperCAmelCase = call_frame.filename
_UpperCAmelCase = call_frame.lineno
_UpperCAmelCase = call_frame.function
_UpperCAmelCase , _UpperCAmelCase = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' )
if len(a__ ) == 0:
return
elif len(a__ ) == 1:
return values[0]
return values
| 329 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = BlipImageProcessor()
_UpperCAmelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel' )
_UpperCAmelCase = BlipProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
processor.save_pretrained(self.tmpdirname )
def UpperCAmelCase__ ( self , **_SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ).tokenizer
def UpperCAmelCase__ ( self , **_SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ).image_processor
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
_UpperCAmelCase = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_UpperCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
_UpperCAmelCase = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 )
_UpperCAmelCase = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , _SCREAMING_SNAKE_CASE )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='np' )
_UpperCAmelCase = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = 'lower newer'
_UpperCAmelCase = processor(text=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = 'lower newer'
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE )
self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
# test if it raises when no input is passed
with pytest.raises(_SCREAMING_SNAKE_CASE ):
processor()
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_UpperCAmelCase = processor.batch_decode(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE )
self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = BlipProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = 'lower newer'
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
| 329 |
import math
lowerCAmelCase__ :Optional[int] = 1_0
lowerCAmelCase__ :Optional[Any] = 7
lowerCAmelCase__ :Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS
def lowerCAmelCase__ ( a__: int = 2_0 ) -> str:
'''simple docstring'''
_UpperCAmelCase = math.comb(a__ , a__ )
_UpperCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ )
_UpperCAmelCase = NUM_COLOURS * (1 - missing_colour / total)
return F'''{result:.9f}'''
if __name__ == "__main__":
print(solution(2_0))
| 329 | 1 |
import json
import os
import re
import sys
import urllib.request
import requests
from bsa import BeautifulSoup
lowerCAmelCase__ :Union[str, Any] = {
'''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'''
''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582'''
}
def lowerCAmelCase__ ( a__: str = "dhaka" , a__: int = 5 ) -> int:
'''simple docstring'''
_UpperCAmelCase = min(a__ , 5_0 ) # Prevent abuse!
_UpperCAmelCase = {
'q': query,
'tbm': 'isch',
'hl': 'en',
'ijn': '0',
}
_UpperCAmelCase = requests.get('https://www.google.com/search' , params=a__ , headers=a__ )
_UpperCAmelCase = BeautifulSoup(html.text , 'html.parser' )
_UpperCAmelCase = ''.join(
re.findall(R'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) )
_UpperCAmelCase = json.dumps(a__ )
_UpperCAmelCase = json.loads(a__ )
_UpperCAmelCase = re.findall(
R'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , a__ , )
if not matched_google_image_data:
return 0
_UpperCAmelCase = re.sub(
R'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(a__ ) , )
_UpperCAmelCase = re.findall(
R'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , a__ , )
for index, fixed_full_res_image in enumerate(a__ ):
if index >= max_images:
return index
_UpperCAmelCase = bytes(a__ , 'ascii' ).decode(
'unicode-escape' )
_UpperCAmelCase = bytes(a__ , 'ascii' ).decode(
'unicode-escape' )
_UpperCAmelCase = urllib.request.build_opener()
_UpperCAmelCase = [
(
'User-Agent',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582',
)
]
urllib.request.install_opener(a__ )
_UpperCAmelCase = F'''query_{query.replace(" " , "_" )}'''
if not os.path.exists(a__ ):
os.makedirs(a__ )
urllib.request.urlretrieve( # noqa: S310
a__ , F'''{path_name}/original_size_img_{index}.jpg''' )
return index
if __name__ == "__main__":
try:
lowerCAmelCase__ :List[str] = download_images_from_google_query(sys.argv[1])
print(f'''{image_count} images were downloaded to disk.''')
except IndexError:
print('''Please provide a search term.''')
raise
| 329 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ :str = {
'''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ :Union[str, Any] = [
'''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MegatronBertForCausalLM''',
'''MegatronBertForMaskedLM''',
'''MegatronBertForMultipleChoice''',
'''MegatronBertForNextSentencePrediction''',
'''MegatronBertForPreTraining''',
'''MegatronBertForQuestionAnswering''',
'''MegatronBertForSequenceClassification''',
'''MegatronBertForTokenClassification''',
'''MegatronBertModel''',
'''MegatronBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 329 | 1 |
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=False , ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = size if size is not None else {'height': 20, 'width': 20}
_UpperCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18}
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = image_size
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize
_UpperCAmelCase = size
_UpperCAmelCase = do_center_crop
_UpperCAmelCase = crop_size
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
_UpperCAmelCase = do_reduce_labels
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def lowerCAmelCase__ ( ) -> List[str]:
'''simple docstring'''
_UpperCAmelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
_UpperCAmelCase = Image.open(dataset[0]['file'] )
_UpperCAmelCase = Image.open(dataset[1]['file'] )
return image, map
def lowerCAmelCase__ ( ) -> Dict:
'''simple docstring'''
_UpperCAmelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
_UpperCAmelCase = Image.open(ds[0]['file'] )
_UpperCAmelCase = Image.open(ds[1]['file'] )
_UpperCAmelCase = Image.open(ds[2]['file'] )
_UpperCAmelCase = Image.open(ds[3]['file'] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : List[str] = BeitImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = BeitImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_center_crop' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'center_crop' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 20, 'width': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
self.assertEqual(image_processor.do_reduce_labels , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
self.assertEqual(image_processor.do_reduce_labels , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = []
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , maps[0] , return_tensors='pt' )
self.assertEqual(
encoding['pixel_values'].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
self.assertEqual(
encoding['labels'].shape , (
1,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
self.assertEqual(encoding['labels'].dtype , torch.long )
self.assertTrue(encoding['labels'].min().item() >= 0 )
self.assertTrue(encoding['labels'].max().item() <= 255 )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors='pt' )
self.assertEqual(
encoding['pixel_values'].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
self.assertEqual(
encoding['labels'].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
self.assertEqual(encoding['labels'].dtype , torch.long )
self.assertTrue(encoding['labels'].min().item() >= 0 )
self.assertTrue(encoding['labels'].max().item() <= 255 )
# Test not batched input (PIL images)
_UpperCAmelCase , _UpperCAmelCase = prepare_semantic_single_inputs()
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors='pt' )
self.assertEqual(
encoding['pixel_values'].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
self.assertEqual(
encoding['labels'].shape , (
1,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
self.assertEqual(encoding['labels'].dtype , torch.long )
self.assertTrue(encoding['labels'].min().item() >= 0 )
self.assertTrue(encoding['labels'].max().item() <= 255 )
# Test batched input (PIL images)
_UpperCAmelCase , _UpperCAmelCase = prepare_semantic_batch_inputs()
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors='pt' )
self.assertEqual(
encoding['pixel_values'].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
self.assertEqual(
encoding['labels'].shape , (
2,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
self.assertEqual(encoding['labels'].dtype , torch.long )
self.assertTrue(encoding['labels'].min().item() >= 0 )
self.assertTrue(encoding['labels'].max().item() <= 255 )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
_UpperCAmelCase , _UpperCAmelCase = prepare_semantic_single_inputs()
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors='pt' )
self.assertTrue(encoding['labels'].min().item() >= 0 )
self.assertTrue(encoding['labels'].max().item() <= 150 )
_UpperCAmelCase = True
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors='pt' )
self.assertTrue(encoding['labels'].min().item() >= 0 )
self.assertTrue(encoding['labels'].max().item() <= 255 )
| 329 |
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def lowerCAmelCase__ ( a__: Tuple , a__: Optional[Any] , a__: Any ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = AutoConfig.from_pretrained(a__ )
_UpperCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=a__ )
_UpperCAmelCase = checkpoints.load_tax_checkpoint(a__ )
_UpperCAmelCase = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp']
if config.model_type == "t5":
_UpperCAmelCase = 'SelfAttention'
if config.model_type == "longt5" and config.encoder_attention_type == "local":
_UpperCAmelCase = 'LocalSelfAttention'
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = 'TransientGlobalSelfAttention'
else:
raise ValueError(
'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`'
' attribute with a value from [\'local\', \'transient-global].' )
# Encoder
for layer_index in range(config.num_layers ):
_UpperCAmelCase = F'''layers_{str(a__ )}'''
# Self-Attention
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel']
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale']
if split_mlp_wi:
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel']
else:
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale']
# Assigning
_UpperCAmelCase = flax_model.params['encoder']['block'][str(a__ )]['layer']
_UpperCAmelCase = tax_attention_key
_UpperCAmelCase = tax_attention_out
_UpperCAmelCase = tax_attention_query
_UpperCAmelCase = tax_attention_value
_UpperCAmelCase = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = tax_global_layer_norm
if split_mlp_wi:
_UpperCAmelCase = tax_mlp_wi_a
_UpperCAmelCase = tax_mlp_wi_a
else:
_UpperCAmelCase = tax_mlp_wi
_UpperCAmelCase = tax_mlp_wo
_UpperCAmelCase = tax_mlp_layer_norm
_UpperCAmelCase = flax_model_encoder_layer_block
# Only for layer 0:
_UpperCAmelCase = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T
_UpperCAmelCase = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T
_UpperCAmelCase = tax_encoder_global_rel_embedding
# Assigning
_UpperCAmelCase = tax_model['target']['encoder']['encoder_norm']['scale']
_UpperCAmelCase = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers ):
_UpperCAmelCase = F'''layers_{str(a__ )}'''
# Self-Attention
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][
'scale'
]
# Encoder-Decoder-Attention
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention']
_UpperCAmelCase = tax_enc_dec_attention_module['key']['kernel']
_UpperCAmelCase = tax_enc_dec_attention_module['out']['kernel']
_UpperCAmelCase = tax_enc_dec_attention_module['query']['kernel']
_UpperCAmelCase = tax_enc_dec_attention_module['value']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale']
# MLP
if split_mlp_wi:
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel']
else:
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale']
# Assigning
_UpperCAmelCase = flax_model.params['decoder']['block'][str(a__ )]['layer']
_UpperCAmelCase = tax_attention_key
_UpperCAmelCase = tax_attention_out
_UpperCAmelCase = tax_attention_query
_UpperCAmelCase = tax_attention_value
_UpperCAmelCase = tax_pre_attention_layer_norm
_UpperCAmelCase = tax_enc_dec_attention_key
_UpperCAmelCase = tax_enc_dec_attention_out
_UpperCAmelCase = tax_enc_dec_attention_query
_UpperCAmelCase = tax_enc_dec_attention_value
_UpperCAmelCase = tax_cross_layer_norm
if split_mlp_wi:
_UpperCAmelCase = tax_mlp_wi_a
_UpperCAmelCase = tax_mlp_wi_a
else:
_UpperCAmelCase = tax_mlp_wi
_UpperCAmelCase = tax_mlp_wo
_UpperCAmelCase = txa_mlp_layer_norm
_UpperCAmelCase = flax_model_decoder_layer_block
# Decoder Normalization
_UpperCAmelCase = tax_model['target']['decoder']['decoder_norm']['scale']
_UpperCAmelCase = txa_decoder_norm
# Only for layer 0:
_UpperCAmelCase = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T
_UpperCAmelCase = tax_decoder_rel_embedding
# Token Embeddings
_UpperCAmelCase = tax_model['target']['token_embedder']['embedding']
_UpperCAmelCase = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
_UpperCAmelCase = tax_model['target']['decoder']['logits_dense']['kernel']
flax_model.save_pretrained(a__ )
print('T5X Model was sucessfully converted!' )
if __name__ == "__main__":
lowerCAmelCase__ :List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.'''
)
parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''')
parser.add_argument(
'''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.'''
)
lowerCAmelCase__ :List[str] = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 329 | 1 |
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = size if size is not None else {'height': 18, 'width': 18}
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = image_size
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize
_UpperCAmelCase = size
_UpperCAmelCase = do_normalize
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8866443634033203, 0.6618829369544983, 0.3891746401786804],
[-0.6042559146881104, -0.02295008860528469, 0.5423797369003296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : Tuple = ImageGPTImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = ImageGPTImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'clusters' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 18} )
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
_UpperCAmelCase = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE , obj[key] ) )
else:
self.assertEqual(obj[key] , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
_UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , 'image_processor.json' )
image_processor_first.to_json_file(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.image_processing_class.from_json_file(_SCREAMING_SNAKE_CASE ).to_dict()
_UpperCAmelCase = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.image_processing_class.from_pretrained(_SCREAMING_SNAKE_CASE ).to_dict()
_UpperCAmelCase = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(_SCREAMING_SNAKE_CASE , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , _SCREAMING_SNAKE_CASE )
@unittest.skip('ImageGPT requires clusters at initialization' )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
pass
def lowerCAmelCase__ ( ) -> Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' )
_UpperCAmelCase = Image.open(dataset[4]['file'] )
_UpperCAmelCase = Image.open(dataset[5]['file'] )
_UpperCAmelCase = [imagea, imagea]
return images
@require_vision
@require_torch
class __a ( unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' )
_UpperCAmelCase = prepare_images()
# test non-batched
_UpperCAmelCase = image_processing(images[0] , return_tensors='pt' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1024) )
_UpperCAmelCase = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , _SCREAMING_SNAKE_CASE )
# test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1024) )
_UpperCAmelCase = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , _SCREAMING_SNAKE_CASE )
| 329 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ :List[Any] = logging.get_logger(__name__)
lowerCAmelCase__ :Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''}
class __a ( UpperCAmelCase ):
_a : str = 'ctrl'
_a : Tuple = ['past_key_values']
_a : List[Any] = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _SCREAMING_SNAKE_CASE=246534 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=1280 , _SCREAMING_SNAKE_CASE=8192 , _SCREAMING_SNAKE_CASE=48 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = vocab_size
_UpperCAmelCase = n_positions
_UpperCAmelCase = n_embd
_UpperCAmelCase = n_layer
_UpperCAmelCase = n_head
_UpperCAmelCase = dff
_UpperCAmelCase = resid_pdrop
_UpperCAmelCase = embd_pdrop
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = initializer_range
_UpperCAmelCase = use_cache
super().__init__(**_SCREAMING_SNAKE_CASE )
| 329 | 1 |
import datasets
lowerCAmelCase__ :int = '''\
@InProceedings{conneau2018xnli,
author = "Conneau, Alexis
and Rinott, Ruty
and Lample, Guillaume
and Williams, Adina
and Bowman, Samuel R.
and Schwenk, Holger
and Stoyanov, Veselin",
title = "XNLI: Evaluating Cross-lingual Sentence Representations",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing",
year = "2018",
publisher = "Association for Computational Linguistics",
location = "Brussels, Belgium",
}
'''
lowerCAmelCase__ :Union[str, Any] = '''\
XNLI is a subset of a few thousand examples from MNLI which has been translated
into a 14 different languages (some low-ish resource). As with MNLI, the goal is
to predict textual entailment (does sentence A imply/contradict/neither sentence
B) and is a classification task (given two sentences, predict one of three
labels).
'''
lowerCAmelCase__ :Optional[Any] = '''
Computes XNLI score which is just simple accuracy.
Args:
predictions: Predicted labels.
references: Ground truth labels.
Returns:
\'accuracy\': accuracy
Examples:
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> xnli_metric = datasets.load_metric("xnli")
>>> results = xnli_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0}
'''
def lowerCAmelCase__ ( a__: str , a__: Dict ) -> Any:
'''simple docstring'''
return (preds == labels).mean()
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __a ( datasets.Metric ):
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ),
'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ),
} ) , codebase_urls=[] , reference_urls=[] , format='numpy' , )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}
| 329 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 255 , _SCREAMING_SNAKE_CASE=True , ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333}
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize
_UpperCAmelCase = size
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
_UpperCAmelCase = do_rescale
_UpperCAmelCase = rescale_factor
_UpperCAmelCase = do_pad
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any:
"""simple docstring"""
if not batched:
_UpperCAmelCase = image_inputs[0]
if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ):
_UpperCAmelCase , _UpperCAmelCase = image.size
else:
_UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2]
if w < h:
_UpperCAmelCase = int(self.size['shortest_edge'] * h / w )
_UpperCAmelCase = self.size['shortest_edge']
elif w > h:
_UpperCAmelCase = self.size['shortest_edge']
_UpperCAmelCase = int(self.size['shortest_edge'] * w / h )
else:
_UpperCAmelCase = self.size['shortest_edge']
_UpperCAmelCase = self.size['shortest_edge']
else:
_UpperCAmelCase = []
for image in image_inputs:
_UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0]
_UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : str = DeformableDetrImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = DeformableDetrImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_rescale' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} )
self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
_UpperCAmelCase = json.loads(f.read() )
_UpperCAmelCase = {'image_id': 39769, 'annotations': target}
# encode them
_UpperCAmelCase = DeformableDetrImageProcessor()
_UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors='pt' )
# verify pixel values
_UpperCAmelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
# verify area
_UpperCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) )
# verify boxes
_UpperCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) )
# verify image_id
_UpperCAmelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) )
# verify is_crowd
_UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) )
# verify class_labels
_UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) )
# verify orig_size
_UpperCAmelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) )
# verify size
_UpperCAmelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
@slow
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
_UpperCAmelCase = json.loads(f.read() )
_UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target}
_UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
_UpperCAmelCase = DeformableDetrImageProcessor(format='coco_panoptic' )
_UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors='pt' )
# verify pixel values
_UpperCAmelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
# verify area
_UpperCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) )
# verify boxes
_UpperCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) )
# verify image_id
_UpperCAmelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) )
# verify is_crowd
_UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) )
# verify class_labels
_UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) )
# verify masks
_UpperCAmelCase = 822873
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _SCREAMING_SNAKE_CASE )
# verify orig_size
_UpperCAmelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) )
# verify size
_UpperCAmelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
| 329 | 1 |
import re
import tempfile
from pathlib import Path
import pytest
import yaml
from datasets.utils.readme import ReadMe
# @pytest.fixture
# def example_yaml_structure():
lowerCAmelCase__ :Optional[int] = yaml.safe_load(
'''\
name: ""
allow_empty: false
allow_empty_text: true
subsections:
- name: "Dataset Card for X" # First-level markdown heading
allow_empty: false
allow_empty_text: true
subsections:
- name: "Table of Contents"
allow_empty: false
allow_empty_text: false
subsections: null
- name: "Dataset Description"
allow_empty: false
allow_empty_text: false
subsections:
- name: "Dataset Summary"
allow_empty: false
allow_empty_text: false
subsections: null
- name: "Supported Tasks and Leaderboards"
allow_empty: true
allow_empty_text: true
subsections: null
- name: Languages
allow_empty: false
allow_empty_text: true
subsections: null
'''
)
lowerCAmelCase__ :Optional[int] = {
'''name''': '''root''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{
'''name''': '''Dataset Card for My Dataset''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []},
{
'''name''': '''Dataset Description''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Dataset Summary''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [],
},
{
'''name''': '''Supported Tasks and Leaderboards''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
},
{'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []},
],
},
],
}
],
}
lowerCAmelCase__ :int = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase__ :str = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
#### Extra Ignored Subsection
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase__ :Tuple = {
'''name''': '''root''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{
'''name''': '''Dataset Card for My Dataset''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [
{'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []},
{
'''name''': '''Dataset Description''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Dataset Summary''',
'''text''': '''Some text here.''',
'''is_empty_text''': False,
'''subsections''': [
{
'''name''': '''Extra Ignored Subsection''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
}
],
},
{
'''name''': '''Supported Tasks and Leaderboards''',
'''text''': '''''',
'''is_empty_text''': True,
'''subsections''': [],
},
{'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []},
],
},
],
}
],
}
lowerCAmelCase__ :int = '''\
---
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase__ :List[Any] = (
'''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.'''
)
lowerCAmelCase__ :Optional[Any] = '''\
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase__ :Optional[Any] = (
'''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.'''
)
lowerCAmelCase__ :int = '''\
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase__ :int = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.'''
lowerCAmelCase__ :List[str] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase__ :Union[str, Any] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).'''
lowerCAmelCase__ :List[str] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
'''
lowerCAmelCase__ :Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.'''
lowerCAmelCase__ :Optional[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Languages
Language Text
'''
lowerCAmelCase__ :Optional[int] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.'''
lowerCAmelCase__ :Optional[int] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
'''
lowerCAmelCase__ :List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.'''
lowerCAmelCase__ :Union[str, Any] = '''\
---
language:
- zh
- en
---
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase__ :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.'''
lowerCAmelCase__ :List[Any] = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
# Dataset Card My Dataset
'''
lowerCAmelCase__ :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.'''
lowerCAmelCase__ :str = '''\
---
language:
- zh
- en
---
# Dataset Card My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase__ :List[Any] = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.'''
lowerCAmelCase__ :Any = ''''''
lowerCAmelCase__ :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.'''
lowerCAmelCase__ :int = '''\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
'''
lowerCAmelCase__ :Optional[Any] = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.'''
@pytest.mark.parametrize(
'readme_md, expected_dict' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def lowerCAmelCase__ ( a__: Union[str, Any] , a__: Optional[int] ) -> List[str]:
'''simple docstring'''
assert ReadMe.from_string(a__ , a__ ).to_dict() == expected_dict
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def lowerCAmelCase__ ( a__: Optional[Any] , a__: List[str] ) -> Dict:
'''simple docstring'''
with pytest.raises(a__ , match=re.escape(expected_error.format(path='root' ) ) ):
_UpperCAmelCase = ReadMe.from_string(a__ , a__ )
readme.validate()
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCAmelCase__ ( a__: Optional[int] , a__: Tuple ) -> List[str]:
'''simple docstring'''
with pytest.raises(a__ , match=re.escape(expected_error.format(path='root' ) ) ):
ReadMe.from_string(a__ , a__ )
@pytest.mark.parametrize(
'readme_md,' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCAmelCase__ ( a__: List[str] ) -> Union[str, Any]:
'''simple docstring'''
ReadMe.from_string(a__ , a__ , suppress_parsing_errors=a__ )
@pytest.mark.parametrize(
'readme_md, expected_dict' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def lowerCAmelCase__ ( a__: Union[str, Any] , a__: Tuple ) -> int:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCAmelCase = Path(a__ ) / 'README.md'
with open(a__ , 'w+' ) as readme_file:
readme_file.write(a__ )
_UpperCAmelCase = ReadMe.from_readme(a__ , a__ ).to_dict()
assert out["name"] == path
assert out["text"] == ""
assert out["is_empty_text"]
assert out["subsections"] == expected_dict["subsections"]
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def lowerCAmelCase__ ( a__: str , a__: int ) -> Union[str, Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCAmelCase = Path(a__ ) / 'README.md'
with open(a__ , 'w+' ) as readme_file:
readme_file.write(a__ )
_UpperCAmelCase = expected_error.format(path=a__ )
with pytest.raises(a__ , match=re.escape(a__ ) ):
_UpperCAmelCase = ReadMe.from_readme(a__ , a__ )
readme.validate()
@pytest.mark.parametrize(
'readme_md, expected_error' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCAmelCase__ ( a__: str , a__: int ) -> Any:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCAmelCase = Path(a__ ) / 'README.md'
with open(a__ , 'w+' ) as readme_file:
readme_file.write(a__ )
_UpperCAmelCase = expected_error.format(path=a__ )
with pytest.raises(a__ , match=re.escape(a__ ) ):
ReadMe.from_readme(a__ , a__ )
@pytest.mark.parametrize(
'readme_md,' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def lowerCAmelCase__ ( a__: str ) -> List[Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCAmelCase = Path(a__ ) / 'README.md'
with open(a__ , 'w+' ) as readme_file:
readme_file.write(a__ )
ReadMe.from_readme(a__ , a__ , suppress_parsing_errors=a__ )
| 329 |
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class __a ( unittest.TestCase ):
_a : List[str] = JukeboxTokenizer
_a : List[Any] = {
'artist': 'Zac Brown Band',
'genres': 'Country',
'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ',
}
@require_torch
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
import torch
_UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' )
_UpperCAmelCase = tokenizer(**self.metas )['input_ids']
# fmt: off
_UpperCAmelCase = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
import torch
_UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' )
_UpperCAmelCase = tokenizer(**self.metas )['input_ids']
# fmt: off
_UpperCAmelCase = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 329 | 1 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
lowerCAmelCase__ :int = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
lowerCAmelCase__ :Tuple = [file for file in filepaths if file != file.lower()]
if upper_files:
print(f'''{len(upper_files)} files contain uppercase characters:''')
print('''\n'''.join(upper_files) + '''\n''')
lowerCAmelCase__ :List[Any] = [file for file in filepaths if ''' ''' in file]
if space_files:
print(f'''{len(space_files)} files contain space characters:''')
print('''\n'''.join(space_files) + '''\n''')
lowerCAmelCase__ :Optional[Any] = [file for file in filepaths if '''-''' in file]
if hyphen_files:
print(f'''{len(hyphen_files)} files contain hyphen characters:''')
print('''\n'''.join(hyphen_files) + '''\n''')
lowerCAmelCase__ :Tuple = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(f'''{len(nodir_files)} files are not in a directory:''')
print('''\n'''.join(nodir_files) + '''\n''')
lowerCAmelCase__ :List[str] = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 329 |
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
lowerCAmelCase__ :Optional[int] = logging.getLogger(__name__)
def lowerCAmelCase__ ( ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = argparse.ArgumentParser(
description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' )
parser.add_argument(
'--dataset_name' , type=a__ , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , )
parser.add_argument(
'--dataset_config' , type=a__ , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' )
parser.add_argument(
'--tokenizer_name_or_path' , type=a__ , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , )
parser.add_argument(
'--shard_size' , type=a__ , default=1_0_0_0 , help='Number of entries to go in a single shard.' , )
parser.add_argument('--split' , type=a__ , default='train' , choices=['train', 'test', 'validation'] )
parser.add_argument(
'--limit' , default=a__ , type=a__ , help='Limit the number of shards (used for debugging).' , )
parser.add_argument(
'--max_length' , type=a__ , default=5_1_2 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum'
' sequence length that is a multiple of 8.' , )
parser.add_argument(
'--output_dir' , default='tf-tpu' , type=a__ , help='Output directory where the TFRecord shards will be saved. If the'
' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord'
' shards will be directly saved to a Google Cloud Storage bucket.' , )
_UpperCAmelCase = parser.parse_args()
return args
def lowerCAmelCase__ ( a__: Union[str, Any] ) -> List[Any]:
'''simple docstring'''
def fn(a__: str ):
return tokenizer(examples['text'] )
return fn
def lowerCAmelCase__ ( a__: List[str] ) -> Any:
'''simple docstring'''
_UpperCAmelCase = []
for i in range(len(tokenized_data['input_ids'] ) ):
_UpperCAmelCase = {
'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ),
'attention_mask': tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ),
}
_UpperCAmelCase = tf.train.Features(feature=a__ )
_UpperCAmelCase = tf.train.Example(features=a__ )
_UpperCAmelCase = example.SerializeToString()
records.append(a__ )
return records
def lowerCAmelCase__ ( a__: Union[str, Any] ) -> int:
'''simple docstring'''
_UpperCAmelCase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
_UpperCAmelCase = min(len(a__ ) , args.limit )
_UpperCAmelCase = dataset.select(range(a__ ) )
print(F'''Limiting the dataset to {args.limit} entries.''' )
_UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
_UpperCAmelCase = os.path.join(args.output_dir , args.split )
if not os.path.exists(a__ ):
os.makedirs(a__ )
else:
_UpperCAmelCase = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
_UpperCAmelCase = tokenize_function(a__ )
_UpperCAmelCase = dataset.map(a__ , batched=a__ , num_proc=4 , remove_columns=['text'] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(a__: Optional[int] ):
# Concatenate all texts.
_UpperCAmelCase = {k: sum(examples[k] , [] ) for k in examples.keys()}
_UpperCAmelCase = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
_UpperCAmelCase = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
_UpperCAmelCase = {
k: [t[i : i + args.max_length] for i in range(0 , a__ , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
_UpperCAmelCase = dataset_tokenized.map(a__ , batched=a__ , batch_size=1_0_0_0 , num_proc=4 )
_UpperCAmelCase = 0
_UpperCAmelCase = 0
for shard in range(0 , len(a__ ) , args.shard_size ):
_UpperCAmelCase = grouped_dataset[shard : shard + args.shard_size]
_UpperCAmelCase = len(dataset_snapshot['input_ids'] )
_UpperCAmelCase = os.path.join(a__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' )
_UpperCAmelCase = get_serialized_examples(a__ )
with tf.io.TFRecordWriter(a__ ) as out_file:
for i in range(len(a__ ) ):
_UpperCAmelCase = serialized_examples[i]
out_file.write(a__ )
print('Wrote file {} containing {} records'.format(a__ , a__ ) )
shard_count += 1
total_records += records_containing
with open(F'''split-{args.split}-records-count.txt''' , 'w' ) as f:
print(F'''Total {args.split} records: {total_records}''' , file=a__ )
if __name__ == "__main__":
lowerCAmelCase__ :str = parse_args()
main(args)
| 329 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , ) -> int:
"""simple docstring"""
_UpperCAmelCase = size if size is not None else {'shortest_edge': 20}
_UpperCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18}
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = image_size
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize
_UpperCAmelCase = size
_UpperCAmelCase = do_center_crop
_UpperCAmelCase = crop_size
_UpperCAmelCase = do_flip_channel_order
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : List[str] = MobileViTImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = MobileViTImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_center_crop' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'center_crop' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_flip_channel_order' ) )
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 329 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any]=1_0 ) -> Any:
'''simple docstring'''
_UpperCAmelCase = []
for _ in range(a__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def lowerCAmelCase__ ( a__: List[str] , a__: Any=1_0 ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = []
for step in range(a__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
_UpperCAmelCase = os.path.join(a__ , 'schedule.bin' )
torch.save(scheduler.state_dict() , a__ )
_UpperCAmelCase = torch.load(a__ )
scheduler.load_state_dict(a__ )
return lrs
@require_torch
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) )
for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] )
_UpperCAmelCase = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_UpperCAmelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 )
for _ in range(100 ):
_UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] )
_UpperCAmelCase = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_UpperCAmelCase = Adafactor(
params=[w] , lr=1e-2 , eps=(1e-3_0, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_SCREAMING_SNAKE_CASE , weight_decay=0.0 , relative_step=_SCREAMING_SNAKE_CASE , scale_parameter=_SCREAMING_SNAKE_CASE , warmup_init=_SCREAMING_SNAKE_CASE , )
for _ in range(1000 ):
_UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
@require_torch
class __a ( unittest.TestCase ):
_a : Dict = nn.Linear(50 , 50 ) if is_torch_available() else None
_a : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
_a : List[Any] = 10
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> str:
"""simple docstring"""
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) )
for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE , msg=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = {'num_warmup_steps': 2, 'num_training_steps': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
_UpperCAmelCase = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1e-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
_UpperCAmelCase , _UpperCAmelCase = data
_UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
_UpperCAmelCase = unwrap_schedule(_SCREAMING_SNAKE_CASE , self.num_steps )
self.assertListAlmostEqual(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
_UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_SCREAMING_SNAKE_CASE ) # wrap to test picklability of the schedule
_UpperCAmelCase = unwrap_and_save_reload_schedule(_SCREAMING_SNAKE_CASE , self.num_steps )
self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , msg=f'''failed for {scheduler_func} in save and reload''' )
class __a :
def __init__( self , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
_UpperCAmelCase = fn
def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
return self.fn(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
@classmethod
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = list(map(self , scheduler.lr_lambdas ) )
| 329 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ :List[Any] = logging.get_logger(__name__)
lowerCAmelCase__ :Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''}
class __a ( UpperCAmelCase ):
_a : str = 'ctrl'
_a : Tuple = ['past_key_values']
_a : List[Any] = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _SCREAMING_SNAKE_CASE=246534 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=1280 , _SCREAMING_SNAKE_CASE=8192 , _SCREAMING_SNAKE_CASE=48 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = vocab_size
_UpperCAmelCase = n_positions
_UpperCAmelCase = n_embd
_UpperCAmelCase = n_layer
_UpperCAmelCase = n_head
_UpperCAmelCase = dff
_UpperCAmelCase = resid_pdrop
_UpperCAmelCase = embd_pdrop
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = initializer_range
_UpperCAmelCase = use_cache
super().__init__(**_SCREAMING_SNAKE_CASE )
| 329 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ :Any = logging.get_logger(__name__)
def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any] , a__: Dict , a__: Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = original_name.split('.' )[0]
_UpperCAmelCase = key.split('.' )
_UpperCAmelCase = int(key_list[key_list.index(a__ ) - 2] )
_UpperCAmelCase = int(key_list[key_list.index(a__ ) - 1] )
_UpperCAmelCase = orig_block_num - offset
_UpperCAmelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def lowerCAmelCase__ ( a__: Tuple ) -> int:
'''simple docstring'''
_UpperCAmelCase = OrderedDict()
_UpperCAmelCase , _UpperCAmelCase = 0, 0
for key, value in state_dict.items():
if key.startswith('network' ):
_UpperCAmelCase = key.replace('network' , 'poolformer.encoder' )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith('bias' ) and "patch_embed" not in key:
patch_emb_offset += 1
_UpperCAmelCase = key[: key.find('proj' )]
_UpperCAmelCase = key.replace(a__ , F'''patch_embeddings.{total_embed_found}.''' )
_UpperCAmelCase = key.replace('proj' , 'projection' )
if key.endswith('bias' ):
total_embed_found += 1
if "patch_embeddings" in key:
_UpperCAmelCase = 'poolformer.encoder.' + key
if "mlp.fc1" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc1' , 'output.conv1' )
if "mlp.fc2" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc2' , 'output.conv2' )
if "norm1" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm1' , 'before_norm' )
if "norm2" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm2' , 'after_norm' )
if "layer_scale_1" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_1' , 'layer_scale_1' )
if "layer_scale_2" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_2' , 'layer_scale_2' )
if "head" in key:
_UpperCAmelCase = key.replace('head' , 'classifier' )
_UpperCAmelCase = value
return new_state_dict
def lowerCAmelCase__ ( ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
_UpperCAmelCase = Image.open(requests.get(a__ , stream=a__ ).raw )
return image
@torch.no_grad()
def lowerCAmelCase__ ( a__: Optional[int] , a__: Dict , a__: Any ) -> Dict:
'''simple docstring'''
_UpperCAmelCase = PoolFormerConfig()
# set attributes based on model_name
_UpperCAmelCase = 'huggingface/label-files'
_UpperCAmelCase = model_name[-3:]
_UpperCAmelCase = 1_0_0_0
_UpperCAmelCase = 'imagenet-1k-id2label.json'
_UpperCAmelCase = (1, 1_0_0_0)
# set config attributes
_UpperCAmelCase = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) )
_UpperCAmelCase = {int(a__ ): v for k, v in idalabel.items()}
_UpperCAmelCase = idalabel
_UpperCAmelCase = {v: k for k, v in idalabel.items()}
if size == "s12":
_UpperCAmelCase = [2, 2, 6, 2]
_UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 0.9
elif size == "s24":
_UpperCAmelCase = [4, 4, 1_2, 4]
_UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 0.9
elif size == "s36":
_UpperCAmelCase = [6, 6, 1_8, 6]
_UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 1e-6
_UpperCAmelCase = 0.9
elif size == "m36":
_UpperCAmelCase = [6, 6, 1_8, 6]
_UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 1e-6
_UpperCAmelCase = 0.95
elif size == "m48":
_UpperCAmelCase = [8, 8, 2_4, 8]
_UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 1e-6
_UpperCAmelCase = 0.95
else:
raise ValueError(F'''Size {size} not supported''' )
# load image processor
_UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ )
# Prepare image
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=a__ , return_tensors='pt' ).pixel_values
logger.info(F'''Converting model {model_name}...''' )
# load original state dict
_UpperCAmelCase = torch.load(a__ , map_location=torch.device('cpu' ) )
# rename keys
_UpperCAmelCase = rename_keys(a__ )
# create HuggingFace model and load state dict
_UpperCAmelCase = PoolFormerForImageClassification(a__ )
model.load_state_dict(a__ )
model.eval()
# Define image processor
_UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ )
_UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values
# forward pass
_UpperCAmelCase = model(a__ )
_UpperCAmelCase = outputs.logits
# define expected logit slices for different models
if size == "s12":
_UpperCAmelCase = torch.tensor([-0.3_045, -0.6_758, -0.4_869] )
elif size == "s24":
_UpperCAmelCase = torch.tensor([0.4_402, -0.1_374, -0.8_045] )
elif size == "s36":
_UpperCAmelCase = torch.tensor([-0.6_080, -0.5_133, -0.5_898] )
elif size == "m36":
_UpperCAmelCase = torch.tensor([0.3_952, 0.2_263, -1.2_668] )
elif size == "m48":
_UpperCAmelCase = torch.tensor([0.1_167, -0.0_656, -0.3_423] )
else:
raise ValueError(F'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] , a__ , atol=1e-2 )
# finally, save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(a__ ).mkdir(exist_ok=a__ )
model.save_pretrained(a__ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(a__ )
if __name__ == "__main__":
lowerCAmelCase__ :str = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''poolformer_s12''',
type=str,
help='''Name of the model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
lowerCAmelCase__ :Dict = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 329 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase__ :Tuple = logging.get_logger(__name__)
def lowerCAmelCase__ ( a__: List[str] , a__: List[str] ) -> int:
'''simple docstring'''
_UpperCAmelCase = b.T
_UpperCAmelCase = np.sum(np.square(a__ ) , axis=1 )
_UpperCAmelCase = np.sum(np.square(a__ ) , axis=0 )
_UpperCAmelCase = np.matmul(a__ , a__ )
_UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :]
return d
def lowerCAmelCase__ ( a__: List[Any] , a__: str ) -> Dict:
'''simple docstring'''
_UpperCAmelCase = x.reshape(-1 , 3 )
_UpperCAmelCase = squared_euclidean_distance(a__ , a__ )
return np.argmin(a__ , axis=1 )
class __a ( UpperCAmelCase ):
_a : Optional[Any] = ['pixel_values']
def __init__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , ) -> None:
"""simple docstring"""
super().__init__(**_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = size if size is not None else {'height': 256, 'width': 256}
_UpperCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = np.array(_SCREAMING_SNAKE_CASE ) if clusters is not None else None
_UpperCAmelCase = do_resize
_UpperCAmelCase = size
_UpperCAmelCase = resample
_UpperCAmelCase = do_normalize
_UpperCAmelCase = do_color_quantize
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray:
"""simple docstring"""
_UpperCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' )
return resize(
_SCREAMING_SNAKE_CASE , size=(size['height'], size['width']) , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , ) -> np.ndarray:
"""simple docstring"""
_UpperCAmelCase = rescale(image=_SCREAMING_SNAKE_CASE , scale=1 / 127.5 , data_format=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = image - 1
return image
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image:
"""simple docstring"""
_UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
_UpperCAmelCase = size if size is not None else self.size
_UpperCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = resample if resample is not None else self.resample
_UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
_UpperCAmelCase = clusters if clusters is not None else self.clusters
_UpperCAmelCase = np.array(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = make_list_of_images(_SCREAMING_SNAKE_CASE )
if not valid_images(_SCREAMING_SNAKE_CASE ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_color_quantize and clusters is None:
raise ValueError('Clusters must be specified if do_color_quantize is True.' )
# All transformations expect numpy arrays.
_UpperCAmelCase = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images]
if do_resize:
_UpperCAmelCase = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images]
if do_normalize:
_UpperCAmelCase = [self.normalize(image=_SCREAMING_SNAKE_CASE ) for image in images]
if do_color_quantize:
_UpperCAmelCase = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , ChannelDimension.LAST ) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
_UpperCAmelCase = np.array(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = color_quantize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).reshape(images.shape[:-1] )
# flatten to (batch_size, height*width)
_UpperCAmelCase = images.shape[0]
_UpperCAmelCase = images.reshape(_SCREAMING_SNAKE_CASE , -1 )
# We need to convert back to a list of images to keep consistent behaviour across processors.
_UpperCAmelCase = list(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images]
_UpperCAmelCase = {'input_ids': images}
return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
| 329 |
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
_UpperCAmelCase = dataset
_UpperCAmelCase = process
_UpperCAmelCase = params
def __len__( self ) -> Union[str, Any]:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.dataset[i]
_UpperCAmelCase = self.process(_SCREAMING_SNAKE_CASE , **self.params )
return processed
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = loader
_UpperCAmelCase = infer
_UpperCAmelCase = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
_UpperCAmelCase = None
_UpperCAmelCase = loader_batch_size
# Internal bookkeeping
_UpperCAmelCase = None
_UpperCAmelCase = None
def __len__( self ) -> Any:
"""simple docstring"""
return len(self.loader )
def __iter__( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = iter(self.loader )
return self
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
_UpperCAmelCase = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
_UpperCAmelCase = {}
for k, element in self._loader_batch_data.items():
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
# Convert ModelOutput to tuple first
_UpperCAmelCase = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
_UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
_UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
_UpperCAmelCase = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_UpperCAmelCase = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_UpperCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
_UpperCAmelCase = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
_UpperCAmelCase = self._loader_batch_data.__class__(_SCREAMING_SNAKE_CASE )
self._loader_batch_index += 1
return result
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
_UpperCAmelCase = next(self.iterator )
_UpperCAmelCase = self.infer(_SCREAMING_SNAKE_CASE , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
_UpperCAmelCase = processed
else:
_UpperCAmelCase = list(processed.keys() )[0]
_UpperCAmelCase = processed[key]
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = len(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_UpperCAmelCase = observed_batch_size
# Setting internal index to unwrap the batch
_UpperCAmelCase = processed
_UpperCAmelCase = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple:
"""simple docstring"""
super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def __iter__( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = iter(self.loader )
_UpperCAmelCase = None
return self
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
if self.subiterator is None:
_UpperCAmelCase = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
_UpperCAmelCase = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
_UpperCAmelCase = self.infer(next(self.iterator ) , **self.params )
_UpperCAmelCase = next(self.subiterator )
return processed
class __a ( UpperCAmelCase ):
def __iter__( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = iter(self.loader )
return self
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = False
_UpperCAmelCase = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
_UpperCAmelCase = self.loader_batch_item()
_UpperCAmelCase = item.pop('is_last' )
accumulator.append(_SCREAMING_SNAKE_CASE )
if is_last:
return accumulator
while not is_last:
_UpperCAmelCase = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
_UpperCAmelCase = processed
else:
_UpperCAmelCase = list(processed.keys() )[0]
_UpperCAmelCase = processed[key]
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = len(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_UpperCAmelCase = observed_batch_size
_UpperCAmelCase = processed
_UpperCAmelCase = 0
while self._loader_batch_index < self.loader_batch_size:
_UpperCAmelCase = self.loader_batch_item()
_UpperCAmelCase = item.pop('is_last' )
accumulator.append(_SCREAMING_SNAKE_CASE )
if is_last:
return accumulator
else:
_UpperCAmelCase = processed
_UpperCAmelCase = item.pop('is_last' )
accumulator.append(_SCREAMING_SNAKE_CASE )
return accumulator
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = dataset
_UpperCAmelCase = key
def __len__( self ) -> Optional[int]:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
return self.dataset[i][self.key]
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = dataset
_UpperCAmelCase = keya
_UpperCAmelCase = keya
def __len__( self ) -> Optional[int]:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 329 | 1 |
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def lowerCAmelCase__ ( a__: Dict , a__: Tuple=False ) -> Any:
'''simple docstring'''
try:
_UpperCAmelCase = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_UpperCAmelCase = default
else:
# KEY is set, convert it to True or False.
try:
_UpperCAmelCase = strtobool(a__ )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F'''If set, {key} must be yes or no.''' )
return _value
lowerCAmelCase__ :Tuple = parse_flag_from_env('''RUN_SLOW''', default=False)
def lowerCAmelCase__ ( a__: Optional[Any] ) -> int:
'''simple docstring'''
return unittest.skip('Test was skipped' )(a__ )
def lowerCAmelCase__ ( a__: Dict ) -> Any:
'''simple docstring'''
return unittest.skipUnless(_run_slow_tests , 'test is slow' )(a__ )
def lowerCAmelCase__ ( a__: Tuple ) -> Optional[Any]:
'''simple docstring'''
return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(a__ )
def lowerCAmelCase__ ( a__: Dict ) -> int:
'''simple docstring'''
return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(a__ )
def lowerCAmelCase__ ( a__: Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(a__ )
def lowerCAmelCase__ ( a__: Any ) -> Dict:
'''simple docstring'''
return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(a__ )
def lowerCAmelCase__ ( a__: Union[str, Any] ) -> Any:
'''simple docstring'''
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(a__ )
def lowerCAmelCase__ ( a__: Tuple ) -> List[str]:
'''simple docstring'''
return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(a__ )
def lowerCAmelCase__ ( a__: str ) -> Tuple:
'''simple docstring'''
return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(a__ )
def lowerCAmelCase__ ( a__: Union[str, Any] ) -> List[Any]:
'''simple docstring'''
return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(a__ )
def lowerCAmelCase__ ( a__: str ) -> List[str]:
'''simple docstring'''
return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(a__ )
def lowerCAmelCase__ ( a__: Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(a__ )
def lowerCAmelCase__ ( a__: str ) -> List[Any]:
'''simple docstring'''
return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(a__ )
def lowerCAmelCase__ ( a__: Optional[int] ) -> Tuple:
'''simple docstring'''
return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(a__ )
def lowerCAmelCase__ ( a__: Optional[int] ) -> int:
'''simple docstring'''
return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(a__ )
def lowerCAmelCase__ ( a__: List[str] ) -> List[Any]:
'''simple docstring'''
return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(a__ )
def lowerCAmelCase__ ( a__: Union[str, Any]=None , a__: Tuple=None ) -> str:
'''simple docstring'''
if test_case is None:
return partial(a__ , version=a__ )
return unittest.skipUnless(is_torch_version('>=' , a__ ) , F'''test requires torch version >= {version}''' )(a__ )
def lowerCAmelCase__ ( a__: int ) -> Optional[Any]:
'''simple docstring'''
return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(a__ )
def lowerCAmelCase__ ( a__: Optional[int] ) -> Any:
'''simple docstring'''
return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(a__ )
def lowerCAmelCase__ ( a__: Optional[Any] ) -> str:
'''simple docstring'''
return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(a__ )
lowerCAmelCase__ :Optional[int] = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def lowerCAmelCase__ ( a__: Any ) -> Optional[Any]:
'''simple docstring'''
return unittest.skipUnless(
_atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(a__ )
class __a ( unittest.TestCase ):
_a : Optional[int] = True
@classmethod
def UpperCAmelCase__ ( cls ) -> int:
"""simple docstring"""
_UpperCAmelCase = tempfile.mkdtemp()
@classmethod
def UpperCAmelCase__ ( cls ) -> Any:
"""simple docstring"""
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob('**/*' ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(_SCREAMING_SNAKE_CASE )
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
_UpperCAmelCase = mocks if isinstance(_SCREAMING_SNAKE_CASE , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def lowerCAmelCase__ ( a__: Tuple ) -> str:
'''simple docstring'''
_UpperCAmelCase = AcceleratorState()
_UpperCAmelCase = tensor[None].clone().to(state.device )
_UpperCAmelCase = gather(a__ ).cpu()
_UpperCAmelCase = tensor[0].cpu()
for i in range(tensors.shape[0] ):
if not torch.equal(tensors[i] , a__ ):
return False
return True
class __a :
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
_UpperCAmelCase = returncode
_UpperCAmelCase = stdout
_UpperCAmelCase = stderr
async def lowerCAmelCase__ ( a__: str , a__: Any ) -> Dict:
'''simple docstring'''
while True:
_UpperCAmelCase = await stream.readline()
if line:
callback(a__ )
else:
break
async def lowerCAmelCase__ ( a__: Optional[int] , a__: List[str]=None , a__: Dict=None , a__: List[str]=None , a__: str=False , a__: Optional[Any]=False ) -> _RunOutput:
'''simple docstring'''
if echo:
print('\nRunning: ' , ' '.join(a__ ) )
_UpperCAmelCase = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=a__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=a__ , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
_UpperCAmelCase = []
_UpperCAmelCase = []
def tee(a__: int , a__: List[str] , a__: str , a__: int="" ):
_UpperCAmelCase = line.decode('utf-8' ).rstrip()
sink.append(a__ )
if not quiet:
print(a__ , a__ , file=a__ )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda a__ : tee(a__ , a__ , sys.stdout , label='stdout:' ) ) ),
asyncio.create_task(_read_stream(p.stderr , lambda a__ : tee(a__ , a__ , sys.stderr , label='stderr:' ) ) ),
] , timeout=a__ , )
return _RunOutput(await p.wait() , a__ , a__ )
def lowerCAmelCase__ ( a__: Dict , a__: Union[str, Any]=None , a__: int=None , a__: List[Any]=1_8_0 , a__: Union[str, Any]=False , a__: Optional[int]=True ) -> _RunOutput:
'''simple docstring'''
_UpperCAmelCase = asyncio.get_event_loop()
_UpperCAmelCase = loop.run_until_complete(
_stream_subprocess(a__ , env=a__ , stdin=a__ , timeout=a__ , quiet=a__ , echo=a__ ) )
_UpperCAmelCase = ' '.join(a__ )
if result.returncode > 0:
_UpperCAmelCase = '\n'.join(result.stderr )
raise RuntimeError(
F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
F'''The combined stderr from workers follows:\n{stderr}''' )
return result
class __a ( UpperCAmelCase ):
pass
def lowerCAmelCase__ ( a__: List[str] , a__: Union[str, Any]=False ) -> List[str]:
'''simple docstring'''
try:
_UpperCAmelCase = subprocess.check_output(a__ , stderr=subprocess.STDOUT )
if return_stdout:
if hasattr(a__ , 'decode' ):
_UpperCAmelCase = output.decode('utf-8' )
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
F'''Command `{" ".join(a__ )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
| 329 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase__ :int = logging.get_logger(__name__)
lowerCAmelCase__ :Optional[Any] = {
'''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''',
}
class __a ( UpperCAmelCase ):
_a : str = 'data2vec-text'
def __init__( self , _SCREAMING_SNAKE_CASE=30522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-1_2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = hidden_act
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = position_embedding_type
_UpperCAmelCase = use_cache
_UpperCAmelCase = classifier_dropout
class __a ( UpperCAmelCase ):
@property
def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_UpperCAmelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 329 | 1 |
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
lowerCAmelCase__ :Any = '''\
Text data.
Second line of data.'''
lowerCAmelCase__ :List[str] = '''file'''
@pytest.fixture(scope='session' )
def lowerCAmelCase__ ( a__: List[Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCAmelCase = tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd')
_UpperCAmelCase = bytes(a__ , 'utf-8' )
with zstd.open(a__ , 'wb' ) as f:
f.write(a__ )
return path
@pytest.fixture
def lowerCAmelCase__ ( a__: int ) -> List[Any]:
'''simple docstring'''
with open(os.path.join(tmpfs.local_root_dir , a__ ) , 'w' ) as f:
f.write(a__ )
return FILE_PATH
@pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] )
def lowerCAmelCase__ ( a__: Tuple , a__: List[str] , a__: Tuple , a__: Any , a__: str , a__: Tuple ) -> str:
'''simple docstring'''
_UpperCAmelCase = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path}
_UpperCAmelCase = input_paths[compression_format]
_UpperCAmelCase = tmp_path / 'cache'
_UpperCAmelCase = DownloadConfig(cache_dir=a__ , extract_compressed_file=a__ )
_UpperCAmelCase = cached_path(a__ , download_config=a__ )
with open(a__ ) as f:
_UpperCAmelCase = f.read()
with open(a__ ) as f:
_UpperCAmelCase = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize('default_extracted' , [True, False] )
@pytest.mark.parametrize('default_cache_dir' , [True, False] )
def lowerCAmelCase__ ( a__: str , a__: Any , a__: str , a__: Optional[int] , a__: Tuple ) -> Dict:
'''simple docstring'''
_UpperCAmelCase = 'custom_cache'
_UpperCAmelCase = 'custom_extracted_dir'
_UpperCAmelCase = tmp_path / 'custom_extracted_path'
if default_extracted:
_UpperCAmelCase = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted')
else:
monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , a__ )
monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(a__ ) )
_UpperCAmelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
_UpperCAmelCase = xz_file
_UpperCAmelCase = (
DownloadConfig(extract_compressed_file=a__ )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=a__ )
)
_UpperCAmelCase = cached_path(a__ , download_config=a__ )
assert Path(a__ ).parent.parts[-2:] == expected
def lowerCAmelCase__ ( a__: Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = str(Path(a__ ).resolve() )
assert cached_path(a__ ) == text_file
# relative path
_UpperCAmelCase = str(Path(a__ ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(a__ ) == text_file
def lowerCAmelCase__ ( a__: Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = str(tmp_path.resolve() / '__missing_file__.txt' )
with pytest.raises(a__ ):
cached_path(a__ )
# relative path
_UpperCAmelCase = './__missing_file__.txt'
with pytest.raises(a__ ):
cached_path(a__ )
def lowerCAmelCase__ ( a__: Dict ) -> int:
'''simple docstring'''
_UpperCAmelCase = get_from_cache(F'''tmp://{tmpfs_file}''' )
with open(a__ ) as f:
_UpperCAmelCase = f.read()
assert output_file_content == FILE_CONTENT
@patch('datasets.config.HF_DATASETS_OFFLINE' , a__ )
def lowerCAmelCase__ ( ) -> int:
'''simple docstring'''
with pytest.raises(a__ ):
cached_path('https://huggingface.co' )
@patch('datasets.config.HF_DATASETS_OFFLINE' , a__ )
def lowerCAmelCase__ ( a__: str ) -> Any:
'''simple docstring'''
_UpperCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.html'
with pytest.raises(a__ ):
http_get('https://huggingface.co' , temp_file=a__ )
with pytest.raises(a__ ):
http_head('https://huggingface.co' )
@patch('datasets.config.HF_DATASETS_OFFLINE' , a__ )
def lowerCAmelCase__ ( a__: Union[str, Any] ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.html'
with pytest.raises(a__ ):
ftp_get('ftp://huggingface.co' , temp_file=a__ )
with pytest.raises(a__ ):
ftp_head('ftp://huggingface.co' )
@patch('datasets.config.HF_DATASETS_OFFLINE' , a__ )
def lowerCAmelCase__ ( a__: List[Any] ) -> Any:
'''simple docstring'''
_UpperCAmelCase = tmp_path_factory.mktemp('data' ) / 'file.html'
with pytest.raises(a__ ):
fsspec_get('s3://huggingface.co' , temp_file=a__ )
with pytest.raises(a__ ):
fsspec_head('s3://huggingface.co' )
| 329 |
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class __a :
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , _SCREAMING_SNAKE_CASE=[1, 2, 3] , ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = embed_dim
_UpperCAmelCase = depths
_UpperCAmelCase = num_heads
_UpperCAmelCase = window_size
_UpperCAmelCase = mlp_ratio
_UpperCAmelCase = qkv_bias
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = drop_path_rate
_UpperCAmelCase = hidden_act
_UpperCAmelCase = use_absolute_embeddings
_UpperCAmelCase = patch_norm
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = initializer_range
_UpperCAmelCase = is_training
_UpperCAmelCase = scope
_UpperCAmelCase = use_labels
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = encoder_stride
_UpperCAmelCase = out_features
_UpperCAmelCase = out_indices
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
_UpperCAmelCase = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
_UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = ['stem']
_UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
_a : int = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
_a : str = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {}
_a : Optional[int] = False
_a : List[str] = False
_a : List[str] = False
_a : Optional[int] = False
_a : Tuple = False
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = MaskFormerSwinModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
'`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with'
' `nn.DataParallel`'
) )
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
return
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE )
@unittest.skip('Swin does not use inputs_embeds' )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
pass
@unittest.skip('Swin does not support feedforward chunking' )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE )
@unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
pass
@unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = outputs.hidden_states
_UpperCAmelCase = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
# Swin has a different seq_length
_UpperCAmelCase = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
_UpperCAmelCase = True
self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCAmelCase = True
self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = 3
_UpperCAmelCase = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
_UpperCAmelCase = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
_UpperCAmelCase = True
self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCAmelCase = True
self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) )
@unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = 0
return t
def check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE={} ):
with torch.no_grad():
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple()
def recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=(
'Tuple and dict output are not equal. Difference:'
f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'''
f''' {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has'''
f''' `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}.'''
) , )
recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} )
@require_torch
class __a ( unittest.TestCase , UpperCAmelCase ):
_a : Any = (MaskFormerSwinBackbone,) if is_torch_available() else ()
_a : Any = MaskFormerSwinConfig
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = MaskFormerSwinModelTester(self )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = inputs_dict['pixel_values'].shape[0]
for backbone_class in self.all_model_classes:
_UpperCAmelCase = backbone_class(_SCREAMING_SNAKE_CASE )
backbone.to(_SCREAMING_SNAKE_CASE )
backbone.eval()
_UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
_UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
_UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(outputs.attentions )
| 329 | 1 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any]=1_0 ) -> Any:
'''simple docstring'''
_UpperCAmelCase = []
for _ in range(a__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def lowerCAmelCase__ ( a__: List[str] , a__: Any=1_0 ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = []
for step in range(a__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
_UpperCAmelCase = os.path.join(a__ , 'schedule.bin' )
torch.save(scheduler.state_dict() , a__ )
_UpperCAmelCase = torch.load(a__ )
scheduler.load_state_dict(a__ )
return lrs
@require_torch
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) )
for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] )
_UpperCAmelCase = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_UpperCAmelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 )
for _ in range(100 ):
_UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] )
_UpperCAmelCase = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_UpperCAmelCase = Adafactor(
params=[w] , lr=1e-2 , eps=(1e-3_0, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_SCREAMING_SNAKE_CASE , weight_decay=0.0 , relative_step=_SCREAMING_SNAKE_CASE , scale_parameter=_SCREAMING_SNAKE_CASE , warmup_init=_SCREAMING_SNAKE_CASE , )
for _ in range(1000 ):
_UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
@require_torch
class __a ( unittest.TestCase ):
_a : Dict = nn.Linear(50 , 50 ) if is_torch_available() else None
_a : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
_a : List[Any] = 10
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> str:
"""simple docstring"""
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) )
for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE , msg=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = {'num_warmup_steps': 2, 'num_training_steps': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
_UpperCAmelCase = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1e-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
_UpperCAmelCase , _UpperCAmelCase = data
_UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
_UpperCAmelCase = unwrap_schedule(_SCREAMING_SNAKE_CASE , self.num_steps )
self.assertListAlmostEqual(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
_UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_SCREAMING_SNAKE_CASE ) # wrap to test picklability of the schedule
_UpperCAmelCase = unwrap_and_save_reload_schedule(_SCREAMING_SNAKE_CASE , self.num_steps )
self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , msg=f'''failed for {scheduler_func} in save and reload''' )
class __a :
def __init__( self , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
_UpperCAmelCase = fn
def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
return self.fn(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
@classmethod
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = list(map(self , scheduler.lr_lambdas ) )
| 329 |
from collections.abc import Generator
def lowerCAmelCase__ ( ) -> Generator[int, None, None]:
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = 0, 1
while True:
_UpperCAmelCase , _UpperCAmelCase = b, a + b
yield b
def lowerCAmelCase__ ( a__: int = 1_0_0_0 ) -> int:
'''simple docstring'''
_UpperCAmelCase = 1
_UpperCAmelCase = fibonacci_generator()
while len(str(next(a__ ) ) ) < n:
answer += 1
return answer + 1
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 329 | 1 |
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def lowerCAmelCase__ ( ) -> None:
'''simple docstring'''
print('Making key files...' )
make_key_files('rsa' , 1_0_2_4 )
print('Key files generation successful.' )
def lowerCAmelCase__ ( a__: int ) -> tuple[tuple[int, int], tuple[int, int]]:
'''simple docstring'''
print('Generating prime p...' )
_UpperCAmelCase = rabinMiller.generate_large_prime(a__ )
print('Generating prime q...' )
_UpperCAmelCase = rabinMiller.generate_large_prime(a__ )
_UpperCAmelCase = p * q
print('Generating e that is relatively prime to (p - 1) * (q - 1)...' )
while True:
_UpperCAmelCase = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(a__ , (p - 1) * (q - 1) ) == 1:
break
print('Calculating d that is mod inverse of e...' )
_UpperCAmelCase = cryptoMath.find_mod_inverse(a__ , (p - 1) * (q - 1) )
_UpperCAmelCase = (n, e)
_UpperCAmelCase = (n, d)
return (public_key, private_key)
def lowerCAmelCase__ ( a__: str , a__: int ) -> None:
'''simple docstring'''
if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ):
print('\nWARNING:' )
print(
F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'''
'Use a different name or delete these files and re-run this program.' )
sys.exit()
_UpperCAmelCase , _UpperCAmelCase = generate_key(a__ )
print(F'''\nWriting public key to file {name}_pubkey.txt...''' )
with open(F'''{name}_pubkey.txt''' , 'w' ) as out_file:
out_file.write(F'''{key_size},{public_key[0]},{public_key[1]}''' )
print(F'''Writing private key to file {name}_privkey.txt...''' )
with open(F'''{name}_privkey.txt''' , 'w' ) as out_file:
out_file.write(F'''{key_size},{private_key[0]},{private_key[1]}''' )
if __name__ == "__main__":
main()
| 329 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> str:
"""simple docstring"""
_UpperCAmelCase = size if size is not None else {'shortest_edge': 30}
_UpperCAmelCase = crop_size if crop_size is not None else {'height': 30, 'width': 30}
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize_and_center_crop
_UpperCAmelCase = size
_UpperCAmelCase = crop_pct
_UpperCAmelCase = crop_size
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = PoolFormerImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize_and_center_crop' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'crop_pct' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 30} )
self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} )
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 329 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = SamImageProcessor()
_UpperCAmelCase = SamProcessor(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(self.tmpdirname )
def UpperCAmelCase__ ( self , **_SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ).image_processor
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
_UpperCAmelCase = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_UpperCAmelCase = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 )
_UpperCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = SamProcessor(image_processor=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='np' )
_UpperCAmelCase = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = SamProcessor(image_processor=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = [torch.ones((1, 3, 5, 5) )]
_UpperCAmelCase = [[1764, 2646]]
_UpperCAmelCase = [[683, 1024]]
_UpperCAmelCase = processor.post_process_masks(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
_UpperCAmelCase = processor.post_process_masks(
_SCREAMING_SNAKE_CASE , torch.tensor(_SCREAMING_SNAKE_CASE ) , torch.tensor(_SCREAMING_SNAKE_CASE ) )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
# should also work with np
_UpperCAmelCase = [np.ones((1, 3, 5, 5) )]
_UpperCAmelCase = processor.post_process_masks(_SCREAMING_SNAKE_CASE , np.array(_SCREAMING_SNAKE_CASE ) , np.array(_SCREAMING_SNAKE_CASE ) )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
_UpperCAmelCase = [[1, 0], [0, 1]]
with self.assertRaises(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = processor.post_process_masks(_SCREAMING_SNAKE_CASE , np.array(_SCREAMING_SNAKE_CASE ) , np.array(_SCREAMING_SNAKE_CASE ) )
@require_vision
@require_tf
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = SamImageProcessor()
_UpperCAmelCase = SamProcessor(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(self.tmpdirname )
def UpperCAmelCase__ ( self , **_SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ).image_processor
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
_UpperCAmelCase = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_UpperCAmelCase = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 )
_UpperCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = SamProcessor(image_processor=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='np' )
_UpperCAmelCase = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = SamProcessor(image_processor=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = [tf.ones((1, 3, 5, 5) )]
_UpperCAmelCase = [[1764, 2646]]
_UpperCAmelCase = [[683, 1024]]
_UpperCAmelCase = processor.post_process_masks(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
_UpperCAmelCase = processor.post_process_masks(
_SCREAMING_SNAKE_CASE , tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) , tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
# should also work with np
_UpperCAmelCase = [np.ones((1, 3, 5, 5) )]
_UpperCAmelCase = processor.post_process_masks(
_SCREAMING_SNAKE_CASE , np.array(_SCREAMING_SNAKE_CASE ) , np.array(_SCREAMING_SNAKE_CASE ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
_UpperCAmelCase = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
_UpperCAmelCase = processor.post_process_masks(
_SCREAMING_SNAKE_CASE , np.array(_SCREAMING_SNAKE_CASE ) , np.array(_SCREAMING_SNAKE_CASE ) , return_tensors='tf' )
@require_vision
@require_torchvision
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = SamImageProcessor()
_UpperCAmelCase = SamProcessor(_SCREAMING_SNAKE_CASE )
processor.save_pretrained(self.tmpdirname )
def UpperCAmelCase__ ( self , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ).image_processor
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
_UpperCAmelCase = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = SamProcessor(image_processor=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
_UpperCAmelCase = [tf.convert_to_tensor(_SCREAMING_SNAKE_CASE )]
_UpperCAmelCase = [torch.tensor(_SCREAMING_SNAKE_CASE )]
_UpperCAmelCase = [[1764, 2646]]
_UpperCAmelCase = [[683, 1024]]
_UpperCAmelCase = processor.post_process_masks(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors='tf' )
_UpperCAmelCase = processor.post_process_masks(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = SamProcessor(image_processor=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='pt' )['pixel_values'].numpy()
_UpperCAmelCase = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' )['pixel_values'].numpy()
_UpperCAmelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='tf' )['pixel_values'].numpy()
_UpperCAmelCase = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
| 329 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = image_size
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize
_UpperCAmelCase = size if size is not None else {'height': 18, 'width': 20}
_UpperCAmelCase = do_thumbnail
_UpperCAmelCase = do_align_axis
_UpperCAmelCase = do_pad
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : List[str] = DonutImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = DonutImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_thumbnail' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_align_long_axis' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 20} )
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
# Previous config had dimensions in (width, height) order
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'height': 84, 'width': 42} )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
pass
@is_flaky()
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
| 329 | 1 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def lowerCAmelCase__ ( a__: Any ) -> Optional[Any]:
'''simple docstring'''
if (
(cp >= 0X4_e00 and cp <= 0X9_fff)
or (cp >= 0X3_400 and cp <= 0X4_dbf) #
or (cp >= 0X20_000 and cp <= 0X2a_6df) #
or (cp >= 0X2a_700 and cp <= 0X2b_73f) #
or (cp >= 0X2b_740 and cp <= 0X2b_81f) #
or (cp >= 0X2b_820 and cp <= 0X2c_eaf) #
or (cp >= 0Xf_900 and cp <= 0Xf_aff)
or (cp >= 0X2f_800 and cp <= 0X2f_a1f) #
): #
return True
return False
def lowerCAmelCase__ ( a__: str ) -> List[Any]:
'''simple docstring'''
for char in word:
_UpperCAmelCase = ord(a__ )
if not _is_chinese_char(a__ ):
return 0
return 1
def lowerCAmelCase__ ( a__: List[str] ) -> Optional[int]:
'''simple docstring'''
_UpperCAmelCase = set()
for token in tokens:
_UpperCAmelCase = len(a__ ) > 1 and is_chinese(a__ )
if chinese_word:
word_set.add(a__ )
_UpperCAmelCase = list(a__ )
return word_list
def lowerCAmelCase__ ( a__: List[str] , a__: set() ) -> str:
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
_UpperCAmelCase = max([len(a__ ) for w in chinese_word_set] )
_UpperCAmelCase = bert_tokens
_UpperCAmelCase , _UpperCAmelCase = 0, len(a__ )
while start < end:
_UpperCAmelCase = True
if is_chinese(bert_word[start] ):
_UpperCAmelCase = min(end - start , a__ )
for i in range(a__ , 1 , -1 ):
_UpperCAmelCase = ''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
_UpperCAmelCase = '##' + bert_word[j]
_UpperCAmelCase = start + i
_UpperCAmelCase = False
break
if single_word:
start += 1
return bert_word
def lowerCAmelCase__ ( a__: List[str] , a__: LTP , a__: BertTokenizer ) -> List[str]:
'''simple docstring'''
_UpperCAmelCase = []
for i in range(0 , len(a__ ) , 1_0_0 ):
_UpperCAmelCase = ltp_tokenizer.seg(lines[i : i + 1_0_0] )[0]
_UpperCAmelCase = [get_chinese_word(a__ ) for r in res]
ltp_res.extend(a__ )
assert len(a__ ) == len(a__ )
_UpperCAmelCase = []
for i in range(0 , len(a__ ) , 1_0_0 ):
_UpperCAmelCase = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=a__ , truncation=a__ , max_length=5_1_2 )
bert_res.extend(res['input_ids'] )
assert len(a__ ) == len(a__ )
_UpperCAmelCase = []
for input_ids, chinese_word in zip(a__ , a__ ):
_UpperCAmelCase = []
for id in input_ids:
_UpperCAmelCase = bert_tokenizer._convert_id_to_token(a__ )
input_tokens.append(a__ )
_UpperCAmelCase = add_sub_symbol(a__ , a__ )
_UpperCAmelCase = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(a__ ):
if token[:2] == "##":
_UpperCAmelCase = token[2:]
# save chinese tokens' pos
if len(a__ ) == 1 and _is_chinese_char(ord(a__ ) ):
ref_id.append(a__ )
ref_ids.append(a__ )
assert len(a__ ) == len(a__ )
return ref_ids
def lowerCAmelCase__ ( a__: Dict ) -> Dict:
'''simple docstring'''
with open(args.file_name , 'r' , encoding='utf-8' ) as f:
_UpperCAmelCase = f.readlines()
_UpperCAmelCase = [line.strip() for line in data if len(a__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_UpperCAmelCase = LTP(args.ltp ) # faster in GPU device
_UpperCAmelCase = BertTokenizer.from_pretrained(args.bert )
_UpperCAmelCase = prepare_ref(a__ , a__ , a__ )
with open(args.save_path , 'w' , encoding='utf-8' ) as f:
_UpperCAmelCase = [json.dumps(a__ ) + '\n' for ref in ref_ids]
f.writelines(a__ )
if __name__ == "__main__":
lowerCAmelCase__ :Tuple = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path'''
)
parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''')
parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''')
lowerCAmelCase__ :Optional[Any] = parser.parse_args()
main(args)
| 329 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ :Dict = logging.get_logger(__name__)
lowerCAmelCase__ :Optional[int] = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''}
class __a ( UpperCAmelCase ):
_a : List[str] = 'openai-gpt'
_a : int = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _SCREAMING_SNAKE_CASE=40478 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE="cls_index" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , **_SCREAMING_SNAKE_CASE , ) -> str:
"""simple docstring"""
_UpperCAmelCase = vocab_size
_UpperCAmelCase = n_positions
_UpperCAmelCase = n_embd
_UpperCAmelCase = n_layer
_UpperCAmelCase = n_head
_UpperCAmelCase = afn
_UpperCAmelCase = resid_pdrop
_UpperCAmelCase = embd_pdrop
_UpperCAmelCase = attn_pdrop
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = initializer_range
_UpperCAmelCase = summary_type
_UpperCAmelCase = summary_use_proj
_UpperCAmelCase = summary_activation
_UpperCAmelCase = summary_first_dropout
_UpperCAmelCase = summary_proj_to_labels
super().__init__(**_SCREAMING_SNAKE_CASE )
| 329 | 1 |
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 329 |
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] )
@pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] )
@pytest.mark.parametrize('revision' , [None, 'v2'] )
def lowerCAmelCase__ ( a__: Any , a__: Tuple , a__: Union[str, Any] ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = hf_hub_url(repo_id=a__ , path=a__ , revision=a__ )
assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(a__ )}'''
| 329 | 1 |
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
lowerCAmelCase__ :List[Any] = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase )
class __a ( UpperCAmelCase ):
def __init__( self , **_SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
super().__init__(**_SCREAMING_SNAKE_CASE )
if self.framework != "pt":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
# No specific FOR_XXX available yet
def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , **_SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = {}
if "candidate_labels" in kwargs:
_UpperCAmelCase = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
_UpperCAmelCase = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="This is a sound of {}." ) -> Optional[Any]:
"""simple docstring"""
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if audio.startswith('http://' ) or audio.startswith('https://' ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
_UpperCAmelCase = requests.get(_SCREAMING_SNAKE_CASE ).content
else:
with open(_SCREAMING_SNAKE_CASE , 'rb' ) as f:
_UpperCAmelCase = f.read()
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = ffmpeg_read(_SCREAMING_SNAKE_CASE , self.feature_extractor.sampling_rate )
if not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ):
raise ValueError('We expect a numpy ndarray as input' )
if len(audio.shape ) != 1:
raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' )
_UpperCAmelCase = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='pt' )
_UpperCAmelCase = candidate_labels
_UpperCAmelCase = [hypothesis_template.format(_SCREAMING_SNAKE_CASE ) for x in candidate_labels]
_UpperCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = [text_inputs]
return inputs
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
_UpperCAmelCase = model_inputs.pop('candidate_labels' )
_UpperCAmelCase = model_inputs.pop('text_inputs' )
if isinstance(text_inputs[0] , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = text_inputs[0]
else:
# Batching case.
_UpperCAmelCase = text_inputs[0][0]
_UpperCAmelCase = self.model(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_audio,
}
return model_outputs
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
_UpperCAmelCase = model_outputs.pop('candidate_labels' )
_UpperCAmelCase = model_outputs['logits'][0]
if self.framework == "pt":
_UpperCAmelCase = logits.softmax(dim=0 )
_UpperCAmelCase = probs.tolist()
else:
raise ValueError('`tf` framework not supported.' )
_UpperCAmelCase = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , key=lambda _SCREAMING_SNAKE_CASE : -x[0] )
]
return result
| 329 |
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
lowerCAmelCase__ :Optional[int] = [
'''python''',
'''tqdm''',
'''regex''',
'''requests''',
'''packaging''',
'''filelock''',
'''numpy''',
'''tokenizers''',
'''huggingface-hub''',
'''safetensors''',
'''accelerate''',
'''pyyaml''',
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def lowerCAmelCase__ ( a__: Tuple , a__: Optional[int]=None ) -> Any:
'''simple docstring'''
require_version(deps[pkg] , a__ )
| 329 | 1 |
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class __a ( unittest.TestCase ):
@property
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = ort.SessionOptions()
_UpperCAmelCase = False
return options
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/in_paint/overture-creations-5sI6fQgYIuo.png' )
_UpperCAmelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/in_paint/overture-creations-5sI6fQgYIuo_mask.png' )
_UpperCAmelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' )
# using the PNDM scheduler by default
_UpperCAmelCase = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = 'A red cat sitting on a park bench'
_UpperCAmelCase = np.random.RandomState(0 )
_UpperCAmelCase = pipe(
prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_SCREAMING_SNAKE_CASE , output_type='np' , )
_UpperCAmelCase = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-2
| 329 |
from __future__ import annotations
def lowerCAmelCase__ ( a__: dict , a__: str ) -> set[str]:
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = set(a__ ), [start]
while stack:
_UpperCAmelCase = stack.pop()
explored.add(a__ )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(a__ )
return explored
lowerCAmelCase__ :Tuple = {
'''A''': ['''B''', '''C''', '''D'''],
'''B''': ['''A''', '''D''', '''E'''],
'''C''': ['''A''', '''F'''],
'''D''': ['''B''', '''D'''],
'''E''': ['''B''', '''F'''],
'''F''': ['''C''', '''E''', '''G'''],
'''G''': ['''F'''],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, '''A'''))
| 329 | 1 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''')
class __a :
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = False ) -> str:
"""simple docstring"""
_UpperCAmelCase = scheduler
_UpperCAmelCase = optimizers if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) else [optimizers]
_UpperCAmelCase = split_batches
_UpperCAmelCase = step_with_optimizer
_UpperCAmelCase = GradientState()
def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
_UpperCAmelCase = AcceleratorState().num_processes
for _ in range(_SCREAMING_SNAKE_CASE ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , 'total_steps' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
else:
self.scheduler.step(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
return self.scheduler.get_last_lr()
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
return self.scheduler.state_dict()
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
self.scheduler.load_state_dict(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
return self.scheduler.get_lr()
def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
return self.scheduler.print_lr(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
| 329 |
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
_UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(_SCREAMING_SNAKE_CASE , os.listdir(_SCREAMING_SNAKE_CASE )[0] , 'snapshots' ) )]
_UpperCAmelCase = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith('.bin' ) for f in files )
@slow
@require_flax
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 4
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1e-3
assert np.abs(np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 49947.875 ) < 5e-1
_UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(_SCREAMING_SNAKE_CASE ) == num_samples
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2383808.2) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = FlaxDDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , )
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = scheduler.create_state()
_UpperCAmelCase = scheduler_state
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2347693.5) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
_UpperCAmelCase = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , use_memory_efficient_attention=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
_UpperCAmelCase = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1e-2
| 329 | 1 |
import os
def lowerCAmelCase__ ( a__: Union[str, Any] ) -> int:
'''simple docstring'''
_UpperCAmelCase = len(grid[0] )
_UpperCAmelCase = len(a__ )
_UpperCAmelCase = 0
_UpperCAmelCase = 0
_UpperCAmelCase = 0
# Check vertically, horizontally, diagonally at the same time (only works
# for nxn grid)
for i in range(a__ ):
for j in range(n_rows - 3 ):
_UpperCAmelCase = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i]
_UpperCAmelCase = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3]
# Left-to-right diagonal (\) product
if i < n_columns - 3:
_UpperCAmelCase = (
grid[i][j]
* grid[i + 1][j + 1]
* grid[i + 2][j + 2]
* grid[i + 3][j + 3]
)
# Right-to-left diagonal(/) product
if i > 2:
_UpperCAmelCase = (
grid[i][j]
* grid[i - 1][j + 1]
* grid[i - 2][j + 2]
* grid[i - 3][j + 3]
)
_UpperCAmelCase = max(
a__ , a__ , a__ , a__ )
if max_product > largest:
_UpperCAmelCase = max_product
return largest
def lowerCAmelCase__ ( ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = []
with open(os.path.dirname(a__ ) + '/grid.txt' ) as file:
for line in file:
grid.append(line.strip('\n' ).split(' ' ) )
_UpperCAmelCase = [[int(a__ ) for i in grid[j]] for j in range(len(a__ ) )]
return largest_product(a__ )
if __name__ == "__main__":
print(solution())
| 329 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowerCAmelCase__ :int = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase )
class __a ( UpperCAmelCase ):
def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> int:
"""simple docstring"""
_UpperCAmelCase = {}
_UpperCAmelCase = {}
if prompt is not None:
_UpperCAmelCase = prompt
if generate_kwargs is not None:
_UpperCAmelCase = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
_UpperCAmelCase = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
'\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,'
' please use only one' )
_UpperCAmelCase = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int:
"""simple docstring"""
_UpperCAmelCase = load_image(_SCREAMING_SNAKE_CASE )
if prompt is not None:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise ValueError(
f'''Received an invalid text input, got - {type(_SCREAMING_SNAKE_CASE )} - but expected a single string. '''
'Note also that one single text can be provided for conditional image to text generation.' )
_UpperCAmelCase = self.model.config.model_type
if model_type == "git":
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
_UpperCAmelCase = self.tokenizer(text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids
_UpperCAmelCase = [self.tokenizer.cls_token_id] + input_ids
_UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ).unsqueeze(0 )
model_inputs.update({'input_ids': input_ids} )
elif model_type == "pix2struct":
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , header_text=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
_UpperCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
model_inputs.update(_SCREAMING_SNAKE_CASE )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
_UpperCAmelCase = None
return model_inputs
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[str]:
"""simple docstring"""
if (
"input_ids" in model_inputs
and isinstance(model_inputs['input_ids'] , _SCREAMING_SNAKE_CASE )
and all(x is None for x in model_inputs['input_ids'] )
):
_UpperCAmelCase = None
if generate_kwargs is None:
_UpperCAmelCase = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
_UpperCAmelCase = model_inputs.pop(self.model.main_input_name )
_UpperCAmelCase = self.model.generate(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
return model_outputs
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = []
for output_ids in model_outputs:
_UpperCAmelCase = {
'generated_text': self.tokenizer.decode(
_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , )
}
records.append(_SCREAMING_SNAKE_CASE )
return records
| 329 | 1 |
lowerCAmelCase__ :Union[str, Any] = range(2, 2_0 + 1)
lowerCAmelCase__ :int = [1_0**k for k in range(ks[-1] + 1)]
lowerCAmelCase__ :dict[int, dict[int, list[list[int]]]] = {}
def lowerCAmelCase__ ( a__: Optional[int] , a__: Union[str, Any] , a__: Union[str, Any] , a__: int ) -> Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = sum(a_i[j] for j in range(a__ , len(a__ ) ) )
_UpperCAmelCase = sum(a_i[j] * base[j] for j in range(min(len(a__ ) , a__ ) ) )
_UpperCAmelCase , _UpperCAmelCase = 0, 0
_UpperCAmelCase = n - i
_UpperCAmelCase = memo.get(a__ )
if sub_memo is not None:
_UpperCAmelCase = sub_memo.get(a__ )
if jumps is not None and len(a__ ) > 0:
# find and make the largest jump without going over
_UpperCAmelCase = -1
for _k in range(len(a__ ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
_UpperCAmelCase = _k
break
if max_jump >= 0:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = jumps[max_jump]
# since the difference between jumps is cached, add c
_UpperCAmelCase = diff + c
for j in range(min(a__ , len(a__ ) ) ):
_UpperCAmelCase , _UpperCAmelCase = divmod(a__ , 1_0 )
if new_c > 0:
add(a__ , a__ , a__ )
else:
_UpperCAmelCase = []
else:
_UpperCAmelCase = {c: []}
_UpperCAmelCase = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
_UpperCAmelCase , _UpperCAmelCase = next_term(a__ , k - 1 , i + dn , a__ )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
_UpperCAmelCase , _UpperCAmelCase = compute(a__ , a__ , i + dn , a__ )
diff += _diff
dn += terms_jumped
_UpperCAmelCase = sub_memo[c]
# keep jumps sorted by # of terms skipped
_UpperCAmelCase = 0
while j < len(a__ ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(a__ , (diff, dn, k) )
return (diff, dn)
def lowerCAmelCase__ ( a__: List[Any] , a__: List[str] , a__: Tuple , a__: List[str] ) -> Optional[Any]:
'''simple docstring'''
if i >= n:
return 0, i
if k > len(a__ ):
a_i.extend([0 for _ in range(k - len(a__ ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
_UpperCAmelCase = i
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0, 0, 0
for j in range(len(a__ ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
_UpperCAmelCase = ds_c + ds_b
diff += addend
_UpperCAmelCase = 0
for j in range(a__ ):
_UpperCAmelCase = a_i[j] + addend
_UpperCAmelCase , _UpperCAmelCase = divmod(a__ , 1_0 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(a__ , a__ , a__ )
return diff, i - start_i
def lowerCAmelCase__ ( a__: Tuple , a__: Optional[int] , a__: List[Any] ) -> Any:
'''simple docstring'''
for j in range(a__ , len(a__ ) ):
_UpperCAmelCase = digits[j] + addend
if s >= 1_0:
_UpperCAmelCase , _UpperCAmelCase = divmod(a__ , 1_0 )
_UpperCAmelCase = addend // 1_0 + quotient
else:
_UpperCAmelCase = s
_UpperCAmelCase = addend // 1_0
if addend == 0:
break
while addend > 0:
_UpperCAmelCase , _UpperCAmelCase = divmod(a__ , 1_0 )
digits.append(a__ )
def lowerCAmelCase__ ( a__: int = 1_0**1_5 ) -> int:
'''simple docstring'''
_UpperCAmelCase = [1]
_UpperCAmelCase = 1
_UpperCAmelCase = 0
while True:
_UpperCAmelCase , _UpperCAmelCase = next_term(a__ , 2_0 , i + dn , a__ )
dn += terms_jumped
if dn == n - i:
break
_UpperCAmelCase = 0
for j in range(len(a__ ) ):
a_n += digits[j] * 1_0**j
return a_n
if __name__ == "__main__":
print(f'''{solution() = }''')
| 329 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def lowerCAmelCase__ ( *a__: str , a__: Optional[Union[Dict, Any]] = None , a__: Dict=True , a__: Any=2 ) -> Union[str, Any]:
'''simple docstring'''
from .. import __version__
_UpperCAmelCase = take_from
_UpperCAmelCase = ()
if not isinstance(args[0] , a__ ):
_UpperCAmelCase = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(a__ ).base_version ) >= version.parse(a__ ):
raise ValueError(
F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''''
F''' version {__version__} is >= {version_name}''' )
_UpperCAmelCase = None
if isinstance(a__ , a__ ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(a__ ),)
_UpperCAmelCase = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''
elif hasattr(a__ , a__ ):
values += (getattr(a__ , a__ ),)
_UpperCAmelCase = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''
elif deprecated_kwargs is None:
_UpperCAmelCase = F'''`{attribute}` is deprecated and will be removed in version {version_name}.'''
if warning is not None:
_UpperCAmelCase = warning + ' ' if standard_warn else ''
warnings.warn(warning + message , a__ , stacklevel=a__ )
if isinstance(a__ , a__ ) and len(a__ ) > 0:
_UpperCAmelCase = inspect.getouterframes(inspect.currentframe() )[1]
_UpperCAmelCase = call_frame.filename
_UpperCAmelCase = call_frame.lineno
_UpperCAmelCase = call_frame.function
_UpperCAmelCase , _UpperCAmelCase = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' )
if len(a__ ) == 0:
return
elif len(a__ ) == 1:
return values[0]
return values
| 329 | 1 |
from __future__ import annotations
import copy
import tempfile
import unittest
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available
from transformers.testing_utils import (
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tensorflow_probability,
require_tf,
slow,
)
from ..bert.test_modeling_bert import BertModelTester
if is_tf_available():
from transformers import (
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFFunnelBaseModel,
TFFunnelModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
TFTapasForQuestionAnswering,
)
from transformers.models.auto.modeling_tf_auto import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
class __a ( UpperCAmelCase ):
_a : Optional[int] = 'new-model'
if is_tf_available():
class __a ( UpperCAmelCase ):
_a : int = NewModelConfig
@require_tf
class __a ( unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = 'bert-base-cased'
_UpperCAmelCase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = TFAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@slow
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = 'bert-base-cased'
_UpperCAmelCase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = TFAutoModelForPreTraining.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@slow
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = TFAutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase , _UpperCAmelCase = TFAutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@slow
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@slow
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = TFAutoModelForMaskedLM.from_pretrained(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase , _UpperCAmelCase = TFAutoModelForMaskedLM.from_pretrained(_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@slow
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase , _UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@slow
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_UpperCAmelCase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@slow
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_UpperCAmelCase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = TFAutoModelForQuestionAnswering.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@slow
@require_tensorflow_probability
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
_UpperCAmelCase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = TFAutoModelForTableQuestionAnswering.from_pretrained(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase , _UpperCAmelCase = TFAutoModelForTableQuestionAnswering.from_pretrained(
_SCREAMING_SNAKE_CASE , output_loading_info=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
self.assertEqual(model.num_parameters() , 14410 )
self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 14410 )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = TFAutoModelWithLMHead.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
self.assertEqual(model.num_parameters() , 14410 )
self.assertEqual(model.num_parameters(only_trainable=_SCREAMING_SNAKE_CASE ) , 14410 )
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = copy.deepcopy(model.config )
_UpperCAmelCase = ['FunnelBaseModel']
_UpperCAmelCase = TFAutoModel.from_config(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = TFAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
try:
AutoConfig.register('new-model' , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = [
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSequenceClassification,
TFAutoModelForTokenClassification,
]
for auto_class in auto_classes:
with self.subTest(auto_class.__name__ ):
# Wrong config class will raise an error
with self.assertRaises(_SCREAMING_SNAKE_CASE ):
auto_class.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
auto_class.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_SCREAMING_SNAKE_CASE ):
auto_class.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Now that the config is registered, it can be used as any other config with the auto-API
_UpperCAmelCase = BertModelTester(self ).get_config()
_UpperCAmelCase = NewModelConfig(**tiny_config.to_dict() )
_UpperCAmelCase = auto_class.from_config(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = auto_class.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
for mapping in (
TF_MODEL_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
):
if NewModelConfig in mapping._extra_content:
del mapping._extra_content[NewModelConfig]
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
with self.assertRaisesRegex(
_SCREAMING_SNAKE_CASE , 'bert-base is not a local folder and is not a valid model identifier' ):
_UpperCAmelCase = TFAutoModel.from_pretrained('bert-base' )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
with self.assertRaisesRegex(
_SCREAMING_SNAKE_CASE , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ):
_UpperCAmelCase = TFAutoModel.from_pretrained(_SCREAMING_SNAKE_CASE , revision='aaaaaa' )
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
with self.assertRaisesRegex(
_SCREAMING_SNAKE_CASE , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ):
_UpperCAmelCase = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' )
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
with self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , 'Use `from_pt=True` to load this model' ):
_UpperCAmelCase = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' )
with RequestCounter() as counter:
_UpperCAmelCase = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
# With a sharded checkpoint
_UpperCAmelCase = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' )
with RequestCounter() as counter:
_UpperCAmelCase = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 329 |
import math
lowerCAmelCase__ :Optional[int] = 1_0
lowerCAmelCase__ :Optional[Any] = 7
lowerCAmelCase__ :Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS
def lowerCAmelCase__ ( a__: int = 2_0 ) -> str:
'''simple docstring'''
_UpperCAmelCase = math.comb(a__ , a__ )
_UpperCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ )
_UpperCAmelCase = NUM_COLOURS * (1 - missing_colour / total)
return F'''{result:.9f}'''
if __name__ == "__main__":
print(solution(2_0))
| 329 | 1 |
import argparse
import torch
from torch import nn
from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration
def lowerCAmelCase__ ( a__: str ) -> int:
'''simple docstring'''
_UpperCAmelCase = [
'encoder.version',
'decoder.version',
'model.encoder.version',
'model.decoder.version',
'decoder.output_projection.weight',
'_float_tensor',
'encoder.embed_positions._float_tensor',
'decoder.embed_positions._float_tensor',
]
for k in ignore_keys:
state_dict.pop(a__ , a__ )
def lowerCAmelCase__ ( a__: Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCAmelCase = list(s_dict.keys() )
for key in keys:
if "transformer_layers" in key:
_UpperCAmelCase = s_dict.pop(a__ )
elif "subsample" in key:
_UpperCAmelCase = s_dict.pop(a__ )
def lowerCAmelCase__ ( a__: Optional[int] ) -> List[str]:
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = emb.weight.shape
_UpperCAmelCase = nn.Linear(a__ , a__ , bias=a__ )
_UpperCAmelCase = emb.weight.data
return lin_layer
def lowerCAmelCase__ ( a__: Optional[int] , a__: Dict ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = torch.load(a__ , map_location='cpu' )
_UpperCAmelCase = mam_aaa['args']
_UpperCAmelCase = mam_aaa['model']
_UpperCAmelCase = state_dict['decoder.output_projection.weight']
remove_ignore_keys_(a__ )
rename_keys(a__ )
_UpperCAmelCase = state_dict['decoder.embed_tokens.weight'].shape[0]
_UpperCAmelCase = args.share_decoder_input_output_embed
_UpperCAmelCase = [int(a__ ) for i in args.conv_kernel_sizes.split(',' )]
_UpperCAmelCase = SpeechaTextConfig(
vocab_size=a__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , num_conv_layers=len(a__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=a__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=a__ , num_beams=5 , max_length=2_0_0 , use_cache=a__ , decoder_start_token_id=2 , early_stopping=a__ , )
_UpperCAmelCase = SpeechaTextForConditionalGeneration(a__ )
_UpperCAmelCase , _UpperCAmelCase = model.model.load_state_dict(a__ , strict=a__ )
if len(a__ ) > 0 and not set(a__ ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,'
F''' but all the following weights are missing {missing}''' )
if tie_embeds:
_UpperCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
_UpperCAmelCase = lm_head_weights
model.save_pretrained(a__ )
if __name__ == "__main__":
lowerCAmelCase__ :Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--fairseq_path''', type=str, help='''Path to the fairseq model (.pt) file.''')
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
lowerCAmelCase__ :List[Any] = parser.parse_args()
convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
| 329 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ :str = {
'''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ :Union[str, Any] = [
'''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MegatronBertForCausalLM''',
'''MegatronBertForMaskedLM''',
'''MegatronBertForMultipleChoice''',
'''MegatronBertForNextSentencePrediction''',
'''MegatronBertForPreTraining''',
'''MegatronBertForQuestionAnswering''',
'''MegatronBertForSequenceClassification''',
'''MegatronBertForTokenClassification''',
'''MegatronBertModel''',
'''MegatronBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 329 | 1 |
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
flip_channel_order,
get_resize_output_image_size,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
if is_vision_available():
import PIL
if is_torch_available():
import torch
lowerCAmelCase__ :int = logging.get_logger(__name__)
class __a ( UpperCAmelCase ):
_a : Union[str, Any] = ['pixel_values']
def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , ) -> None:
"""simple docstring"""
super().__init__(**_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = size if size is not None else {'shortest_edge': 224}
_UpperCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = crop_size if crop_size is not None else {'height': 256, 'width': 256}
_UpperCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='crop_size' )
_UpperCAmelCase = do_resize
_UpperCAmelCase = size
_UpperCAmelCase = resample
_UpperCAmelCase = do_rescale
_UpperCAmelCase = rescale_factor
_UpperCAmelCase = do_center_crop
_UpperCAmelCase = crop_size
_UpperCAmelCase = do_flip_channel_order
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PIL.Image.BILINEAR , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray:
"""simple docstring"""
_UpperCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE )
if "shortest_edge" not in size:
raise ValueError(f'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' )
_UpperCAmelCase = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size['shortest_edge'] , default_to_square=_SCREAMING_SNAKE_CASE )
return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray:
"""simple docstring"""
_UpperCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' )
return center_crop(_SCREAMING_SNAKE_CASE , size=(size['height'], size['width']) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> np.ndarray:
"""simple docstring"""
return flip_channel_order(_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image:
"""simple docstring"""
_UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
_UpperCAmelCase = resample if resample is not None else self.resample
_UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCAmelCase = (
do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order
)
_UpperCAmelCase = size if size is not None else self.size
_UpperCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
_UpperCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='crop_size' )
_UpperCAmelCase = make_list_of_images(_SCREAMING_SNAKE_CASE )
if not valid_images(_SCREAMING_SNAKE_CASE ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
# All transformations expect numpy arrays.
_UpperCAmelCase = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images]
if do_resize:
_UpperCAmelCase = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images]
if do_center_crop:
_UpperCAmelCase = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images]
if do_rescale:
_UpperCAmelCase = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images]
# the pretrained checkpoints assume images are BGR, not RGB
if do_flip_channel_order:
_UpperCAmelCase = [self.flip_channel_order(image=_SCREAMING_SNAKE_CASE ) for image in images]
_UpperCAmelCase = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images]
_UpperCAmelCase = {'pixel_values': images}
return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ):
raise ValueError(
'Make sure that you pass in as many target sizes as the batch dimension of the logits' )
if is_torch_tensor(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = target_sizes.numpy()
_UpperCAmelCase = []
for idx in range(len(_SCREAMING_SNAKE_CASE ) ):
_UpperCAmelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = logits.argmax(dim=1 )
_UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 329 |
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def lowerCAmelCase__ ( a__: Tuple , a__: Optional[Any] , a__: Any ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = AutoConfig.from_pretrained(a__ )
_UpperCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=a__ )
_UpperCAmelCase = checkpoints.load_tax_checkpoint(a__ )
_UpperCAmelCase = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp']
if config.model_type == "t5":
_UpperCAmelCase = 'SelfAttention'
if config.model_type == "longt5" and config.encoder_attention_type == "local":
_UpperCAmelCase = 'LocalSelfAttention'
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = 'TransientGlobalSelfAttention'
else:
raise ValueError(
'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`'
' attribute with a value from [\'local\', \'transient-global].' )
# Encoder
for layer_index in range(config.num_layers ):
_UpperCAmelCase = F'''layers_{str(a__ )}'''
# Self-Attention
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel']
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale']
if split_mlp_wi:
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel']
else:
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale']
# Assigning
_UpperCAmelCase = flax_model.params['encoder']['block'][str(a__ )]['layer']
_UpperCAmelCase = tax_attention_key
_UpperCAmelCase = tax_attention_out
_UpperCAmelCase = tax_attention_query
_UpperCAmelCase = tax_attention_value
_UpperCAmelCase = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = tax_global_layer_norm
if split_mlp_wi:
_UpperCAmelCase = tax_mlp_wi_a
_UpperCAmelCase = tax_mlp_wi_a
else:
_UpperCAmelCase = tax_mlp_wi
_UpperCAmelCase = tax_mlp_wo
_UpperCAmelCase = tax_mlp_layer_norm
_UpperCAmelCase = flax_model_encoder_layer_block
# Only for layer 0:
_UpperCAmelCase = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T
_UpperCAmelCase = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T
_UpperCAmelCase = tax_encoder_global_rel_embedding
# Assigning
_UpperCAmelCase = tax_model['target']['encoder']['encoder_norm']['scale']
_UpperCAmelCase = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers ):
_UpperCAmelCase = F'''layers_{str(a__ )}'''
# Self-Attention
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][
'scale'
]
# Encoder-Decoder-Attention
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention']
_UpperCAmelCase = tax_enc_dec_attention_module['key']['kernel']
_UpperCAmelCase = tax_enc_dec_attention_module['out']['kernel']
_UpperCAmelCase = tax_enc_dec_attention_module['query']['kernel']
_UpperCAmelCase = tax_enc_dec_attention_module['value']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale']
# MLP
if split_mlp_wi:
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel']
else:
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale']
# Assigning
_UpperCAmelCase = flax_model.params['decoder']['block'][str(a__ )]['layer']
_UpperCAmelCase = tax_attention_key
_UpperCAmelCase = tax_attention_out
_UpperCAmelCase = tax_attention_query
_UpperCAmelCase = tax_attention_value
_UpperCAmelCase = tax_pre_attention_layer_norm
_UpperCAmelCase = tax_enc_dec_attention_key
_UpperCAmelCase = tax_enc_dec_attention_out
_UpperCAmelCase = tax_enc_dec_attention_query
_UpperCAmelCase = tax_enc_dec_attention_value
_UpperCAmelCase = tax_cross_layer_norm
if split_mlp_wi:
_UpperCAmelCase = tax_mlp_wi_a
_UpperCAmelCase = tax_mlp_wi_a
else:
_UpperCAmelCase = tax_mlp_wi
_UpperCAmelCase = tax_mlp_wo
_UpperCAmelCase = txa_mlp_layer_norm
_UpperCAmelCase = flax_model_decoder_layer_block
# Decoder Normalization
_UpperCAmelCase = tax_model['target']['decoder']['decoder_norm']['scale']
_UpperCAmelCase = txa_decoder_norm
# Only for layer 0:
_UpperCAmelCase = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T
_UpperCAmelCase = tax_decoder_rel_embedding
# Token Embeddings
_UpperCAmelCase = tax_model['target']['token_embedder']['embedding']
_UpperCAmelCase = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
_UpperCAmelCase = tax_model['target']['decoder']['logits_dense']['kernel']
flax_model.save_pretrained(a__ )
print('T5X Model was sucessfully converted!' )
if __name__ == "__main__":
lowerCAmelCase__ :List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.'''
)
parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''')
parser.add_argument(
'''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.'''
)
lowerCAmelCase__ :List[str] = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 329 | 1 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def lowerCAmelCase__ ( *a__: str , a__: Optional[Union[Dict, Any]] = None , a__: Dict=True , a__: Any=2 ) -> Union[str, Any]:
'''simple docstring'''
from .. import __version__
_UpperCAmelCase = take_from
_UpperCAmelCase = ()
if not isinstance(args[0] , a__ ):
_UpperCAmelCase = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(a__ ).base_version ) >= version.parse(a__ ):
raise ValueError(
F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''''
F''' version {__version__} is >= {version_name}''' )
_UpperCAmelCase = None
if isinstance(a__ , a__ ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(a__ ),)
_UpperCAmelCase = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''
elif hasattr(a__ , a__ ):
values += (getattr(a__ , a__ ),)
_UpperCAmelCase = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''
elif deprecated_kwargs is None:
_UpperCAmelCase = F'''`{attribute}` is deprecated and will be removed in version {version_name}.'''
if warning is not None:
_UpperCAmelCase = warning + ' ' if standard_warn else ''
warnings.warn(warning + message , a__ , stacklevel=a__ )
if isinstance(a__ , a__ ) and len(a__ ) > 0:
_UpperCAmelCase = inspect.getouterframes(inspect.currentframe() )[1]
_UpperCAmelCase = call_frame.filename
_UpperCAmelCase = call_frame.lineno
_UpperCAmelCase = call_frame.function
_UpperCAmelCase , _UpperCAmelCase = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' )
if len(a__ ) == 0:
return
elif len(a__ ) == 1:
return values[0]
return values
| 329 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ :List[Any] = logging.get_logger(__name__)
lowerCAmelCase__ :Tuple = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''}
class __a ( UpperCAmelCase ):
_a : str = 'ctrl'
_a : Tuple = ['past_key_values']
_a : List[Any] = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _SCREAMING_SNAKE_CASE=246534 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=1280 , _SCREAMING_SNAKE_CASE=8192 , _SCREAMING_SNAKE_CASE=48 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = vocab_size
_UpperCAmelCase = n_positions
_UpperCAmelCase = n_embd
_UpperCAmelCase = n_layer
_UpperCAmelCase = n_head
_UpperCAmelCase = dff
_UpperCAmelCase = resid_pdrop
_UpperCAmelCase = embd_pdrop
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = initializer_range
_UpperCAmelCase = use_cache
super().__init__(**_SCREAMING_SNAKE_CASE )
| 329 | 1 |
import unittest
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __a :
@staticmethod
def UpperCAmelCase__ ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
pass
@is_pipeline_test
@require_torch
@require_vision
class __a ( unittest.TestCase ):
_a : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' )
_UpperCAmelCase = [
{
'image': Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ),
'question': 'How many cats are there?',
},
{
'image': './tests/fixtures/tests_samples/COCO/000000039769.png',
'question': 'How many cats are there?',
},
]
return vqa_pipeline, examples
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = vqa_pipeline(_SCREAMING_SNAKE_CASE , top_k=1 )
self.assertEqual(
_SCREAMING_SNAKE_CASE , [
[{'score': ANY(_SCREAMING_SNAKE_CASE ), 'answer': ANY(_SCREAMING_SNAKE_CASE )}],
[{'score': ANY(_SCREAMING_SNAKE_CASE ), 'answer': ANY(_SCREAMING_SNAKE_CASE )}],
] , )
@require_torch
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' )
_UpperCAmelCase = './tests/fixtures/tests_samples/COCO/000000039769.png'
_UpperCAmelCase = 'How many cats are there?'
_UpperCAmelCase = vqa_pipeline(image=_SCREAMING_SNAKE_CASE , question='How many cats are there?' , top_k=2 )
self.assertEqual(
_SCREAMING_SNAKE_CASE , [{'score': ANY(_SCREAMING_SNAKE_CASE ), 'answer': ANY(_SCREAMING_SNAKE_CASE )}, {'score': ANY(_SCREAMING_SNAKE_CASE ), 'answer': ANY(_SCREAMING_SNAKE_CASE )}] )
_UpperCAmelCase = vqa_pipeline({'image': image, 'question': question} , top_k=2 )
self.assertEqual(
_SCREAMING_SNAKE_CASE , [{'score': ANY(_SCREAMING_SNAKE_CASE ), 'answer': ANY(_SCREAMING_SNAKE_CASE )}, {'score': ANY(_SCREAMING_SNAKE_CASE ), 'answer': ANY(_SCREAMING_SNAKE_CASE )}] )
@slow
@require_torch
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = pipeline('visual-question-answering' , model='dandelin/vilt-b32-finetuned-vqa' )
_UpperCAmelCase = './tests/fixtures/tests_samples/COCO/000000039769.png'
_UpperCAmelCase = 'How many cats are there?'
_UpperCAmelCase = vqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] )
_UpperCAmelCase = vqa_pipeline({'image': image, 'question': question} , top_k=2 )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] )
_UpperCAmelCase = vqa_pipeline(
[{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [[{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}]] * 2 , )
@require_tf
@unittest.skip('Visual question answering not implemented in TF' )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
pass
| 329 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 255 , _SCREAMING_SNAKE_CASE=True , ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333}
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize
_UpperCAmelCase = size
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
_UpperCAmelCase = do_rescale
_UpperCAmelCase = rescale_factor
_UpperCAmelCase = do_pad
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any:
"""simple docstring"""
if not batched:
_UpperCAmelCase = image_inputs[0]
if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ):
_UpperCAmelCase , _UpperCAmelCase = image.size
else:
_UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2]
if w < h:
_UpperCAmelCase = int(self.size['shortest_edge'] * h / w )
_UpperCAmelCase = self.size['shortest_edge']
elif w > h:
_UpperCAmelCase = self.size['shortest_edge']
_UpperCAmelCase = int(self.size['shortest_edge'] * w / h )
else:
_UpperCAmelCase = self.size['shortest_edge']
_UpperCAmelCase = self.size['shortest_edge']
else:
_UpperCAmelCase = []
for image in image_inputs:
_UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0]
_UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : str = DeformableDetrImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = DeformableDetrImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_rescale' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} )
self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
_UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
_UpperCAmelCase = json.loads(f.read() )
_UpperCAmelCase = {'image_id': 39769, 'annotations': target}
# encode them
_UpperCAmelCase = DeformableDetrImageProcessor()
_UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors='pt' )
# verify pixel values
_UpperCAmelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
# verify area
_UpperCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) )
# verify boxes
_UpperCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) )
# verify image_id
_UpperCAmelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) )
# verify is_crowd
_UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) )
# verify class_labels
_UpperCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) )
# verify orig_size
_UpperCAmelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) )
# verify size
_UpperCAmelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
@slow
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
_UpperCAmelCase = json.loads(f.read() )
_UpperCAmelCase = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target}
_UpperCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
_UpperCAmelCase = DeformableDetrImageProcessor(format='coco_panoptic' )
_UpperCAmelCase = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors='pt' )
# verify pixel values
_UpperCAmelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
# verify area
_UpperCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _SCREAMING_SNAKE_CASE ) )
# verify boxes
_UpperCAmelCase = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) )
# verify image_id
_UpperCAmelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _SCREAMING_SNAKE_CASE ) )
# verify is_crowd
_UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _SCREAMING_SNAKE_CASE ) )
# verify class_labels
_UpperCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _SCREAMING_SNAKE_CASE ) )
# verify masks
_UpperCAmelCase = 822873
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _SCREAMING_SNAKE_CASE )
# verify orig_size
_UpperCAmelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _SCREAMING_SNAKE_CASE ) )
# verify size
_UpperCAmelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _SCREAMING_SNAKE_CASE ) )
| 329 | 1 |
import os
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen, xsplitext
from ..table import array_cast
from ..utils.py_utils import no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
from .features import FeatureType
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Any = False, False, False
@dataclass
class __a :
_a : Optional[int] = None
_a : bool = True
_a : bool = True
_a : Optional[str] = None
# Automatically constructed
_a : ClassVar[str] = "dict"
_a : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} )
_a : str = field(default='Audio' , init=UpperCAmelCase , repr=UpperCAmelCase )
def __call__( self ) -> Union[str, Any]:
"""simple docstring"""
return self.pa_type
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> dict:
"""simple docstring"""
try:
import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files.
except ImportError as err:
raise ImportError('To support encoding audio data, please install \'soundfile\'.' ) from err
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return {"bytes": None, "path": value}
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return {"bytes": value, "path": None}
elif "array" in value:
# convert the audio array to wav bytes
_UpperCAmelCase = BytesIO()
sf.write(_SCREAMING_SNAKE_CASE , value['array'] , value['sampling_rate'] , format='wav' )
return {"bytes": buffer.getvalue(), "path": None}
elif value.get('path' ) is not None and os.path.isfile(value['path'] ):
# we set "bytes": None to not duplicate the data if they're already available locally
if value["path"].endswith('pcm' ):
# "PCM" only has raw audio bytes
if value.get('sampling_rate' ) is None:
# At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate
raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object' )
if value.get('bytes' ):
# If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!)
_UpperCAmelCase = np.frombuffer(value['bytes'] , dtype=np.intaa ).astype(np.floataa ) / 32767
else:
_UpperCAmelCase = np.memmap(value['path'] , dtype='h' , mode='r' ).astype(np.floataa ) / 32767
_UpperCAmelCase = BytesIO(bytes() )
sf.write(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , value['sampling_rate'] , format='wav' )
return {"bytes": buffer.getvalue(), "path": None}
else:
return {"bytes": None, "path": value.get('path' )}
elif value.get('bytes' ) is not None or value.get('path' ) is not None:
# store the audio bytes, and path is used to infer the audio format using the file extension
return {"bytes": value.get('bytes' ), "path": value.get('path' )}
else:
raise ValueError(
f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> dict:
"""simple docstring"""
if not self.decode:
raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.' )
_UpperCAmelCase , _UpperCAmelCase = (value['path'], BytesIO(value['bytes'] )) if value['bytes'] is not None else (value['path'], None)
if path is None and file is None:
raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
try:
import librosa
import soundfile as sf
except ImportError as err:
raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.' ) from err
_UpperCAmelCase = xsplitext(_SCREAMING_SNAKE_CASE )[1][1:].lower() if path is not None else None
if not config.IS_OPUS_SUPPORTED and audio_format == "opus":
raise RuntimeError(
'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, '
'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' )
elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
raise RuntimeError(
'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, '
'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' )
if file is None:
_UpperCAmelCase = token_per_repo_id or {}
_UpperCAmelCase = path.split('::' )[-1]
try:
_UpperCAmelCase = string_to_dict(_SCREAMING_SNAKE_CASE , config.HUB_DATASETS_URL )['repo_id']
_UpperCAmelCase = token_per_repo_id[repo_id]
except (ValueError, KeyError):
_UpperCAmelCase = None
with xopen(_SCREAMING_SNAKE_CASE , 'rb' , use_auth_token=_SCREAMING_SNAKE_CASE ) as f:
_UpperCAmelCase , _UpperCAmelCase = sf.read(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase , _UpperCAmelCase = sf.read(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = array.T
if self.mono:
_UpperCAmelCase = librosa.to_mono(_SCREAMING_SNAKE_CASE )
if self.sampling_rate and self.sampling_rate != sampling_rate:
_UpperCAmelCase = librosa.resample(_SCREAMING_SNAKE_CASE , orig_sr=_SCREAMING_SNAKE_CASE , target_sr=self.sampling_rate )
_UpperCAmelCase = self.sampling_rate
return {"path": path, "array": array, "sampling_rate": sampling_rate}
def UpperCAmelCase__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
"""simple docstring"""
from .features import Value
if self.decode:
raise ValueError('Cannot flatten a decoded Audio feature.' )
return {
"bytes": Value('binary' ),
"path": Value('string' ),
}
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> pa.StructArray:
"""simple docstring"""
if pa.types.is_string(storage.type ):
_UpperCAmelCase = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() )
_UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
_UpperCAmelCase = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() )
_UpperCAmelCase = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('array' ):
_UpperCAmelCase = pa.array([Audio().encode_example(_SCREAMING_SNAKE_CASE ) if x is not None else None for x in storage.to_pylist()] )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index('bytes' ) >= 0:
_UpperCAmelCase = storage.field('bytes' )
else:
_UpperCAmelCase = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() )
if storage.type.get_field_index('path' ) >= 0:
_UpperCAmelCase = storage.field('path' )
else:
_UpperCAmelCase = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() )
_UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() )
return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> pa.StructArray:
"""simple docstring"""
@no_op_if_value_is_null
def path_to_bytes(_SCREAMING_SNAKE_CASE ):
with xopen(_SCREAMING_SNAKE_CASE , 'rb' ) as f:
_UpperCAmelCase = f.read()
return bytes_
_UpperCAmelCase = pa.array(
[
(path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
_UpperCAmelCase = pa.array(
[os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , )
_UpperCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() )
return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type )
| 329 |
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class __a ( unittest.TestCase ):
_a : List[str] = JukeboxTokenizer
_a : List[Any] = {
'artist': 'Zac Brown Band',
'genres': 'Country',
'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ',
}
@require_torch
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
import torch
_UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' )
_UpperCAmelCase = tokenizer(**self.metas )['input_ids']
# fmt: off
_UpperCAmelCase = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
import torch
_UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' )
_UpperCAmelCase = tokenizer(**self.metas )['input_ids']
# fmt: off
_UpperCAmelCase = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 329 | 1 |
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
_a : Any = VQModel
_a : Tuple = 'sample'
@property
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=(32, 32) ) -> Any:
"""simple docstring"""
_UpperCAmelCase = 4
_UpperCAmelCase = 3
_UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(_SCREAMING_SNAKE_CASE )
return {"sample": image}
@property
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
return (3, 32, 32)
@property
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
return (3, 32, 32)
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = {
'block_out_channels': [32, 64],
'in_channels': 3,
'out_channels': 3,
'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'],
'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'],
'latent_channels': 3,
}
_UpperCAmelCase = self.dummy_input
return init_dict, inputs_dict
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = VQModel.from_pretrained('fusing/vqgan-dummy' , output_loading_info=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
self.assertEqual(len(loading_info['missing_keys'] ) , 0 )
model.to(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = VQModel.from_pretrained('fusing/vqgan-dummy' )
model.to(_SCREAMING_SNAKE_CASE ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
_UpperCAmelCase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
_UpperCAmelCase = image.to(_SCREAMING_SNAKE_CASE )
with torch.no_grad():
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ).sample
_UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
_UpperCAmelCase = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] )
# fmt: on
self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) )
| 329 |
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
lowerCAmelCase__ :Optional[int] = logging.getLogger(__name__)
def lowerCAmelCase__ ( ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = argparse.ArgumentParser(
description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' )
parser.add_argument(
'--dataset_name' , type=a__ , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , )
parser.add_argument(
'--dataset_config' , type=a__ , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' )
parser.add_argument(
'--tokenizer_name_or_path' , type=a__ , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , )
parser.add_argument(
'--shard_size' , type=a__ , default=1_0_0_0 , help='Number of entries to go in a single shard.' , )
parser.add_argument('--split' , type=a__ , default='train' , choices=['train', 'test', 'validation'] )
parser.add_argument(
'--limit' , default=a__ , type=a__ , help='Limit the number of shards (used for debugging).' , )
parser.add_argument(
'--max_length' , type=a__ , default=5_1_2 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum'
' sequence length that is a multiple of 8.' , )
parser.add_argument(
'--output_dir' , default='tf-tpu' , type=a__ , help='Output directory where the TFRecord shards will be saved. If the'
' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord'
' shards will be directly saved to a Google Cloud Storage bucket.' , )
_UpperCAmelCase = parser.parse_args()
return args
def lowerCAmelCase__ ( a__: Union[str, Any] ) -> List[Any]:
'''simple docstring'''
def fn(a__: str ):
return tokenizer(examples['text'] )
return fn
def lowerCAmelCase__ ( a__: List[str] ) -> Any:
'''simple docstring'''
_UpperCAmelCase = []
for i in range(len(tokenized_data['input_ids'] ) ):
_UpperCAmelCase = {
'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ),
'attention_mask': tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ),
}
_UpperCAmelCase = tf.train.Features(feature=a__ )
_UpperCAmelCase = tf.train.Example(features=a__ )
_UpperCAmelCase = example.SerializeToString()
records.append(a__ )
return records
def lowerCAmelCase__ ( a__: Union[str, Any] ) -> int:
'''simple docstring'''
_UpperCAmelCase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
_UpperCAmelCase = min(len(a__ ) , args.limit )
_UpperCAmelCase = dataset.select(range(a__ ) )
print(F'''Limiting the dataset to {args.limit} entries.''' )
_UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
_UpperCAmelCase = os.path.join(args.output_dir , args.split )
if not os.path.exists(a__ ):
os.makedirs(a__ )
else:
_UpperCAmelCase = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
_UpperCAmelCase = tokenize_function(a__ )
_UpperCAmelCase = dataset.map(a__ , batched=a__ , num_proc=4 , remove_columns=['text'] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(a__: Optional[int] ):
# Concatenate all texts.
_UpperCAmelCase = {k: sum(examples[k] , [] ) for k in examples.keys()}
_UpperCAmelCase = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
_UpperCAmelCase = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
_UpperCAmelCase = {
k: [t[i : i + args.max_length] for i in range(0 , a__ , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
_UpperCAmelCase = dataset_tokenized.map(a__ , batched=a__ , batch_size=1_0_0_0 , num_proc=4 )
_UpperCAmelCase = 0
_UpperCAmelCase = 0
for shard in range(0 , len(a__ ) , args.shard_size ):
_UpperCAmelCase = grouped_dataset[shard : shard + args.shard_size]
_UpperCAmelCase = len(dataset_snapshot['input_ids'] )
_UpperCAmelCase = os.path.join(a__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' )
_UpperCAmelCase = get_serialized_examples(a__ )
with tf.io.TFRecordWriter(a__ ) as out_file:
for i in range(len(a__ ) ):
_UpperCAmelCase = serialized_examples[i]
out_file.write(a__ )
print('Wrote file {} containing {} records'.format(a__ , a__ ) )
shard_count += 1
total_records += records_containing
with open(F'''split-{args.split}-records-count.txt''' , 'w' ) as f:
print(F'''Total {args.split} records: {total_records}''' , file=a__ )
if __name__ == "__main__":
lowerCAmelCase__ :str = parse_args()
main(args)
| 329 | 1 |
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
lowerCAmelCase__ :Optional[int] = [
'''python''',
'''tqdm''',
'''regex''',
'''requests''',
'''packaging''',
'''filelock''',
'''numpy''',
'''tokenizers''',
'''huggingface-hub''',
'''safetensors''',
'''accelerate''',
'''pyyaml''',
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def lowerCAmelCase__ ( a__: Tuple , a__: Optional[int]=None ) -> Any:
'''simple docstring'''
require_version(deps[pkg] , a__ )
| 329 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any]=1_0 ) -> Any:
'''simple docstring'''
_UpperCAmelCase = []
for _ in range(a__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def lowerCAmelCase__ ( a__: List[str] , a__: Any=1_0 ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = []
for step in range(a__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
_UpperCAmelCase = os.path.join(a__ , 'schedule.bin' )
torch.save(scheduler.state_dict() , a__ )
_UpperCAmelCase = torch.load(a__ )
scheduler.load_state_dict(a__ )
return lrs
@require_torch
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) )
for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] )
_UpperCAmelCase = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_UpperCAmelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 )
for _ in range(100 ):
_UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] )
_UpperCAmelCase = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_UpperCAmelCase = Adafactor(
params=[w] , lr=1e-2 , eps=(1e-3_0, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_SCREAMING_SNAKE_CASE , weight_decay=0.0 , relative_step=_SCREAMING_SNAKE_CASE , scale_parameter=_SCREAMING_SNAKE_CASE , warmup_init=_SCREAMING_SNAKE_CASE , )
for _ in range(1000 ):
_UpperCAmelCase = criterion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
@require_torch
class __a ( unittest.TestCase ):
_a : Dict = nn.Linear(50 , 50 ) if is_torch_available() else None
_a : Dict = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
_a : List[Any] = 10
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> str:
"""simple docstring"""
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) )
for a, b in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , delta=_SCREAMING_SNAKE_CASE , msg=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = {'num_warmup_steps': 2, 'num_training_steps': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
_UpperCAmelCase = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'num_warmup_steps': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, 'num_cycles': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, 'power': 2.0, 'lr_end': 1e-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'num_warmup_steps': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
_UpperCAmelCase , _UpperCAmelCase = data
_UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
_UpperCAmelCase = unwrap_schedule(_SCREAMING_SNAKE_CASE , self.num_steps )
self.assertListAlmostEqual(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
_UpperCAmelCase = scheduler_func(self.optimizer , **_SCREAMING_SNAKE_CASE )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_SCREAMING_SNAKE_CASE ) # wrap to test picklability of the schedule
_UpperCAmelCase = unwrap_and_save_reload_schedule(_SCREAMING_SNAKE_CASE , self.num_steps )
self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , msg=f'''failed for {scheduler_func} in save and reload''' )
class __a :
def __init__( self , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
_UpperCAmelCase = fn
def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
return self.fn(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
@classmethod
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = list(map(self , scheduler.lr_lambdas ) )
| 329 | 1 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
lowerCAmelCase__ :int = datasets.utils.logging.get_logger(__name__)
@dataclass
class __a ( datasets.BuilderConfig ):
_a : Optional[datasets.Features] = None
_a : str = "utf-8"
_a : Optional[str] = None
_a : Optional[str] = None
_a : bool = True # deprecated
_a : Optional[int] = None # deprecated
_a : int = 10 << 20 # 10MB
_a : Optional[bool] = None
class __a ( datasets.ArrowBasedBuilder ):
_a : List[str] = JsonConfig
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
if self.config.block_size is not None:
logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead' )
_UpperCAmelCase = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.' )
if self.config.newlines_in_values is not None:
raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported' )
return datasets.DatasetInfo(features=self.config.features )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
_UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_SCREAMING_SNAKE_CASE , (str, list, tuple) ):
_UpperCAmelCase = data_files
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = [files]
_UpperCAmelCase = [dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
_UpperCAmelCase = []
for split_name, files in data_files.items():
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = [files]
_UpperCAmelCase = [dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) for file in files]
splits.append(datasets.SplitGenerator(name=_SCREAMING_SNAKE_CASE , gen_kwargs={'files': files} ) )
return splits
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
_UpperCAmelCase = self.config.features.arrow_schema.field(_SCREAMING_SNAKE_CASE ).type
_UpperCAmelCase = pa_table.append_column(_SCREAMING_SNAKE_CASE , pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=_SCREAMING_SNAKE_CASE ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
_UpperCAmelCase = table_cast(_SCREAMING_SNAKE_CASE , self.config.features.arrow_schema )
return pa_table
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
for file_idx, file in enumerate(itertools.chain.from_iterable(_SCREAMING_SNAKE_CASE ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(_SCREAMING_SNAKE_CASE , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
_UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE )
# We keep only the field we are interested in
_UpperCAmelCase = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ):
_UpperCAmelCase = set().union(*[row.keys() for row in dataset] )
_UpperCAmelCase = {col: [row.get(_SCREAMING_SNAKE_CASE ) for row in dataset] for col in keys}
else:
_UpperCAmelCase = dataset
_UpperCAmelCase = pa.Table.from_pydict(_SCREAMING_SNAKE_CASE )
yield file_idx, self._cast_table(_SCREAMING_SNAKE_CASE )
# If the file has one json object per line
else:
with open(_SCREAMING_SNAKE_CASE , 'rb' ) as f:
_UpperCAmelCase = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
_UpperCAmelCase = max(self.config.chunksize // 32 , 16 << 10 )
_UpperCAmelCase = (
self.config.encoding_errors if self.config.encoding_errors is not None else 'strict'
)
while True:
_UpperCAmelCase = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(_SCREAMING_SNAKE_CASE )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
_UpperCAmelCase = batch.decode(self.config.encoding , errors=_SCREAMING_SNAKE_CASE ).encode('utf-8' )
try:
while True:
try:
_UpperCAmelCase = paj.read_json(
io.BytesIO(_SCREAMING_SNAKE_CASE ) , read_options=paj.ReadOptions(block_size=_SCREAMING_SNAKE_CASE ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(_SCREAMING_SNAKE_CASE , pa.ArrowInvalid )
and "straddling" not in str(_SCREAMING_SNAKE_CASE )
or block_size > len(_SCREAMING_SNAKE_CASE )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
f'''Batch of {len(_SCREAMING_SNAKE_CASE )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
_SCREAMING_SNAKE_CASE , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
_UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE )
except json.JSONDecodeError:
logger.error(f'''Failed to read file \'{file}\' with error {type(_SCREAMING_SNAKE_CASE )}: {e}''' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # list is the only sequence type supported in JSON
try:
_UpperCAmelCase = set().union(*[row.keys() for row in dataset] )
_UpperCAmelCase = {col: [row.get(_SCREAMING_SNAKE_CASE ) for row in dataset] for col in keys}
_UpperCAmelCase = pa.Table.from_pydict(_SCREAMING_SNAKE_CASE )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(f'''Failed to read file \'{file}\' with error {type(_SCREAMING_SNAKE_CASE )}: {e}''' )
raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None
yield file_idx, self._cast_table(_SCREAMING_SNAKE_CASE )
break
else:
logger.error(f'''Failed to read file \'{file}\' with error {type(_SCREAMING_SNAKE_CASE )}: {e}''' )
raise ValueError(
f'''Not able to read records in the JSON file at {file}. '''
f'''You should probably indicate the field of the JSON file containing your records. '''
f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '''
f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(_SCREAMING_SNAKE_CASE )
batch_idx += 1
| 329 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase__ :Any = logging.get_logger(__name__)
def lowerCAmelCase__ ( a__: List[Any] , a__: Union[str, Any] , a__: Dict , a__: Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = original_name.split('.' )[0]
_UpperCAmelCase = key.split('.' )
_UpperCAmelCase = int(key_list[key_list.index(a__ ) - 2] )
_UpperCAmelCase = int(key_list[key_list.index(a__ ) - 1] )
_UpperCAmelCase = orig_block_num - offset
_UpperCAmelCase = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def lowerCAmelCase__ ( a__: Tuple ) -> int:
'''simple docstring'''
_UpperCAmelCase = OrderedDict()
_UpperCAmelCase , _UpperCAmelCase = 0, 0
for key, value in state_dict.items():
if key.startswith('network' ):
_UpperCAmelCase = key.replace('network' , 'poolformer.encoder' )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith('bias' ) and "patch_embed" not in key:
patch_emb_offset += 1
_UpperCAmelCase = key[: key.find('proj' )]
_UpperCAmelCase = key.replace(a__ , F'''patch_embeddings.{total_embed_found}.''' )
_UpperCAmelCase = key.replace('proj' , 'projection' )
if key.endswith('bias' ):
total_embed_found += 1
if "patch_embeddings" in key:
_UpperCAmelCase = 'poolformer.encoder.' + key
if "mlp.fc1" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc1' , 'output.conv1' )
if "mlp.fc2" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'mlp.fc2' , 'output.conv2' )
if "norm1" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm1' , 'before_norm' )
if "norm2" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'norm2' , 'after_norm' )
if "layer_scale_1" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_1' , 'layer_scale_1' )
if "layer_scale_2" in key:
_UpperCAmelCase = replace_key_with_offset(a__ , a__ , 'layer_scale_2' , 'layer_scale_2' )
if "head" in key:
_UpperCAmelCase = key.replace('head' , 'classifier' )
_UpperCAmelCase = value
return new_state_dict
def lowerCAmelCase__ ( ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
_UpperCAmelCase = Image.open(requests.get(a__ , stream=a__ ).raw )
return image
@torch.no_grad()
def lowerCAmelCase__ ( a__: Optional[int] , a__: Dict , a__: Any ) -> Dict:
'''simple docstring'''
_UpperCAmelCase = PoolFormerConfig()
# set attributes based on model_name
_UpperCAmelCase = 'huggingface/label-files'
_UpperCAmelCase = model_name[-3:]
_UpperCAmelCase = 1_0_0_0
_UpperCAmelCase = 'imagenet-1k-id2label.json'
_UpperCAmelCase = (1, 1_0_0_0)
# set config attributes
_UpperCAmelCase = json.load(open(hf_hub_download(a__ , a__ , repo_type='dataset' ) , 'r' ) )
_UpperCAmelCase = {int(a__ ): v for k, v in idalabel.items()}
_UpperCAmelCase = idalabel
_UpperCAmelCase = {v: k for k, v in idalabel.items()}
if size == "s12":
_UpperCAmelCase = [2, 2, 6, 2]
_UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 0.9
elif size == "s24":
_UpperCAmelCase = [4, 4, 1_2, 4]
_UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 0.9
elif size == "s36":
_UpperCAmelCase = [6, 6, 1_8, 6]
_UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 1e-6
_UpperCAmelCase = 0.9
elif size == "m36":
_UpperCAmelCase = [6, 6, 1_8, 6]
_UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 1e-6
_UpperCAmelCase = 0.95
elif size == "m48":
_UpperCAmelCase = [8, 8, 2_4, 8]
_UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 1e-6
_UpperCAmelCase = 0.95
else:
raise ValueError(F'''Size {size} not supported''' )
# load image processor
_UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ )
# Prepare image
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=a__ , return_tensors='pt' ).pixel_values
logger.info(F'''Converting model {model_name}...''' )
# load original state dict
_UpperCAmelCase = torch.load(a__ , map_location=torch.device('cpu' ) )
# rename keys
_UpperCAmelCase = rename_keys(a__ )
# create HuggingFace model and load state dict
_UpperCAmelCase = PoolFormerForImageClassification(a__ )
model.load_state_dict(a__ )
model.eval()
# Define image processor
_UpperCAmelCase = PoolFormerImageProcessor(crop_pct=a__ )
_UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values
# forward pass
_UpperCAmelCase = model(a__ )
_UpperCAmelCase = outputs.logits
# define expected logit slices for different models
if size == "s12":
_UpperCAmelCase = torch.tensor([-0.3_045, -0.6_758, -0.4_869] )
elif size == "s24":
_UpperCAmelCase = torch.tensor([0.4_402, -0.1_374, -0.8_045] )
elif size == "s36":
_UpperCAmelCase = torch.tensor([-0.6_080, -0.5_133, -0.5_898] )
elif size == "m36":
_UpperCAmelCase = torch.tensor([0.3_952, 0.2_263, -1.2_668] )
elif size == "m48":
_UpperCAmelCase = torch.tensor([0.1_167, -0.0_656, -0.3_423] )
else:
raise ValueError(F'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] , a__ , atol=1e-2 )
# finally, save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(a__ ).mkdir(exist_ok=a__ )
model.save_pretrained(a__ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(a__ )
if __name__ == "__main__":
lowerCAmelCase__ :str = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''poolformer_s12''',
type=str,
help='''Name of the model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
lowerCAmelCase__ :Dict = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 329 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ :str = {
'''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ :Union[str, Any] = [
'''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MegatronBertForCausalLM''',
'''MegatronBertForMaskedLM''',
'''MegatronBertForMultipleChoice''',
'''MegatronBertForNextSentencePrediction''',
'''MegatronBertForPreTraining''',
'''MegatronBertForQuestionAnswering''',
'''MegatronBertForSequenceClassification''',
'''MegatronBertForTokenClassification''',
'''MegatronBertModel''',
'''MegatronBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 329 |
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
_UpperCAmelCase = dataset
_UpperCAmelCase = process
_UpperCAmelCase = params
def __len__( self ) -> Union[str, Any]:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.dataset[i]
_UpperCAmelCase = self.process(_SCREAMING_SNAKE_CASE , **self.params )
return processed
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = loader
_UpperCAmelCase = infer
_UpperCAmelCase = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
_UpperCAmelCase = None
_UpperCAmelCase = loader_batch_size
# Internal bookkeeping
_UpperCAmelCase = None
_UpperCAmelCase = None
def __len__( self ) -> Any:
"""simple docstring"""
return len(self.loader )
def __iter__( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = iter(self.loader )
return self
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
_UpperCAmelCase = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
_UpperCAmelCase = {}
for k, element in self._loader_batch_data.items():
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
# Convert ModelOutput to tuple first
_UpperCAmelCase = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
_UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
_UpperCAmelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_UpperCAmelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
_UpperCAmelCase = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_UpperCAmelCase = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_UpperCAmelCase = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
_UpperCAmelCase = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
_UpperCAmelCase = self._loader_batch_data.__class__(_SCREAMING_SNAKE_CASE )
self._loader_batch_index += 1
return result
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
_UpperCAmelCase = next(self.iterator )
_UpperCAmelCase = self.infer(_SCREAMING_SNAKE_CASE , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
_UpperCAmelCase = processed
else:
_UpperCAmelCase = list(processed.keys() )[0]
_UpperCAmelCase = processed[key]
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = len(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_UpperCAmelCase = observed_batch_size
# Setting internal index to unwrap the batch
_UpperCAmelCase = processed
_UpperCAmelCase = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple:
"""simple docstring"""
super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def __iter__( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = iter(self.loader )
_UpperCAmelCase = None
return self
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
if self.subiterator is None:
_UpperCAmelCase = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
_UpperCAmelCase = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
_UpperCAmelCase = self.infer(next(self.iterator ) , **self.params )
_UpperCAmelCase = next(self.subiterator )
return processed
class __a ( UpperCAmelCase ):
def __iter__( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = iter(self.loader )
return self
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = False
_UpperCAmelCase = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
_UpperCAmelCase = self.loader_batch_item()
_UpperCAmelCase = item.pop('is_last' )
accumulator.append(_SCREAMING_SNAKE_CASE )
if is_last:
return accumulator
while not is_last:
_UpperCAmelCase = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
_UpperCAmelCase = processed
else:
_UpperCAmelCase = list(processed.keys() )[0]
_UpperCAmelCase = processed[key]
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = len(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_UpperCAmelCase = observed_batch_size
_UpperCAmelCase = processed
_UpperCAmelCase = 0
while self._loader_batch_index < self.loader_batch_size:
_UpperCAmelCase = self.loader_batch_item()
_UpperCAmelCase = item.pop('is_last' )
accumulator.append(_SCREAMING_SNAKE_CASE )
if is_last:
return accumulator
else:
_UpperCAmelCase = processed
_UpperCAmelCase = item.pop('is_last' )
accumulator.append(_SCREAMING_SNAKE_CASE )
return accumulator
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = dataset
_UpperCAmelCase = key
def __len__( self ) -> Optional[int]:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
return self.dataset[i][self.key]
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = dataset
_UpperCAmelCase = keya
_UpperCAmelCase = keya
def __len__( self ) -> Optional[int]:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 329 | 1 |
from ..utils import DummyObject, requires_backends
class __a ( metaclass=UpperCAmelCase ):
_a : str = ['torch', 'transformers', 'onnx']
def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def UpperCAmelCase__ ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def UpperCAmelCase__ ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class __a ( metaclass=UpperCAmelCase ):
_a : Optional[Any] = ['torch', 'transformers', 'onnx']
def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def UpperCAmelCase__ ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def UpperCAmelCase__ ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class __a ( metaclass=UpperCAmelCase ):
_a : Dict = ['torch', 'transformers', 'onnx']
def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def UpperCAmelCase__ ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def UpperCAmelCase__ ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class __a ( metaclass=UpperCAmelCase ):
_a : str = ['torch', 'transformers', 'onnx']
def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def UpperCAmelCase__ ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def UpperCAmelCase__ ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class __a ( metaclass=UpperCAmelCase ):
_a : Any = ['torch', 'transformers', 'onnx']
def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def UpperCAmelCase__ ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def UpperCAmelCase__ ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class __a ( metaclass=UpperCAmelCase ):
_a : Optional[int] = ['torch', 'transformers', 'onnx']
def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def UpperCAmelCase__ ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def UpperCAmelCase__ ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
| 329 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase__ :int = logging.get_logger(__name__)
lowerCAmelCase__ :Optional[Any] = {
'''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''',
}
class __a ( UpperCAmelCase ):
_a : str = 'data2vec-text'
def __init__( self , _SCREAMING_SNAKE_CASE=30522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-1_2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = hidden_act
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = position_embedding_type
_UpperCAmelCase = use_cache
_UpperCAmelCase = classifier_dropout
class __a ( UpperCAmelCase ):
@property
def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_UpperCAmelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 329 | 1 |
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class __a ( UpperCAmelCase ):
_a : List[Any] = ''
_a : Optional[int] = 'hf-legacy' # "hf://"" is reserved for hffs
def __init__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> str:
"""simple docstring"""
super().__init__(self , **_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = repo_info
_UpperCAmelCase = token
_UpperCAmelCase = None
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
if self.dir_cache is None:
_UpperCAmelCase = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
_UpperCAmelCase = {
'name': hf_file.rfilename,
'size': None,
'type': 'file',
}
self.dir_cache.update(
{
str(_SCREAMING_SNAKE_CASE ): {'name': str(_SCREAMING_SNAKE_CASE ), 'size': None, 'type': 'directory'}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "rb" , **_SCREAMING_SNAKE_CASE , ) -> List[str]:
"""simple docstring"""
if not isinstance(self.repo_info , _SCREAMING_SNAKE_CASE ):
raise NotImplementedError(f'''Open is only implemented for dataset repositories, but got {self.repo_info}''' )
_UpperCAmelCase = hf_hub_url(self.repo_info.id , _SCREAMING_SNAKE_CASE , revision=self.repo_info.sha )
return fsspec.open(
_SCREAMING_SNAKE_CASE , mode=_SCREAMING_SNAKE_CASE , headers=get_authentication_headers_for_url(_SCREAMING_SNAKE_CASE , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open()
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
self._get_dirs()
_UpperCAmelCase = self._strip_protocol(_SCREAMING_SNAKE_CASE )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
self._get_dirs()
_UpperCAmelCase = PurePosixPath(path.strip('/' ) )
_UpperCAmelCase = {}
for p, f in self.dir_cache.items():
_UpperCAmelCase = PurePosixPath(p.strip('/' ) )
_UpperCAmelCase = p.parent
if root == path:
_UpperCAmelCase = f
_UpperCAmelCase = list(paths.values() )
if detail:
return out
else:
return sorted(f['name'] for f in out )
| 329 |
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class __a :
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , _SCREAMING_SNAKE_CASE=[1, 2, 3] , ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = embed_dim
_UpperCAmelCase = depths
_UpperCAmelCase = num_heads
_UpperCAmelCase = window_size
_UpperCAmelCase = mlp_ratio
_UpperCAmelCase = qkv_bias
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = drop_path_rate
_UpperCAmelCase = hidden_act
_UpperCAmelCase = use_absolute_embeddings
_UpperCAmelCase = patch_norm
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = initializer_range
_UpperCAmelCase = is_training
_UpperCAmelCase = scope
_UpperCAmelCase = use_labels
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = encoder_stride
_UpperCAmelCase = out_features
_UpperCAmelCase = out_indices
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
_UpperCAmelCase = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
_UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = ['stem']
_UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
_a : int = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
_a : str = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {}
_a : Optional[int] = False
_a : List[str] = False
_a : List[str] = False
_a : Optional[int] = False
_a : Tuple = False
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = MaskFormerSwinModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
'`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with'
' `nn.DataParallel`'
) )
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
return
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE )
@unittest.skip('Swin does not use inputs_embeds' )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
pass
@unittest.skip('Swin does not support feedforward chunking' )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE )
@unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
pass
@unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = outputs.hidden_states
_UpperCAmelCase = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
# Swin has a different seq_length
_UpperCAmelCase = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
_UpperCAmelCase = True
self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCAmelCase = True
self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = 3
_UpperCAmelCase = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
_UpperCAmelCase = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
_UpperCAmelCase = True
self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCAmelCase = True
self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) )
@unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = 0
return t
def check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE={} ):
with torch.no_grad():
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple()
def recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=(
'Tuple and dict output are not equal. Difference:'
f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'''
f''' {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has'''
f''' `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}.'''
) , )
recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE )
check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} )
@require_torch
class __a ( unittest.TestCase , UpperCAmelCase ):
_a : Any = (MaskFormerSwinBackbone,) if is_torch_available() else ()
_a : Any = MaskFormerSwinConfig
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = MaskFormerSwinModelTester(self )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = inputs_dict['pixel_values'].shape[0]
for backbone_class in self.all_model_classes:
_UpperCAmelCase = backbone_class(_SCREAMING_SNAKE_CASE )
backbone.to(_SCREAMING_SNAKE_CASE )
backbone.eval()
_UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
_UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
_UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(outputs.attentions )
| 329 | 1 |
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class __a ( unittest.TestCase ):
_a : List[str] = JukeboxTokenizer
_a : List[Any] = {
'artist': 'Zac Brown Band',
'genres': 'Country',
'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ',
}
@require_torch
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
import torch
_UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' )
_UpperCAmelCase = tokenizer(**self.metas )['input_ids']
# fmt: off
_UpperCAmelCase = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
import torch
_UpperCAmelCase = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' )
_UpperCAmelCase = tokenizer(**self.metas )['input_ids']
# fmt: off
_UpperCAmelCase = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 329 |
from collections.abc import Generator
def lowerCAmelCase__ ( ) -> Generator[int, None, None]:
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = 0, 1
while True:
_UpperCAmelCase , _UpperCAmelCase = b, a + b
yield b
def lowerCAmelCase__ ( a__: int = 1_0_0_0 ) -> int:
'''simple docstring'''
_UpperCAmelCase = 1
_UpperCAmelCase = fibonacci_generator()
while len(str(next(a__ ) ) ) < n:
answer += 1
return answer + 1
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 329 | 1 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
lowerCAmelCase__ :int = get_logger()
lowerCAmelCase__ :Optional[dict] = None
class __a ( TensorFormatter[Mapping, 'jax.Array', Mapping] ):
def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
super().__init__(features=_SCREAMING_SNAKE_CASE )
import jax
from jaxlib.xla_client import Device
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise ValueError(
f'''Expected {device} to be a `str` not {type(_SCREAMING_SNAKE_CASE )}, as `jaxlib.xla_extension.Device` '''
'is not serializable neither with `pickle` nor with `dill`. Instead you can surround '
'the device with `str()` to get its string identifier that will be internally mapped '
'to the actual `jaxlib.xla_extension.Device`.' )
_UpperCAmelCase = device if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_UpperCAmelCase = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f'''Device with string identifier {self.device} not listed among the available '''
f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '''
f'''device: {str(jax.devices()[0] )}.''' )
_UpperCAmelCase = str(jax.devices()[0] )
_UpperCAmelCase = jnp_array_kwargs
@staticmethod
def UpperCAmelCase__ ( ) -> Dict[str, "jaxlib.xla_extension.Device"]:
"""simple docstring"""
import jax
return {str(_SCREAMING_SNAKE_CASE ): device for device in jax.devices()}
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
import jax
import jax.numpy as jnp
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and column:
if all(
isinstance(_SCREAMING_SNAKE_CASE , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(_SCREAMING_SNAKE_CASE , axis=0 )
return column
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
import jax
import jax.numpy as jnp
if isinstance(_SCREAMING_SNAKE_CASE , (str, bytes, type(_SCREAMING_SNAKE_CASE )) ):
return value
elif isinstance(_SCREAMING_SNAKE_CASE , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
_UpperCAmelCase = {}
if isinstance(_SCREAMING_SNAKE_CASE , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
_UpperCAmelCase = {'dtype': jnp.intaa}
else:
_UpperCAmelCase = {'dtype': jnp.intaa}
elif isinstance(_SCREAMING_SNAKE_CASE , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
_UpperCAmelCase = {'dtype': jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ):
_UpperCAmelCase = np.asarray(_SCREAMING_SNAKE_CASE )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_UpperCAmelCase = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(_SCREAMING_SNAKE_CASE , **{**default_dtype, **self.jnp_array_kwargs} )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(_SCREAMING_SNAKE_CASE , '__array__' ) and not isinstance(_SCREAMING_SNAKE_CASE , jax.Array ):
_UpperCAmelCase = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) for substruct in data_struct] )
elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) for substruct in data_struct] )
return self._tensorize(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
return map_nested(self._recursive_tensorize , _SCREAMING_SNAKE_CASE , map_list=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Mapping:
"""simple docstring"""
_UpperCAmelCase = self.numpy_arrow_extractor().extract_row(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.python_features_decoder.decode_row(_SCREAMING_SNAKE_CASE )
return self.recursive_tensorize(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> "jax.Array":
"""simple docstring"""
_UpperCAmelCase = self.numpy_arrow_extractor().extract_column(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.python_features_decoder.decode_column(_SCREAMING_SNAKE_CASE , pa_table.column_names[0] )
_UpperCAmelCase = self.recursive_tensorize(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self._consolidate(_SCREAMING_SNAKE_CASE )
return column
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Mapping:
"""simple docstring"""
_UpperCAmelCase = self.numpy_arrow_extractor().extract_batch(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.python_features_decoder.decode_batch(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.recursive_tensorize(_SCREAMING_SNAKE_CASE )
for column_name in batch:
_UpperCAmelCase = self._consolidate(batch[column_name] )
return batch
| 329 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> str:
"""simple docstring"""
_UpperCAmelCase = size if size is not None else {'shortest_edge': 30}
_UpperCAmelCase = crop_size if crop_size is not None else {'height': 30, 'width': 30}
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize_and_center_crop
_UpperCAmelCase = size
_UpperCAmelCase = crop_pct
_UpperCAmelCase = crop_size
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : Optional[Any] = PoolFormerImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = PoolFormerImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize_and_center_crop' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'crop_pct' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 30} )
self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} )
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
pass
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 329 | 1 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
debug_launcher(test_script.main )
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
debug_launcher(test_ops.main )
| 329 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class __a ( unittest.TestCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = image_size
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize
_UpperCAmelCase = size if size is not None else {'height': 18, 'width': 20}
_UpperCAmelCase = do_thumbnail
_UpperCAmelCase = do_align_axis
_UpperCAmelCase = do_pad
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __a ( UpperCAmelCase , unittest.TestCase ):
_a : List[str] = DonutImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = DonutImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_resize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'size' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_thumbnail' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_align_long_axis' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_pad' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'do_normalize' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_mean' ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'image_std' ) )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 20} )
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
# Previous config had dimensions in (width, height) order
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'height': 84, 'width': 42} )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
pass
@is_flaky()
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
_UpperCAmelCase = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
| 329 | 1 |
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def lowerCAmelCase__ ( a__: dict ) -> tuple:
'''simple docstring'''
return (data["data"], data["target"])
def lowerCAmelCase__ ( a__: np.ndarray , a__: np.ndarray , a__: np.ndarray ) -> np.ndarray:
'''simple docstring'''
_UpperCAmelCase = XGBRegressor(verbosity=0 , random_state=4_2 )
xgb.fit(a__ , a__ )
# Predict target for test data
_UpperCAmelCase = xgb.predict(a__ )
_UpperCAmelCase = predictions.reshape(len(a__ ) , 1 )
return predictions
def lowerCAmelCase__ ( ) -> None:
'''simple docstring'''
_UpperCAmelCase = fetch_california_housing()
_UpperCAmelCase , _UpperCAmelCase = data_handling(a__ )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = train_test_split(
a__ , a__ , test_size=0.25 , random_state=1 )
_UpperCAmelCase = xgboost(a__ , a__ , a__ )
# Error printing
print(F'''Mean Absolute Error : {mean_absolute_error(a__ , a__ )}''' )
print(F'''Mean Square Error : {mean_squared_error(a__ , a__ )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 329 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ :Dict = logging.get_logger(__name__)
lowerCAmelCase__ :Optional[int] = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''}
class __a ( UpperCAmelCase ):
_a : List[str] = 'openai-gpt'
_a : int = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _SCREAMING_SNAKE_CASE=40478 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE="cls_index" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , **_SCREAMING_SNAKE_CASE , ) -> str:
"""simple docstring"""
_UpperCAmelCase = vocab_size
_UpperCAmelCase = n_positions
_UpperCAmelCase = n_embd
_UpperCAmelCase = n_layer
_UpperCAmelCase = n_head
_UpperCAmelCase = afn
_UpperCAmelCase = resid_pdrop
_UpperCAmelCase = embd_pdrop
_UpperCAmelCase = attn_pdrop
_UpperCAmelCase = layer_norm_epsilon
_UpperCAmelCase = initializer_range
_UpperCAmelCase = summary_type
_UpperCAmelCase = summary_use_proj
_UpperCAmelCase = summary_activation
_UpperCAmelCase = summary_first_dropout
_UpperCAmelCase = summary_proj_to_labels
super().__init__(**_SCREAMING_SNAKE_CASE )
| 329 | 1 |
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
lowerCAmelCase__ :List[Any] = logging.get_logger(__name__)
def lowerCAmelCase__ ( a__: Optional[Any] , a__: Any , a__: Any ) -> int:
'''simple docstring'''
_UpperCAmelCase = UniSpeechSatForSequenceClassification.from_pretrained(a__ , config=a__ )
_UpperCAmelCase = downstream_dict['projector.weight']
_UpperCAmelCase = downstream_dict['projector.bias']
_UpperCAmelCase = downstream_dict['model.post_net.linear.weight']
_UpperCAmelCase = downstream_dict['model.post_net.linear.bias']
return model
def lowerCAmelCase__ ( a__: str , a__: Tuple , a__: Dict ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = UniSpeechSatForAudioFrameClassification.from_pretrained(a__ , config=a__ )
_UpperCAmelCase = downstream_dict['model.linear.weight']
_UpperCAmelCase = downstream_dict['model.linear.bias']
return model
def lowerCAmelCase__ ( a__: Any , a__: List[Any] , a__: List[str] ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = UniSpeechSatForXVector.from_pretrained(a__ , config=a__ )
_UpperCAmelCase = downstream_dict['connector.weight']
_UpperCAmelCase = downstream_dict['connector.bias']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
_UpperCAmelCase = downstream_dict[
F'''model.framelevel_feature_extractor.module.{i}.kernel.weight'''
]
_UpperCAmelCase = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias''']
_UpperCAmelCase = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight']
_UpperCAmelCase = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias']
_UpperCAmelCase = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight']
_UpperCAmelCase = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias']
_UpperCAmelCase = downstream_dict['objective.W']
return model
@torch.no_grad()
def lowerCAmelCase__ ( a__: str , a__: Optional[Any] , a__: Tuple , a__: Any ) -> int:
'''simple docstring'''
_UpperCAmelCase = torch.load(a__ , map_location='cpu' )
_UpperCAmelCase = checkpoint['Downstream']
_UpperCAmelCase = UniSpeechSatConfig.from_pretrained(a__ )
_UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(
a__ , return_attention_mask=a__ , do_normalize=a__ )
_UpperCAmelCase = hf_config.architectures[0]
if arch.endswith('ForSequenceClassification' ):
_UpperCAmelCase = convert_classification(a__ , a__ , a__ )
elif arch.endswith('ForAudioFrameClassification' ):
_UpperCAmelCase = convert_diarization(a__ , a__ , a__ )
elif arch.endswith('ForXVector' ):
_UpperCAmelCase = convert_xvector(a__ , a__ , a__ )
else:
raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' )
if hf_config.use_weighted_layer_sum:
_UpperCAmelCase = checkpoint['Featurizer']['weights']
hf_feature_extractor.save_pretrained(a__ )
hf_model.save_pretrained(a__ )
if __name__ == "__main__":
lowerCAmelCase__ :Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
'''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.'''
)
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''')
parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''')
lowerCAmelCase__ :str = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 329 |
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] )
@pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] )
@pytest.mark.parametrize('revision' , [None, 'v2'] )
def lowerCAmelCase__ ( a__: Any , a__: Tuple , a__: Union[str, Any] ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = hf_hub_url(repo_id=a__ , path=a__ , revision=a__ )
assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(a__ )}'''
| 329 | 1 |
from functools import lru_cache
@lru_cache
def lowerCAmelCase__ ( a__: int ) -> int:
'''simple docstring'''
if num < 0:
raise ValueError('Number should not be negative.' )
return 1 if num in (0, 1) else num * factorial(num - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
lowerCAmelCase__ :Optional[int] = [
'''python''',
'''tqdm''',
'''regex''',
'''requests''',
'''packaging''',
'''filelock''',
'''numpy''',
'''tokenizers''',
'''huggingface-hub''',
'''safetensors''',
'''accelerate''',
'''pyyaml''',
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''')
def lowerCAmelCase__ ( a__: Tuple , a__: Optional[int]=None ) -> Any:
'''simple docstring'''
require_version(deps[pkg] , a__ )
| 329 | 1 |
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
_a : List[Any] = IFPipeline
_a : Union[str, Any] = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'}
_a : Any = TEXT_TO_IMAGE_BATCH_PARAMS
_a : int = PipelineTesterMixin.required_optional_params - {'latents'}
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
return self._get_dummy_components()
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> Optional[int]:
"""simple docstring"""
if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ):
_UpperCAmelCase = torch.manual_seed(_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1e-1 )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
self._test_save_load_local()
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@slow
@require_torch_gpu
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa )
_UpperCAmelCase = IFSuperResolutionPipeline.from_pretrained(
'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to('cuda' )
_UpperCAmelCase , _UpperCAmelCase = pipe_a.encode_prompt('anime turtle' , device='cuda' )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
_UpperCAmelCase = None
_UpperCAmelCase = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
_UpperCAmelCase = IFImgaImgPipeline(**pipe_a.components )
_UpperCAmelCase = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
_UpperCAmelCase = IFInpaintingPipeline(**pipe_a.components )
_UpperCAmelCase = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
_start_torch_memory_measurement()
_UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 )
_UpperCAmelCase = pipe_a(
prompt_embeds=_SCREAMING_SNAKE_CASE , negative_prompt_embeds=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , generator=_SCREAMING_SNAKE_CASE , output_type='np' , )
_UpperCAmelCase = output.images[0]
assert image.shape == (64, 64, 3)
_UpperCAmelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
_UpperCAmelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' )
assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# pipeline 2
_start_torch_memory_measurement()
_UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 )
_UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipe_a(
prompt_embeds=_SCREAMING_SNAKE_CASE , negative_prompt_embeds=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='np' , )
_UpperCAmelCase = output.images[0]
assert image.shape == (256, 256, 3)
_UpperCAmelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_UpperCAmelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' )
assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
_start_torch_memory_measurement()
_UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 )
_UpperCAmelCase = pipe_a(
prompt_embeds=_SCREAMING_SNAKE_CASE , negative_prompt_embeds=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , generator=_SCREAMING_SNAKE_CASE , output_type='np' , )
_UpperCAmelCase = output.images[0]
assert image.shape == (64, 64, 3)
_UpperCAmelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
_UpperCAmelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' )
assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# pipeline 2
_start_torch_memory_measurement()
_UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 )
_UpperCAmelCase = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipe_a(
prompt_embeds=_SCREAMING_SNAKE_CASE , negative_prompt_embeds=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , original_image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='np' , )
_UpperCAmelCase = output.images[0]
assert image.shape == (256, 256, 3)
_UpperCAmelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_UpperCAmelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' )
assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
_start_torch_memory_measurement()
_UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 )
_UpperCAmelCase = pipe_a(
prompt_embeds=_SCREAMING_SNAKE_CASE , negative_prompt_embeds=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , generator=_SCREAMING_SNAKE_CASE , output_type='np' , )
_UpperCAmelCase = output.images[0]
assert image.shape == (64, 64, 3)
_UpperCAmelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
_UpperCAmelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' )
assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# pipeline 2
_start_torch_memory_measurement()
_UpperCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 )
_UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipe_a(
prompt_embeds=_SCREAMING_SNAKE_CASE , negative_prompt_embeds=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , original_image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='np' , )
_UpperCAmelCase = output.images[0]
assert image.shape == (256, 256, 3)
_UpperCAmelCase = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
_UpperCAmelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' )
assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( ) -> int:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 329 |
from __future__ import annotations
def lowerCAmelCase__ ( a__: dict , a__: str ) -> set[str]:
'''simple docstring'''
_UpperCAmelCase , _UpperCAmelCase = set(a__ ), [start]
while stack:
_UpperCAmelCase = stack.pop()
explored.add(a__ )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(a__ )
return explored
lowerCAmelCase__ :Tuple = {
'''A''': ['''B''', '''C''', '''D'''],
'''B''': ['''A''', '''D''', '''E'''],
'''C''': ['''A''', '''F'''],
'''D''': ['''B''', '''D'''],
'''E''': ['''B''', '''F'''],
'''F''': ['''C''', '''E''', '''G'''],
'''G''': ['''F'''],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, '''A'''))
| 329 | 1 |
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class __a ( UpperCAmelCase ):
_a : Any = (DPMSolverSDEScheduler,)
_a : int = 10
def UpperCAmelCase__ ( self , **_SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
_UpperCAmelCase = {
'num_train_timesteps': 1100,
'beta_start': 0.0001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'noise_sampler_seed': 0,
}
config.update(**_SCREAMING_SNAKE_CASE )
return config
def UpperCAmelCase__ ( self ) -> str:
"""simple docstring"""
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Any:
"""simple docstring"""
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> List[Any]:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.scheduler_classes[0]
_UpperCAmelCase = self.get_scheduler_config()
_UpperCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCAmelCase = self.dummy_model()
_UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCAmelCase = sample.to(_SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase = scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = output.prev_sample
_UpperCAmelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2
assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2
assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3
else:
assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2
assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.scheduler_classes[0]
_UpperCAmelCase = self.get_scheduler_config(prediction_type='v_prediction' )
_UpperCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCAmelCase = self.dummy_model()
_UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCAmelCase = sample.to(_SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase = scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = output.prev_sample
_UpperCAmelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2
assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2
assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3
else:
assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2
assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3
def UpperCAmelCase__ ( self ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = self.scheduler_classes[0]
_UpperCAmelCase = self.get_scheduler_config()
_UpperCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(self.num_inference_steps , device=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.dummy_model()
_UpperCAmelCase = self.dummy_sample_deter.to(_SCREAMING_SNAKE_CASE ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
_UpperCAmelCase = scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = output.prev_sample
_UpperCAmelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2
assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2
assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3
else:
assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2
assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.scheduler_classes[0]
_UpperCAmelCase = self.get_scheduler_config()
_UpperCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE , use_karras_sigmas=_SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(self.num_inference_steps , device=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = self.dummy_model()
_UpperCAmelCase = self.dummy_sample_deter.to(_SCREAMING_SNAKE_CASE ) * scheduler.init_noise_sigma
_UpperCAmelCase = sample.to(_SCREAMING_SNAKE_CASE )
for t in scheduler.timesteps:
_UpperCAmelCase = scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = output.prev_sample
_UpperCAmelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) )
_UpperCAmelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
else:
assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2
assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
| 329 |
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
_UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(_SCREAMING_SNAKE_CASE , os.listdir(_SCREAMING_SNAKE_CASE )[0] , 'snapshots' ) )]
_UpperCAmelCase = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith('.bin' ) for f in files )
@slow
@require_flax
class __a ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 4
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1e-3
assert np.abs(np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 49947.875 ) < 5e-1
_UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(_SCREAMING_SNAKE_CASE ) == num_samples
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2383808.2) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Dict:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa )
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = FlaxDDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , )
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = scheduler.create_state()
_UpperCAmelCase = scheduler_state
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.random.PRNGKey(0 )
_UpperCAmelCase = 50
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
# shard inputs and rng
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1e-3
assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2347693.5) ) < 5e-1
def UpperCAmelCase__ ( self ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
_UpperCAmelCase = jax.device_count()
_UpperCAmelCase = num_samples * [prompt]
_UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
_UpperCAmelCase = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
_UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , use_memory_efficient_attention=_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
_UpperCAmelCase = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1e-2
| 329 | 1 |
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
lowerCAmelCase__ :Dict = pytest.mark.integration
@pytest.mark.parametrize('path' , ['paws', 'csv'] )
def lowerCAmelCase__ ( a__: str , a__: Optional[int] ) -> Any:
'''simple docstring'''
inspect_dataset(a__ , a__ )
_UpperCAmelCase = path + '.py'
assert script_name in os.listdir(a__ )
assert "__pycache__" not in os.listdir(a__ )
@pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.parametrize('path' , ['accuracy'] )
def lowerCAmelCase__ ( a__: Dict , a__: Tuple ) -> str:
'''simple docstring'''
inspect_metric(a__ , a__ )
_UpperCAmelCase = path + '.py'
assert script_name in os.listdir(a__ )
assert "__pycache__" not in os.listdir(a__ )
@pytest.mark.parametrize(
'path, config_name, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def lowerCAmelCase__ ( a__: Any , a__: str , a__: Tuple ) -> str:
'''simple docstring'''
_UpperCAmelCase = get_dataset_config_info(a__ , config_name=a__ )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def lowerCAmelCase__ ( a__: Any , a__: Union[str, Any] , a__: int ) -> Optional[int]:
'''simple docstring'''
with pytest.raises(a__ ):
get_dataset_config_info(a__ , config_name=a__ )
@pytest.mark.parametrize(
'path, expected' , [
('squad', 'plain_text'),
('acronym_identification', 'default'),
('lhoestq/squad', 'plain_text'),
('lhoestq/test', 'default'),
('lhoestq/demo1', 'lhoestq--demo1'),
('dalle-mini/wit', 'dalle-mini--wit'),
] , )
def lowerCAmelCase__ ( a__: List[str] , a__: Tuple ) -> int:
'''simple docstring'''
_UpperCAmelCase = get_dataset_config_names(a__ )
assert expected in config_names
@pytest.mark.parametrize(
'path, expected_configs, expected_splits_in_first_config' , [
('squad', ['plain_text'], ['train', 'validation']),
('dalle-mini/wit', ['dalle-mini--wit'], ['train']),
('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']),
] , )
def lowerCAmelCase__ ( a__: str , a__: Optional[Any] , a__: Any ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = get_dataset_infos(a__ )
assert list(infos.keys() ) == expected_configs
_UpperCAmelCase = expected_configs[0]
assert expected_config in infos
_UpperCAmelCase = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
'path, expected_config, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def lowerCAmelCase__ ( a__: int , a__: Optional[int] , a__: str ) -> Dict:
'''simple docstring'''
_UpperCAmelCase = get_dataset_infos(a__ )
assert expected_config in infos
_UpperCAmelCase = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def lowerCAmelCase__ ( a__: List[str] , a__: List[Any] , a__: Tuple ) -> List[Any]:
'''simple docstring'''
with pytest.raises(a__ ):
get_dataset_split_names(a__ , config_name=a__ )
| 329 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
lowerCAmelCase__ :int = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase )
class __a ( UpperCAmelCase ):
def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> int:
"""simple docstring"""
_UpperCAmelCase = {}
_UpperCAmelCase = {}
if prompt is not None:
_UpperCAmelCase = prompt
if generate_kwargs is not None:
_UpperCAmelCase = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
_UpperCAmelCase = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
'\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,'
' please use only one' )
_UpperCAmelCase = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int:
"""simple docstring"""
_UpperCAmelCase = load_image(_SCREAMING_SNAKE_CASE )
if prompt is not None:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
raise ValueError(
f'''Received an invalid text input, got - {type(_SCREAMING_SNAKE_CASE )} - but expected a single string. '''
'Note also that one single text can be provided for conditional image to text generation.' )
_UpperCAmelCase = self.model.config.model_type
if model_type == "git":
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
_UpperCAmelCase = self.tokenizer(text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids
_UpperCAmelCase = [self.tokenizer.cls_token_id] + input_ids
_UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ).unsqueeze(0 )
model_inputs.update({'input_ids': input_ids} )
elif model_type == "pix2struct":
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , header_text=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
_UpperCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
model_inputs.update(_SCREAMING_SNAKE_CASE )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
_UpperCAmelCase = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
_UpperCAmelCase = None
return model_inputs
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[str]:
"""simple docstring"""
if (
"input_ids" in model_inputs
and isinstance(model_inputs['input_ids'] , _SCREAMING_SNAKE_CASE )
and all(x is None for x in model_inputs['input_ids'] )
):
_UpperCAmelCase = None
if generate_kwargs is None:
_UpperCAmelCase = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
_UpperCAmelCase = model_inputs.pop(self.model.main_input_name )
_UpperCAmelCase = self.model.generate(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
return model_outputs
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = []
for output_ids in model_outputs:
_UpperCAmelCase = {
'generated_text': self.tokenizer.decode(
_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , )
}
records.append(_SCREAMING_SNAKE_CASE )
return records
| 329 | 1 |
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
lowerCAmelCase__ :Union[str, Any] = get_logger(__name__)
lowerCAmelCase__ :List[str] = R'''
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
search or log softmax for each vocabulary token when using beam search
kwargs (`Dict[str, Any]`, *optional*):
Additional logits processor specific kwargs.
Return:
`jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.
'''
class __a :
@add_start_docstrings(_SCREAMING_SNAKE_CASE )
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class __a :
@add_start_docstrings(_SCREAMING_SNAKE_CASE )
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class __a ( UpperCAmelCase ):
@add_start_docstrings(_SCREAMING_SNAKE_CASE )
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
"""simple docstring"""
for processor in self:
_UpperCAmelCase = inspect.signature(processor.__call__ ).parameters
if len(_SCREAMING_SNAKE_CASE ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
f'''Make sure that all the required parameters: {list(function_args.keys() )} for '''
f'''{processor.__class__} are passed to the logits processor.''' )
_UpperCAmelCase = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
else:
_UpperCAmelCase = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return scores
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not (temperature > 0):
raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' )
_UpperCAmelCase = temperature
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
"""simple docstring"""
_UpperCAmelCase = scores / self.temperature
return scores
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -float('Inf' ) , _SCREAMING_SNAKE_CASE = 1 ) -> str:
"""simple docstring"""
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or (top_p < 0 or top_p > 1.0):
raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' )
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or (min_tokens_to_keep < 1):
raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' )
_UpperCAmelCase = top_p
_UpperCAmelCase = filter_value
_UpperCAmelCase = min_tokens_to_keep
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = lax.top_k(_SCREAMING_SNAKE_CASE , scores.shape[-1] )
_UpperCAmelCase = jnp.full_like(_SCREAMING_SNAKE_CASE , self.filter_value )
_UpperCAmelCase = jax.nn.softmax(_SCREAMING_SNAKE_CASE , axis=-1 ).cumsum(axis=-1 )
_UpperCAmelCase = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
_UpperCAmelCase = jnp.roll(_SCREAMING_SNAKE_CASE , 1 )
score_mask |= score_mask.at[:, 0].set(_SCREAMING_SNAKE_CASE )
# min tokens to keep
_UpperCAmelCase = score_mask.at[:, : self.min_tokens_to_keep].set(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jnp.where(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jax.lax.sort_key_val(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[-1]
return next_scores
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -float('Inf' ) , _SCREAMING_SNAKE_CASE = 1 ) -> Optional[int]:
"""simple docstring"""
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or top_k <= 0:
raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' )
_UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = filter_value
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase = scores.shape
_UpperCAmelCase = jnp.full(batch_size * vocab_size , self.filter_value )
_UpperCAmelCase = min(self.top_k , scores.shape[-1] ) # Safety check
_UpperCAmelCase , _UpperCAmelCase = lax.top_k(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jnp.broadcast_to((jnp.arange(_SCREAMING_SNAKE_CASE ) * vocab_size)[:, None] , (batch_size, topk) ).flatten()
_UpperCAmelCase = topk_scores.flatten()
_UpperCAmelCase = topk_indices.flatten() + shift
_UpperCAmelCase = next_scores_flat.at[topk_indices_flat].set(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = next_scores_flat.reshape(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return next_scores
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = bos_token_id
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
"""simple docstring"""
_UpperCAmelCase = jnp.full(scores.shape , -float('inf' ) )
_UpperCAmelCase = 1 - jnp.bool_(cur_len - 1 )
_UpperCAmelCase = jnp.where(_SCREAMING_SNAKE_CASE , new_scores.at[:, self.bos_token_id].set(0 ) , _SCREAMING_SNAKE_CASE )
return scores
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = max_length
_UpperCAmelCase = eos_token_id
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
"""simple docstring"""
_UpperCAmelCase = jnp.full(scores.shape , -float('inf' ) )
_UpperCAmelCase = 1 - jnp.bool_(cur_len - self.max_length + 1 )
_UpperCAmelCase = jnp.where(_SCREAMING_SNAKE_CASE , new_scores.at[:, self.eos_token_id].set(0 ) , _SCREAMING_SNAKE_CASE )
return scores
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or min_length < 0:
raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' )
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or eos_token_id < 0:
raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' )
_UpperCAmelCase = min_length
_UpperCAmelCase = eos_token_id
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
"""simple docstring"""
_UpperCAmelCase = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 )
_UpperCAmelCase = jnp.where(_SCREAMING_SNAKE_CASE , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , _SCREAMING_SNAKE_CASE )
return scores
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = list(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = begin_index
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
_UpperCAmelCase = 1 - jnp.bool_(cur_len - self.begin_index )
_UpperCAmelCase = jnp.where(_SCREAMING_SNAKE_CASE , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , _SCREAMING_SNAKE_CASE )
return scores
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
_UpperCAmelCase = list(_SCREAMING_SNAKE_CASE )
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
"""simple docstring"""
_UpperCAmelCase = scores.at[..., self.suppress_tokens].set(-float('inf' ) )
return scores
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = dict(_SCREAMING_SNAKE_CASE )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
_UpperCAmelCase = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
_UpperCAmelCase = force_token_array.at[index].set(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jnp.intaa(_SCREAMING_SNAKE_CASE )
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> jnp.ndarray:
"""simple docstring"""
def _force_token(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = scores.shape[0]
_UpperCAmelCase = self.force_token_array[generation_idx]
_UpperCAmelCase = jnp.ones_like(_SCREAMING_SNAKE_CASE , dtype=scores.dtype ) * -float('inf' )
_UpperCAmelCase = jnp.zeros((batch_size, 1) , dtype=scores.dtype )
_UpperCAmelCase = lax.dynamic_update_slice(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (0, current_token) )
return new_scores
_UpperCAmelCase = lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(_SCREAMING_SNAKE_CASE ) , lambda: scores , ) , )
return scores
class __a ( UpperCAmelCase ):
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = generate_config.eos_token_id
_UpperCAmelCase = generate_config.no_timestamps_token_id
_UpperCAmelCase = generate_config.no_timestamps_token_id + 1
_UpperCAmelCase = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(_SCREAMING_SNAKE_CASE , 'max_initial_timestamp_index' ):
_UpperCAmelCase = generate_config.max_initial_timestamp_index
else:
_UpperCAmelCase = model_config.vocab_size
if self.max_initial_timestamp_index is None:
_UpperCAmelCase = model_config.vocab_size
def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
_UpperCAmelCase = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) )
def handle_pairs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = jnp.where((cur_len - self.begin_index) >= 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = jnp.where((cur_len - self.begin_index) < 2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )
return jnp.where(
_SCREAMING_SNAKE_CASE , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , _SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = jax.vmap(_SCREAMING_SNAKE_CASE )(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jnp.where(cur_len == self.begin_index , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_UpperCAmelCase = jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = self.timestamp_begin + self.max_initial_timestamp_index
_UpperCAmelCase = jnp.where(
_SCREAMING_SNAKE_CASE , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , _SCREAMING_SNAKE_CASE , )
# if sum of probability over timestamps is above any other token, sample timestamp
_UpperCAmelCase = jax.nn.log_softmax(_SCREAMING_SNAKE_CASE , axis=-1 )
def handle_cumulative_probs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 )
_UpperCAmelCase = jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , _SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = jax.vmap(_SCREAMING_SNAKE_CASE )(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return scores
| 329 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def lowerCAmelCase__ ( *a__: str , a__: Optional[Union[Dict, Any]] = None , a__: Dict=True , a__: Any=2 ) -> Union[str, Any]:
'''simple docstring'''
from .. import __version__
_UpperCAmelCase = take_from
_UpperCAmelCase = ()
if not isinstance(args[0] , a__ ):
_UpperCAmelCase = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(a__ ).base_version ) >= version.parse(a__ ):
raise ValueError(
F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''''
F''' version {__version__} is >= {version_name}''' )
_UpperCAmelCase = None
if isinstance(a__ , a__ ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(a__ ),)
_UpperCAmelCase = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''
elif hasattr(a__ , a__ ):
values += (getattr(a__ , a__ ),)
_UpperCAmelCase = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''
elif deprecated_kwargs is None:
_UpperCAmelCase = F'''`{attribute}` is deprecated and will be removed in version {version_name}.'''
if warning is not None:
_UpperCAmelCase = warning + ' ' if standard_warn else ''
warnings.warn(warning + message , a__ , stacklevel=a__ )
if isinstance(a__ , a__ ) and len(a__ ) > 0:
_UpperCAmelCase = inspect.getouterframes(inspect.currentframe() )[1]
_UpperCAmelCase = call_frame.filename
_UpperCAmelCase = call_frame.lineno
_UpperCAmelCase = call_frame.function
_UpperCAmelCase , _UpperCAmelCase = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' )
if len(a__ ) == 0:
return
elif len(a__ ) == 1:
return values[0]
return values
| 329 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase__ :Tuple = logging.get_logger(__name__)
lowerCAmelCase__ :str = '''▁'''
lowerCAmelCase__ :int = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''}
lowerCAmelCase__ :int = {
'''vocab_file''': {
'''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''',
},
'''monolingual_vocab_file''': {
'''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''',
},
}
lowerCAmelCase__ :int = {'''vinai/bartpho-syllable''': 1_0_2_4}
class __a ( UpperCAmelCase ):
_a : List[str] = VOCAB_FILES_NAMES
_a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
_a : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a : Union[str, Any] = ['input_ids', 'attention_mask']
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None:
"""simple docstring"""
_UpperCAmelCase = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token
_UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = vocab_file
_UpperCAmelCase = monolingual_vocab_file
_UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_SCREAMING_SNAKE_CASE ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
_UpperCAmelCase = {}
_UpperCAmelCase = 0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(_SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids:
_UpperCAmelCase = cnt
cnt += 1
with open(_SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f:
for line in f.readlines():
_UpperCAmelCase = line.strip().split()[0]
_UpperCAmelCase = len(self.fairseq_tokens_to_ids )
if str(_SCREAMING_SNAKE_CASE ) not in self.fairseq_tokens_to_ids:
_UpperCAmelCase = len(self.fairseq_tokens_to_ids )
_UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = self.__dict__.copy()
_UpperCAmelCase = None
_UpperCAmelCase = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
_UpperCAmelCase = {}
_UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_UpperCAmelCase = [self.cls_token_id]
_UpperCAmelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE )
if token_ids_a is None:
return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1]
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]:
"""simple docstring"""
_UpperCAmelCase = [self.sep_token_id]
_UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCAmelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
return len(self.fairseq_ids_to_tokens )
def UpperCAmelCase__ ( self ) -> int:
"""simple docstring"""
_UpperCAmelCase = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
return self.fairseq_ids_to_tokens[index]
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = ''.join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , ' ' ).strip()
return out_string
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
_UpperCAmelCase = os.path.join(
_SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
_UpperCAmelCase = os.path.join(
_SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fi:
_UpperCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_SCREAMING_SNAKE_CASE )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , _SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f'''{str(_SCREAMING_SNAKE_CASE )} \n''' )
return out_vocab_file, out_monolingual_vocab_file
| 329 |
import math
lowerCAmelCase__ :Optional[int] = 1_0
lowerCAmelCase__ :Optional[Any] = 7
lowerCAmelCase__ :Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS
def lowerCAmelCase__ ( a__: int = 2_0 ) -> str:
'''simple docstring'''
_UpperCAmelCase = math.comb(a__ , a__ )
_UpperCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ )
_UpperCAmelCase = NUM_COLOURS * (1 - missing_colour / total)
return F'''{result:.9f}'''
if __name__ == "__main__":
print(solution(2_0))
| 329 | 1 |
from pathlib import Path
import fire
def lowerCAmelCase__ ( a__: str , a__: str , a__: int ) -> List[str]:
'''simple docstring'''
_UpperCAmelCase = Path(a__ )
_UpperCAmelCase = Path(a__ )
dest_dir.mkdir(exist_ok=a__ )
for path in src_dir.iterdir():
_UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n]
_UpperCAmelCase = dest_dir.joinpath(path.name )
print(a__ )
dest_path.open('w' ).write('\n'.join(a__ ) )
if __name__ == "__main__":
fire.Fire(minify)
| 329 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ :str = {
'''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ :Union[str, Any] = [
'''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MegatronBertForCausalLM''',
'''MegatronBertForMaskedLM''',
'''MegatronBertForMultipleChoice''',
'''MegatronBertForNextSentencePrediction''',
'''MegatronBertForPreTraining''',
'''MegatronBertForQuestionAnswering''',
'''MegatronBertForSequenceClassification''',
'''MegatronBertForTokenClassification''',
'''MegatronBertModel''',
'''MegatronBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 329 | 1 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class __a ( UpperCAmelCase ):
_a : List[str] = 'char'
_a : Union[str, Any] = 'bpe'
_a : Dict = 'wp'
lowerCAmelCase__ :Optional[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class __a ( UpperCAmelCase ):
_a : Any = ['image_processor', 'char_tokenizer']
_a : Union[str, Any] = 'ViTImageProcessor'
_a : Union[str, Any] = 'MgpstrTokenizer'
def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _SCREAMING_SNAKE_CASE , )
_UpperCAmelCase = kwargs.pop('feature_extractor' )
_UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
_UpperCAmelCase = tokenizer
_UpperCAmelCase = AutoTokenizer.from_pretrained('gpt2' )
_UpperCAmelCase = AutoTokenizer.from_pretrained('bert-base-uncased' )
super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
if images is None and text is None:
raise ValueError('You need to specify either an `images` or `text` input to process.' )
if images is not None:
_UpperCAmelCase = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
if text is not None:
_UpperCAmelCase = self.char_tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
if text is None:
return inputs
elif images is None:
return encodings
else:
_UpperCAmelCase = encodings['input_ids']
return inputs
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = sequences
_UpperCAmelCase = char_preds.size(0 )
_UpperCAmelCase , _UpperCAmelCase = self._decode_helper(_SCREAMING_SNAKE_CASE , 'char' )
_UpperCAmelCase , _UpperCAmelCase = self._decode_helper(_SCREAMING_SNAKE_CASE , 'bpe' )
_UpperCAmelCase , _UpperCAmelCase = self._decode_helper(_SCREAMING_SNAKE_CASE , 'wp' )
_UpperCAmelCase = []
_UpperCAmelCase = []
for i in range(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = [char_scores[i], bpe_scores[i], wp_scores[i]]
_UpperCAmelCase = [char_strs[i], bpe_strs[i], wp_strs[i]]
_UpperCAmelCase = scores.index(max(_SCREAMING_SNAKE_CASE ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
_UpperCAmelCase = {}
_UpperCAmelCase = final_strs
_UpperCAmelCase = final_scores
_UpperCAmelCase = char_strs
_UpperCAmelCase = bpe_strs
_UpperCAmelCase = wp_strs
return out
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
if format == DecodeType.CHARACTER:
_UpperCAmelCase = self.char_decode
_UpperCAmelCase = 1
_UpperCAmelCase = '[s]'
elif format == DecodeType.BPE:
_UpperCAmelCase = self.bpe_decode
_UpperCAmelCase = 2
_UpperCAmelCase = '#'
elif format == DecodeType.WORDPIECE:
_UpperCAmelCase = self.wp_decode
_UpperCAmelCase = 102
_UpperCAmelCase = '[SEP]'
else:
raise ValueError(f'''Format {format} is not supported.''' )
_UpperCAmelCase , _UpperCAmelCase = [], []
_UpperCAmelCase = pred_logits.size(0 )
_UpperCAmelCase = pred_logits.size(1 )
_UpperCAmelCase , _UpperCAmelCase = pred_logits.topk(1 , dim=-1 , largest=_SCREAMING_SNAKE_CASE , sorted=_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = preds_index.view(-1 , _SCREAMING_SNAKE_CASE )[:, 1:]
_UpperCAmelCase = decoder(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase , _UpperCAmelCase = torch.nn.functional.softmax(_SCREAMING_SNAKE_CASE , dim=2 ).max(dim=2 )
_UpperCAmelCase = preds_max_prob[:, 1:]
for index in range(_SCREAMING_SNAKE_CASE ):
_UpperCAmelCase = preds_str[index].find(_SCREAMING_SNAKE_CASE )
_UpperCAmelCase = preds_str[index][:pred_eos]
_UpperCAmelCase = preds_index[index].cpu().tolist()
_UpperCAmelCase = pred_index.index(_SCREAMING_SNAKE_CASE ) if eos_token in pred_index else -1
_UpperCAmelCase = preds_max_prob[index][: pred_eos_index + 1]
_UpperCAmelCase = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(_SCREAMING_SNAKE_CASE )
conf_scores.append(_SCREAMING_SNAKE_CASE )
return dec_strs, conf_scores
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(_SCREAMING_SNAKE_CASE )]
return decode_strs
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
return self.bpe_tokenizer.batch_decode(_SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
_UpperCAmelCase = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(_SCREAMING_SNAKE_CASE )]
return decode_strs
| 329 |
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def lowerCAmelCase__ ( a__: Tuple , a__: Optional[Any] , a__: Any ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = AutoConfig.from_pretrained(a__ )
_UpperCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=a__ )
_UpperCAmelCase = checkpoints.load_tax_checkpoint(a__ )
_UpperCAmelCase = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp']
if config.model_type == "t5":
_UpperCAmelCase = 'SelfAttention'
if config.model_type == "longt5" and config.encoder_attention_type == "local":
_UpperCAmelCase = 'LocalSelfAttention'
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = 'TransientGlobalSelfAttention'
else:
raise ValueError(
'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`'
' attribute with a value from [\'local\', \'transient-global].' )
# Encoder
for layer_index in range(config.num_layers ):
_UpperCAmelCase = F'''layers_{str(a__ )}'''
# Self-Attention
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel']
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale']
if split_mlp_wi:
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel']
else:
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel']
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale']
# Assigning
_UpperCAmelCase = flax_model.params['encoder']['block'][str(a__ )]['layer']
_UpperCAmelCase = tax_attention_key
_UpperCAmelCase = tax_attention_out
_UpperCAmelCase = tax_attention_query
_UpperCAmelCase = tax_attention_value
_UpperCAmelCase = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = tax_global_layer_norm
if split_mlp_wi:
_UpperCAmelCase = tax_mlp_wi_a
_UpperCAmelCase = tax_mlp_wi_a
else:
_UpperCAmelCase = tax_mlp_wi
_UpperCAmelCase = tax_mlp_wo
_UpperCAmelCase = tax_mlp_layer_norm
_UpperCAmelCase = flax_model_encoder_layer_block
# Only for layer 0:
_UpperCAmelCase = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T
_UpperCAmelCase = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
_UpperCAmelCase = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T
_UpperCAmelCase = tax_encoder_global_rel_embedding
# Assigning
_UpperCAmelCase = tax_model['target']['encoder']['encoder_norm']['scale']
_UpperCAmelCase = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers ):
_UpperCAmelCase = F'''layers_{str(a__ )}'''
# Self-Attention
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][
'scale'
]
# Encoder-Decoder-Attention
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention']
_UpperCAmelCase = tax_enc_dec_attention_module['key']['kernel']
_UpperCAmelCase = tax_enc_dec_attention_module['out']['kernel']
_UpperCAmelCase = tax_enc_dec_attention_module['query']['kernel']
_UpperCAmelCase = tax_enc_dec_attention_module['value']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale']
# MLP
if split_mlp_wi:
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel']
else:
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel']
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel']
# Layer Normalization
_UpperCAmelCase = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale']
# Assigning
_UpperCAmelCase = flax_model.params['decoder']['block'][str(a__ )]['layer']
_UpperCAmelCase = tax_attention_key
_UpperCAmelCase = tax_attention_out
_UpperCAmelCase = tax_attention_query
_UpperCAmelCase = tax_attention_value
_UpperCAmelCase = tax_pre_attention_layer_norm
_UpperCAmelCase = tax_enc_dec_attention_key
_UpperCAmelCase = tax_enc_dec_attention_out
_UpperCAmelCase = tax_enc_dec_attention_query
_UpperCAmelCase = tax_enc_dec_attention_value
_UpperCAmelCase = tax_cross_layer_norm
if split_mlp_wi:
_UpperCAmelCase = tax_mlp_wi_a
_UpperCAmelCase = tax_mlp_wi_a
else:
_UpperCAmelCase = tax_mlp_wi
_UpperCAmelCase = tax_mlp_wo
_UpperCAmelCase = txa_mlp_layer_norm
_UpperCAmelCase = flax_model_decoder_layer_block
# Decoder Normalization
_UpperCAmelCase = tax_model['target']['decoder']['decoder_norm']['scale']
_UpperCAmelCase = txa_decoder_norm
# Only for layer 0:
_UpperCAmelCase = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T
_UpperCAmelCase = tax_decoder_rel_embedding
# Token Embeddings
_UpperCAmelCase = tax_model['target']['token_embedder']['embedding']
_UpperCAmelCase = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
_UpperCAmelCase = tax_model['target']['decoder']['logits_dense']['kernel']
flax_model.save_pretrained(a__ )
print('T5X Model was sucessfully converted!' )
if __name__ == "__main__":
lowerCAmelCase__ :List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.'''
)
parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''')
parser.add_argument(
'''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.'''
)
lowerCAmelCase__ :List[str] = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 329 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.