code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def UpperCamelCase ( ): '''simple docstring''' lowercase = [randint(-1000 , 1000 ) for i in range(10 )] lowercase = randint(-5000 , 5000 ) return (arr, r) lowercase__ :Dict = make_dataset() def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' for triplet in permutations(lowerCAmelCase__ , 3 ): if sum(lowerCAmelCase__ ) == target: return tuple(sorted(lowerCAmelCase__ ) ) return (0, 0, 0) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' arr.sort() lowercase = len(lowerCAmelCase__ ) for i in range(n - 1 ): lowercase , lowercase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def UpperCamelCase ( ): '''simple docstring''' lowercase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' lowercase = ''' triplet_sum1(*dataset) ''' lowercase = ''' triplet_sum2(*dataset) ''' lowercase = repeat(setup=lowerCAmelCase__ , stmt=lowerCAmelCase__ , repeat=5 , number=1_0000 ) lowercase = repeat(setup=lowerCAmelCase__ , stmt=lowerCAmelCase__ , repeat=5 , number=1_0000 ) return (min(lowerCAmelCase__ ), min(lowerCAmelCase__ )) if __name__ == "__main__": from doctest import testmod testmod() lowercase__ :str = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
101
def SCREAMING_SNAKE_CASE__ ( __a , __a ): while b: snake_case_ ,snake_case_ : Any = b, a % b return a def SCREAMING_SNAKE_CASE__ ( __a , __a ): return a if b == 0 else euclidean_gcd_recursive(__a , a % b ) def SCREAMING_SNAKE_CASE__ ( ): print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
327
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =KandinskyInpaintPipeline lowerCamelCase__ =['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] lowerCamelCase__ =[ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] lowerCamelCase__ =[ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ =False @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.time_input_dim @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 1_00 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Any = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : List[Any] = MultilingualCLIP(a_ ) __snake_case : Any = text_encoder.eval() return text_encoder @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Union[str, Any] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __snake_case : Union[str, Any] = UNetaDConditionModel(**a_ ) return model @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.dummy_text_encoder __snake_case : Union[str, Any] = self.dummy_tokenizer __snake_case : Union[str, Any] = self.dummy_unet __snake_case : List[str] = self.dummy_movq __snake_case : Optional[int] = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=a_ , set_alpha_to_one=a_ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=a_ , ) __snake_case : Tuple = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def SCREAMING_SNAKE_CASE (self , a_ , a_=0 ): '''simple docstring''' __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(a_ ) ).to(a_ ) __snake_case : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(a_ ) # create init_image __snake_case : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(a_ ) ).to(a_ ) __snake_case : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Union[str, Any] = Image.fromarray(np.uinta(a_ ) ).convert('''RGB''' ).resize((2_56, 2_56) ) # create mask __snake_case : List[str] = np.ones((64, 64) , dtype=np.floataa ) __snake_case : Any = 0 if str(a_ ).startswith('''mps''' ): __snake_case : Optional[Any] = torch.manual_seed(a_ ) else: __snake_case : Any = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case : Any = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''cpu''' __snake_case : List[Any] = self.get_dummy_components() __snake_case : List[Any] = self.pipeline_class(**a_ ) __snake_case : Optional[Any] = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[Any] = pipe(**self.get_dummy_inputs(a_ ) ) __snake_case : Any = output.images __snake_case : str = pipe( **self.get_dummy_inputs(a_ ) , return_dict=a_ , )[0] __snake_case : str = image[0, -3:, -3:, -1] __snake_case : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) __snake_case : Dict = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) __snake_case : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) __snake_case : Any = np.ones((7_68, 7_68) , dtype=np.floataa ) __snake_case : Optional[Any] = 0 __snake_case : Tuple = '''a hat''' __snake_case : Union[str, Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(a_ ) __snake_case : List[Any] = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) __snake_case : List[str] = pipeline.to(a_ ) pipeline.set_progress_bar_config(disable=a_ ) __snake_case : List[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) __snake_case , __snake_case : List[Any] = pipe_prior( a_ , generator=a_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __snake_case : Dict = pipeline( a_ , image=a_ , mask_image=a_ , image_embeds=a_ , negative_image_embeds=a_ , generator=a_ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='''np''' , ) __snake_case : Union[str, Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(a_ , a_ )
102
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE = get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : Dict = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Dict = os.path.join(__a , __a ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Dict = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Dict = os.path.join(__a , __a ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving model to {ckpt_dir}""" ) snake_case_ : int = {'model': state_dict} dist_cp.save_state_dict( state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Optional[Any] = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[Any] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Optional[Any] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Tuple = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Tuple = ( os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) snake_case_ : List[Any] = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , ) snake_case_ : Any = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ : str = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : Any = os.path.join(__a , __a ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__a , __a ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ : Union[str, Any] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : List[Any] = os.path.join(__a , __a ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: snake_case_ : str = ( os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) snake_case_ : Any = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , ) snake_case_ : Optional[int] = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a ) optimizer.load_state_dict(__a )
327
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : Tuple = 1_0 def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : List[str] = [1, 2, 3, 4] lowerCAmelCase_ : Tuple = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(A_ , self.block_size , 0) , A_) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] lowerCAmelCase_ : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(A_ , self.block_size , 0) , A_) def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] lowerCAmelCase_ : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(A_ , self.block_size , 0) , A_) def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : Optional[int] = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' lowerCAmelCase_ , lowerCAmelCase_ : Dict = process_story(A_) self.assertEqual(A_ , []) def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Optional[Any] = '''''' lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = process_story(A_) self.assertEqual(A_ , []) self.assertEqual(A_ , []) def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Union[str, Any] = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = process_story(A_) lowerCAmelCase_ : str = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(A_ , A_) lowerCAmelCase_ : Dict = ['''It was the best of times.'''] self.assertEqual(A_ , A_) def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : int = torch.tensor([1, 2, 3, 4]) lowerCAmelCase_ : List[Any] = torch.tensor([1, 1, 1, 1]) np.testing.assert_array_equal(build_mask(A_ , 0).numpy() , expected.numpy()) def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : str = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3]) lowerCAmelCase_ : int = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(A_ , 2_3).numpy() , expected.numpy()) def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : List[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1]) lowerCAmelCase_ : Union[str, Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0]) np.testing.assert_array_equal(build_mask(A_ , 1).numpy() , expected.numpy()) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Optional[Any] = 1_0_1 lowerCAmelCase_ : Optional[int] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]]) lowerCAmelCase_ : Optional[Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]) lowerCAmelCase_ : Optional[int] = compute_token_type_ids(A_ , A_) np.testing.assert_array_equal(A_ , A_)
103
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _A : bool = True , _A : Tuple=7 , _A : Tuple=30 , _A : int=400 , _A : Tuple=3 , ) -> Optional[int]: """simple docstring""" snake_case_ : str = parent snake_case_ : str = do_resize snake_case_ : str = size if size is not None else {'shortest_edge': 288} snake_case_ : Any = size_divisor snake_case_ : Any = do_rescale snake_case_ : Union[str, Any] = rescale_factor snake_case_ : str = do_normalize snake_case_ : int = do_center_crop snake_case_ : str = image_mean snake_case_ : int = image_std snake_case_ : Any = do_pad snake_case_ : Optional[int] = batch_size snake_case_ : List[str] = num_channels snake_case_ : Any = min_resolution snake_case_ : str = max_resolution def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self : Dict , _A : str , _A : Union[str, Any]=False ) -> int: """simple docstring""" if not batched: snake_case_ : Optional[int] = self.size['shortest_edge'] snake_case_ : List[Any] = image_inputs[0] if isinstance(_A , Image.Image ): snake_case_ ,snake_case_ : Optional[Any] = image.size else: snake_case_ ,snake_case_ : str = image.shape[1], image.shape[2] snake_case_ : Dict = size / min(_A , _A ) if h < w: snake_case_ ,snake_case_ : str = size, scale * w else: snake_case_ ,snake_case_ : Tuple = scale * h, size snake_case_ : Dict = int((1333 / 800) * size ) if max(_A , _A ) > max_size: snake_case_ : Union[str, Any] = max_size / max(_A , _A ) snake_case_ : Any = newh * scale snake_case_ : Union[str, Any] = neww * scale snake_case_ ,snake_case_ : Any = int(newh + 0.5 ), int(neww + 0.5 ) snake_case_ ,snake_case_ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: snake_case_ : Optional[int] = [] for image in image_inputs: snake_case_ ,snake_case_ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : str = max(_A , key=lambda _A : item[0] )[0] snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'size_divisor' ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : List[str] = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Any = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : str = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
327
0
'''simple docstring''' # Lint as: python3 import itertools import os import re lowerCAmelCase__ = re.compile(R'''([A-Z]+)([A-Z][a-z])''') lowerCAmelCase__ = re.compile(R'''([a-z\d])([A-Z])''') lowerCAmelCase__ = re.compile(R'''(?<!_)_(?!_)''') lowerCAmelCase__ = re.compile(R'''(_{2,})''') lowerCAmelCase__ = R'''^\w+(\.\w+)*$''' lowerCAmelCase__ = R'''<>:/\|?*''' def _A ( A__ ): """simple docstring""" __lowercase = _uppercase_uppercase_re.sub(R'''\1_\2''' , A__ ) __lowercase = _lowercase_uppercase_re.sub(R'''\1_\2''' , A__ ) return name.lower() def _A ( A__ ): """simple docstring""" __lowercase = _single_underscore_re.split(A__ ) __lowercase = [_multiple_underscores_re.split(A__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A__ ) if n != '''''' ) def _A ( A__ ): """simple docstring""" if os.path.basename(A__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(A__ ) def _A ( A__ , A__ ): """simple docstring""" if os.path.basename(A__ ) != name: raise ValueError(F"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , A__ ): raise ValueError(F"Split name should match '{_split_re}'' but got '{split}'." ) return F"{filename_prefix_for_name(A__ )}-{split}" def _A ( A__ , A__ , A__ , A__=None ): """simple docstring""" __lowercase = filename_prefix_for_split(A__ , A__ ) if filetype_suffix: prefix += F".{filetype_suffix}" __lowercase = os.path.join(A__ , A__ ) return F"{filepath}*" def _A ( A__ , A__ , A__ , A__=None , A__=None ): """simple docstring""" __lowercase = filename_prefix_for_split(A__ , A__ ) __lowercase = os.path.join(A__ , A__ ) if shard_lengths: __lowercase = len(A__ ) __lowercase = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(A__ )] if filetype_suffix: __lowercase = [filename + F".{filetype_suffix}" for filename in filenames] return filenames else: __lowercase = prefix if filetype_suffix: filename += F".{filetype_suffix}" return [filename]
104
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _SCREAMING_SNAKE_CASE = 50_00_00 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = os.path.split(__file__) _SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : int = dataset.map(**__a ) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : Dict = dataset.filter(**__a ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Tuple = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Dict = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) snake_case_ : List[Any] = generate_example_dataset( os.path.join(__a , 'dataset.arrow' ) , __a , num_examples=__a ) snake_case_ : str = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__a ) def tokenize(__a ): return tokenizer(examples['text'] ) snake_case_ : Any = map(__a ) snake_case_ : Tuple = map(__a , batched=__a ) snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='numpy' ): snake_case_ : Optional[int] = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='pandas' ): snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='torch' , columns='numbers' ): snake_case_ : int = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): snake_case_ : List[Any] = map(__a , function=lambda __a : None , batched=__a ) snake_case_ : int = map(__a , function=__a , batched=__a ) snake_case_ : Optional[Any] = filter(__a ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__a , 'wb' ) as f: f.write(json.dumps(__a ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
327
0
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __UpperCamelCase : lowerCamelCase : List[str] lowerCamelCase : Optional[str] =None # Automatically constructed lowerCamelCase : ClassVar[str] ="dict" lowerCamelCase : ClassVar[Any] =None lowerCamelCase : str =field(default="""Translation""" , init=a__ , repr=a__ ) def __call__( self ) -> Optional[Any]: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def __a ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value("string" ) for k in sorted(self.languages )} @dataclass class __UpperCamelCase : lowerCamelCase : Optional[List] =None lowerCamelCase : Optional[int] =None lowerCamelCase : Optional[str] =None # Automatically constructed lowerCamelCase : ClassVar[str] ="dict" lowerCamelCase : ClassVar[Any] =None lowerCamelCase : str =field(default="""TranslationVariableLanguages""" , init=a__ , repr=a__ ) def __a ( self ) -> Optional[Any]: a : str = sorted(set(self.languages ) ) if self.languages else None a : Tuple = len(self.languages ) if self.languages else None def __call__( self ) -> Any: return pa.struct({"language": pa.list_(pa.string() ), "translation": pa.list_(pa.string() )} ) def __a ( self , lowerCAmelCase__ ) -> Union[str, Any]: a : Optional[int] = set(self.languages ) if self.languages and set(lowerCAmelCase__ ) - lang_set: raise ValueError( f"""Some languages in example ({', '.join(sorted(set(lowerCAmelCase__ ) - lang_set ) )}) are not in valid set ({', '.join(lowerCAmelCase__ )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a : List[str] = [] for lang, text in translation_dict.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. a, a : Union[str, Any] = zip(*sorted(lowerCAmelCase__ ) ) return {"language": languages, "translation": translations} def __a ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value("string" ) ), "translation": Sequence(Value("string" ) ), }
105
from collections import namedtuple import requests from lxml import html # type: ignore _SCREAMING_SNAKE_CASE = namedtuple("""covid_data""", """cases deaths recovered""") def SCREAMING_SNAKE_CASE__ ( __a = "https://www.worldometers.info/coronavirus/" ): snake_case_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) ) _SCREAMING_SNAKE_CASE = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
327
0
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ,lowercase_ : List[str] ,lowercase_ : Any=None ,lowercase_ : Any=None ,lowercase_ : Optional[int]=None ,lowercase_ : Optional[int]="resnet50" ,lowercase_ : str=3 ,lowercase_ : List[str]=3_2 ,lowercase_ : Any=3 ,lowercase_ : Dict=True ,lowercase_ : Union[str, Any]=True ,): lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : List[str] = out_indices if out_indices is not None else [4] lowerCAmelCase__ : List[str] = stage_names lowerCAmelCase__ : Optional[int] = out_features lowerCAmelCase__ : int = backbone lowerCAmelCase__ : List[Any] = batch_size lowerCAmelCase__ : str = image_size lowerCAmelCase__ : int = num_channels lowerCAmelCase__ : Tuple = use_pretrained_backbone lowerCAmelCase__ : Dict = is_training def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Dict = self.get_config() return config, pixel_values def __lowerCAmelCase ( self : List[str] ): return TimmBackboneConfig( image_size=self.image_size ,num_channels=self.num_channels ,out_features=self.out_features ,out_indices=self.out_indices ,stage_names=self.stage_names ,use_pretrained_backbone=self.use_pretrained_backbone ,backbone=self.backbone ,) def __lowerCAmelCase ( self : int ,lowercase_ : str ,lowercase_ : Dict ): lowerCAmelCase__ : int = TimmBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Union[str, Any] = model(lowercase_ ) self.parent.assertEqual( result.feature_map[-1].shape ,(self.batch_size, model.channels[-1], 1_4, 1_4) ,) def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : int = self.prepare_config_and_inputs() lowerCAmelCase__ ,lowerCAmelCase__ : List[str] = config_and_inputs lowerCAmelCase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" lowercase__ = (TimmBackbone,) if is_torch_available() else () lowercase__ = {"feature-extraction": TimmBackbone} if is_torch_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : List[Any] = TimmBackboneModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self ,config_class=lowercase_ ,has_text_modality=lowercase_ ) def __lowerCAmelCase ( self : Any ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : List[str] = '''resnet18''' lowerCAmelCase__ : List[str] = '''microsoft/resnet-18''' lowerCAmelCase__ : Tuple = AutoBackbone.from_pretrained(lowercase_ ,use_timm_backbone=lowercase_ ) lowerCAmelCase__ : List[Any] = AutoBackbone.from_pretrained(lowercase_ ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) ,len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices ,(-1,) ) self.assertEqual(transformers_model.out_indices ,[len(timm_model.stage_names ) - 1] ) lowerCAmelCase__ : List[str] = AutoBackbone.from_pretrained(lowercase_ ,use_timm_backbone=lowercase_ ,out_indices=[1, 2, 3] ) lowerCAmelCase__ : List[str] = AutoBackbone.from_pretrained(lowercase_ ,out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices ,transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def __lowerCAmelCase ( self : Optional[int] ): pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def __lowerCAmelCase ( self : List[Any] ): pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def __lowerCAmelCase ( self : List[str] ): pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __lowerCAmelCase ( self : Dict ): pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __lowerCAmelCase ( self : List[Any] ): pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def __lowerCAmelCase ( self : Union[str, Any] ): pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __lowerCAmelCase ( self : Optional[int] ): pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __lowerCAmelCase ( self : Union[str, Any] ): pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __lowerCAmelCase ( self : Optional[int] ): pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __lowerCAmelCase ( self : List[str] ): pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __lowerCAmelCase ( self : Optional[Any] ): pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def __lowerCAmelCase ( self : List[str] ): pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def __lowerCAmelCase ( self : Optional[int] ): pass @unittest.skip('''Safetensors is not supported by timm.''' ) def __lowerCAmelCase ( self : List[Any] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self : List[Any] ): pass def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ ,lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : int = model_class(lowercase_ ) lowerCAmelCase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase__ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase_ ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ ,lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase__ : List[Any] = self.all_model_classes[0] lowerCAmelCase__ : List[str] = model_class(lowercase_ ) model.to(lowercase_ ) lowerCAmelCase__ : Optional[int] = self._prepare_for_class(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Any = model(**lowercase_ ) lowerCAmelCase__ : List[Any] = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase__ : List[Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase__ : Optional[Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Dict = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase__ : Tuple = model(**lowercase_ ) self.assertEqual(len(result.feature_maps ) ,len(config.out_indices ) ) self.assertEqual(len(model.channels ) ,len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase__ : List[str] = copy.deepcopy(lowercase_ ) lowerCAmelCase__ : Dict = None lowerCAmelCase__ : Optional[int] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase__ : Optional[Any] = model(**lowercase_ ) self.assertEqual(len(result.feature_maps ) ,1 ) self.assertEqual(len(model.channels ) ,1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase__ : List[str] = copy.deepcopy(lowercase_ ) lowerCAmelCase__ : int = False lowerCAmelCase__ : Dict = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase__ : Any = model(**lowercase_ )
106
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": 5_12, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: List[Any] = VOCAB_FILES_NAMES __magic_name__: List[str] = PRETRAINED_VOCAB_FILES_MAP __magic_name__: List[str] = PRETRAINED_INIT_CONFIGURATION __magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__: Union[str, Any] = LxmertTokenizer def __init__( self : List[str] , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=True , _A : Dict="[UNK]" , _A : Optional[int]="[SEP]" , _A : Dict="[PAD]" , _A : Union[str, Any]="[CLS]" , _A : str="[MASK]" , _A : Tuple=True , _A : Dict=None , **_A : List[Any] , ) -> Optional[int]: """simple docstring""" super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _A ) != do_lower_case or normalizer_state.get('strip_accents' , _A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars ): snake_case_ : Tuple = getattr(_A , normalizer_state.pop('type' ) ) snake_case_ : Union[str, Any] = do_lower_case snake_case_ : int = strip_accents snake_case_ : Optional[Any] = tokenize_chinese_chars snake_case_ : List[Any] = normalizer_class(**_A ) snake_case_ : Tuple = do_lower_case def UpperCAmelCase_ ( self : Dict , _A : Any , _A : List[Any]=None ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : str = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
327
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __lowerCAmelCase : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __lowerCAmelCase : Tuple = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __lowerCAmelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __magic_name__ ( A : str ): '''simple docstring''' with open(A, "rb" ) as f: a = Image.open(A ) return im.convert("RGB" ) @dataclass class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field(default=_UpperCamelCase , metadata={"""help""": """A folder containing the training data."""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field(default=_UpperCamelCase , metadata={"""help""": """A folder containing the validation data."""} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = field( default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) SCREAMING_SNAKE_CASE_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) SCREAMING_SNAKE_CASE_ : str = field(default=_UpperCamelCase , metadata={"""help""": """Name or path of preprocessor config."""} ) SCREAMING_SNAKE_CASE_ : bool = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) SCREAMING_SNAKE_CASE_ : bool = field( default=_UpperCamelCase , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def __magic_name__ ( A : Dict ): '''simple docstring''' a = torch.stack([example["pixel_values"] for example in examples] ) a = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __magic_name__ ( ): '''simple docstring''' a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a , a , a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a , a , a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification", A, A ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a = training_args.get_process_log_level() logger.setLevel(A ) transformers.utils.logging.set_verbosity(A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: a = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task="image-classification", use_auth_token=True if model_args.use_auth_token else None, ) else: a = {} if data_args.train_dir is not None: a = os.path.join(data_args.train_dir, "**" ) if data_args.validation_dir is not None: a = os.path.join(data_args.validation_dir, "**" ) a = load_dataset( "imagefolder", data_files=A, cache_dir=model_args.cache_dir, task="image-classification", ) # If we don't have a validation split, split off a percentage of train as validation. a = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, A ) and data_args.train_val_split > 0.0: a = dataset["train"].train_test_split(data_args.train_val_split ) a = split["train"] a = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. a = dataset["train"].features["labels"].names a , a = {}, {} for i, label in enumerate(A ): a = str(A ) a = label # Load the accuracy metric from the datasets package a = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(A : int ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) a = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(A ), labelaid=A, idalabel=A, finetuning_task="image-classification", cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) a = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=A, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) a = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: a = image_processor.size["shortest_edge"] else: a = (image_processor.size["height"], image_processor.size["width"]) a = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) a = Compose( [ RandomResizedCrop(A ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) a = Compose( [ Resize(A ), CenterCrop(A ), ToTensor(), normalize, ] ) def train_transforms(A : Dict ): a = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(A : List[str] ): a = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: a = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(A ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: a = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(A ) # Initalize our trainer a = Trainer( model=A, args=A, train_dataset=dataset["train"] if training_args.do_train else None, eval_dataset=dataset["validation"] if training_args.do_eval else None, compute_metrics=A, tokenizer=A, data_collator=A, ) # Training if training_args.do_train: a = None if training_args.resume_from_checkpoint is not None: a = training_args.resume_from_checkpoint elif last_checkpoint is not None: a = last_checkpoint a = trainer.train(resume_from_checkpoint=A ) trainer.save_model() trainer.log_metrics("train", train_result.metrics ) trainer.save_metrics("train", train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: a = trainer.evaluate() trainer.log_metrics("eval", A ) trainer.save_metrics("eval", A ) # Write model card and (optionally) push to hub a = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**A ) else: trainer.create_model_card(**A ) if __name__ == "__main__": main()
107
def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): snake_case_ : int = f"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 0: return False snake_case_ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
327
0
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : List[str] = tmp_path / "cache" lowerCAmelCase : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : List[Any] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tmp_path / "cache" lowerCAmelCase : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : Optional[int] = features.copy() if features else default_expected_features lowerCAmelCase : Tuple = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Optional[Any] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : int = tmp_path / "cache" lowerCAmelCase : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : List[Any] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = parquet_path elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = [parquet_path] lowerCAmelCase : List[Any] = tmp_path / "cache" lowerCAmelCase : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : Optional[int] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int=("train",) ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for split in splits: lowerCAmelCase : List[str] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[str] = tmp_path / "cache" lowerCAmelCase : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : Union[str, Any] = ParquetDatasetReader( {"train": parquet_path} , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : List[Any] = tmp_path / "cache" lowerCAmelCase : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : Optional[int] = features.copy() if features else default_expected_features lowerCAmelCase : int = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Tuple = ParquetDatasetReader({"train": parquet_path} , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' if split: lowerCAmelCase : Any = {split: parquet_path} else: lowerCAmelCase : Optional[int] = "train" lowerCAmelCase : Union[str, Any] = {"train": parquet_path, "test": parquet_path} lowerCAmelCase : Tuple = tmp_path / "cache" lowerCAmelCase : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowerCAmelCase : Union[str, Any] = ParquetDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = ParquetDatasetWriter(SCREAMING_SNAKE_CASE , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCAmelCase : List[Any] = pq.ParquetFile(tmp_path / "foo.parquet" ) lowerCAmelCase : Optional[int] = pf.read() assert dataset.data.table == output_table def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : Optional[int] = str(shared_datadir / "test_image_rgb.jpg" ) lowerCAmelCase : Optional[Any] = {"image": [image_path]} lowerCAmelCase : List[str] = Features({"image": Image()} ) lowerCAmelCase : List[Any] = Dataset.from_dict(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = ParquetDatasetWriter(SCREAMING_SNAKE_CASE , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowerCAmelCase : Optional[int] = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowerCAmelCase : Tuple = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=SCREAMING_SNAKE_CASE ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' assert get_writer_batch_size(SCREAMING_SNAKE_CASE ) == expected
108
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : Optional[int] = seq_length UpperCAmelCase : int = is_training UpperCAmelCase : str = use_token_type_ids UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : List[Any] = intermediate_size UpperCAmelCase : int = hidden_act UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : int = type_vocab_size UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Union[str, Any] = num_labels UpperCAmelCase : Any = num_choices UpperCAmelCase : str = scope UpperCAmelCase : str = self.vocab_size - 1 def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Any = None if self.use_token_type_ids: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Tuple = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) UpperCAmelCase : str = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' UpperCAmelCase : Tuple = OpenAIGPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = OpenAIGPTLMHeadModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple = OpenAIGPTDoubleHeadsModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : str = self.num_labels UpperCAmelCase : Optional[int] = OpenAIGPTForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Any = config_and_inputs UpperCAmelCase : Dict = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __lowerCAmelCase : Union[str, Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __lowerCAmelCase : int = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> int: '''simple docstring''' UpperCAmelCase : List[str] = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCAmelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : str = inputs_dict["""labels"""] UpperCAmelCase : List[Any] = inputs_dict["""labels"""] UpperCAmelCase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : str = OpenAIGPTModelTester(self ) UpperCAmelCase : Any = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , n_embd=37 ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] = OpenAIGPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) # the president is UpperCAmelCase : Optional[int] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCAmelCase : List[Any] = model.generate(_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE ) self.assertListEqual(output_ids[0].tolist() , _SCREAMING_SNAKE_CASE )
109
from typing import Dict from .base import GenericTensor, Pipeline class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def UpperCAmelCase_ ( self : str , _A : Optional[Any]=None , _A : List[str]=None , _A : Optional[Any]=None , **_A : List[str] ) -> Any: """simple docstring""" if tokenize_kwargs is None: snake_case_ : Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) snake_case_ : int = truncation snake_case_ : Optional[int] = tokenize_kwargs snake_case_ : Dict = {} if return_tensors is not None: snake_case_ : Union[str, Any] = return_tensors return preprocess_params, {}, postprocess_params def UpperCAmelCase_ ( self : Optional[int] , _A : int , **_A : Any ) -> Dict[str, GenericTensor]: """simple docstring""" snake_case_ : Dict = self.framework snake_case_ : Any = self.tokenizer(_A , return_tensors=_A , **_A ) return model_inputs def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] ) -> int: """simple docstring""" snake_case_ : Tuple = self.model(**_A ) return model_outputs def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str=False ) -> Any: """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> List[str]: """simple docstring""" return super().__call__(*_A , **_A )
327
0
"""simple docstring""" class _SCREAMING_SNAKE_CASE : def __init__( self , __A ) -> Union[str, Any]: lowerCAmelCase_ :str = val lowerCAmelCase_ :Tuple = None lowerCAmelCase_ :int = None def __lowerCAmelCase ( self , __A ) -> List[Any]: if self.val: if val < self.val: if self.left is None: lowerCAmelCase_ :Union[str, Any] = Node(_A ) else: self.left.insert(_A ) elif val > self.val: if self.right is None: lowerCAmelCase_ :Optional[Any] = Node(_A ) else: self.right.insert(_A ) else: lowerCAmelCase_ :Optional[Any] = val def _snake_case ( lowercase__ : str , lowercase__ : Optional[int] ) -> List[str]: '''simple docstring''' if root: inorder(root.left , __a ) res.append(root.val ) inorder(root.right , __a ) def _snake_case ( lowercase__ : int ) -> str: '''simple docstring''' if len(__a ) == 0: return arr lowerCAmelCase_ :int = Node(arr[0] ) for i in range(1 , len(__a ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCAmelCase_ :List[str] = [] inorder(__a , __a ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
84
from itertools import permutations def SCREAMING_SNAKE_CASE__ ( __a ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False snake_case_ : Any = [7, 11, 13, 17] for i, test in enumerate(__a ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE__ ( __a = 10 ): return sum( int(''.join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(F'''{solution() = }''')
327
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case__ (snake_case_ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :int = KandinskyInpaintPipeline __lowerCAmelCase :List[str] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] __lowerCAmelCase :str = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] __lowerCAmelCase :str = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __lowerCAmelCase :Optional[Any] = False @property def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" return 3_2 @property def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" return 3_2 @property def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" return self.time_input_dim @property def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" return 1_0_0 @property def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : List[Any] = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) a__ : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) a__ : Union[str, Any] = MultilingualCLIP(_A ) a__ : Tuple = text_encoder.eval() return text_encoder @property def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" torch.manual_seed(0 ) a__ : Tuple = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } a__ : Dict = UNetaDConditionModel(**_A ) return model @property def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) a__ : str = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : List[str] = self.dummy_text_encoder a__ : List[str] = self.dummy_tokenizer a__ : Any = self.dummy_unet a__ : Optional[Any] = self.dummy_movq a__ : str = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=_A , set_alpha_to_one=_A , steps_offset=1 , prediction_type="""epsilon""" , thresholding=_A , ) a__ : Dict = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=0 ) -> Any: """simple docstring""" a__ : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_A ) ).to(_A ) a__ : Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_A ) # create init_image a__ : int = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_A ) ).to(_A ) a__ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] a__ : Any = Image.fromarray(np.uinta(_A ) ).convert("""RGB""" ).resize((2_5_6, 2_5_6) ) # create mask a__ : Optional[int] = np.ones((6_4, 6_4) , dtype=np.floataa ) a__ : List[Any] = 0 if str(_A ).startswith("""mps""" ): a__ : List[Any] = torch.manual_seed(_A ) else: a__ : int = torch.Generator(device=_A ).manual_seed(_A ) a__ : Optional[Any] = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Union[str, Any] = 'cpu' a__ : List[str] = self.get_dummy_components() a__ : List[Any] = self.pipeline_class(**_A ) a__ : Union[str, Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) a__ : Optional[Any] = pipe(**self.get_dummy_inputs(_A ) ) a__ : Union[str, Any] = output.images a__ : Any = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] a__ : List[str] = image[0, -3:, -3:, -1] a__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 6_4, 6_4, 3) a__ : Dict = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class snake_case__ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) a__ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) a__ : Dict = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) a__ : List[str] = 0 a__ : List[Any] = 'a hat' a__ : Optional[Any] = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_A ) a__ : Optional[Any] = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) a__ : List[str] = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) a__ : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 ) a__ : Union[str, Any] = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() a__ : List[str] = pipeline( _A , image=_A , mask_image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="""np""" , ) a__ : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_A , _A )
170
from __future__ import annotations from collections import namedtuple def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Any = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
327
0
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Dict) ->Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A__ = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=_A , cache_dir=_A) A__ = [t[-1] for t in os.walk(os.path.join(_A , os.listdir(_A)[0] , '''snapshots'''))] A__ = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''') for f in files) @slow @require_flax class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]: '''simple docstring''' A__ = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=_A) A__ = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A__ = jax.random.PRNGKey(0) A__ = 4 A__ = jax.device_count() A__ = num_samples * [prompt] A__ = pipeline.prepare_inputs(_A) # shard inputs and rng A__ = replicate(_A) A__ = jax.random.split(_A , _A) A__ = shard(_A) A__ = pipeline(_A , _A , _A , _A , jit=_A).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1514745) < 1e-3 assert np.abs(np.abs(_A , dtype=np.floataa).sum() - 49_947.875) < 5e-1 A__ = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(_A) == num_samples def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: '''simple docstring''' A__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=_A) A__ = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A__ = jax.random.PRNGKey(0) A__ = 50 A__ = jax.device_count() A__ = num_samples * [prompt] A__ = pipeline.prepare_inputs(_A) # shard inputs and rng A__ = replicate(_A) A__ = jax.random.split(_A , _A) A__ = shard(_A) A__ = pipeline(_A , _A , _A , _A , jit=_A).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05652401)) < 1e-3 assert np.abs((np.abs(_A , dtype=np.floataa).sum() - 2_383_808.2)) < 5e-1 def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Optional[int]: '''simple docstring''' A__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=_A) A__ = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A__ = jax.random.PRNGKey(0) A__ = 50 A__ = jax.device_count() A__ = num_samples * [prompt] A__ = pipeline.prepare_inputs(_A) # shard inputs and rng A__ = replicate(_A) A__ = jax.random.split(_A , _A) A__ = shard(_A) A__ = pipeline(_A , _A , _A , _A , jit=_A).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04003906)) < 1e-3 assert np.abs((np.abs(_A , dtype=np.floataa).sum() - 2_373_516.75)) < 5e-1 def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa) A__ = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A__ = jax.random.PRNGKey(0) A__ = 50 A__ = jax.device_count() A__ = num_samples * [prompt] A__ = pipeline.prepare_inputs(_A) # shard inputs and rng A__ = replicate(_A) A__ = jax.random.split(_A , _A) A__ = shard(_A) A__ = pipeline(_A , _A , _A , _A , jit=_A).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04003906)) < 1e-3 assert np.abs((np.abs(_A , dtype=np.floataa).sum() - 2_373_516.75)) < 5e-1 def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' A__ = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , set_alpha_to_one=_A , steps_offset=1 , ) A__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=_A , safety_checker=_A , ) A__ = scheduler.create_state() A__ = scheduler_state A__ = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A__ = jax.random.PRNGKey(0) A__ = 50 A__ = jax.device_count() A__ = num_samples * [prompt] A__ = pipeline.prepare_inputs(_A) # shard inputs and rng A__ = replicate(_A) A__ = jax.random.split(_A , _A) A__ = shard(_A) A__ = pipeline(_A , _A , _A , _A , jit=_A).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.045043945)) < 1e-3 assert np.abs((np.abs(_A , dtype=np.floataa).sum() - 2_347_693.5)) < 5e-1 def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple: '''simple docstring''' A__ = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A__ = jax.device_count() A__ = num_samples * [prompt] A__ = jax.random.split(jax.random.PRNGKey(0) , _A) A__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=_A , ) A__ = replicate(_A) A__ = pipeline.prepare_inputs(_A) A__ = shard(_A) A__ = pipeline(_A , _A , _A , jit=_A).images assert images.shape == (num_samples, 1, 512, 512, 3) A__ = images[2, 0, 256, 10:17, 1] # With memory efficient attention A__ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=_A , use_memory_efficient_attention=_A , ) A__ = replicate(_A) A__ = pipeline.prepare_inputs(_A) A__ = shard(_A) A__ = pipeline(_A , _A , _A , jit=_A).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A__ = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1e-2
14
import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _SCREAMING_SNAKE_CASE = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _SCREAMING_SNAKE_CASE = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : int , _A : Tuple , _A : Tuple , _A : str=None , _A : Dict=False , _A : Tuple=False , _A : str=False , ) -> Tuple: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case_ : List[Any] = np.array([re.sub(_A , '' , _A ) for x in predictions] ) snake_case_ : Optional[Any] = np.array([re.sub(_A , '' , _A ) for x in references] ) else: snake_case_ : Dict = np.asarray(_A ) snake_case_ : Tuple = np.asarray(_A ) if ignore_case: snake_case_ : List[str] = np.char.lower(_A ) snake_case_ : Any = np.char.lower(_A ) if ignore_punctuation: snake_case_ : int = string.punctuation.maketrans('' , '' , string.punctuation ) snake_case_ : Tuple = np.char.translate(_A , table=_A ) snake_case_ : str = np.char.translate(_A , table=_A ) if ignore_numbers: snake_case_ : Optional[int] = string.digits.maketrans('' , '' , string.digits ) snake_case_ : str = np.char.translate(_A , table=_A ) snake_case_ : Union[str, Any] = np.char.translate(_A , table=_A ) snake_case_ : int = predictions == references return {"exact_match": np.mean(_A ) * 100}
327
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): a_ = """pt""" elif is_tf_available(): a_ = """tf""" else: a_ = """jax""" class __lowerCAmelCase ( snake_case_ , unittest.TestCase ): lowerCAmelCase__ = PerceiverTokenizer lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' super().setUp() __lowerCamelCase = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase ( self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=20 , __UpperCAmelCase=5 ): '''simple docstring''' __lowerCamelCase = [] for i in range(len(_A ) ): try: __lowerCamelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) __lowerCamelCase = list(filter(lambda __UpperCAmelCase : re.match(r'''^[ a-zA-Z]+$''' , t[1] ) , _A ) ) __lowerCamelCase = list(filter(lambda __UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: __lowerCamelCase = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: __lowerCamelCase = toks + toks # toks_str = [t[1] for t in toks] __lowerCamelCase = [t[0] for t in toks] # Ensure consistency __lowerCamelCase = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: __lowerCamelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: __lowerCamelCase = ' ' + output_txt __lowerCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.perceiver_tokenizer __lowerCamelCase = 'Unicode €.' __lowerCamelCase = tokenizer(_A ) __lowerCamelCase = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding __lowerCamelCase = tokenizer.decode(_A ) self.assertEqual(_A , '''[CLS]Unicode €.[SEP]''' ) __lowerCamelCase = tokenizer('''e è é ê ë''' ) __lowerCamelCase = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , _A ) # decoding __lowerCamelCase = tokenizer.decode(_A ) self.assertEqual(_A , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.perceiver_tokenizer __lowerCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __lowerCamelCase = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __lowerCamelCase = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": __lowerCamelCase = list(batch.input_ids.numpy()[0] ) else: __lowerCamelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.perceiver_tokenizer __lowerCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowerCamelCase = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''decoder_input_ids''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.perceiver_tokenizer __lowerCamelCase = [ 'Summary of the text.', 'Another summary.', ] __lowerCamelCase = tokenizer( text_target=_A , max_length=32 , padding='''max_length''' , truncation=_A , return_tensors=_A ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __lowerCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = ' He is very happy, UNwant\u00E9d,running' __lowerCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __lowerCamelCase = tokenizer.__class__.from_pretrained(_A ) __lowerCamelCase = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) __lowerCamelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['''bim''', '''bambam'''] ) __lowerCamelCase = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __lowerCamelCase = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __lowerCamelCase = tokenizer.__class__.from_pretrained(_A ) __lowerCamelCase = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __lowerCamelCase = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: __lowerCamelCase = json.load(_A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: __lowerCamelCase = json.load(_A ) __lowerCamelCase = [F"""<extra_id_{i}>""" for i in range(125 )] __lowerCamelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] __lowerCamelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowerCamelCase = tokenizer_class.from_pretrained( _A , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowerCamelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_A )] __lowerCamelCase = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __lowerCamelCase = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __lowerCamelCase = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A )
330
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , _A : Optional[Any] , _A : Dict=13 , _A : Union[str, Any]=30 , _A : Tuple=2 , _A : Union[str, Any]=3 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : str=32 , _A : int=2 , _A : List[str]=4 , _A : List[str]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=10 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=3 , _A : str=0.6 , _A : Union[str, Any]=None , ) -> Any: """simple docstring""" snake_case_ : Optional[int] = parent snake_case_ : Tuple = batch_size snake_case_ : List[Any] = image_size snake_case_ : List[str] = patch_size snake_case_ : List[str] = num_channels snake_case_ : Optional[Any] = is_training snake_case_ : Any = use_labels snake_case_ : Tuple = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Tuple = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[Any] = mask_ratio snake_case_ : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case_ : Optional[int] = (image_size // patch_size) ** 2 snake_case_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Union[str, Any] = None if self.use_labels: snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : int ) -> Optional[Any]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : Dict , _A : str ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = TFViTMAEModel(config=_A ) snake_case_ : str = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : Any , _A : List[Any] ) -> int: """simple docstring""" snake_case_ : Any = TFViTMAEForPreTraining(_A ) snake_case_ : Optional[Any] = model(_A , training=_A ) # expected sequence length = num_patches snake_case_ : List[str] = (self.image_size // self.patch_size) ** 2 snake_case_ : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case_ : str = 1 snake_case_ : Dict = TFViTMAEForPreTraining(_A ) snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : List[str] = model(_A , training=_A ) snake_case_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = self.prepare_config_and_inputs() ((snake_case_) ,(snake_case_) ,(snake_case_)) : Any = config_and_inputs snake_case_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __magic_name__: str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} __magic_name__: Dict = False __magic_name__: Dict = False __magic_name__: List[Any] = False __magic_name__: Dict = False def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" snake_case_ : List[Any] = TFViTMAEModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" snake_case_ ,snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: """simple docstring""" snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[str] = model_class(_A ) snake_case_ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Dict = [*signature.parameters.keys()] snake_case_ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Union[str, Any] = self._prepare_for_class(_A , _A ) snake_case_ : List[str] = model(_A , noise=_A ) snake_case_ : Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) ) snake_case_ : str = model(**_A , noise=_A ) snake_case_ : Union[str, Any] = outputs_dict[0].numpy() snake_case_ : Optional[Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Tuple = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_A : int ): snake_case_ : Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(_A ): snake_case_ : str = v.numpy() else: snake_case_ : Optional[Any] = np.array(_A ) return inputs_np_dict for model_class in self.all_model_classes: snake_case_ : int = model_class(_A ) snake_case_ : List[Any] = self._prepare_for_class(_A , _A ) snake_case_ : Any = prepare_numpy_arrays(_A ) snake_case_ : List[Any] = model(_A , noise=_A ) snake_case_ : List[Any] = model(**_A , noise=_A ) self.assert_outputs_same(_A , _A ) def UpperCAmelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> List[str]: """simple docstring""" np.random.seed(2 ) snake_case_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.constant(_A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case_ : Optional[Any] = tf_noise super().check_pt_tf_models(_A , _A , _A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_A ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(_A , _A ),) if isinstance(_A , _A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_A , '_keras_serializable' , _A ) } snake_case_ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.convert_to_tensor(_A ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: snake_case_ : Optional[Any] = main_layer_class(_A ) snake_case_ : List[str] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } snake_case_ : Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) ) snake_case_ : int = model(_A ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[Any] = os.path.join(_A , 'keras_model.h5' ) model.save(_A ) snake_case_ : str = tf.keras.models.load_model( _A , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_A , tf.keras.Model ) snake_case_ : List[str] = model(_A ) self.assert_outputs_same(_A , _A ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Optional[Any] = self._prepare_for_class(_A , _A ) snake_case_ : int = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Any = outputs.last_hidden_state.numpy() snake_case_ : Optional[int] = 0 else: snake_case_ : str = outputs.logits.numpy() snake_case_ : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) snake_case_ : Any = model_class.from_pretrained(_A ) snake_case_ : Any = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Dict = after_outputs['last_hidden_state'].numpy() snake_case_ : Dict = 0 else: snake_case_ : Any = after_outputs['logits'].numpy() snake_case_ : Optional[Any] = 0 snake_case_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) def UpperCAmelCase_ ( self : Any ) -> str: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : str = model_class(_A ) snake_case_ : int = self._prepare_for_class(_A , _A ) snake_case_ : str = model(_A , noise=_A ) snake_case_ : Dict = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_A ) snake_case_ : Any = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config snake_case_ : str = model_class.from_config(model.config ) snake_case_ : Union[str, Any] = new_model(_A ) # Build model new_model.set_weights(model.get_weights() ) snake_case_ : List[str] = new_model(_A , noise=_A ) self.assert_outputs_same(_A , _A ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @slow def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_A ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ : List[str] = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) snake_case_ : List[Any] = self.default_image_processor snake_case_ : Dict = prepare_img() snake_case_ : Optional[Any] = image_processor(images=_A , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case_ : int = ViTMAEConfig() snake_case_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass snake_case_ : Optional[Any] = model(**_A , noise=_A ) # verify the logits snake_case_ : Optional[int] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _A ) snake_case_ : Any = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
327
0
from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=snake_case_ ): '''simple docstring''' lowercase_ = ["note_seq"] def __init__( self : Optional[Any] , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Optional[Any] ): requires_backends(self , ['note_seq'] ) @classmethod def lowerCAmelCase_ ( cls : Dict , *_lowerCAmelCase : str , **_lowerCAmelCase : int ): requires_backends(cls , ['note_seq'] ) @classmethod def lowerCAmelCase_ ( cls : Any , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : List[Any] ): requires_backends(cls , ['note_seq'] )
225
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : list[list[int]] = [] snake_case_ : list[int] = [] snake_case_ : List[Any] = 0 snake_case_ : Union[str, Any] = sum(__a ) create_state_space_tree(__a , __a , __a , __a , __a , __a ) return result def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ): if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum: return if sum(__a ) == max_sum: result.append(__a ) return for index in range(__a , len(__a ) ): create_state_space_tree( __a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , ) _SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2] _SCREAMING_SNAKE_CASE = 9 _SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
327
0
"""simple docstring""" from math import pi def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
266
def SCREAMING_SNAKE_CASE__ ( __a , __a ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
327
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : Dict = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } __lowerCAmelCase : int = { 'gpt-neox-20b': 2048, } class UpperCAmelCase_ ( snake_case_ ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self : Any , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Any="<|endoftext|>" , UpperCamelCase__ : Optional[int]="<|endoftext|>" , UpperCamelCase__ : Optional[Any]="<|endoftext|>" , UpperCamelCase__ : List[Any]=False , **UpperCamelCase__ : Optional[int] , ) -> str: """simple docstring""" super().__init__( _A , _A , tokenizer_file=_A , unk_token=_A , bos_token=_A , eos_token=_A , add_prefix_space=_A , **_A , ) __magic_name__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _A ) != add_prefix_space: __magic_name__ = getattr(_A , pre_tok_state.pop("""type""" ) ) __magic_name__ = add_prefix_space __magic_name__ = pre_tok_class(**_A ) __magic_name__ = add_prefix_space def _lowercase ( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __magic_name__ = self._tokenizer.model.save(_A , name=_A ) return tuple(_A ) def _lowercase ( self : Dict , UpperCamelCase__ : "Conversation" ) -> List[int]: """simple docstring""" __magic_name__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_A , add_special_tokens=_A ) + [self.eos_token_id] ) if len(_A ) > self.model_max_length: __magic_name__ = input_ids[-self.model_max_length :] return input_ids
88
from math import pi def SCREAMING_SNAKE_CASE__ ( __a , __a ): return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
327
0
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a_ = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): inspect_dataset(__a , __a ) __lowercase : Union[str, Any] = path + '.py' assert script_name in os.listdir(__a ) assert "__pycache__" not in os.listdir(__a ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): inspect_metric(__a , __a ) __lowercase : Any = path + '.py' assert script_name in os.listdir(__a ) assert "__pycache__" not in os.listdir(__a ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Union[str, Any] = get_dataset_config_info(__a , config_name=__a ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): with pytest.raises(__a ): get_dataset_config_info(__a , config_name=__a ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : Dict = get_dataset_config_names(__a ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : int = get_dataset_infos(__a ) assert list(infos.keys() ) == expected_configs __lowercase : Union[str, Any] = expected_configs[0] assert expected_config in infos __lowercase : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Any = get_dataset_infos(__a ) assert expected_config in infos __lowercase : List[Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): with pytest.raises(__a ): get_dataset_split_names(__a , config_name=__a )
249
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[Any] = ["pixel_values"] def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PIL.Image.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : str , ) -> None: """simple docstring""" super().__init__(**_A ) snake_case_ : Dict = size if size is not None else {'height': 256, 'width': 256} snake_case_ : Tuple = get_size_dict(_A ) snake_case_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} snake_case_ : int = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Union[str, Any] = do_resize snake_case_ : str = size snake_case_ : List[str] = resample snake_case_ : List[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : Tuple = do_rescale snake_case_ : Optional[Any] = rescale_factor snake_case_ : Any = do_normalize snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray: """simple docstring""" snake_case_ : Tuple = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( _A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray: """simple docstring""" snake_case_ : Optional[int] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> str: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : List[str] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : Union[str, Any]=None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ) -> PIL.Image.Image: """simple docstring""" snake_case_ : int = do_resize if do_resize is not None else self.do_resize snake_case_ : str = resample if resample is not None else self.resample snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Any = image_mean if image_mean is not None else self.image_mean snake_case_ : Dict = image_std if image_std is not None else self.image_std snake_case_ : int = size if size is not None else self.size snake_case_ : Optional[int] = get_size_dict(_A ) snake_case_ : int = crop_size if crop_size is not None else self.crop_size snake_case_ : Any = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Optional[Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case_ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: snake_case_ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: snake_case_ : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images] snake_case_ : Tuple = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
327
0
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase_ ( _snake_case ): return np.maximum(0 ,__a ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
25
import sys _SCREAMING_SNAKE_CASE = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE__ ( __a = N ): snake_case_ : Optional[Any] = -sys.maxsize - 1 for i in range(len(__a ) - 12 ): snake_case_ : Optional[Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case_ : int = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
327
0
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file lowercase :Any = TapasConfig.from_json_file(__a ) # set absolute/relative position embeddings parameter lowercase :List[str] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowercase :int = TapasForQuestionAnswering(config=__a ) elif task == "WTQ": # run_task_main.py hparams lowercase :Optional[int] = 4 lowercase :Any = True # hparam_utils.py hparams lowercase :Optional[int] = 0.664_694 lowercase :Dict = 0.207_951 lowercase :Optional[int] = 0.121_194 lowercase :int = True lowercase :Union[str, Any] = True lowercase :Union[str, Any] = False lowercase :Optional[Any] = 0.0_352_513 lowercase :Union[str, Any] = TapasForQuestionAnswering(config=__a ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowercase :int = 4 lowercase :List[str] = False # hparam_utils.py hparams lowercase :Tuple = 36.4_519 lowercase :Optional[int] = 0.903_421 lowercase :Tuple = 222.088 lowercase :List[Any] = True lowercase :Optional[Any] = True lowercase :str = True lowercase :Any = 0.763_141 lowercase :Dict = TapasForQuestionAnswering(config=__a ) elif task == "TABFACT": lowercase :List[str] = TapasForSequenceClassification(config=__a ) elif task == "MLM": lowercase :Any = TapasForMaskedLM(config=__a ) elif task == "INTERMEDIATE_PRETRAINING": lowercase :Tuple = TapasModel(config=__a ) else: raise ValueError(F"Task {task} not supported." ) print(F"Building PyTorch model from configuration: {config}" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__a, __a, __a ) # Save pytorch-model (weights and configuration) print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(__a ) # Save tokenizer files print(F"Save tokenizer files to {pytorch_dump_path}" ) lowercase :Union[str, Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt", model_max_length=512 ) tokenizer.save_pretrained(__a ) print("Used relative position embeddings:", model.config.reset_position_index_per_cell ) if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _UpperCAmelCase : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
236
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __magic_name__: Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) __magic_name__: Optional[int] = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} ) __magic_name__: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} ) __magic_name__: bool = field( default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(__a , os.path.join(__a , f"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ ,snake_case_ ,snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ ,snake_case_ ,snake_case_ : List[str] = parser.parse_args_into_dataclasses() check_output_dir(__a ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , __a ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(__a , __a , __a ): assert hasattr(__a , __a ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(__a , __a , getattr(__a , __a ) ) snake_case_ : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=__a , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__a , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: snake_case_ : Any = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__a , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__a , __a ): snake_case_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang] else: snake_case_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__a ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) snake_case_ : List[Any] = SeqaSeqDataset # Get datasets snake_case_ : List[Any] = ( dataset_class( __a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) snake_case_ : List[str] = ( dataset_class( __a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) snake_case_ : List[Any] = ( dataset_class( __a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer snake_case_ : Any = ( build_compute_metrics_fn(data_args.task , __a ) if training_args.predict_with_generate else None ) snake_case_ : List[str] = SeqaSeqTrainer( model=__a , args=__a , data_args=__a , train_dataset=__a , eval_dataset=__a , data_collator=SeqaSeqDataCollator( __a , __a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__a , tokenizer=__a , ) snake_case_ : Optional[int] = {} # Training if training_args.do_train: logger.info('*** Train ***' ) snake_case_ : Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) snake_case_ : Tuple = train_result.metrics snake_case_ : List[str] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , __a , training_args.output_dir ) all_metrics.update(__a ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ : List[Any] = trainer.evaluate(metric_key_prefix='val' ) snake_case_ : str = data_args.n_val snake_case_ : Union[str, Any] = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.do_predict: logger.info('*** Predict ***' ) snake_case_ : Dict = trainer.predict(test_dataset=__a , metric_key_prefix='test' ) snake_case_ : Union[str, Any] = test_output.metrics snake_case_ : int = data_args.n_test if trainer.is_world_process_zero(): snake_case_ : List[str] = round(metrics['test_loss'] , 4 ) handle_metrics('test' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.predict_with_generate: snake_case_ : Any = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) snake_case_ : Any = lmap(str.strip , __a ) write_txt_file(__a , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(__a , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def SCREAMING_SNAKE_CASE__ ( __a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
327
0
from statistics import mean, stdev def snake_case ( snake_case__ :str , snake_case__ :Optional[Any] = 3) -> Union[str, Any]: _A = min(__a) _A = max(__a) # normalize data return [round((x - x_min) / (x_max - x_min) , __a) for x in data] def snake_case ( snake_case__ :int , snake_case__ :List[str] = 3) -> List[Any]: _A = mean(__a) _A = stdev(__a) # standardize data return [round((x - mu) / (sigma) , __a) for x in data]
180
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
327
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class _SCREAMING_SNAKE_CASE ( snake_case_ ): UpperCAmelCase_ :Optional[torch.FloatTensor] = None UpperCAmelCase_ :torch.FloatTensor = None UpperCAmelCase_ :Optional[Tuple[torch.FloatTensor]] = None UpperCAmelCase_ :Optional[Tuple[torch.FloatTensor]] = None class _SCREAMING_SNAKE_CASE ( snake_case_ ): def __init__( self , __A=1 , __A=0 , __A=2 , __A=512 , __A="cls" , __A=False , __A=True , **__A , ) -> int: super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) lowerCAmelCase_ :List[Any] = project_dim lowerCAmelCase_ :Optional[Any] = pooler_fn lowerCAmelCase_ :Dict = learn_encoder lowerCAmelCase_ :Dict = use_attention_mask class _SCREAMING_SNAKE_CASE ( snake_case_ ): UpperCAmelCase_ :Union[str, Any] = [r"pooler", r"logit_scale"] UpperCAmelCase_ :int = [r"position_ids", r"predictions.decoder.bias"] UpperCAmelCase_ :Optional[Any] = "roberta" UpperCAmelCase_ :Dict = RobertaSeriesConfig def __init__( self , __A ) -> Any: super().__init__(_A ) lowerCAmelCase_ :Optional[Any] = XLMRobertaModel(_A ) lowerCAmelCase_ :int = nn.Linear(config.hidden_size , config.project_dim ) lowerCAmelCase_ :List[str] = getattr(_A , """has_pre_transformation""" , _A ) if self.has_pre_transformation: lowerCAmelCase_ :str = nn.Linear(config.hidden_size , config.project_dim ) lowerCAmelCase_ :Union[str, Any] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def __lowerCAmelCase ( self , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , ) -> int: lowerCAmelCase_ :List[str] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ :int = self.base_model( input_ids=_A , attention_mask=_A , token_type_ids=_A , position_ids=_A , head_mask=_A , inputs_embeds=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , output_attentions=_A , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_A , ) if self.has_pre_transformation: lowerCAmelCase_ :str = outputs['hidden_states'][-2] lowerCAmelCase_ :Tuple = self.pre_LN(_A ) lowerCAmelCase_ :List[str] = self.transformation_pre(_A ) return TransformationModelOutput( projection_state=_A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: lowerCAmelCase_ :int = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=_A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
84
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Dict ) -> List[Any]: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_A ) snake_case_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : List[Any] = tokenizer('This is me' , return_tensors='pt' ) snake_case_ : Any = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case_ : Optional[Any] = model.generate(**_A ) snake_case_ : int = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_A ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case_ : Optional[Any] = model_reloaded.generate(**_A ) self.assertTrue(torch.allclose(_A , _A ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : int = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : Dict = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_A ): model.save_pretrained(_A ) snake_case_ : Union[str, Any] = model.reverse_bettertransformer() model.save_pretrained(_A )
327
0
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _lowercase : Any =( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def lowerCAmelCase_ ( _lowercase : List[str] , _lowercase : int) -> int: """simple docstring""" warnings.warn(__a , __a) requires_backends(__a , """sklearn""") return (preds == labels).mean() def lowerCAmelCase_ ( _lowercase : Optional[int] , _lowercase : int) -> str: """simple docstring""" warnings.warn(__a , __a) requires_backends(__a , """sklearn""") a__ : int = simple_accuracy(__a , __a) a__ : Tuple = fa_score(y_true=__a , y_pred=__a) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def lowerCAmelCase_ ( _lowercase : List[Any] , _lowercase : List[str]) -> Dict: """simple docstring""" warnings.warn(__a , __a) requires_backends(__a , """sklearn""") a__ : List[str] = pearsonr(__a , __a)[0] a__ : Optional[Any] = spearmanr(__a , __a)[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def lowerCAmelCase_ ( _lowercase : List[Any] , _lowercase : int , _lowercase : Dict) -> str: """simple docstring""" warnings.warn(__a , __a) requires_backends(__a , """sklearn""") assert len(__a) == len(__a), F'''Predictions and labels have mismatched lengths {len(__a)} and {len(__a)}''' if task_name == "cola": return {"mcc": matthews_corrcoef(__a , __a)} elif task_name == "sst-2": return {"acc": simple_accuracy(__a , __a)} elif task_name == "mrpc": return acc_and_fa(__a , __a) elif task_name == "sts-b": return pearson_and_spearman(__a , __a) elif task_name == "qqp": return acc_and_fa(__a , __a) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__a , __a)} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__a , __a)} elif task_name == "qnli": return {"acc": simple_accuracy(__a , __a)} elif task_name == "rte": return {"acc": simple_accuracy(__a , __a)} elif task_name == "wnli": return {"acc": simple_accuracy(__a , __a)} elif task_name == "hans": return {"acc": simple_accuracy(__a , __a)} else: raise KeyError(__a) def lowerCAmelCase_ ( _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Optional[Any]) -> Dict: """simple docstring""" warnings.warn(__a , __a) requires_backends(__a , """sklearn""") if len(__a) != len(__a): raise ValueError(F'''Predictions and labels have mismatched lengths {len(__a)} and {len(__a)}''') if task_name == "xnli": return {"acc": simple_accuracy(__a , __a)} else: raise KeyError(__a)
170
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = params snake_case_ : int = np.array(_A ) snake_case_ : Optional[int] = np.array([len(_A ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Tuple , _A : Optional[int] ) -> str: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : List[str] ) -> str: """simple docstring""" return len(self.lengths ) def UpperCAmelCase_ ( self : Dict ) -> str: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: """simple docstring""" snake_case_ : Dict = self.params.max_model_input_size snake_case_ : Tuple = self.lengths > max_len logger.info(F"""Splitting {sum(_A )} too long sequences.""" ) def divide_chunks(_A : Union[str, Any] , _A : Dict ): return [l[i : i + n] for i in range(0 , len(_A ) , _A )] snake_case_ : Dict = [] snake_case_ : Union[str, Any] = [] if self.params.mlm: snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: snake_case_ : List[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: snake_case_ : Optional[int] = np.insert(_A , 0 , _A ) if sub_s[-1] != sep_id: snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A ) assert len(_A ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_A ) new_tok_ids.extend(_A ) new_lengths.extend([len(_A ) for l in sub_seqs] ) snake_case_ : Tuple = np.array(_A ) snake_case_ : int = np.array(_A ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ : Tuple = len(self ) snake_case_ : int = self.lengths > 11 snake_case_ : Dict = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : List[Any] = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = len(self ) snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) snake_case_ : Any = (unk_occs / self.lengths) < 0.5 snake_case_ : List[Any] = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : Tuple = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ : Any = [t[0] for t in batch] snake_case_ : int = [t[1] for t in batch] assert len(_A ) == len(_A ) # Max for paddings snake_case_ : str = max(_A ) # Pad token ids if self.params.mlm: snake_case_ : int = self.params.special_tok_ids['pad_token'] else: snake_case_ : Dict = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids] assert len(tk_ ) == len(_A ) assert all(len(_A ) == max_seq_len_ for t in tk_ ) snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs) return tk_t, lg_t
327
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCamelCase : int = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
def SCREAMING_SNAKE_CASE__ ( __a , __a ): while b: snake_case_ ,snake_case_ : Any = b, a % b return a def SCREAMING_SNAKE_CASE__ ( __a , __a ): return a if b == 0 else euclidean_gcd_recursive(__a , a % b ) def SCREAMING_SNAKE_CASE__ ( ): print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
327
0
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = {"""vocab_file""": """vocab.json"""} a_ = { """vocab_file""": { """mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""", } } a_ = {"""mgp-str""": 27} class __lowerCAmelCase ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __UpperCAmelCase , __UpperCAmelCase="[GO]" , __UpperCAmelCase="[GO]" , __UpperCAmelCase="[s]" , __UpperCAmelCase="[GO]" , **__UpperCAmelCase ): '''simple docstring''' super().__init__( unk_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , **_A , ) with open(_A , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(_A ) __lowerCamelCase = {v: k for k, v in self.vocab.items()} @property def lowerCamelCase ( self ): '''simple docstring''' return len(self.vocab ) def lowerCamelCase ( self ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = [] for s in text: char_tokens.extend(_A ) return char_tokens def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.vocab.get(_A , self.vocab.get(self.unk_token ) ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.decoder.get(_A ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_A ) ) return __lowerCamelCase = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_A , ensure_ascii=_A ) + '''\n''' ) return (vocab_file,)
330
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE = get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : Dict = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Dict = os.path.join(__a , __a ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Dict = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Dict = os.path.join(__a , __a ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving model to {ckpt_dir}""" ) snake_case_ : int = {'model': state_dict} dist_cp.save_state_dict( state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Optional[Any] = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[Any] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Optional[Any] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Tuple = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Tuple = ( os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) snake_case_ : List[Any] = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , ) snake_case_ : Any = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ : str = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : Any = os.path.join(__a , __a ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__a , __a ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ : Union[str, Any] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : List[Any] = os.path.join(__a , __a ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: snake_case_ : str = ( os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) snake_case_ : Any = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , ) snake_case_ : Optional[int] = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a ) optimizer.load_state_dict(__a )
327
0
from __future__ import annotations def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = sum(__a ) create_state_space_tree(__a , __a , __a , __a , __a , __a ) return result def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum: return if sum(__a ) == max_sum: result.append(__a ) return for index in range(__a , len(__a ) ): create_state_space_tree( __a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , ) lowerCamelCase__ : Union[str, Any] = [3, 34, 4, 12, 5, 2] lowerCamelCase__ : Optional[int] = 9 lowerCamelCase__ : int = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
225
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _A : bool = True , _A : Tuple=7 , _A : Tuple=30 , _A : int=400 , _A : Tuple=3 , ) -> Optional[int]: """simple docstring""" snake_case_ : str = parent snake_case_ : str = do_resize snake_case_ : str = size if size is not None else {'shortest_edge': 288} snake_case_ : Any = size_divisor snake_case_ : Any = do_rescale snake_case_ : Union[str, Any] = rescale_factor snake_case_ : str = do_normalize snake_case_ : int = do_center_crop snake_case_ : str = image_mean snake_case_ : int = image_std snake_case_ : Any = do_pad snake_case_ : Optional[int] = batch_size snake_case_ : List[str] = num_channels snake_case_ : Any = min_resolution snake_case_ : str = max_resolution def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self : Dict , _A : str , _A : Union[str, Any]=False ) -> int: """simple docstring""" if not batched: snake_case_ : Optional[int] = self.size['shortest_edge'] snake_case_ : List[Any] = image_inputs[0] if isinstance(_A , Image.Image ): snake_case_ ,snake_case_ : Optional[Any] = image.size else: snake_case_ ,snake_case_ : str = image.shape[1], image.shape[2] snake_case_ : Dict = size / min(_A , _A ) if h < w: snake_case_ ,snake_case_ : str = size, scale * w else: snake_case_ ,snake_case_ : Tuple = scale * h, size snake_case_ : Dict = int((1333 / 800) * size ) if max(_A , _A ) > max_size: snake_case_ : Union[str, Any] = max_size / max(_A , _A ) snake_case_ : Any = newh * scale snake_case_ : Union[str, Any] = neww * scale snake_case_ ,snake_case_ : Any = int(newh + 0.5 ), int(neww + 0.5 ) snake_case_ ,snake_case_ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: snake_case_ : Optional[int] = [] for image in image_inputs: snake_case_ ,snake_case_ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : str = max(_A , key=lambda _A : item[0] )[0] snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'size_divisor' ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : List[str] = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Any = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : str = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
327
0
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowercase_ = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') lowercase_ = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowercase_ = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowercase_ = sorted(arg_to_scheduler.keys()) lowercase_ = '{' + ', '.join(arg_to_scheduler_choices) + '}' class snake_case ( pl.LightningModule ): '''simple docstring''' def __init__( self : Any, _lowerCamelCase : argparse.Namespace, _lowerCamelCase : List[Any]=None, _lowerCamelCase : Optional[int]="base", _lowerCamelCase : int=None, _lowerCamelCase : Union[str, Any]=None, _lowerCamelCase : Optional[int]=None, **_lowerCamelCase : Any, ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_A ) __A = 0 __A = Path(self.hparams.output_dir ) __A = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __A = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path, **({'''num_labels''': num_labels} if num_labels is not None else {}), cache_dir=_A, **_A, ) else: __A = config __A = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams, _A, _A ): assert hasattr(self.config, _A ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config, _A, getattr(self.hparams, _A ) ) if tokenizer is None: __A = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path, cache_dir=_A, ) else: __A = tokenizer __A = MODEL_MODES[mode] if model is None: __A = self.model_type.from_pretrained( self.hparams.model_name_or_path, from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ), config=self.config, cache_dir=_A, ) else: __A = model def _SCREAMING_SNAKE_CASE ( self : List[Any], *_lowerCamelCase : List[Any], **_lowerCamelCase : List[Any] ): '''simple docstring''' __A = self.model_type.from_pretrained(*_A, **_A ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = arg_to_scheduler[self.hparams.lr_scheduler] __A = get_schedule_func( self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps() ) __A = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = self.model __A = ['bias', 'LayerNorm.weight'] __A = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __A = Adafactor( _A, lr=self.hparams.learning_rate, scale_parameter=_A, relative_step=_A ) else: __A = AdamW( _A, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon ) __A = optimizer __A = self.get_lr_scheduler() return [optimizer], [scheduler] def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : int, _lowerCamelCase : Dict ): '''simple docstring''' return self.validation_step(_A, _A ) def _SCREAMING_SNAKE_CASE ( self : int, _lowerCamelCase : Optional[int] ): '''simple docstring''' return self.validation_end(_A ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = max(1, self.hparams.gpus ) # TODO: consider num_tpu_cores __A = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : Any ): '''simple docstring''' if stage == "test": __A = len(self.test_dataloader().dataset ) else: __A = self.get_dataloader('''train''', self.hparams.train_batch_size, shuffle=_A ) __A = len(self.train_dataloader().dataset ) def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : str, _lowerCamelCase : int, _lowerCamelCase : bool = False ): '''simple docstring''' raise NotImplementedError('''You must implement this for your task''' ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' return self.train_loader def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' return self.get_dataloader('''dev''', self.hparams.eval_batch_size, shuffle=_A ) def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' return self.get_dataloader('''test''', self.hparams.eval_batch_size, shuffle=_A ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : Optional[Any] ): '''simple docstring''' return os.path.join( self.hparams.data_dir, '''cached_{}_{}_{}'''.format( _A, list(filter(_A, self.hparams.model_name_or_path.split('''/''' ) ) ).pop(), str(self.hparams.max_seq_length ), ), ) @pl.utilities.rank_zero_only def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : Dict[str, Any] ): '''simple docstring''' __A = self.output_dir.joinpath('''best_tfmr''' ) __A = self.step_count self.model.save_pretrained(_A ) self.tokenizer.save_pretrained(_A ) @staticmethod def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str], _lowerCamelCase : Optional[Any] ): '''simple docstring''' parser.add_argument( '''--model_name_or_path''', default=_A, type=_A, required=_A, help='''Path to pretrained model or model identifier from huggingface.co/models''', ) parser.add_argument( '''--config_name''', default='''''', type=_A, help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''', default=_A, type=_A, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--cache_dir''', default=str(Path(_A ).parent / '''test_run''' / '''cache''' ), type=_A, help='''Where do you want to store the pre-trained models downloaded from huggingface.co''', ) parser.add_argument( '''--encoder_layerdrop''', type=_A, help='''Encoder layer dropout probability (Optional). Goes into model.config''', ) parser.add_argument( '''--decoder_layerdrop''', type=_A, help='''Decoder layer dropout probability (Optional). Goes into model.config''', ) parser.add_argument( '''--dropout''', type=_A, help='''Dropout probability (Optional). Goes into model.config''', ) parser.add_argument( '''--attention_dropout''', type=_A, help='''Attention dropout probability (Optional). Goes into model.config''', ) parser.add_argument('''--learning_rate''', default=5e-5, type=_A, help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''', default='''linear''', choices=_A, metavar=_A, type=_A, help='''Learning rate scheduler''', ) parser.add_argument('''--weight_decay''', default=0.0, type=_A, help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''', default=1e-8, type=_A, help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''', default=0, type=_A, help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''', default=4, type=_A, help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''', dest='''max_epochs''', default=3, type=_A ) parser.add_argument('''--train_batch_size''', default=32, type=_A ) parser.add_argument('''--eval_batch_size''', default=32, type=_A ) parser.add_argument('''--adafactor''', action='''store_true''' ) class snake_case ( pl.Callback ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : List[str], _lowerCamelCase : List[Any] ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class snake_case ( pl.Callback ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Optional[int], _lowerCamelCase : Tuple ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_A ) class snake_case ( pl.Callback ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : Optional[int], _lowerCamelCase : Dict ): '''simple docstring''' __A = trainer.lr_schedulers[0]['scheduler'] __A = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_A ) def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : pl.Trainer, _lowerCamelCase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Validation results *****''' ) __A = trainer.callback_metrics # Log results for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(_A, str(metrics[key] ) ) ) def _SCREAMING_SNAKE_CASE ( self : Tuple, _lowerCamelCase : pl.Trainer, _lowerCamelCase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Test results *****''' ) __A = trainer.callback_metrics # Log and save results to file __A = os.path.join(pl_module.hparams.output_dir, '''test_results.txt''' ) with open(_A, '''w''' ) as writer: for key in sorted(_A ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(_A, str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(_A, str(metrics[key] ) ) ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" parser.add_argument( '''--output_dir''' , default=str(Path(__a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=__a , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=__a , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=__a ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=__a , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=__a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=__a , default=4_2 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(__a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=__a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=[] , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __A = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=__a ) # add custom checkpoints if checkpoint_callback is None: __A = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(__a ) if logging_callback is None: __A = LoggingCallback() __A = {} if args.fpaa: __A = 1_6 if args.gpus > 1: __A = 'auto' __A = 'ddp' __A = args.accumulate_grad_batches __A = None __A = 'auto' __A = pl.Trainer.from_argparse_args( __a , weights_summary=__a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__a , val_check_interval=1 , num_sanity_val_steps=2 , **__a , ) if args.do_train: trainer.fit(__a ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
266
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _SCREAMING_SNAKE_CASE = 50_00_00 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = os.path.split(__file__) _SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : int = dataset.map(**__a ) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : Dict = dataset.filter(**__a ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Tuple = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Dict = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) snake_case_ : List[Any] = generate_example_dataset( os.path.join(__a , 'dataset.arrow' ) , __a , num_examples=__a ) snake_case_ : str = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__a ) def tokenize(__a ): return tokenizer(examples['text'] ) snake_case_ : Any = map(__a ) snake_case_ : Tuple = map(__a , batched=__a ) snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='numpy' ): snake_case_ : Optional[int] = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='pandas' ): snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='torch' , columns='numbers' ): snake_case_ : int = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): snake_case_ : List[Any] = map(__a , function=lambda __a : None , batched=__a ) snake_case_ : int = map(__a , function=__a , batched=__a ) snake_case_ : Optional[Any] = filter(__a ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__a , 'wb' ) as f: f.write(json.dumps(__a ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
327
0
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' a__ = CanineTokenizer a__ = False def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().setUp() __magic_name__ = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase ( self : str ) -> List[Any]: """simple docstring""" return CanineTokenizer.from_pretrained("""google/canine-s""" ) def _lowercase ( self : int , **UpperCamelCase__ : str ) -> CanineTokenizer: """simple docstring""" __magic_name__ = self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) __magic_name__ = 1024 return tokenizer @require_torch def _lowercase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = self.canine_tokenizer __magic_name__ = ['Life is like a box of chocolates.', 'You never know what you\'re gonna get.'] # fmt: off __magic_name__ = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on __magic_name__ = tokenizer(_A , padding=_A , return_tensors="""pt""" ) self.assertIsInstance(_A , _A ) __magic_name__ = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _lowercase ( self : List[Any] ) -> List[Any]: """simple docstring""" __magic_name__ = self.canine_tokenizer __magic_name__ = ['Once there was a man.', 'He wrote a test in HuggingFace Tranformers.'] __magic_name__ = tokenizer(_A , padding=_A , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , _A ) self.assertIn("""attention_mask""" , _A ) self.assertIn("""token_type_ids""" , _A ) @require_torch def _lowercase ( self : List[str] ) -> int: """simple docstring""" __magic_name__ = self.canine_tokenizer __magic_name__ = [ 'What\'s the weater?', 'It\'s about 25 degrees.', ] __magic_name__ = tokenizer( text_target=_A , max_length=32 , padding="""max_length""" , truncation=_A , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def _lowercase ( self : str ) -> Union[str, Any]: """simple docstring""" __magic_name__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __magic_name__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ = tempfile.mkdtemp() __magic_name__ = ' He is very happy, UNwant\u00E9d,running' __magic_name__ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ = tokenizer.__class__.from_pretrained(_A ) __magic_name__ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) __magic_name__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __magic_name__ = tempfile.mkdtemp() __magic_name__ = ' He is very happy, UNwant\u00E9d,running' __magic_name__ = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __magic_name__ = chr(0XE007 ) additional_special_tokens.append(_A ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __magic_name__ = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) __magic_name__ = tokenizer.__class__.from_pretrained(_A ) __magic_name__ = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn(_A , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __magic_name__ = tokenizer.__class__.from_pretrained(_A , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_A ) def _lowercase ( self : List[Any] ) -> List[Any]: """simple docstring""" __magic_name__ = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __magic_name__ = self.get_clean_sequence(_A ) # a special token for Canine can be defined as follows: __magic_name__ = 0XE005 __magic_name__ = chr(_A ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ = tokenizer.encode(_A , add_special_tokens=_A ) self.assertEqual(len(_A ) , 1 ) __magic_name__ = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_A ) __magic_name__ = tokenizer.encode(_A , add_special_tokens=_A ) __magic_name__ = tokenizer.encode(_A , add_special_tokens=_A ) __magic_name__ = tokenizer.encode(_A , add_special_tokens=_A ) self.assertEqual(_A , input_encoded + special_token_id ) __magic_name__ = tokenizer.decode(_A , skip_special_tokens=_A ) self.assertTrue(special_token not in decoded ) def _lowercase ( self : Tuple ) -> Optional[int]: """simple docstring""" __magic_name__ = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __magic_name__ = chr(0XE005 ) __magic_name__ = chr(0XE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_A ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __magic_name__ = tokenizer.tokenize(_A ) __magic_name__ = tokenizer.tokenize(_A ) self.assertEqual(len(_A ) , 1 ) self.assertEqual(len(_A ) , 1 ) self.assertEqual(token_a[0] , _A ) self.assertEqual(token_a[0] , _A ) @require_tokenizers def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __magic_name__ = 0XE006 __magic_name__ = chr(_A ) __magic_name__ = AddedToken(_A , lstrip=_A ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_A ) tokenizer.from_pretrained(_A ) def _lowercase ( self : str ) -> str: """simple docstring""" __magic_name__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __magic_name__ = json.load(_A ) with open(os.path.join(_A , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __magic_name__ = json.load(_A ) # a special token for Canine can be defined as follows: __magic_name__ = 0XE006 __magic_name__ = chr(_A ) __magic_name__ = [new_token_a] __magic_name__ = [new_token_a] with open(os.path.join(_A , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __magic_name__ = tokenizer_class.from_pretrained(_A , extra_ids=0 ) self.assertIn(_A , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __magic_name__ = 0XE007 __magic_name__ = chr(_A ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __magic_name__ = [AddedToken(_A , lstrip=_A )] __magic_name__ = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , extra_ids=0 ) self.assertIn(_A , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _lowercase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __magic_name__ = 'hello world' if self.space_between_special_tokens: __magic_name__ = '[CLS] hello world [SEP]' else: __magic_name__ = input __magic_name__ = tokenizer.encode(_A , add_special_tokens=_A ) __magic_name__ = tokenizer.decode(_A , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_A , [output, output.lower()] ) def _lowercase ( self : str ) -> str: """simple docstring""" __magic_name__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __magic_name__ = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __magic_name__ = 'a' __magic_name__ = ord(_A ) for attr in attributes_list: setattr(_A , attr + """_id""" , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + """_id""" ) , _A ) setattr(_A , attr + """_id""" , _A ) self.assertEqual(getattr(_A , _A ) , _A ) self.assertEqual(getattr(_A , attr + """_id""" ) , _A ) setattr(_A , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(_A , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(_A , """additional_special_tokens_ids""" ) , [] ) __magic_name__ = 0XE006 __magic_name__ = chr(_A ) setattr(_A , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(_A , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(_A , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def _lowercase ( self : Optional[int] ) -> Any: """simple docstring""" pass def _lowercase ( self : Optional[Any] ) -> int: """simple docstring""" pass def _lowercase ( self : List[str] ) -> int: """simple docstring""" pass def _lowercase ( self : int ) -> List[Any]: """simple docstring""" pass def _lowercase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" pass def _lowercase ( self : int ) -> int: """simple docstring""" pass def _lowercase ( self : Any ) -> Optional[int]: """simple docstring""" pass def _lowercase ( self : Any ) -> List[Any]: """simple docstring""" pass
88
from collections import namedtuple import requests from lxml import html # type: ignore _SCREAMING_SNAKE_CASE = namedtuple("""covid_data""", """cases deaths recovered""") def SCREAMING_SNAKE_CASE__ ( __a = "https://www.worldometers.info/coronavirus/" ): snake_case_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) ) _SCREAMING_SNAKE_CASE = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
327
0
"""simple docstring""" import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ = True , UpperCamelCase_ = None , UpperCamelCase_ = 32 , UpperCamelCase_ = True , UpperCamelCase_ = 1 / 2_55 , UpperCamelCase_ = True , UpperCamelCase_ = True , UpperCamelCase_ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , UpperCamelCase_ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , UpperCamelCase_ = True , UpperCamelCase_=7 , UpperCamelCase_=30 , UpperCamelCase_=4_00 , UpperCamelCase_=3 , ) -> Optional[int]: __lowercase : str = parent __lowercase : str = do_resize __lowercase : str = size if size is not None else {'shortest_edge': 2_88} __lowercase : Any = size_divisor __lowercase : Any = do_rescale __lowercase : Union[str, Any] = rescale_factor __lowercase : str = do_normalize __lowercase : int = do_center_crop __lowercase : str = image_mean __lowercase : int = image_std __lowercase : Any = do_pad __lowercase : Optional[int] = batch_size __lowercase : List[str] = num_channels __lowercase : Any = min_resolution __lowercase : str = max_resolution def _lowerCamelCase ( self ) -> Optional[int]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=False ) -> int: if not batched: __lowercase : Optional[int] = self.size['shortest_edge'] __lowercase : List[Any] = image_inputs[0] if isinstance(_A , Image.Image ): __lowercase : Optional[Any] = image.size else: __lowercase : str = image.shape[1], image.shape[2] __lowercase : Dict = size / min(_A , _A ) if h < w: __lowercase : str = size, scale * w else: __lowercase : Tuple = scale * h, size __lowercase : Dict = int((13_33 / 8_00) * size ) if max(_A , _A ) > max_size: __lowercase : Union[str, Any] = max_size / max(_A , _A ) __lowercase : Any = newh * scale __lowercase : Union[str, Any] = neww * scale __lowercase : Any = int(newh + 0.5 ), int(neww + 0.5 ) __lowercase : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowercase : Optional[int] = [] for image in image_inputs: __lowercase : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowercase : str = max(_A , key=lambda UpperCamelCase_ : item[0] )[0] __lowercase : List[str] = max(_A , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( snake_case_ , unittest.TestCase ): UpperCamelCase =BridgeTowerImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ) -> Tuple: __lowercase : int = BridgeTowerImageProcessingTester(self ) @property def _lowerCamelCase ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ) -> Dict: __lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''size_divisor''' ) ) def _lowerCamelCase ( self ) -> List[str]: pass def _lowerCamelCase ( self ) -> Tuple: __lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input __lowercase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowercase : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase : List[str] = image_processing(_A , return_tensors='''pt''' ).pixel_values __lowercase : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self ) -> Any: __lowercase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input __lowercase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowercase : Tuple = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values __lowercase : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self ) -> List[str]: __lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input __lowercase : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowercase : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase : str = image_processing(_A , return_tensors='''pt''' ).pixel_values __lowercase : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
249
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": 5_12, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: List[Any] = VOCAB_FILES_NAMES __magic_name__: List[str] = PRETRAINED_VOCAB_FILES_MAP __magic_name__: List[str] = PRETRAINED_INIT_CONFIGURATION __magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__: Union[str, Any] = LxmertTokenizer def __init__( self : List[str] , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=True , _A : Dict="[UNK]" , _A : Optional[int]="[SEP]" , _A : Dict="[PAD]" , _A : Union[str, Any]="[CLS]" , _A : str="[MASK]" , _A : Tuple=True , _A : Dict=None , **_A : List[Any] , ) -> Optional[int]: """simple docstring""" super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _A ) != do_lower_case or normalizer_state.get('strip_accents' , _A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars ): snake_case_ : Tuple = getattr(_A , normalizer_state.pop('type' ) ) snake_case_ : Union[str, Any] = do_lower_case snake_case_ : int = strip_accents snake_case_ : Optional[Any] = tokenize_chinese_chars snake_case_ : List[Any] = normalizer_class(**_A ) snake_case_ : Tuple = do_lower_case def UpperCAmelCase_ ( self : Dict , _A : Any , _A : List[Any]=None ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : str = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
327
0
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = False, False, False @dataclass class lowerCAmelCase_ : """simple docstring""" __UpperCamelCase : Optional[int] = None __UpperCamelCase : bool = True __UpperCamelCase : bool = True __UpperCamelCase : Optional[str] = None # Automatically constructed __UpperCamelCase : ClassVar[str] = "dict" __UpperCamelCase : ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) __UpperCamelCase : str = field(default='''Audio''' , init=snake_case_ , repr=snake_case_ ) def __call__(self ) -> Optional[Any]: """simple docstring""" return self.pa_type def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> dict: """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install \'soundfile\'.""" ) from err if isinstance(_A , _A ): return {"bytes": None, "path": value} elif isinstance(_A , _A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes SCREAMING_SNAKE_CASE__ : Tuple = BytesIO() sf.write(_A , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a \'sampling_rate\' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 3_27_67 else: SCREAMING_SNAKE_CASE__ : List[Any] = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 3_27_67 SCREAMING_SNAKE_CASE__ : List[str] = BytesIO(bytes() ) sf.write(_A , _A , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> dict: """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) SCREAMING_SNAKE_CASE__ : Any = (value['path'], BytesIO(value["""bytes"""] )) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(F'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install \'librosa\' and \'soundfile\'.""" ) from err SCREAMING_SNAKE_CASE__ : str = xsplitext(_A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: SCREAMING_SNAKE_CASE__ : str = token_per_repo_id or {} SCREAMING_SNAKE_CASE__ : str = path.split("""::""" )[-1] try: SCREAMING_SNAKE_CASE__ : Tuple = string_to_dict(_A , config.HUB_DATASETS_URL )['repo_id'] SCREAMING_SNAKE_CASE__ : Union[str, Any] = token_per_repo_id[repo_id] except (ValueError, KeyError): SCREAMING_SNAKE_CASE__ : Any = None with xopen(_A , """rb""" , use_auth_token=_A ) as f: SCREAMING_SNAKE_CASE__ : Union[str, Any] = sf.read(_A ) else: SCREAMING_SNAKE_CASE__ : Tuple = sf.read(_A ) SCREAMING_SNAKE_CASE__ : Any = array.T if self.mono: SCREAMING_SNAKE_CASE__ : List[str] = librosa.to_mono(_A ) if self.sampling_rate and self.sampling_rate != sampling_rate: SCREAMING_SNAKE_CASE__ : Union[str, Any] = librosa.resample(_A , orig_sr=_A , target_sr=self.sampling_rate ) SCREAMING_SNAKE_CASE__ : str = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __magic_name__ (self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): SCREAMING_SNAKE_CASE__ : str = pa.array([None] * len(_A ) , type=pa.binary() ) SCREAMING_SNAKE_CASE__ : Optional[int] = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.array([None] * len(_A ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ : str = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): SCREAMING_SNAKE_CASE__ : int = pa.array([Audio().encode_example(_A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: SCREAMING_SNAKE_CASE__ : Dict = storage.field("""bytes""" ) else: SCREAMING_SNAKE_CASE__ : List[Any] = pa.array([None] * len(_A ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = storage.field("""path""" ) else: SCREAMING_SNAKE_CASE__ : str = pa.array([None] * len(_A ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(_A , self.pa_type ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(SCREAMING_SNAKE_CASE__ ): with xopen(_A , """rb""" ) as f: SCREAMING_SNAKE_CASE__ : List[Any] = f.read() return bytes_ SCREAMING_SNAKE_CASE__ : Tuple = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) SCREAMING_SNAKE_CASE__ : Dict = pa.array( [os.path.basename(_A ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_A , self.pa_type )
25
def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): snake_case_ : int = f"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 0: return False snake_case_ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
327
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _UpperCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
236
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
0
from __future__ import annotations def snake_case ( snake_case__ :Optional[int] , snake_case__ :int , snake_case__ :List[str]) -> List[str]: if len(__a) == 0: raise ValueError("""find_max() arg is an empty sequence""") if ( left >= len(__a) or left < -len(__a) or right >= len(__a) or right < -len(__a) ): raise IndexError("""list index out of range""") if left == right: return nums[left] _A = (left + right) >> 1 # the middle _A = find_max(__a , __a , __a) # find max in range[left, mid] _A = find_max(__a , mid + 1 , __a) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
180
from typing import Dict from .base import GenericTensor, Pipeline class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def UpperCAmelCase_ ( self : str , _A : Optional[Any]=None , _A : List[str]=None , _A : Optional[Any]=None , **_A : List[str] ) -> Any: """simple docstring""" if tokenize_kwargs is None: snake_case_ : Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) snake_case_ : int = truncation snake_case_ : Optional[int] = tokenize_kwargs snake_case_ : Dict = {} if return_tensors is not None: snake_case_ : Union[str, Any] = return_tensors return preprocess_params, {}, postprocess_params def UpperCAmelCase_ ( self : Optional[int] , _A : int , **_A : Any ) -> Dict[str, GenericTensor]: """simple docstring""" snake_case_ : Dict = self.framework snake_case_ : Any = self.tokenizer(_A , return_tensors=_A , **_A ) return model_inputs def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] ) -> int: """simple docstring""" snake_case_ : Tuple = self.model(**_A ) return model_outputs def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str=False ) -> Any: """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> List[str]: """simple docstring""" return super().__call__(*_A , **_A )
327
0
"""simple docstring""" import math import sys def _snake_case ( lowercase__ : Any ) -> int: '''simple docstring''' lowerCAmelCase_ :str = '' try: with open(__a , """rb""" ) as binary_file: lowerCAmelCase_ :List[str] = binary_file.read() for dat in data: lowerCAmelCase_ :Optional[int] = f"""{dat:08b}""" result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def _snake_case ( lowercase__ : int ) -> Any: '''simple docstring''' lowerCAmelCase_ :Tuple = {'0': '0', '1': '1'} lowerCAmelCase_ :int = '', '' lowerCAmelCase_ :List[Any] = len(__a ) for i in range(len(__a ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCAmelCase_ :Tuple = lexicon[curr_string] result += last_match_id lowerCAmelCase_ :Optional[Any] = last_match_id + '0' if math.loga(__a ).is_integer(): lowerCAmelCase_ :List[Any] = {} for curr_key in list(__a ): lowerCAmelCase_ :Tuple = lexicon.pop(__a ) lowerCAmelCase_ :Optional[Any] = new_lex lowerCAmelCase_ :Optional[int] = last_match_id + '1' index += 1 lowerCAmelCase_ :List[str] = '' return result def _snake_case ( lowercase__ : Union[str, Any] , lowercase__ : List[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ :Tuple = 8 try: with open(__a , """wb""" ) as opened_file: lowerCAmelCase_ :Optional[int] = [ to_write[i : i + byte_length] for i in range(0 , len(__a ) , __a ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__a , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def _snake_case ( lowercase__ : Optional[int] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :Tuple = 0 for letter in data_bits: if letter == "1": break counter += 1 lowerCAmelCase_ :List[str] = data_bits[counter:] lowerCAmelCase_ :Tuple = data_bits[counter + 1 :] return data_bits def _snake_case ( lowercase__ : List[str] , lowercase__ : Any ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ :Union[str, Any] = read_file_binary(__a ) lowerCAmelCase_ :Tuple = remove_prefix(__a ) lowerCAmelCase_ :Tuple = decompress_data(__a ) write_file_binary(__a , __a ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
84
from itertools import permutations def SCREAMING_SNAKE_CASE__ ( __a ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False snake_case_ : Any = [7, 11, 13, 17] for i, test in enumerate(__a ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE__ ( __a = 10 ): return sum( int(''.join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(F'''{solution() = }''')
327
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class snake_case__ (snake_case_ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :int = MobileBertTokenizer __lowerCAmelCase :List[Any] = MobileBertTokenizerFast __lowerCAmelCase :List[str] = True __lowerCAmelCase :List[Any] = True __lowerCAmelCase :Union[str, Any] = filter_non_english __lowerCAmelCase :str = "google/mobilebert-uncased" def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" super().setUp() a__ : List[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) a__ : List[Any] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> int: """simple docstring""" a__ : Tuple = 'UNwant\u00E9d,running' a__ : Optional[int] = 'unwanted, running' return input_text, output_text def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : Dict = self.tokenizer_class(self.vocab_file ) a__ : Any = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(_A , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" if not self.test_rust_tokenizer: return a__ : List[str] = self.get_tokenizer() a__ : Any = self.get_rust_tokenizer() a__ : str = 'UNwant\u00E9d,running' a__ : str = tokenizer.tokenize(_A ) a__ : Any = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) a__ : Optional[Any] = tokenizer.encode(_A , add_special_tokens=_A ) a__ : List[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) a__ : Any = self.get_rust_tokenizer() a__ : Union[str, Any] = tokenizer.encode(_A ) a__ : Any = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) # With lower casing a__ : str = self.get_tokenizer(do_lower_case=_A ) a__ : Dict = self.get_rust_tokenizer(do_lower_case=_A ) a__ : List[str] = 'UNwant\u00E9d,running' a__ : Tuple = tokenizer.tokenize(_A ) a__ : Dict = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) a__ : Dict = tokenizer.encode(_A , add_special_tokens=_A ) a__ : Tuple = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) a__ : Tuple = self.get_rust_tokenizer() a__ : Dict = tokenizer.encode(_A ) a__ : Any = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" a__ : Union[str, Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" a__ : List[str] = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : Tuple = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : Any = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : Tuple = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : Tuple = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : List[Any] = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : str = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" a__ : str = BasicTokenizer(do_lower_case=_A , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] a__ : Any = {} for i, token in enumerate(_A ): a__ : str = i a__ : Any = WordpieceTokenizer(vocab=_A , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Tuple = self.get_tokenizer() a__ : List[str] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_A ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(_A ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" a__ : Tuple = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) a__ : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=_A ) a__ : Any = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_A ) a__ : Tuple = tokenizer.build_inputs_with_special_tokens(_A ) a__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : Any = self.rust_tokenizer_class.from_pretrained(_A , **_A ) a__ : Optional[Any] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' a__ : List[str] = tokenizer_r.encode_plus( _A , return_attention_mask=_A , return_token_type_ids=_A , return_offsets_mapping=_A , add_special_tokens=_A , ) a__ : Optional[Any] = tokenizer_r.do_lower_case if hasattr(_A , """do_lower_case""" ) else False a__ : Tuple = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'Allen'), ((2_1, 2_3), '##NL'), ((2_3, 2_4), '##P'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), 'allen'), ((2_1, 2_3), '##nl'), ((2_3, 2_4), '##p'), ((2_5, 3_3), 'sentence'), ((3_3, 3_4), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : str = ['的', '人', '有'] a__ : Any = ''.join(_A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : int = True a__ : Optional[int] = self.tokenizer_class.from_pretrained(_A , **_A ) a__ : List[str] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) a__ : List[Any] = tokenizer_p.encode(_A , add_special_tokens=_A ) a__ : Union[str, Any] = tokenizer_r.encode(_A , add_special_tokens=_A ) a__ : Optional[Any] = tokenizer_r.convert_ids_to_tokens(_A ) a__ : Optional[int] = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A ) a__ : Union[str, Any] = False a__ : Any = self.rust_tokenizer_class.from_pretrained(_A , **_A ) a__ : Any = self.tokenizer_class.from_pretrained(_A , **_A ) a__ : List[Any] = tokenizer_r.encode(_A , add_special_tokens=_A ) a__ : List[Any] = tokenizer_p.encode(_A , add_special_tokens=_A ) a__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(_A ) a__ : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that only the first Chinese character is not preceded by "##". a__ : Optional[int] = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(_A ) ] self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A )
170
from __future__ import annotations from collections import namedtuple def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Any = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
327
0
def SCREAMING_SNAKE_CASE ( lowercase_ = 1_000_000 ) -> List[Any]: """simple docstring""" A__ = 1 A__ = 1 A__ = {1: 1} for inputa in range(2 , __a ): A__ = 0 A__ = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: A__ = (3 * number) + 1 counter += 1 if inputa not in counters: A__ = counter if counter > pre_counter: A__ = inputa A__ = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
14
import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _SCREAMING_SNAKE_CASE = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _SCREAMING_SNAKE_CASE = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : int , _A : Tuple , _A : Tuple , _A : str=None , _A : Dict=False , _A : Tuple=False , _A : str=False , ) -> Tuple: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case_ : List[Any] = np.array([re.sub(_A , '' , _A ) for x in predictions] ) snake_case_ : Optional[Any] = np.array([re.sub(_A , '' , _A ) for x in references] ) else: snake_case_ : Dict = np.asarray(_A ) snake_case_ : Tuple = np.asarray(_A ) if ignore_case: snake_case_ : List[str] = np.char.lower(_A ) snake_case_ : Any = np.char.lower(_A ) if ignore_punctuation: snake_case_ : int = string.punctuation.maketrans('' , '' , string.punctuation ) snake_case_ : Tuple = np.char.translate(_A , table=_A ) snake_case_ : str = np.char.translate(_A , table=_A ) if ignore_numbers: snake_case_ : Optional[int] = string.digits.maketrans('' , '' , string.digits ) snake_case_ : str = np.char.translate(_A , table=_A ) snake_case_ : Union[str, Any] = np.char.translate(_A , table=_A ) snake_case_ : int = predictions == references return {"exact_match": np.mean(_A ) * 100}
327
0
from __future__ import annotations def a__ ( _UpperCamelCase : Optional[int] ): if not nums: raise ValueError('''List is empty''' ) return sum(__a ) / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
330
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , _A : Optional[Any] , _A : Dict=13 , _A : Union[str, Any]=30 , _A : Tuple=2 , _A : Union[str, Any]=3 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : str=32 , _A : int=2 , _A : List[str]=4 , _A : List[str]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=10 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=3 , _A : str=0.6 , _A : Union[str, Any]=None , ) -> Any: """simple docstring""" snake_case_ : Optional[int] = parent snake_case_ : Tuple = batch_size snake_case_ : List[Any] = image_size snake_case_ : List[str] = patch_size snake_case_ : List[str] = num_channels snake_case_ : Optional[Any] = is_training snake_case_ : Any = use_labels snake_case_ : Tuple = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Tuple = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[Any] = mask_ratio snake_case_ : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case_ : Optional[int] = (image_size // patch_size) ** 2 snake_case_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Union[str, Any] = None if self.use_labels: snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : int ) -> Optional[Any]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : Dict , _A : str ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = TFViTMAEModel(config=_A ) snake_case_ : str = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : Any , _A : List[Any] ) -> int: """simple docstring""" snake_case_ : Any = TFViTMAEForPreTraining(_A ) snake_case_ : Optional[Any] = model(_A , training=_A ) # expected sequence length = num_patches snake_case_ : List[str] = (self.image_size // self.patch_size) ** 2 snake_case_ : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case_ : str = 1 snake_case_ : Dict = TFViTMAEForPreTraining(_A ) snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : List[str] = model(_A , training=_A ) snake_case_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = self.prepare_config_and_inputs() ((snake_case_) ,(snake_case_) ,(snake_case_)) : Any = config_and_inputs snake_case_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __magic_name__: str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} __magic_name__: Dict = False __magic_name__: Dict = False __magic_name__: List[Any] = False __magic_name__: Dict = False def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" snake_case_ : List[Any] = TFViTMAEModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" snake_case_ ,snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: """simple docstring""" snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[str] = model_class(_A ) snake_case_ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Dict = [*signature.parameters.keys()] snake_case_ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Union[str, Any] = self._prepare_for_class(_A , _A ) snake_case_ : List[str] = model(_A , noise=_A ) snake_case_ : Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) ) snake_case_ : str = model(**_A , noise=_A ) snake_case_ : Union[str, Any] = outputs_dict[0].numpy() snake_case_ : Optional[Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Tuple = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_A : int ): snake_case_ : Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(_A ): snake_case_ : str = v.numpy() else: snake_case_ : Optional[Any] = np.array(_A ) return inputs_np_dict for model_class in self.all_model_classes: snake_case_ : int = model_class(_A ) snake_case_ : List[Any] = self._prepare_for_class(_A , _A ) snake_case_ : Any = prepare_numpy_arrays(_A ) snake_case_ : List[Any] = model(_A , noise=_A ) snake_case_ : List[Any] = model(**_A , noise=_A ) self.assert_outputs_same(_A , _A ) def UpperCAmelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> List[str]: """simple docstring""" np.random.seed(2 ) snake_case_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.constant(_A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case_ : Optional[Any] = tf_noise super().check_pt_tf_models(_A , _A , _A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_A ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(_A , _A ),) if isinstance(_A , _A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_A , '_keras_serializable' , _A ) } snake_case_ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.convert_to_tensor(_A ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: snake_case_ : Optional[Any] = main_layer_class(_A ) snake_case_ : List[str] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } snake_case_ : Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) ) snake_case_ : int = model(_A ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[Any] = os.path.join(_A , 'keras_model.h5' ) model.save(_A ) snake_case_ : str = tf.keras.models.load_model( _A , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_A , tf.keras.Model ) snake_case_ : List[str] = model(_A ) self.assert_outputs_same(_A , _A ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Optional[Any] = self._prepare_for_class(_A , _A ) snake_case_ : int = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Any = outputs.last_hidden_state.numpy() snake_case_ : Optional[int] = 0 else: snake_case_ : str = outputs.logits.numpy() snake_case_ : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) snake_case_ : Any = model_class.from_pretrained(_A ) snake_case_ : Any = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Dict = after_outputs['last_hidden_state'].numpy() snake_case_ : Dict = 0 else: snake_case_ : Any = after_outputs['logits'].numpy() snake_case_ : Optional[Any] = 0 snake_case_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) def UpperCAmelCase_ ( self : Any ) -> str: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : str = model_class(_A ) snake_case_ : int = self._prepare_for_class(_A , _A ) snake_case_ : str = model(_A , noise=_A ) snake_case_ : Dict = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_A ) snake_case_ : Any = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config snake_case_ : str = model_class.from_config(model.config ) snake_case_ : Union[str, Any] = new_model(_A ) # Build model new_model.set_weights(model.get_weights() ) snake_case_ : List[str] = new_model(_A , noise=_A ) self.assert_outputs_same(_A , _A ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @slow def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_A ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ : List[str] = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) snake_case_ : List[Any] = self.default_image_processor snake_case_ : Dict = prepare_img() snake_case_ : Optional[Any] = image_processor(images=_A , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case_ : int = ViTMAEConfig() snake_case_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass snake_case_ : Optional[Any] = model(**_A , noise=_A ) # verify the logits snake_case_ : Optional[int] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _A ) snake_case_ : Any = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
327
0
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> Union[str, Any]: monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set() ) @pytest.fixture def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> Union[str, Any]: class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ = metric_id class lowerCamelCase_ : '''simple docstring''' lowercase_ = [MetricMock(snake_case_ ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def lowerCAmelCase_ ( self : Any ): return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock() ) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))] ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] ) -> Optional[Any]: if "tmp_path" in args: SCREAMING_SNAKE_CASE_ = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args ) with pytest.warns(__a , match='https://huggingface.co/docs/evaluate' ): func(*__a )
225
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : list[list[int]] = [] snake_case_ : list[int] = [] snake_case_ : List[Any] = 0 snake_case_ : Union[str, Any] = sum(__a ) create_state_space_tree(__a , __a , __a , __a , __a , __a ) return result def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ): if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum: return if sum(__a ) == max_sum: result.append(__a ) return for index in range(__a , len(__a ) ): create_state_space_tree( __a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , ) _SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2] _SCREAMING_SNAKE_CASE = 9 _SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
327
0
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = tmp_path / 'cache' __A = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __A = ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = tmp_path / 'cache' __A = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __A = features.copy() if features else default_expected_features __A = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) __A = ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = tmp_path / 'cache' __A = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __A = ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read() _check_parquet_dataset(__a , __a ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if issubclass(__a , __a ): __A = parquet_path elif issubclass(__a , __a ): __A = [parquet_path] __A = tmp_path / 'cache' __A = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __A = ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_dataset(__a , __a ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=("train",) ): """simple docstring""" assert isinstance(__a , __a ) for split in splits: __A = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = tmp_path / 'cache' __A = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __A = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=__a , keep_in_memory=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = tmp_path / 'cache' __A = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __A = features.copy() if features else default_expected_features __A = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) __A = ParquetDatasetReader({'''train''': parquet_path} , features=__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if split: __A = {split: parquet_path} else: __A = 'train' __A = {'train': parquet_path, 'test': parquet_path} __A = tmp_path / 'cache' __A = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __A = ParquetDatasetReader(__a , cache_dir=__a ).read() _check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = ParquetDatasetWriter(__a , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 __A = pq.ParquetFile(tmp_path / '''foo.parquet''' ) __A = pf.read() assert dataset.data.table == output_table def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = str(shared_datadir / '''test_image_rgb.jpg''' ) __A = {'image': [image_path]} __A = Features({'''image''': Image()} ) __A = Dataset.from_dict(__a , features=__a ) __A = ParquetDatasetWriter(__a , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 __A = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features __A = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=__a ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" assert get_writer_batch_size(__a ) == expected
266
def SCREAMING_SNAKE_CASE__ ( __a , __a ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
327
0
from __future__ import annotations from math import pi, sqrt def a__ ( A_, A_ ): '''simple docstring''' if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
88
from math import pi def SCREAMING_SNAKE_CASE__ ( __a , __a ): return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
327
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCAmelCase_ ( snake_case_ ): UpperCamelCase ="vivit" def __init__( self , UpperCamelCase_=2_24 , UpperCamelCase_=32 , UpperCamelCase_=[2, 16, 16] , UpperCamelCase_=3 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu_fast" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-06 , UpperCamelCase_=True , **UpperCamelCase_ , ) -> List[Any]: __lowercase : Optional[int] = hidden_size __lowercase : Dict = num_hidden_layers __lowercase : Tuple = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : List[Any] = hidden_act __lowercase : int = hidden_dropout_prob __lowercase : Union[str, Any] = attention_probs_dropout_prob __lowercase : Union[str, Any] = initializer_range __lowercase : Optional[int] = layer_norm_eps __lowercase : Optional[int] = image_size __lowercase : List[str] = num_frames __lowercase : Optional[Any] = tubelet_size __lowercase : Optional[Any] = num_channels __lowercase : List[Any] = qkv_bias super().__init__(**_A )
249
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[Any] = ["pixel_values"] def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PIL.Image.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : str , ) -> None: """simple docstring""" super().__init__(**_A ) snake_case_ : Dict = size if size is not None else {'height': 256, 'width': 256} snake_case_ : Tuple = get_size_dict(_A ) snake_case_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} snake_case_ : int = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Union[str, Any] = do_resize snake_case_ : str = size snake_case_ : List[str] = resample snake_case_ : List[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : Tuple = do_rescale snake_case_ : Optional[Any] = rescale_factor snake_case_ : Any = do_normalize snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray: """simple docstring""" snake_case_ : Tuple = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( _A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray: """simple docstring""" snake_case_ : Optional[int] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> str: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : List[str] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : Union[str, Any]=None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ) -> PIL.Image.Image: """simple docstring""" snake_case_ : int = do_resize if do_resize is not None else self.do_resize snake_case_ : str = resample if resample is not None else self.resample snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Any = image_mean if image_mean is not None else self.image_mean snake_case_ : Dict = image_std if image_std is not None else self.image_std snake_case_ : int = size if size is not None else self.size snake_case_ : Optional[int] = get_size_dict(_A ) snake_case_ : int = crop_size if crop_size is not None else self.crop_size snake_case_ : Any = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Optional[Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case_ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: snake_case_ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: snake_case_ : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images] snake_case_ : Tuple = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
327
0
"""simple docstring""" import re import string import numpy as np import datasets UpperCAmelCase__ : str = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' UpperCAmelCase__ : int = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It\'s like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It\'s like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n' UpperCAmelCase__ : List[str] = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ (datasets.Metric ): """simple docstring""" def __magic_name__ (self ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , ) -> Tuple: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: SCREAMING_SNAKE_CASE__ : List[Any] = np.array([re.sub(_A , """""" , _A ) for x in predictions] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array([re.sub(_A , """""" , _A ) for x in references] ) else: SCREAMING_SNAKE_CASE__ : Dict = np.asarray(_A ) SCREAMING_SNAKE_CASE__ : Tuple = np.asarray(_A ) if ignore_case: SCREAMING_SNAKE_CASE__ : List[str] = np.char.lower(_A ) SCREAMING_SNAKE_CASE__ : Any = np.char.lower(_A ) if ignore_punctuation: SCREAMING_SNAKE_CASE__ : int = string.punctuation.maketrans("""""" , """""" , string.punctuation ) SCREAMING_SNAKE_CASE__ : Tuple = np.char.translate(_A , table=_A ) SCREAMING_SNAKE_CASE__ : str = np.char.translate(_A , table=_A ) if ignore_numbers: SCREAMING_SNAKE_CASE__ : Optional[int] = string.digits.maketrans("""""" , """""" , string.digits ) SCREAMING_SNAKE_CASE__ : str = np.char.translate(_A , table=_A ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.char.translate(_A , table=_A ) SCREAMING_SNAKE_CASE__ : int = predictions == references return {"exact_match": np.mean(_A ) * 1_00}
25
import sys _SCREAMING_SNAKE_CASE = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE__ ( __a = N ): snake_case_ : Optional[Any] = -sys.maxsize - 1 for i in range(len(__a ) - 12 ): snake_case_ : Optional[Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case_ : int = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
327
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case_) class __lowerCAmelCase ( snake_case_): _a = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True}) _a = Features({'''text''': Value('''string''')}) _a = Features({}) _a = "text" @property def SCREAMING_SNAKE_CASE ( self: Any ): return {self.text_column: "text"}
236
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __magic_name__: Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) __magic_name__: Optional[int] = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} ) __magic_name__: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} ) __magic_name__: bool = field( default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(__a , os.path.join(__a , f"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ ,snake_case_ ,snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ ,snake_case_ ,snake_case_ : List[str] = parser.parse_args_into_dataclasses() check_output_dir(__a ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , __a ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(__a , __a , __a ): assert hasattr(__a , __a ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(__a , __a , getattr(__a , __a ) ) snake_case_ : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=__a , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__a , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: snake_case_ : Any = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__a , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__a , __a ): snake_case_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang] else: snake_case_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__a ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) snake_case_ : List[Any] = SeqaSeqDataset # Get datasets snake_case_ : List[Any] = ( dataset_class( __a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) snake_case_ : List[str] = ( dataset_class( __a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) snake_case_ : List[Any] = ( dataset_class( __a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer snake_case_ : Any = ( build_compute_metrics_fn(data_args.task , __a ) if training_args.predict_with_generate else None ) snake_case_ : List[str] = SeqaSeqTrainer( model=__a , args=__a , data_args=__a , train_dataset=__a , eval_dataset=__a , data_collator=SeqaSeqDataCollator( __a , __a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__a , tokenizer=__a , ) snake_case_ : Optional[int] = {} # Training if training_args.do_train: logger.info('*** Train ***' ) snake_case_ : Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) snake_case_ : Tuple = train_result.metrics snake_case_ : List[str] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , __a , training_args.output_dir ) all_metrics.update(__a ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ : List[Any] = trainer.evaluate(metric_key_prefix='val' ) snake_case_ : str = data_args.n_val snake_case_ : Union[str, Any] = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.do_predict: logger.info('*** Predict ***' ) snake_case_ : Dict = trainer.predict(test_dataset=__a , metric_key_prefix='test' ) snake_case_ : Union[str, Any] = test_output.metrics snake_case_ : int = data_args.n_test if trainer.is_world_process_zero(): snake_case_ : List[str] = round(metrics['test_loss'] , 4 ) handle_metrics('test' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.predict_with_generate: snake_case_ : Any = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) snake_case_ : Any = lmap(str.strip , __a ) write_txt_file(__a , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(__a , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def SCREAMING_SNAKE_CASE__ ( __a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
327
0
def snake_case ( snake_case__ :Optional[Any]) -> Dict: if not isinstance(__a , __a): _A = F'''Input value of [number={number}] must be an integer''' raise TypeError(__a) if number < 0: return False _A = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
180
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
327
0
"""simple docstring""" def _snake_case ( lowercase__ : int , lowercase__ : int = False ) -> List[Any]: '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis lowerCAmelCase_ :str = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] lowerCAmelCase_ :str = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(__a , 1 ): if n < _p: # then we have our last prime to check lowerCAmelCase_ :Any = primes[:idx] break lowerCAmelCase_ :List[str] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCAmelCase_ :int = False for r in range(__a ): lowerCAmelCase_ :int = pow(__a , d * 2**r , __a ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCAmelCase_ :Optional[int] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _snake_case ( ) -> str: '''simple docstring''' assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
84
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Dict ) -> List[Any]: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_A ) snake_case_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : List[Any] = tokenizer('This is me' , return_tensors='pt' ) snake_case_ : Any = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case_ : Optional[Any] = model.generate(**_A ) snake_case_ : int = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_A ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case_ : Optional[Any] = model_reloaded.generate(**_A ) self.assertTrue(torch.allclose(_A , _A ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : int = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : Dict = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_A ): model.save_pretrained(_A ) snake_case_ : Union[str, Any] = model.reverse_bettertransformer() model.save_pretrained(_A )
327
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case__ (snake_case_ ): """simple docstring""" __lowerCAmelCase :UNetaDModel __lowerCAmelCase :ScoreSdeVeScheduler def __init__( self , __lowercase , __lowercase ) -> List[str]: """simple docstring""" super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self , __lowercase = 1 , __lowercase = 2_0_0_0 , __lowercase = None , __lowercase = "pil" , __lowercase = True , **__lowercase , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" a__ : List[str] = self.unet.config.sample_size a__ : Optional[int] = (batch_size, 3, img_size, img_size) a__ : Optional[Any] = self.unet a__ : Optional[Any] = randn_tensor(_A , generator=_A ) * self.scheduler.init_noise_sigma a__ : List[str] = sample.to(self.device ) self.scheduler.set_timesteps(_A ) self.scheduler.set_sigmas(_A ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): a__ : Union[str, Any] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): a__ : Any = self.unet(_A , _A ).sample a__ : str = self.scheduler.step_correct(_A , _A , generator=_A ).prev_sample # prediction step a__ : Optional[int] = model(_A , _A ).sample a__ : Optional[Any] = self.scheduler.step_pred(_A , _A , _A , generator=_A ) a__ : int = output.prev_sample, output.prev_sample_mean a__ : Tuple = sample_mean.clamp(0 , 1 ) a__ : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a__ : Optional[Any] = self.numpy_to_pil(_A ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_A )
170
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = params snake_case_ : int = np.array(_A ) snake_case_ : Optional[int] = np.array([len(_A ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Tuple , _A : Optional[int] ) -> str: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : List[str] ) -> str: """simple docstring""" return len(self.lengths ) def UpperCAmelCase_ ( self : Dict ) -> str: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: """simple docstring""" snake_case_ : Dict = self.params.max_model_input_size snake_case_ : Tuple = self.lengths > max_len logger.info(F"""Splitting {sum(_A )} too long sequences.""" ) def divide_chunks(_A : Union[str, Any] , _A : Dict ): return [l[i : i + n] for i in range(0 , len(_A ) , _A )] snake_case_ : Dict = [] snake_case_ : Union[str, Any] = [] if self.params.mlm: snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: snake_case_ : List[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: snake_case_ : Optional[int] = np.insert(_A , 0 , _A ) if sub_s[-1] != sep_id: snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A ) assert len(_A ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_A ) new_tok_ids.extend(_A ) new_lengths.extend([len(_A ) for l in sub_seqs] ) snake_case_ : Tuple = np.array(_A ) snake_case_ : int = np.array(_A ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ : Tuple = len(self ) snake_case_ : int = self.lengths > 11 snake_case_ : Dict = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : List[Any] = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = len(self ) snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) snake_case_ : Any = (unk_occs / self.lengths) < 0.5 snake_case_ : List[Any] = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : Tuple = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ : Any = [t[0] for t in batch] snake_case_ : int = [t[1] for t in batch] assert len(_A ) == len(_A ) # Max for paddings snake_case_ : str = max(_A ) # Pad token ids if self.params.mlm: snake_case_ : int = self.params.special_tok_ids['pad_token'] else: snake_case_ : Dict = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids] assert len(tk_ ) == len(_A ) assert all(len(_A ) == max_seq_len_ for t in tk_ ) snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs) return tk_t, lg_t
327
0
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_="attention" ) -> List[str]: """simple docstring""" A__ = params[f"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] A__ = params[f"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] A__ = params[f"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] A__ = params[f"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Tuple: """simple docstring""" if split_mlp_wi: A__ = params[f"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] A__ = params[f"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] A__ = (wi_a, wi_a) else: A__ = params[f"""{prefix}/layers_{i}/mlp/wi/kernel"""] A__ = params[f"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: """simple docstring""" return params[f"""{prefix}/layers_{i}/{layer_name}/scale"""] def SCREAMING_SNAKE_CASE ( lowercase_ , *, lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" A__ = traverse_util.flatten_dict(variables['''target'''] ) A__ = {'/'.join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi A__ = 'encoder/layers_0/mlp/wi_0/kernel' in old print('''Split MLP:''' , __a ) A__ = collections.OrderedDict() # Shared embeddings. A__ = old['token_embedder/embedding'] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). A__ = tax_layer_norm_lookup(__a , __a , '''encoder''' , '''pre_attention_layer_norm''' ) A__ = tax_attention_lookup(__a , __a , '''encoder''' , '''attention''' ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 1 (MLP). A__ = tax_layer_norm_lookup(__a , __a , '''encoder''' , '''pre_mlp_layer_norm''' ) A__ = tax_mlp_lookup(__a , __a , '''encoder''' , __a ) A__ = layer_norm if split_mlp_wi: A__ = wi[0].T A__ = wi[1].T else: A__ = wi.T A__ = wo.T A__ = old[ 'encoder/relpos_bias/rel_embedding' ].T A__ = old['encoder/encoder_norm/scale'] if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). A__ = tax_layer_norm_lookup(__a , __a , '''decoder''' , '''pre_self_attention_layer_norm''' ) A__ = tax_attention_lookup(__a , __a , '''decoder''' , '''self_attention''' ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 1 (Cross Attention). A__ = tax_layer_norm_lookup(__a , __a , '''decoder''' , '''pre_cross_attention_layer_norm''' ) A__ = tax_attention_lookup(__a , __a , '''decoder''' , '''encoder_decoder_attention''' ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 2 (MLP). A__ = tax_layer_norm_lookup(__a , __a , '''decoder''' , '''pre_mlp_layer_norm''' ) A__ = tax_mlp_lookup(__a , __a , '''decoder''' , __a ) A__ = layer_norm if split_mlp_wi: A__ = wi[0].T A__ = wi[1].T else: A__ = wi.T A__ = wo.T A__ = old['decoder/decoder_norm/scale'] A__ = old[ 'decoder/relpos_bias/rel_embedding' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: A__ = old['decoder/logits_dense/kernel'].T return new def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: """simple docstring""" A__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: A__ = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: A__ = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) A__ = state_dict['shared.weight'] return state_dict def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: """simple docstring""" A__ = checkpoints.load_tax_checkpoint(__a ) A__ = convert_tax_to_pytorch(__a , num_layers=config.num_layers , is_encoder_only=__a ) A__ = make_state_dict(__a , __a ) model.load_state_dict(__a , strict=__a ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ = False ) -> Tuple: """simple docstring""" A__ = TaConfig.from_json_file(__a ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: A__ = TaEncoderModel(__a ) else: A__ = TaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a , __a , __a , __a ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print('''Done''' ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) _lowerCamelCase : List[str] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
14
def SCREAMING_SNAKE_CASE__ ( __a , __a ): while b: snake_case_ ,snake_case_ : Any = b, a % b return a def SCREAMING_SNAKE_CASE__ ( __a , __a ): return a if b == 0 else euclidean_gcd_recursive(__a , a % b ) def SCREAMING_SNAKE_CASE__ ( ): print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
327
0
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( snake_case_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = None , __UpperCAmelCase = 50 , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_A , ) __lowerCamelCase = image.to(self.device ) # set step values self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __lowerCamelCase = self.unet(_A , _A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(_A , _A , _A ).prev_sample __lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(_A ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=_A ), "This is a local test"
330
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE = get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : Dict = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Dict = os.path.join(__a , __a ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Dict = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Dict = os.path.join(__a , __a ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving model to {ckpt_dir}""" ) snake_case_ : int = {'model': state_dict} dist_cp.save_state_dict( state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Optional[Any] = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[Any] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Optional[Any] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Tuple = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Tuple = ( os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) snake_case_ : List[Any] = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , ) snake_case_ : Any = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ : str = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : Any = os.path.join(__a , __a ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__a , __a ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ : Union[str, Any] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : List[Any] = os.path.join(__a , __a ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: snake_case_ : str = ( os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) snake_case_ : Any = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , ) snake_case_ : Optional[int] = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a ) optimizer.load_state_dict(__a )
327
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } SCREAMING_SNAKE_CASE_ = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(_A ) , _A ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_A ) , x.transpose() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A ) , transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , transpose(_A , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A ) , transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , transpose(_A , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A ) , np.asarray(transpose(_A ) ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A , axes=(1, 2, 0) ) , np.asarray(transpose(_A , axes=(1, 2, 0) ) ) ) ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , np.reshape(_A , (4, 3) ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , np.reshape(_A , (12, 5) ) ) ) @require_torch def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , reshape(_A , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , reshape(_A , (12, 5) ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , reshape(_A , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , reshape(_A , (12, 5) ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A , (4, 3) ) , np.asarray(reshape(_A , (4, 3) ) ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE_ = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A , (12, 5) ) , np.asarray(reshape(_A , (12, 5) ) ) ) ) def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_A ) , np.squeeze(_A ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , np.squeeze(_A , axis=2 ) ) ) @require_torch def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A ) , squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , squeeze(_A , axis=2 ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE_ = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A ) , squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE_ = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , squeeze(_A , axis=2 ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE_ = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A ) , np.asarray(squeeze(_A ) ) ) ) SCREAMING_SNAKE_CASE_ = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE_ = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A , axis=2 ) , np.asarray(squeeze(_A , axis=2 ) ) ) ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , np.expand_dims(_A , axis=1 ) ) ) @require_torch def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = torch.tensor(_A ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , expand_dims(_A , axis=1 ).numpy() ) ) @require_tf def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = tf.constant(_A ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , expand_dims(_A , axis=1 ).numpy() ) ) @require_flax def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE_ = jnp.array(_A ) self.assertTrue(np.allclose(expand_dims(_A , axis=1 ) , np.asarray(expand_dims(_A , axis=1 ) ) ) )
225
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _A : bool = True , _A : Tuple=7 , _A : Tuple=30 , _A : int=400 , _A : Tuple=3 , ) -> Optional[int]: """simple docstring""" snake_case_ : str = parent snake_case_ : str = do_resize snake_case_ : str = size if size is not None else {'shortest_edge': 288} snake_case_ : Any = size_divisor snake_case_ : Any = do_rescale snake_case_ : Union[str, Any] = rescale_factor snake_case_ : str = do_normalize snake_case_ : int = do_center_crop snake_case_ : str = image_mean snake_case_ : int = image_std snake_case_ : Any = do_pad snake_case_ : Optional[int] = batch_size snake_case_ : List[str] = num_channels snake_case_ : Any = min_resolution snake_case_ : str = max_resolution def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self : Dict , _A : str , _A : Union[str, Any]=False ) -> int: """simple docstring""" if not batched: snake_case_ : Optional[int] = self.size['shortest_edge'] snake_case_ : List[Any] = image_inputs[0] if isinstance(_A , Image.Image ): snake_case_ ,snake_case_ : Optional[Any] = image.size else: snake_case_ ,snake_case_ : str = image.shape[1], image.shape[2] snake_case_ : Dict = size / min(_A , _A ) if h < w: snake_case_ ,snake_case_ : str = size, scale * w else: snake_case_ ,snake_case_ : Tuple = scale * h, size snake_case_ : Dict = int((1333 / 800) * size ) if max(_A , _A ) > max_size: snake_case_ : Union[str, Any] = max_size / max(_A , _A ) snake_case_ : Any = newh * scale snake_case_ : Union[str, Any] = neww * scale snake_case_ ,snake_case_ : Any = int(newh + 0.5 ), int(neww + 0.5 ) snake_case_ ,snake_case_ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: snake_case_ : Optional[int] = [] for image in image_inputs: snake_case_ ,snake_case_ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : str = max(_A , key=lambda _A : item[0] )[0] snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'size_divisor' ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : List[str] = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Any = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : str = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
327
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : str, _lowerCamelCase : List[Any], _lowerCamelCase : int=13, _lowerCamelCase : str=3, _lowerCamelCase : Optional[Any]=2_24, _lowerCamelCase : str=30, _lowerCamelCase : int=4_00, _lowerCamelCase : str=True, _lowerCamelCase : List[str]=None, _lowerCamelCase : Tuple=True, _lowerCamelCase : List[str]=[0.5, 0.5, 0.5], _lowerCamelCase : Any=[0.5, 0.5, 0.5], ): '''simple docstring''' __A = size if size is not None else {'height': 18, 'width': 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = do_normalize __A = image_mean __A = image_std def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case ( snake_case_ , unittest.TestCase ): '''simple docstring''' A_ : Any = ViTImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = EfficientFormerImageProcessorTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A, '''image_mean''' ) ) self.assertTrue(hasattr(_A, '''image_std''' ) ) self.assertTrue(hasattr(_A, '''do_normalize''' ) ) self.assertTrue(hasattr(_A, '''do_resize''' ) ) self.assertTrue(hasattr(_A, '''size''' ) ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_proc_tester, equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A, Image.Image ) # Test not batched input __A = image_processor(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) # Test batched __A = image_processor(_A, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_proc_tester, equal_resolution=_A, numpify=_A ) for image in image_inputs: self.assertIsInstance(_A, np.ndarray ) # Test not batched input __A = image_processor(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) # Test batched __A = image_processor(_A, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_proc_tester, equal_resolution=_A, torchify=_A ) for image in image_inputs: self.assertIsInstance(_A, torch.Tensor ) # Test not batched input __A = image_processor(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), ) # Test batched __A = image_processor(_A, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ), )
266
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _SCREAMING_SNAKE_CASE = 50_00_00 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = os.path.split(__file__) _SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : int = dataset.map(**__a ) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : Dict = dataset.filter(**__a ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Tuple = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Dict = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) snake_case_ : List[Any] = generate_example_dataset( os.path.join(__a , 'dataset.arrow' ) , __a , num_examples=__a ) snake_case_ : str = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__a ) def tokenize(__a ): return tokenizer(examples['text'] ) snake_case_ : Any = map(__a ) snake_case_ : Tuple = map(__a , batched=__a ) snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='numpy' ): snake_case_ : Optional[int] = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='pandas' ): snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='torch' , columns='numbers' ): snake_case_ : int = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): snake_case_ : List[Any] = map(__a , function=lambda __a : None , batched=__a ) snake_case_ : int = map(__a , function=__a , batched=__a ) snake_case_ : Optional[Any] = filter(__a ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__a , 'wb' ) as f: f.write(json.dumps(__a ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
327
0
__lowerCAmelCase : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __lowerCAmelCase : Dict = [{'type': 'code', 'content': INSTALL_CONTENT}] __lowerCAmelCase : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
88
from collections import namedtuple import requests from lxml import html # type: ignore _SCREAMING_SNAKE_CASE = namedtuple("""covid_data""", """cases deaths recovered""") def SCREAMING_SNAKE_CASE__ ( __a = "https://www.worldometers.info/coronavirus/" ): snake_case_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) ) _SCREAMING_SNAKE_CASE = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
327
0
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCAmelCase_ ( snake_case_ ): def __init__( self , *UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ ) -> Any: super().__init__(*_A , **_A ) __lowercase : List[str] = eval_examples __lowercase : List[Any] = post_process_function def _lowerCamelCase ( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_ = "eval" ) -> str: __lowercase : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset __lowercase : int = self.get_eval_dataloader(_A ) __lowercase : Optional[int] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __lowercase : Union[str, Any] = self.compute_metrics __lowercase : Union[str, Any] = None __lowercase : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __lowercase : str = time.time() try: __lowercase : int = eval_loop( _A , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , metric_key_prefix=_A , ) finally: __lowercase : Optional[int] = compute_metrics __lowercase : Optional[int] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _A , _A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __lowercase : List[str] = self.post_process_function(_A , _A , output.predictions ) __lowercase : Any = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): __lowercase : int = metrics.pop(_A ) metrics.update(output.metrics ) else: __lowercase : Optional[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_A ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __lowercase : List[str] = self.callback_handler.on_evaluate(self.args , self.state , self.control , _A ) return metrics def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_ = "test" ) -> List[str]: __lowercase : Optional[int] = self.get_test_dataloader(_A ) # Temporarily disable metric computation, we will do it in the loop here. __lowercase : Optional[Any] = self.compute_metrics __lowercase : Dict = None __lowercase : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __lowercase : Tuple = time.time() try: __lowercase : Optional[Any] = eval_loop( _A , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_A , metric_key_prefix=_A , ) finally: __lowercase : Optional[int] = compute_metrics __lowercase : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _A , _A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __lowercase : Dict = self.post_process_function(_A , _A , output.predictions , '''predict''' ) __lowercase : Optional[Any] = self.compute_metrics(_A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): __lowercase : List[str] = metrics.pop(_A ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_A )
249
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": 5_12, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: List[Any] = VOCAB_FILES_NAMES __magic_name__: List[str] = PRETRAINED_VOCAB_FILES_MAP __magic_name__: List[str] = PRETRAINED_INIT_CONFIGURATION __magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__: Union[str, Any] = LxmertTokenizer def __init__( self : List[str] , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=True , _A : Dict="[UNK]" , _A : Optional[int]="[SEP]" , _A : Dict="[PAD]" , _A : Union[str, Any]="[CLS]" , _A : str="[MASK]" , _A : Tuple=True , _A : Dict=None , **_A : List[Any] , ) -> Optional[int]: """simple docstring""" super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _A ) != do_lower_case or normalizer_state.get('strip_accents' , _A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars ): snake_case_ : Tuple = getattr(_A , normalizer_state.pop('type' ) ) snake_case_ : Union[str, Any] = do_lower_case snake_case_ : int = strip_accents snake_case_ : Optional[Any] = tokenize_chinese_chars snake_case_ : List[Any] = normalizer_class(**_A ) snake_case_ : Tuple = do_lower_case def UpperCAmelCase_ ( self : Dict , _A : Any , _A : List[Any]=None ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : str = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
327
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = {'vocab_file': 'spiece.model'} UpperCAmelCase__ : Optional[int] = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } UpperCAmelCase__ : Union[str, Any] = { 'albert-base-v1': 5_1_2, 'albert-large-v1': 5_1_2, 'albert-xlarge-v1': 5_1_2, 'albert-xxlarge-v1': 5_1_2, 'albert-base-v2': 5_1_2, 'albert-large-v2': 5_1_2, 'albert-xlarge-v2': 5_1_2, 'albert-xxlarge-v2': 5_1_2, } UpperCAmelCase__ : Optional[Any] = '▁' class lowerCAmelCase_ (snake_case_ ): """simple docstring""" __UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="[CLS]" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="[CLS]" , SCREAMING_SNAKE_CASE__="[MASK]" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = ( AddedToken(_A , lstrip=_A , rstrip=_A , normalized=_A ) if isinstance(_A , _A ) else mask_token ) SCREAMING_SNAKE_CASE__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) SCREAMING_SNAKE_CASE__ : str = do_lower_case SCREAMING_SNAKE_CASE__ : Union[str, Any] = remove_space SCREAMING_SNAKE_CASE__ : List[str] = keep_accents SCREAMING_SNAKE_CASE__ : List[Any] = vocab_file SCREAMING_SNAKE_CASE__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) @property def __magic_name__ (self ) -> Optional[int]: """simple docstring""" return len(self.sp_model ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.__dict__.copy() SCREAMING_SNAKE_CASE__ : List[str] = None return state def __setstate__(self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} SCREAMING_SNAKE_CASE__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" if self.remove_space: SCREAMING_SNAKE_CASE__ : int = ' '.join(inputs.strip().split() ) else: SCREAMING_SNAKE_CASE__ : Dict = inputs SCREAMING_SNAKE_CASE__ : List[str] = outputs.replace("""``""" , """\"""" ).replace("""\'\'""" , """\"""" ) if not self.keep_accents: SCREAMING_SNAKE_CASE__ : int = unicodedata.normalize("""NFKD""" , _A ) SCREAMING_SNAKE_CASE__ : List[str] = ''.join([c for c in outputs if not unicodedata.combining(_A )] ) if self.do_lower_case: SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.lower() return outputs def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.preprocess_text(_A ) SCREAMING_SNAKE_CASE__ : int = self.sp_model.encode(_A , out_type=_A ) SCREAMING_SNAKE_CASE__ : Any = [] for piece in pieces: if len(_A ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): SCREAMING_SNAKE_CASE__ : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] = cur_pieces[1:] else: SCREAMING_SNAKE_CASE__ : Dict = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_A ) else: new_pieces.append(_A ) return new_pieces def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" return self.sp_model.PieceToId(_A ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" return self.sp_model.IdToPiece(_A ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : List[str] = '' SCREAMING_SNAKE_CASE__ : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : Optional[int] = [] else: current_sub_tokens.append(_A ) SCREAMING_SNAKE_CASE__ : Dict = False out_string += self.sp_model.decode(_A ) return out_string.strip() def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1] def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ : str = os.path.join( _A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , """wb""" ) as fi: SCREAMING_SNAKE_CASE__ : Dict = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
25
def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): snake_case_ : int = f"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 0: return False snake_case_ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
327
0
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCAmelCase__ ( lowerCamelCase ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowerCAmelCase ( nn.Module): def __init__( self: str , _lowerCAmelCase: nn.Module , _lowerCAmelCase: int ): super().__init__() lowercase :List[Any] = module lowercase :List[str] = nn.Sequential( nn.Linear(module.in_features , _A , bias=_A ) , nn.Linear(_A , module.out_features , bias=_A ) , ) lowercase :List[str] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_A ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: Tuple , *_lowerCAmelCase: int , **_lowerCAmelCase: Tuple ): return self.module(_A , *_A , **_A ) + self.adapter(_A ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _a = "bigscience/bloom-1b7" # Constant values _a = 2.109659552692574 _a = "Hello my name is" _a = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''') EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''') EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''') _a = 10 def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :Union[str, Any] = AutoTokenizer.from_pretrained(self.model_name ) class __lowerCAmelCase ( snake_case_): def SCREAMING_SNAKE_CASE ( self: Any ): super().setUp() # Models and tokenizer lowercase :str = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) lowercase :Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_A , device_map="auto" ) def SCREAMING_SNAKE_CASE ( self: int ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self: Optional[int] ): lowercase :Optional[Any] = self.model_abit.config self.assertTrue(hasattr(_A , "quantization_config" ) ) lowercase :Optional[Any] = config.to_dict() lowercase :Optional[Any] = config.to_diff_dict() lowercase :Dict = config.to_json_string() def SCREAMING_SNAKE_CASE ( self: List[str] ): from bitsandbytes.nn import Paramsabit lowercase :List[str] = self.model_fpaa.get_memory_footprint() lowercase :Dict = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowercase :Optional[int] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_A , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :str = self.tokenizer(self.input_text , return_tensors="pt" ) lowercase :int = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_A ) , self.EXPECTED_OUTPUTS ) def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Optional[Any] = BitsAndBytesConfig() lowercase :Optional[Any] = True lowercase :str = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_A , device_map="auto" ) lowercase :Any = self.tokenizer(self.input_text , return_tensors="pt" ) lowercase :Any = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_A ) , self.EXPECTED_OUTPUTS ) def SCREAMING_SNAKE_CASE ( self: Dict ): with self.assertRaises(_A ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_A ) def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Optional[Any] = BitsAndBytesConfig() with self.assertRaises(_A ): lowercase :List[str] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_A , load_in_abit=_A , device_map="auto" , bnb_abit_quant_type="nf4" , ) def SCREAMING_SNAKE_CASE ( self: int ): with self.assertRaises(_A ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(_A ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_A ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(_A ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_A ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowercase :Optional[int] = self.tokenizer(self.input_text , return_tensors="pt" ) lowercase :Union[str, Any] = self.model_fpaa.to(torch.floataa ) lowercase :Optional[int] = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error lowercase :Union[str, Any] = self.model_fpaa.to("cpu" ) # Check this does not throw an error lowercase :Any = self.model_fpaa.half() # Check this does not throw an error lowercase :Tuple = self.model_fpaa.float() def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase :str = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=_A , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase): @classmethod def SCREAMING_SNAKE_CASE ( cls: Tuple ): lowercase :Any = 't5-small' lowercase :int = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense lowercase :Any = AutoTokenizer.from_pretrained(cls.model_name ) lowercase :Any = 'Translate in German: Hello, my dog is cute' def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self: str ): from transformers import TaForConditionalGeneration lowercase :Union[str, Any] = TaForConditionalGeneration._keep_in_fpaa_modules lowercase :str = None # test with `t5-small` lowercase :str = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_A , device_map="auto" ) lowercase :Optional[Any] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) lowercase :List[str] = model.generate(**_A ) # test with `flan-t5-small` lowercase :Optional[int] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_A , device_map="auto" ) lowercase :str = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) lowercase :List[Any] = model.generate(**_A ) lowercase :Tuple = modules def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowercase :Optional[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_A , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowercase :Optional[int] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) lowercase :Optional[int] = model.generate(**_A ) # test with `flan-t5-small` lowercase :int = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_A , device_map="auto" ) lowercase :Any = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) lowercase :str = model.generate(**_A ) class __lowerCAmelCase ( snake_case_): def SCREAMING_SNAKE_CASE ( self: List[Any] ): super().setUp() # model_name lowercase :Union[str, Any] = 'bigscience/bloom-560m' lowercase :str = 't5-small' # Different types of model lowercase :List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=_A , device_map="auto" ) # Sequence classification model lowercase :Optional[Any] = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_A , device_map="auto" ) # CausalLM model lowercase :Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_A , device_map="auto" ) # Seq2seq model lowercase :List[str] = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_A , device_map="auto" ) def SCREAMING_SNAKE_CASE ( self: int ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowerCAmelCase ( snake_case_): def SCREAMING_SNAKE_CASE ( self: Dict ): super().setUp() def SCREAMING_SNAKE_CASE ( self: List[str] ): del self.pipe gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :str = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowercase :Tuple = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowerCAmelCase ( snake_case_): def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): super().setUp() def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase :int = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_A , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowercase :int = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch lowercase :List[str] = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_A ) , self.EXPECTED_OUTPUTS ) class __lowerCAmelCase ( snake_case_): def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :int = 'facebook/opt-350m' super().setUp() def SCREAMING_SNAKE_CASE ( self: Dict ): if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters lowercase :List[str] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_A ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowercase :Any = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowercase :List[str] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_A ) ): lowercase :Dict = LoRALayer(module.q_proj , rank=16 ) lowercase :Dict = LoRALayer(module.k_proj , rank=16 ) lowercase :Union[str, Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch lowercase :Optional[Any] = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowercase :Optional[Any] = model.forward(**_A ) out.logits.norm().backward() for module in model.modules(): if isinstance(_A , _A ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_A , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowerCAmelCase ( snake_case_): _a = "gpt2-xl" _a = 3.3191854854152187
236
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
0
from __future__ import annotations def snake_case ( snake_case__ :str , snake_case__ :Optional[int] = None , snake_case__ :Dict = None) -> Tuple: if start is None: _A = 0 if end is None: _A = len(__a) - 1 if start >= end: return _A = (start + end) // 2 slowsort(__a , __a , __a) slowsort(__a , mid + 1 , __a) if sequence[end] < sequence[mid]: _A = sequence[mid], sequence[end] slowsort(__a , __a , end - 1) if __name__ == "__main__": from doctest import testmod testmod()
180
from typing import Dict from .base import GenericTensor, Pipeline class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def UpperCAmelCase_ ( self : str , _A : Optional[Any]=None , _A : List[str]=None , _A : Optional[Any]=None , **_A : List[str] ) -> Any: """simple docstring""" if tokenize_kwargs is None: snake_case_ : Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) snake_case_ : int = truncation snake_case_ : Optional[int] = tokenize_kwargs snake_case_ : Dict = {} if return_tensors is not None: snake_case_ : Union[str, Any] = return_tensors return preprocess_params, {}, postprocess_params def UpperCAmelCase_ ( self : Optional[int] , _A : int , **_A : Any ) -> Dict[str, GenericTensor]: """simple docstring""" snake_case_ : Dict = self.framework snake_case_ : Any = self.tokenizer(_A , return_tensors=_A , **_A ) return model_inputs def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] ) -> int: """simple docstring""" snake_case_ : Tuple = self.model(**_A ) return model_outputs def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str=False ) -> Any: """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> List[str]: """simple docstring""" return super().__call__(*_A , **_A )
327
0
"""simple docstring""" from __future__ import annotations class _SCREAMING_SNAKE_CASE : def __init__( self , __A = 0 ) -> str: lowerCAmelCase_ :Union[str, Any] = key def __lowerCAmelCase ( self , __A , __A ) -> list[str]: assert isinstance(_A , _A ) and isinstance(_A , _A ) lowerCAmelCase_ :Dict = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_A ) ^ key ) for ch in content] def __lowerCAmelCase ( self , __A , __A ) -> list[str]: assert isinstance(_A , _A ) and isinstance(_A , _A ) lowerCAmelCase_ :int = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_A ) ^ key ) for ch in content] def __lowerCAmelCase ( self , __A , __A = 0 ) -> str: assert isinstance(_A , _A ) and isinstance(_A , _A ) lowerCAmelCase_ :Any = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase_ :List[str] = '' for ch in content: ans += chr(ord(_A ) ^ key ) return ans def __lowerCAmelCase ( self , __A , __A = 0 ) -> str: assert isinstance(_A , _A ) and isinstance(_A , _A ) lowerCAmelCase_ :int = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase_ :Dict = '' for ch in content: ans += chr(ord(_A ) ^ key ) return ans def __lowerCAmelCase ( self , __A , __A = 0 ) -> bool: assert isinstance(_A , _A ) and isinstance(_A , _A ) try: with open(_A ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_A , _A ) ) except OSError: return False return True def __lowerCAmelCase ( self , __A , __A ) -> bool: assert isinstance(_A , _A ) and isinstance(_A , _A ) try: with open(_A ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_A , _A ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
84
from itertools import permutations def SCREAMING_SNAKE_CASE__ ( __a ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False snake_case_ : Any = [7, 11, 13, 17] for i, test in enumerate(__a ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE__ ( __a = 10 ): return sum( int(''.join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(F'''{solution() = }''')
327
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Optional[Any] ={ "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] =[ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowercase : Dict =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
170
from __future__ import annotations from collections import namedtuple def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Any = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
327
0
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" while b: A__ = b, a % b return a def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(__a , a % b ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
14
import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _SCREAMING_SNAKE_CASE = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _SCREAMING_SNAKE_CASE = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : int , _A : Tuple , _A : Tuple , _A : str=None , _A : Dict=False , _A : Tuple=False , _A : str=False , ) -> Tuple: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case_ : List[Any] = np.array([re.sub(_A , '' , _A ) for x in predictions] ) snake_case_ : Optional[Any] = np.array([re.sub(_A , '' , _A ) for x in references] ) else: snake_case_ : Dict = np.asarray(_A ) snake_case_ : Tuple = np.asarray(_A ) if ignore_case: snake_case_ : List[str] = np.char.lower(_A ) snake_case_ : Any = np.char.lower(_A ) if ignore_punctuation: snake_case_ : int = string.punctuation.maketrans('' , '' , string.punctuation ) snake_case_ : Tuple = np.char.translate(_A , table=_A ) snake_case_ : str = np.char.translate(_A , table=_A ) if ignore_numbers: snake_case_ : Optional[int] = string.digits.maketrans('' , '' , string.digits ) snake_case_ : str = np.char.translate(_A , table=_A ) snake_case_ : Union[str, Any] = np.char.translate(_A , table=_A ) snake_case_ : int = predictions == references return {"exact_match": np.mean(_A ) * 100}
327
0
import comet # From: unbabel-comet import torch import datasets a_ = datasets.logging.get_logger(__name__) a_ = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ a_ = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ a_ = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def lowerCamelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' if self.config_name == "default": __lowerCamelCase = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: __lowerCamelCase = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ): '''simple docstring''' if gpus is None: __lowerCamelCase = 1 if torch.cuda.is_available() else 0 __lowerCamelCase = {'src': sources, 'mt': predictions, 'ref': references} __lowerCamelCase = [dict(zip(_A , _A ) ) for t in zip(*data.values() )] __lowerCamelCase = self.scorer.predict(_A , gpus=_A , progress_bar=_A ) return {"mean_score": mean_score, "scores": scores}
330
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , _A : Optional[Any] , _A : Dict=13 , _A : Union[str, Any]=30 , _A : Tuple=2 , _A : Union[str, Any]=3 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : str=32 , _A : int=2 , _A : List[str]=4 , _A : List[str]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=10 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=3 , _A : str=0.6 , _A : Union[str, Any]=None , ) -> Any: """simple docstring""" snake_case_ : Optional[int] = parent snake_case_ : Tuple = batch_size snake_case_ : List[Any] = image_size snake_case_ : List[str] = patch_size snake_case_ : List[str] = num_channels snake_case_ : Optional[Any] = is_training snake_case_ : Any = use_labels snake_case_ : Tuple = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Tuple = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[Any] = mask_ratio snake_case_ : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case_ : Optional[int] = (image_size // patch_size) ** 2 snake_case_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Union[str, Any] = None if self.use_labels: snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : int ) -> Optional[Any]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : Dict , _A : str ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = TFViTMAEModel(config=_A ) snake_case_ : str = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : Any , _A : List[Any] ) -> int: """simple docstring""" snake_case_ : Any = TFViTMAEForPreTraining(_A ) snake_case_ : Optional[Any] = model(_A , training=_A ) # expected sequence length = num_patches snake_case_ : List[str] = (self.image_size // self.patch_size) ** 2 snake_case_ : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case_ : str = 1 snake_case_ : Dict = TFViTMAEForPreTraining(_A ) snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : List[str] = model(_A , training=_A ) snake_case_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = self.prepare_config_and_inputs() ((snake_case_) ,(snake_case_) ,(snake_case_)) : Any = config_and_inputs snake_case_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __magic_name__: str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} __magic_name__: Dict = False __magic_name__: Dict = False __magic_name__: List[Any] = False __magic_name__: Dict = False def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" snake_case_ : List[Any] = TFViTMAEModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" snake_case_ ,snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: """simple docstring""" snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[str] = model_class(_A ) snake_case_ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Dict = [*signature.parameters.keys()] snake_case_ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Union[str, Any] = self._prepare_for_class(_A , _A ) snake_case_ : List[str] = model(_A , noise=_A ) snake_case_ : Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) ) snake_case_ : str = model(**_A , noise=_A ) snake_case_ : Union[str, Any] = outputs_dict[0].numpy() snake_case_ : Optional[Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Tuple = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_A : int ): snake_case_ : Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(_A ): snake_case_ : str = v.numpy() else: snake_case_ : Optional[Any] = np.array(_A ) return inputs_np_dict for model_class in self.all_model_classes: snake_case_ : int = model_class(_A ) snake_case_ : List[Any] = self._prepare_for_class(_A , _A ) snake_case_ : Any = prepare_numpy_arrays(_A ) snake_case_ : List[Any] = model(_A , noise=_A ) snake_case_ : List[Any] = model(**_A , noise=_A ) self.assert_outputs_same(_A , _A ) def UpperCAmelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> List[str]: """simple docstring""" np.random.seed(2 ) snake_case_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.constant(_A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case_ : Optional[Any] = tf_noise super().check_pt_tf_models(_A , _A , _A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_A ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(_A , _A ),) if isinstance(_A , _A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_A , '_keras_serializable' , _A ) } snake_case_ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.convert_to_tensor(_A ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: snake_case_ : Optional[Any] = main_layer_class(_A ) snake_case_ : List[str] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } snake_case_ : Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) ) snake_case_ : int = model(_A ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[Any] = os.path.join(_A , 'keras_model.h5' ) model.save(_A ) snake_case_ : str = tf.keras.models.load_model( _A , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_A , tf.keras.Model ) snake_case_ : List[str] = model(_A ) self.assert_outputs_same(_A , _A ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Optional[Any] = self._prepare_for_class(_A , _A ) snake_case_ : int = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Any = outputs.last_hidden_state.numpy() snake_case_ : Optional[int] = 0 else: snake_case_ : str = outputs.logits.numpy() snake_case_ : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) snake_case_ : Any = model_class.from_pretrained(_A ) snake_case_ : Any = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Dict = after_outputs['last_hidden_state'].numpy() snake_case_ : Dict = 0 else: snake_case_ : Any = after_outputs['logits'].numpy() snake_case_ : Optional[Any] = 0 snake_case_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) def UpperCAmelCase_ ( self : Any ) -> str: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : str = model_class(_A ) snake_case_ : int = self._prepare_for_class(_A , _A ) snake_case_ : str = model(_A , noise=_A ) snake_case_ : Dict = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_A ) snake_case_ : Any = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config snake_case_ : str = model_class.from_config(model.config ) snake_case_ : Union[str, Any] = new_model(_A ) # Build model new_model.set_weights(model.get_weights() ) snake_case_ : List[str] = new_model(_A , noise=_A ) self.assert_outputs_same(_A , _A ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @slow def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_A ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ : List[str] = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) snake_case_ : List[Any] = self.default_image_processor snake_case_ : Dict = prepare_img() snake_case_ : Optional[Any] = image_processor(images=_A , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case_ : int = ViTMAEConfig() snake_case_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass snake_case_ : Optional[Any] = model(**_A , noise=_A ) # verify the logits snake_case_ : Optional[int] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _A ) snake_case_ : Any = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
327
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowerCamelCase__ : Any = get_logger(__name__) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int]=0 ) -> Any: os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE_ = f"{MODEL_NAME}.bin" if model_index == 0 else f"{MODEL_NAME}_{model_index}.bin" SCREAMING_SNAKE_CASE_ = os.path.join(__a , __a ) if accelerator.process_index == 0: logger.info(f"Saving model to {output_model_file}" ) torch.save(__a , __a ) logger.info(f"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE_ = ( f"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else f"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) SCREAMING_SNAKE_CASE_ = os.path.join(__a , __a ) logger.info(f"Saving model to {output_model_file}" ) torch.save(__a , __a ) logger.info(f"Model saved to {output_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE_ = os.path.join(__a , f"{MODEL_NAME}_{model_index}" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"Saving model to {ckpt_dir}" ) SCREAMING_SNAKE_CASE_ = {'model': state_dict} dist_cp.save_state_dict( state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"Model saved to {ckpt_dir}" ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : str , __UpperCAmelCase : str=0 ) -> int: accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return SCREAMING_SNAKE_CASE_ = f"{MODEL_NAME}.bin" if model_index == 0 else f"{MODEL_NAME}_{model_index}.bin" SCREAMING_SNAKE_CASE_ = os.path.join(__a , __a ) logger.info(f"Loading model from {input_model_file}" ) SCREAMING_SNAKE_CASE_ = torch.load(__a ) logger.info(f"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: SCREAMING_SNAKE_CASE_ = ( f"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else f"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) SCREAMING_SNAKE_CASE_ = os.path.join(__a , __a ) logger.info(f"Loading model from {input_model_file}" ) SCREAMING_SNAKE_CASE_ = torch.load(__a ) logger.info(f"Model loaded from {input_model_file}" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: SCREAMING_SNAKE_CASE_ = ( os.path.join(__a , f"{MODEL_NAME}_{model_index}" ) if f"{MODEL_NAME}" not in input_dir else input_dir ) logger.info(f"Loading model from {ckpt_dir}" ) SCREAMING_SNAKE_CASE_ = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , ) SCREAMING_SNAKE_CASE_ = state_dict['model'] logger.info(f"Model loaded from {ckpt_dir}" ) model.load_state_dict(__a ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int=0 ) -> List[str]: os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): SCREAMING_SNAKE_CASE_ = FSDP.optim_state_dict(__a , __a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: SCREAMING_SNAKE_CASE_ = ( f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) SCREAMING_SNAKE_CASE_ = os.path.join(__a , __a ) logger.info(f"Saving Optimizer state to {output_optimizer_file}" ) torch.save(__a , __a ) logger.info(f"Optimizer state saved in {output_optimizer_file}" ) else: SCREAMING_SNAKE_CASE_ = os.path.join(__a , f"{OPTIMIZER_NAME}_{optimizer_index}" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"Saving Optimizer state to {ckpt_dir}" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"Optimizer state saved in {ckpt_dir}" ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any]=0 ) -> Any: accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: SCREAMING_SNAKE_CASE_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: SCREAMING_SNAKE_CASE_ = ( f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) SCREAMING_SNAKE_CASE_ = os.path.join(__a , __a ) logger.info(f"Loading Optimizer state from {input_optimizer_file}" ) SCREAMING_SNAKE_CASE_ = torch.load(__a ) logger.info(f"Optimizer state loaded from {input_optimizer_file}" ) else: SCREAMING_SNAKE_CASE_ = ( os.path.join(__a , f"{OPTIMIZER_NAME}_{optimizer_index}" ) if f"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(f"Loading Optimizer from {ckpt_dir}" ) SCREAMING_SNAKE_CASE_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , ) SCREAMING_SNAKE_CASE_ = optim_state['optimizer'] logger.info(f"Optimizer loaded from {ckpt_dir}" ) SCREAMING_SNAKE_CASE_ = FSDP.optim_state_dict_to_load(__a , __a , __a ) optimizer.load_state_dict(__a )
225
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : list[list[int]] = [] snake_case_ : list[int] = [] snake_case_ : List[Any] = 0 snake_case_ : Union[str, Any] = sum(__a ) create_state_space_tree(__a , __a , __a , __a , __a , __a ) return result def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ): if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum: return if sum(__a ) == max_sum: result.append(__a ) return for index in range(__a , len(__a ) ): create_state_space_tree( __a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , ) _SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2] _SCREAMING_SNAKE_CASE = 9 _SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
327
0
"""simple docstring""" from itertools import permutations def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __A = [7, 1_1, 1_3, 1_7] for i, test in enumerate(__a ): if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0: return False return True def lowerCAmelCase ( __UpperCamelCase = 1_0 ): """simple docstring""" return sum( int(''''''.join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(F'''{solution() = }''')
266
def SCREAMING_SNAKE_CASE__ ( __a , __a ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
327
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : int = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __lowerCAmelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
88
from math import pi def SCREAMING_SNAKE_CASE__ ( __a , __a ): return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
327
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
249
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[Any] = ["pixel_values"] def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PIL.Image.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : str , ) -> None: """simple docstring""" super().__init__(**_A ) snake_case_ : Dict = size if size is not None else {'height': 256, 'width': 256} snake_case_ : Tuple = get_size_dict(_A ) snake_case_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} snake_case_ : int = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Union[str, Any] = do_resize snake_case_ : str = size snake_case_ : List[str] = resample snake_case_ : List[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : Tuple = do_rescale snake_case_ : Optional[Any] = rescale_factor snake_case_ : Any = do_normalize snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray: """simple docstring""" snake_case_ : Tuple = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( _A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray: """simple docstring""" snake_case_ : Optional[int] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> str: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : List[str] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : Union[str, Any]=None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ) -> PIL.Image.Image: """simple docstring""" snake_case_ : int = do_resize if do_resize is not None else self.do_resize snake_case_ : str = resample if resample is not None else self.resample snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Any = image_mean if image_mean is not None else self.image_mean snake_case_ : Dict = image_std if image_std is not None else self.image_std snake_case_ : int = size if size is not None else self.size snake_case_ : Optional[int] = get_size_dict(_A ) snake_case_ : int = crop_size if crop_size is not None else self.crop_size snake_case_ : Any = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Optional[Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case_ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: snake_case_ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: snake_case_ : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images] snake_case_ : Tuple = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
327
0
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def lowercase_ ( _snake_case ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(__a ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : str = 2 while True: if is_prime(__a ): yield num num += 1 def lowercase_ ( _snake_case = 2_000_000 ): return sum(takewhile(lambda _snake_case : x < n ,prime_generator() ) ) if __name__ == "__main__": print(f"""{solution() = }""")
25
import sys _SCREAMING_SNAKE_CASE = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE__ ( __a = N ): snake_case_ : Optional[Any] = -sys.maxsize - 1 for i in range(len(__a ) - 12 ): snake_case_ : Optional[Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case_ : int = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
327
0
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : str = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class __lowerCAmelCase ( snake_case_): _a = "efficientformer" def __init__( self: List[Any] , _lowerCAmelCase: List[int] = [3, 2, 6, 4] , _lowerCAmelCase: List[int] = [48, 96, 2_24, 4_48] , _lowerCAmelCase: List[bool] = [True, True, True, True] , _lowerCAmelCase: int = 4_48 , _lowerCAmelCase: int = 32 , _lowerCAmelCase: int = 4 , _lowerCAmelCase: int = 7 , _lowerCAmelCase: int = 5 , _lowerCAmelCase: int = 8 , _lowerCAmelCase: int = 4 , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: int = 16 , _lowerCAmelCase: int = 3 , _lowerCAmelCase: int = 3 , _lowerCAmelCase: int = 3 , _lowerCAmelCase: int = 2 , _lowerCAmelCase: int = 1 , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: int = 1 , _lowerCAmelCase: bool = True , _lowerCAmelCase: bool = True , _lowerCAmelCase: float = 1e-5 , _lowerCAmelCase: str = "gelu" , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: float = 1e-1_2 , _lowerCAmelCase: int = 2_24 , _lowerCAmelCase: float = 1e-0_5 , **_lowerCAmelCase: Optional[Any] , ): super().__init__(**_A ) lowercase :Dict = hidden_act lowercase :Union[str, Any] = hidden_dropout_prob lowercase :Tuple = hidden_sizes lowercase :Dict = num_hidden_layers lowercase :Any = num_attention_heads lowercase :Optional[Any] = initializer_range lowercase :Optional[Any] = layer_norm_eps lowercase :List[Any] = patch_size lowercase :int = num_channels lowercase :str = depths lowercase :Union[str, Any] = mlp_expansion_ratio lowercase :str = downsamples lowercase :Any = dim lowercase :int = key_dim lowercase :Any = attention_ratio lowercase :Union[str, Any] = resolution lowercase :Union[str, Any] = pool_size lowercase :Union[str, Any] = downsample_patch_size lowercase :Union[str, Any] = downsample_stride lowercase :str = downsample_pad lowercase :Optional[Any] = drop_path_rate lowercase :Any = num_metaad_blocks lowercase :Tuple = distillation lowercase :List[Any] = use_layer_scale lowercase :str = layer_scale_init_value lowercase :List[Any] = image_size lowercase :Any = batch_norm_eps
236
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __magic_name__: Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) __magic_name__: Optional[int] = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} ) __magic_name__: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} ) __magic_name__: bool = field( default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(__a , os.path.join(__a , f"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ ,snake_case_ ,snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ ,snake_case_ ,snake_case_ : List[str] = parser.parse_args_into_dataclasses() check_output_dir(__a ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , __a ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(__a , __a , __a ): assert hasattr(__a , __a ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(__a , __a , getattr(__a , __a ) ) snake_case_ : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=__a , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__a , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: snake_case_ : Any = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__a , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__a , __a ): snake_case_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang] else: snake_case_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__a ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) snake_case_ : List[Any] = SeqaSeqDataset # Get datasets snake_case_ : List[Any] = ( dataset_class( __a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) snake_case_ : List[str] = ( dataset_class( __a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) snake_case_ : List[Any] = ( dataset_class( __a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer snake_case_ : Any = ( build_compute_metrics_fn(data_args.task , __a ) if training_args.predict_with_generate else None ) snake_case_ : List[str] = SeqaSeqTrainer( model=__a , args=__a , data_args=__a , train_dataset=__a , eval_dataset=__a , data_collator=SeqaSeqDataCollator( __a , __a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__a , tokenizer=__a , ) snake_case_ : Optional[int] = {} # Training if training_args.do_train: logger.info('*** Train ***' ) snake_case_ : Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) snake_case_ : Tuple = train_result.metrics snake_case_ : List[str] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , __a , training_args.output_dir ) all_metrics.update(__a ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ : List[Any] = trainer.evaluate(metric_key_prefix='val' ) snake_case_ : str = data_args.n_val snake_case_ : Union[str, Any] = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.do_predict: logger.info('*** Predict ***' ) snake_case_ : Dict = trainer.predict(test_dataset=__a , metric_key_prefix='test' ) snake_case_ : Union[str, Any] = test_output.metrics snake_case_ : int = data_args.n_test if trainer.is_world_process_zero(): snake_case_ : List[str] = round(metrics['test_loss'] , 4 ) handle_metrics('test' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.predict_with_generate: snake_case_ : Any = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) snake_case_ : Any = lmap(str.strip , __a ) write_txt_file(__a , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(__a , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def SCREAMING_SNAKE_CASE__ ( __a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
327
0
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge _SCREAMING_SNAKE_CASE = [ 'Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] _SCREAMING_SNAKE_CASE = [ 'Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .' ' Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def snake_case ( ) -> Any: _A = calculate_rouge(__a , __a , bootstrap_aggregation=__a , rouge_keys=["""rouge2""", """rougeL"""]) assert isinstance(__a , __a) _A = calculate_rouge(__a , __a , bootstrap_aggregation=__a , rouge_keys=["""rouge2"""]) assert ( pd.DataFrame(no_aggregation["""rouge2"""]).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""]).fmeasure.mean() ) def snake_case ( ) -> List[Any]: _A = 'rougeLsum' _A = calculate_rouge(__a , __a , newline_sep=__a , rouge_keys=[k])[k] _A = calculate_rouge(__a , __a , newline_sep=__a , rouge_keys=[k])[k] assert score > score_no_sep def snake_case ( ) -> List[str]: _A = ['rouge1', 'rouge2', 'rougeL'] _A = calculate_rouge(__a , __a , newline_sep=__a , rouge_keys=__a) _A = calculate_rouge(__a , __a , newline_sep=__a , rouge_keys=__a) assert score_sep == score_no_sep def snake_case ( ) -> Optional[int]: _A = [ 'Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.', 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .', ] _A = [ 'Margot Frank, died in 1945, a month earlier than previously thought.', 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of' ' the final seconds on board Flight 9525.', ] assert calculate_rouge(__a , __a , newline_sep=__a) == calculate_rouge(__a , __a , newline_sep=__a) def snake_case ( ) -> str: _A = [ '" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ' ] _A = [ ' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .' ] _A = calculate_rouge(__a , __a , rouge_keys=["""rougeLsum"""] , newline_sep=__a)['rougeLsum'] _A = calculate_rouge(__a , __a , rouge_keys=["""rougeLsum"""])['rougeLsum'] assert new_score > prev_score def snake_case ( ) -> Tuple: _A = Path("""examples/seq2seq/test_data/wmt_en_ro""") _A = calculate_rouge_path(data_dir.joinpath("""test.source""") , data_dir.joinpath("""test.target""")) assert isinstance(__a , __a) _A = calculate_rouge_path( data_dir.joinpath("""test.source""") , data_dir.joinpath("""test.target""") , bootstrap_aggregation=__a) assert isinstance(__a , __a)
180
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
327
0
"""simple docstring""" from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE : def __init__( self , __A , __A=13 , __A=30 , __A=2 , __A=3 , __A=True , __A=True , __A=32 , __A=2 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=10 , __A=0.0_2 , __A=3 , __A=0.6 , __A=None , ) -> Any: lowerCAmelCase_ :Optional[int] = parent lowerCAmelCase_ :Tuple = batch_size lowerCAmelCase_ :List[Any] = image_size lowerCAmelCase_ :List[str] = patch_size lowerCAmelCase_ :List[str] = num_channels lowerCAmelCase_ :Optional[Any] = is_training lowerCAmelCase_ :Any = use_labels lowerCAmelCase_ :Tuple = hidden_size lowerCAmelCase_ :Union[str, Any] = num_hidden_layers lowerCAmelCase_ :List[Any] = num_attention_heads lowerCAmelCase_ :Optional[Any] = intermediate_size lowerCAmelCase_ :List[Any] = hidden_act lowerCAmelCase_ :Union[str, Any] = hidden_dropout_prob lowerCAmelCase_ :Any = attention_probs_dropout_prob lowerCAmelCase_ :Tuple = type_sequence_label_size lowerCAmelCase_ :List[str] = initializer_range lowerCAmelCase_ :Optional[Any] = mask_ratio lowerCAmelCase_ :Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCAmelCase_ :Optional[int] = (image_size // patch_size) ** 2 lowerCAmelCase_ :str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ :Union[str, Any] = None if self.use_labels: lowerCAmelCase_ :Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ :Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) -> Optional[Any]: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __lowerCAmelCase ( self , __A , __A , __A ) -> Dict: lowerCAmelCase_ :Union[str, Any] = TFViTMAEModel(config=_A ) lowerCAmelCase_ :str = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , __A , __A , __A ) -> int: lowerCAmelCase_ :Any = TFViTMAEForPreTraining(_A ) lowerCAmelCase_ :Optional[Any] = model(_A , training=_A ) # expected sequence length = num_patches lowerCAmelCase_ :List[str] = (self.image_size // self.patch_size) ** 2 lowerCAmelCase_ :Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCAmelCase_ :str = 1 lowerCAmelCase_ :Dict = TFViTMAEForPreTraining(_A ) lowerCAmelCase_ :Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ :List[str] = model(_A , training=_A ) lowerCAmelCase_ :Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :List[Any] = self.prepare_config_and_inputs() (lowerCAmelCase_) :Any = config_and_inputs lowerCAmelCase_ :Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCAmelCase_ :List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () UpperCAmelCase_ :str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} UpperCAmelCase_ :Dict = False UpperCAmelCase_ :Dict = False UpperCAmelCase_ :List[Any] = False UpperCAmelCase_ :Dict = False def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :List[Any] = TFViTMAEModelTester(self ) lowerCAmelCase_ :Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def __lowerCAmelCase ( self ) -> Union[str, Any]: pass def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ :List[Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase_ :Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) ) def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ :List[str] = model_class(_A ) lowerCAmelCase_ :Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ :Dict = [*signature.parameters.keys()] lowerCAmelCase_ :Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def __lowerCAmelCase ( self ) -> Dict: np.random.seed(2 ) lowerCAmelCase_ :int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ :Optional[int] = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase_ :Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCAmelCase_ :Optional[Any] = model_class(_A ) lowerCAmelCase_ :Union[str, Any] = self._prepare_for_class(_A , _A ) lowerCAmelCase_ :List[str] = model(_A , noise=_A ) lowerCAmelCase_ :Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) ) lowerCAmelCase_ :str = model(**_A , noise=_A ) lowerCAmelCase_ :Union[str, Any] = outputs_dict[0].numpy() lowerCAmelCase_ :Optional[Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def __lowerCAmelCase ( self ) -> List[Any]: np.random.seed(2 ) lowerCAmelCase_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ :Tuple = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase_ :Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__A ): lowerCAmelCase_ :Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(_A ): lowerCAmelCase_ :str = v.numpy() else: lowerCAmelCase_ :Optional[Any] = np.array(_A ) return inputs_np_dict for model_class in self.all_model_classes: lowerCAmelCase_ :int = model_class(_A ) lowerCAmelCase_ :List[Any] = self._prepare_for_class(_A , _A ) lowerCAmelCase_ :Any = prepare_numpy_arrays(_A ) lowerCAmelCase_ :List[Any] = model(_A , noise=_A ) lowerCAmelCase_ :List[Any] = model(**_A , noise=_A ) self.assert_outputs_same(_A , _A ) def __lowerCAmelCase ( self , __A , __A , __A ) -> List[str]: np.random.seed(2 ) lowerCAmelCase_ :Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowerCAmelCase_ :Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCAmelCase_ :Optional[int] = tf.constant(_A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCAmelCase_ :Optional[Any] = tf_noise super().check_pt_tf_models(_A , _A , _A ) def __lowerCAmelCase ( self ) -> Dict: np.random.seed(2 ) lowerCAmelCase_ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ :int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_A ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(_A , _A ),) if isinstance(_A , _A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_A , """_keras_serializable""" , _A ) } lowerCAmelCase_ :List[Any] = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase_ :List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCAmelCase_ :Optional[int] = tf.convert_to_tensor(_A ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: lowerCAmelCase_ :Optional[Any] = main_layer_class(_A ) lowerCAmelCase_ :List[str] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowerCAmelCase_ :Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) ) lowerCAmelCase_ :int = model(_A ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ :List[Any] = os.path.join(_A , """keras_model.h5""" ) model.save(_A ) lowerCAmelCase_ :str = tf.keras.models.load_model( _A , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_A , tf.keras.Model ) lowerCAmelCase_ :List[str] = model(_A ) self.assert_outputs_same(_A , _A ) @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: np.random.seed(2 ) lowerCAmelCase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ :int = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase_ :int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCAmelCase_ :Optional[Any] = model_class(_A ) lowerCAmelCase_ :Optional[Any] = self._prepare_for_class(_A , _A ) lowerCAmelCase_ :int = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": lowerCAmelCase_ :Any = outputs.last_hidden_state.numpy() lowerCAmelCase_ :Optional[int] = 0 else: lowerCAmelCase_ :str = outputs.logits.numpy() lowerCAmelCase_ :Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) lowerCAmelCase_ :Any = model_class.from_pretrained(_A ) lowerCAmelCase_ :Any = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": lowerCAmelCase_ :Dict = after_outputs['last_hidden_state'].numpy() lowerCAmelCase_ :Dict = 0 else: lowerCAmelCase_ :Any = after_outputs['logits'].numpy() lowerCAmelCase_ :Optional[Any] = 0 lowerCAmelCase_ :Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) def __lowerCAmelCase ( self ) -> str: np.random.seed(2 ) lowerCAmelCase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ :Optional[int] = int((config.image_size // config.patch_size) ** 2 ) lowerCAmelCase_ :Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowerCAmelCase_ :str = model_class(_A ) lowerCAmelCase_ :int = self._prepare_for_class(_A , _A ) lowerCAmelCase_ :str = model(_A , noise=_A ) lowerCAmelCase_ :Dict = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_A ) lowerCAmelCase_ :Any = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowerCAmelCase_ :str = model_class.from_config(model.config ) lowerCAmelCase_ :Union[str, Any] = new_model(_A ) # Build model new_model.set_weights(model.get_weights() ) lowerCAmelCase_ :List[str] = new_model(_A , noise=_A ) self.assert_outputs_same(_A , _A ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.""" ) def __lowerCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def __lowerCAmelCase ( self ) -> Tuple: pass @slow def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Optional[Any] = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(_A ) def _snake_case ( ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ) -> Dict: return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def __lowerCAmelCase ( self ) -> Dict: np.random.seed(2 ) lowerCAmelCase_ :List[str] = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) lowerCAmelCase_ :List[Any] = self.default_image_processor lowerCAmelCase_ :Dict = prepare_img() lowerCAmelCase_ :Optional[Any] = image_processor(images=_A , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCAmelCase_ :int = ViTMAEConfig() lowerCAmelCase_ :List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCAmelCase_ :List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass lowerCAmelCase_ :Optional[Any] = model(**_A , noise=_A ) # verify the logits lowerCAmelCase_ :Optional[int] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _A ) lowerCAmelCase_ :Any = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
84
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Dict ) -> List[Any]: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_A ) snake_case_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : List[Any] = tokenizer('This is me' , return_tensors='pt' ) snake_case_ : Any = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case_ : Optional[Any] = model.generate(**_A ) snake_case_ : int = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_A ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case_ : Optional[Any] = model_reloaded.generate(**_A ) self.assertTrue(torch.allclose(_A , _A ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : int = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : Dict = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_A ): model.save_pretrained(_A ) snake_case_ : Union[str, Any] = model.reverse_bettertransformer() model.save_pretrained(_A )
327
0
def lowerCAmelCase_ ( _lowercase : List[str] , _lowercase : Any) -> List[str]: """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowerCAmelCase_ ( _lowercase : Optional[Any] , _lowercase : Optional[Any]=0) -> Optional[Any]: """simple docstring""" return sorted(__a , key=lambda _lowercase: x[column]) def lowerCAmelCase_ ( _lowercase : str , _lowercase : List[Any] , _lowercase : str=float("""inf""")) -> Union[str, Any]: """simple docstring""" for i in range(points_counts - 1): for j in range(i + 1 , __a): a__ : Union[str, Any] = euclidean_distance_sqr(points[i] , points[j]) if current_dis < min_dis: a__ : Tuple = current_dis return min_dis def lowerCAmelCase_ ( _lowercase : Any , _lowercase : Any , _lowercase : Optional[int]=float("""inf""")) -> Optional[Any]: """simple docstring""" for i in range(min(6 , points_counts - 1) , __a): for j in range(max(0 , i - 6) , __a): a__ : Optional[Any] = euclidean_distance_sqr(points[i] , points[j]) if current_dis < min_dis: a__ : Union[str, Any] = current_dis return min_dis def lowerCAmelCase_ ( _lowercase : Union[str, Any] , _lowercase : Optional[int] , _lowercase : List[str]) -> Optional[int]: """simple docstring""" # base case if points_counts <= 3: return dis_between_closest_pair(__a , __a) # recursion a__ : Any = points_counts // 2 a__ : Dict = closest_pair_of_points_sqr( __a , points_sorted_on_y[:mid] , __a) a__ : str = closest_pair_of_points_sqr( __a , points_sorted_on_y[mid:] , points_counts - mid) a__ : Union[str, Any] = min(__a , __a) a__ : Tuple = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0]) < closest_pair_dis: cross_strip.append(__a) a__ : List[str] = dis_between_closest_in_strip( __a , len(__a) , __a) return min(__a , __a) def lowerCAmelCase_ ( _lowercase : Any , _lowercase : Optional[int]) -> Optional[Any]: """simple docstring""" a__ : Tuple = column_based_sort(__a , column=0) a__ : Dict = column_based_sort(__a , column=1) return ( closest_pair_of_points_sqr( __a , __a , __a) ) ** 0.5 if __name__ == "__main__": _lowercase : Optional[Any] =[(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
170
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = params snake_case_ : int = np.array(_A ) snake_case_ : Optional[int] = np.array([len(_A ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Tuple , _A : Optional[int] ) -> str: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : List[str] ) -> str: """simple docstring""" return len(self.lengths ) def UpperCAmelCase_ ( self : Dict ) -> str: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: """simple docstring""" snake_case_ : Dict = self.params.max_model_input_size snake_case_ : Tuple = self.lengths > max_len logger.info(F"""Splitting {sum(_A )} too long sequences.""" ) def divide_chunks(_A : Union[str, Any] , _A : Dict ): return [l[i : i + n] for i in range(0 , len(_A ) , _A )] snake_case_ : Dict = [] snake_case_ : Union[str, Any] = [] if self.params.mlm: snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: snake_case_ : List[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: snake_case_ : Optional[int] = np.insert(_A , 0 , _A ) if sub_s[-1] != sep_id: snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A ) assert len(_A ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_A ) new_tok_ids.extend(_A ) new_lengths.extend([len(_A ) for l in sub_seqs] ) snake_case_ : Tuple = np.array(_A ) snake_case_ : int = np.array(_A ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ : Tuple = len(self ) snake_case_ : int = self.lengths > 11 snake_case_ : Dict = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : List[Any] = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = len(self ) snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) snake_case_ : Any = (unk_occs / self.lengths) < 0.5 snake_case_ : List[Any] = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : Tuple = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ : Any = [t[0] for t in batch] snake_case_ : int = [t[1] for t in batch] assert len(_A ) == len(_A ) # Max for paddings snake_case_ : str = max(_A ) # Pad token ids if self.params.mlm: snake_case_ : int = self.params.special_tok_ids['pad_token'] else: snake_case_ : Dict = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids] assert len(tk_ ) == len(_A ) assert all(len(_A ) == max_seq_len_ for t in tk_ ) snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs) return tk_t, lg_t
327
0
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _lowerCamelCase : Optional[int] = 500000 _lowerCamelCase , _lowerCamelCase : List[str] = os.path.split(__file__) _lowerCamelCase : Any = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ , **lowercase_ ) -> List[str]: """simple docstring""" A__ = dataset.map(**__a ) @get_duration def SCREAMING_SNAKE_CASE ( lowercase_ , **lowercase_ ) -> Dict: """simple docstring""" A__ = dataset.filter(**__a ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: """simple docstring""" A__ = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: A__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) A__ = generate_example_dataset( os.path.join(__a , '''dataset.arrow''' ) , __a , num_examples=__a ) A__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=__a ) def tokenize(lowercase_ ): return tokenizer(examples['''text'''] ) A__ = map(__a ) A__ = map(__a , batched=__a ) A__ = map(__a , function=lambda lowercase_ : None , batched=__a ) with dataset.formatted_as(type='''numpy''' ): A__ = map(__a , function=lambda lowercase_ : None , batched=__a ) with dataset.formatted_as(type='''pandas''' ): A__ = map(__a , function=lambda lowercase_ : None , batched=__a ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): A__ = map(__a , function=lambda lowercase_ : None , batched=__a ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): A__ = map(__a , function=lambda lowercase_ : None , batched=__a ) A__ = map(__a , function=__a , batched=__a ) A__ = filter(__a ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__a , '''wb''' ) as f: f.write(json.dumps(__a ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
14
def SCREAMING_SNAKE_CASE__ ( __a , __a ): while b: snake_case_ ,snake_case_ : Any = b, a % b return a def SCREAMING_SNAKE_CASE__ ( __a , __a ): return a if b == 0 else euclidean_gcd_recursive(__a , a % b ) def SCREAMING_SNAKE_CASE__ ( ): print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
327
0
from __future__ import annotations from dataclasses import dataclass @dataclass class __lowerCAmelCase : lowerCAmelCase__ = 42 lowerCAmelCase__ = None lowerCAmelCase__ = None def a__ ( _UpperCamelCase : Optional[Any] ): # Validation def is_valid_tree(_UpperCamelCase : Union[str, Any] ) -> bool: if node is None: return True if not isinstance(__a ,__a ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__a ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( _UpperCamelCase : List[str] ,_UpperCamelCase : List[Any] ,_UpperCamelCase : List[Any] ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,__a ,node.data ) and is_binary_search_tree_recursive_check( node.right ,node.data ,__a ) ) return is_binary_search_tree_recursive_check(__a ,-float('''inf''' ) ,float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
330
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE = get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : Dict = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Dict = os.path.join(__a , __a ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Dict = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Dict = os.path.join(__a , __a ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving model to {ckpt_dir}""" ) snake_case_ : int = {'model': state_dict} dist_cp.save_state_dict( state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Optional[Any] = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[Any] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Optional[Any] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Tuple = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Tuple = ( os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) snake_case_ : List[Any] = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , ) snake_case_ : Any = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ : str = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : Any = os.path.join(__a , __a ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__a , __a ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ : Union[str, Any] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : List[Any] = os.path.join(__a , __a ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: snake_case_ : str = ( os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) snake_case_ : Any = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , ) snake_case_ : Optional[int] = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a ) optimizer.load_state_dict(__a )
327
0
from collections import namedtuple import requests from lxml import html # type: ignore lowerCamelCase__ : Union[str, Any] = namedtuple('covid_data', 'cases deaths recovered') def UpperCAmelCase_ ( __UpperCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) ) lowerCamelCase__ : Any = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
225
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _A : bool = True , _A : Tuple=7 , _A : Tuple=30 , _A : int=400 , _A : Tuple=3 , ) -> Optional[int]: """simple docstring""" snake_case_ : str = parent snake_case_ : str = do_resize snake_case_ : str = size if size is not None else {'shortest_edge': 288} snake_case_ : Any = size_divisor snake_case_ : Any = do_rescale snake_case_ : Union[str, Any] = rescale_factor snake_case_ : str = do_normalize snake_case_ : int = do_center_crop snake_case_ : str = image_mean snake_case_ : int = image_std snake_case_ : Any = do_pad snake_case_ : Optional[int] = batch_size snake_case_ : List[str] = num_channels snake_case_ : Any = min_resolution snake_case_ : str = max_resolution def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self : Dict , _A : str , _A : Union[str, Any]=False ) -> int: """simple docstring""" if not batched: snake_case_ : Optional[int] = self.size['shortest_edge'] snake_case_ : List[Any] = image_inputs[0] if isinstance(_A , Image.Image ): snake_case_ ,snake_case_ : Optional[Any] = image.size else: snake_case_ ,snake_case_ : str = image.shape[1], image.shape[2] snake_case_ : Dict = size / min(_A , _A ) if h < w: snake_case_ ,snake_case_ : str = size, scale * w else: snake_case_ ,snake_case_ : Tuple = scale * h, size snake_case_ : Dict = int((1333 / 800) * size ) if max(_A , _A ) > max_size: snake_case_ : Union[str, Any] = max_size / max(_A , _A ) snake_case_ : Any = newh * scale snake_case_ : Union[str, Any] = neww * scale snake_case_ ,snake_case_ : Any = int(newh + 0.5 ), int(neww + 0.5 ) snake_case_ ,snake_case_ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: snake_case_ : Optional[int] = [] for image in image_inputs: snake_case_ ,snake_case_ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : str = max(_A , key=lambda _A : item[0] )[0] snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'size_divisor' ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : List[str] = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Any = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : str = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
327
0
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase=False ): """simple docstring""" try: __A = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __A = default else: # KEY is set, convert it to True or False. try: __A = strtobool(__a ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value lowercase_ = parse_flag_from_env('RUN_SLOW', default=False) lowercase_ = parse_flag_from_env('RUN_REMOTE', default=False) lowercase_ = parse_flag_from_env('RUN_LOCAL', default=True) lowercase_ = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression lowercase_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') lowercase_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') lowercase_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio lowercase_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam lowercase_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility lowercase_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows lowercase_ = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" try: import faiss # noqa except ImportError: __A = unittest.skip('''test requires faiss''' )(__a ) return test_case def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" try: import regex # noqa except ImportError: __A = unittest.skip('''test requires regex''' )(__a ) return test_case def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" try: import elasticsearch # noqa except ImportError: __A = unittest.skip('''test requires elasticsearch''' )(__a ) return test_case def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: __A = unittest.skip('''test requires sqlalchemy''' )(__a ) return test_case def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if not config.TORCH_AVAILABLE: __A = unittest.skip('''test requires PyTorch''' )(__a ) return test_case def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if not config.TF_AVAILABLE: __A = unittest.skip('''test requires TensorFlow''' )(__a ) return test_case def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if not config.JAX_AVAILABLE: __A = unittest.skip('''test requires JAX''' )(__a ) return test_case def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if not config.PIL_AVAILABLE: __A = unittest.skip('''test requires Pillow''' )(__a ) return test_case def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(__a ) else: return test_case def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(__a ) else: return test_case def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(__a ) else: return test_case def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" def _require_spacy_model(__UpperCamelCase ): try: import spacy # noqa F401 spacy.load(__a ) except ImportError: return unittest.skip('''test requires spacy''' )(__a ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(__a ) )(__a ) else: return test_case return _require_spacy_model def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(__a ) else: return test_case def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(__a ) else: return test_case def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: __A = unittest.skip('''test is slow''' )(__a ) return test_case def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: __A = unittest.skip('''test is local''' )(__a ) return test_case def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: __A = unittest.skip('''test is packaged''' )(__a ) return test_case def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: __A = unittest.skip('''test requires remote''' )(__a ) return test_case def lowerCAmelCase ( *__UpperCamelCase ): """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__a ) and name.startswith('''test''' ): for decorator in decorators: __A = decorator(__a ) setattr(cls , __a , __a ) return cls return decorate class snake_case ( snake_case_ ): '''simple docstring''' pass class snake_case ( snake_case_ ): '''simple docstring''' A_ : Any = 0 A_ : Union[str, Any] = 1 A_ : Optional[Any] = 2 @contextmanager def lowerCAmelCase ( __UpperCamelCase=OfflineSimulationMode.CONNECTION_FAILS , __UpperCamelCase=1e-1_6 ): """simple docstring""" __A = requests.Session().request def timeout_request(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ): # Change the url to an invalid url so that the connection hangs __A = 'https://10.255.255.1' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' ) __A = timeout try: return online_request(__a , __a , **__a ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __A = url __A = e.args[0] __A = (max_retry_error.args[0].replace('''10.255.255.1''' , f'OfflineMock[{url}]' ),) __A = (max_retry_error,) raise def raise_connection_error(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ): raise requests.ConnectionError('''Offline mode is enabled.''' , request=__a ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' , __a ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' , __a ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' , __a ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def lowerCAmelCase ( *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" __A = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__a , **__a ) as tmp_dir: try: os.chdir(__a ) yield finally: os.chdir(__a ) @contextmanager def lowerCAmelCase ( ): """simple docstring""" import gc gc.collect() __A = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowerCAmelCase ( ): """simple docstring""" import gc gc.collect() __A = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" return deepcopy(__a ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(__a ).integers(0 , 1_0_0 , 1_0 ).tolist() def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ): try: return func(*__a , **__a ) except HTTPError as err: if str(__a ).startswith('''500''' ) or str(__a ).startswith('''502''' ): pytest.xfail(str(__a ) ) raise err return decorator.decorator(_wrapper , __a ) class snake_case : '''simple docstring''' def __init__( self : Dict, _lowerCamelCase : Optional[int], _lowerCamelCase : List[Any], _lowerCamelCase : List[str] ): '''simple docstring''' __A = returncode __A = stdout __A = stderr async def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" while True: __A = await stream.readline() if line: callback(__a ) else: break async def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=False , __UpperCamelCase=False ): """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__a ) ) __A = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__a , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__a , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __A = [] __A = [] def tee(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="" ): __A = line.decode('''utf-8''' ).rstrip() sink.append(__a ) if not quiet: print(__a , __a , file=__a ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCamelCase : tee(__a , __a , sys.stdout , label='''stdout:''' ) ), _read_stream(p.stderr , lambda __UpperCamelCase : tee(__a , __a , sys.stderr , label='''stderr:''' ) ), ] , timeout=__a , ) return _RunOutput(await p.wait() , __a , __a ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=1_8_0 , __UpperCamelCase=False , __UpperCamelCase=True ): """simple docstring""" __A = asyncio.get_event_loop() __A = loop.run_until_complete( _stream_subprocess(__a , env=__a , stdin=__a , timeout=__a , quiet=__a , echo=__a ) ) __A = ' '.join(__a ) if result.returncode > 0: __A = '\n'.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'\'{cmd_str}\' produced no output.' ) return result def lowerCAmelCase ( ): """simple docstring""" __A = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' ) __A = re.sub(r'''^gw''' , '''''' , __a , 0 , re.M ) return int(__a ) def lowerCAmelCase ( ): """simple docstring""" __A = 2_9_5_0_0 __A = pytest_xdist_worker_id() return port + uniq_delta
266
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _SCREAMING_SNAKE_CASE = 50_00_00 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = os.path.split(__file__) _SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : int = dataset.map(**__a ) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : Dict = dataset.filter(**__a ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Tuple = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Dict = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) snake_case_ : List[Any] = generate_example_dataset( os.path.join(__a , 'dataset.arrow' ) , __a , num_examples=__a ) snake_case_ : str = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__a ) def tokenize(__a ): return tokenizer(examples['text'] ) snake_case_ : Any = map(__a ) snake_case_ : Tuple = map(__a , batched=__a ) snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='numpy' ): snake_case_ : Optional[int] = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='pandas' ): snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='torch' , columns='numbers' ): snake_case_ : int = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): snake_case_ : List[Any] = map(__a , function=lambda __a : None , batched=__a ) snake_case_ : int = map(__a , function=__a , batched=__a ) snake_case_ : Optional[Any] = filter(__a ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__a , 'wb' ) as f: f.write(json.dumps(__a ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
327
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __lowerCAmelCase : Dict = None __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : str = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : Tuple = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } __lowerCAmelCase : Dict = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off __lowerCAmelCase : List[Any] = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class UpperCAmelCase_ ( snake_case_ ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["input_ids", "attention_mask"] a__ = MBartTokenizer a__ = [] a__ = [] def __init__( self : int , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : List[str]="<s>" , UpperCamelCase__ : str="</s>" , UpperCamelCase__ : List[str]="</s>" , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : Any="<unk>" , UpperCamelCase__ : Any="<pad>" , UpperCamelCase__ : List[str]="<mask>" , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Tuple=None , **UpperCamelCase__ : Optional[Any] , ) -> Dict: """simple docstring""" __magic_name__ = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token super().__init__( vocab_file=_A , tokenizer_file=_A , bos_token=_A , eos_token=_A , sep_token=_A , cls_token=_A , unk_token=_A , pad_token=_A , mask_token=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , **_A , ) __magic_name__ = vocab_file __magic_name__ = False if not self.vocab_file else True __magic_name__ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) __magic_name__ = { lang_code: self.convert_tokens_to_ids(_A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __magic_name__ = src_lang if src_lang is not None else 'en_XX' __magic_name__ = self.convert_tokens_to_ids(self._src_lang ) __magic_name__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase ( self : Optional[int] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def _lowercase ( self : List[str] , UpperCamelCase__ : str ) -> None: """simple docstring""" __magic_name__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase ( self : List[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self : Tuple , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __magic_name__ = [self.sep_token_id] __magic_name__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] , UpperCamelCase__ : Optional[str] , **UpperCamelCase__ : str ) -> Tuple: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ = src_lang __magic_name__ = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) __magic_name__ = self.convert_tokens_to_ids(_A ) __magic_name__ = tgt_lang_id return inputs def _lowercase ( self : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : str = "en_XX" , UpperCamelCase__ : Optional[List[str]] = None , UpperCamelCase__ : str = "ro_RO" , **UpperCamelCase__ : str , ) -> BatchEncoding: """simple docstring""" __magic_name__ = src_lang __magic_name__ = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def _lowercase ( self : int ) -> Any: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self : Dict , UpperCamelCase__ : Any ) -> None: """simple docstring""" __magic_name__ = self.convert_tokens_to_ids(_A ) __magic_name__ = [] __magic_name__ = [self.eos_token_id, self.cur_lang_code] __magic_name__ = self.convert_ids_to_tokens(self.prefix_tokens ) __magic_name__ = self.convert_ids_to_tokens(self.suffix_tokens ) __magic_name__ = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : str ) -> None: """simple docstring""" __magic_name__ = self.convert_tokens_to_ids(_A ) __magic_name__ = [] __magic_name__ = [self.eos_token_id, self.cur_lang_code] __magic_name__ = self.convert_ids_to_tokens(self.prefix_tokens ) __magic_name__ = self.convert_ids_to_tokens(self.suffix_tokens ) __magic_name__ = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return __magic_name__ = os.path.join( _A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
88
from collections import namedtuple import requests from lxml import html # type: ignore _SCREAMING_SNAKE_CASE = namedtuple("""covid_data""", """cases deaths recovered""") def SCREAMING_SNAKE_CASE__ ( __a = "https://www.worldometers.info/coronavirus/" ): snake_case_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) ) _SCREAMING_SNAKE_CASE = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
327
0
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> List[Any]: __lowercase : Any = 'hf-internal-testing/tiny-random-t5' __lowercase : Optional[Any] = AutoTokenizer.from_pretrained(_A ) __lowercase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A ) __lowercase : List[Any] = tokenizer('''This is me''' , return_tensors='''pt''' ) __lowercase : Any = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __lowercase : Optional[Any] = model.generate(**_A ) __lowercase : int = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) __lowercase : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_A ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __lowercase : Optional[Any] = model_reloaded.generate(**_A ) self.assertTrue(torch.allclose(_A , _A ) ) def _lowerCamelCase ( self ) -> Tuple: __lowercase : Any = 'hf-internal-testing/tiny-random-t5' __lowercase : int = AutoModelForSeqaSeqLM.from_pretrained(_A ) __lowercase : Dict = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_A ): model.save_pretrained(_A ) __lowercase : Union[str, Any] = model.reverse_bettertransformer() model.save_pretrained(_A )
249
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": 5_12, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: List[Any] = VOCAB_FILES_NAMES __magic_name__: List[str] = PRETRAINED_VOCAB_FILES_MAP __magic_name__: List[str] = PRETRAINED_INIT_CONFIGURATION __magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__: Union[str, Any] = LxmertTokenizer def __init__( self : List[str] , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=True , _A : Dict="[UNK]" , _A : Optional[int]="[SEP]" , _A : Dict="[PAD]" , _A : Union[str, Any]="[CLS]" , _A : str="[MASK]" , _A : Tuple=True , _A : Dict=None , **_A : List[Any] , ) -> Optional[int]: """simple docstring""" super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _A ) != do_lower_case or normalizer_state.get('strip_accents' , _A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars ): snake_case_ : Tuple = getattr(_A , normalizer_state.pop('type' ) ) snake_case_ : Union[str, Any] = do_lower_case snake_case_ : int = strip_accents snake_case_ : Optional[Any] = tokenize_chinese_chars snake_case_ : List[Any] = normalizer_class(**_A ) snake_case_ : Tuple = do_lower_case def UpperCAmelCase_ ( self : Dict , _A : Any , _A : List[Any]=None ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : str = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
327
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ : List[Any] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCAmelCase__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): snake_case_ : int = f"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 0: return False snake_case_ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
327
0
import inspect import unittest class __lowerCAmelCase ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): try: import diffusers # noqa: F401 except ImportError: assert False def SCREAMING_SNAKE_CASE ( self: Dict ): import diffusers from diffusers.dependency_versions_table import deps lowercase :Dict = inspect.getmembers(_A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": lowercase :int = 'k-diffusion' elif backend == "invisible_watermark": lowercase :int = 'invisible-watermark' assert backend in deps, F"{backend} is not in the deps table!"
236
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class a ( snake_case_ ): """simple docstring""" lowerCamelCase :Optional[Any] = ["pixel_values"] def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = PIL.Image.BICUBIC , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = 1 / 2_55 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> None: super().__init__(**_A ) _A = size if size is not None else {'height': 2_56, 'width': 2_56} _A = get_size_dict(_A ) _A = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _A = get_size_dict(_A , param_name="""crop_size""" ) _A = do_resize _A = size _A = resample _A = do_center_crop _A = crop_size _A = do_rescale _A = rescale_factor _A = do_normalize _A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _A = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = PIL.Image.BICUBIC , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: _A = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( _A , size=(size["""height"""], size["""width"""]) , resample=_A , data_format=_A , **_A ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: _A = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_A , size=(size["""height"""], size["""width"""]) , data_format=_A , **_A ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> str: return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ) -> PIL.Image.Image: _A = do_resize if do_resize is not None else self.do_resize _A = resample if resample is not None else self.resample _A = do_center_crop if do_center_crop is not None else self.do_center_crop _A = do_rescale if do_rescale is not None else self.do_rescale _A = rescale_factor if rescale_factor is not None else self.rescale_factor _A = do_normalize if do_normalize is not None else self.do_normalize _A = image_mean if image_mean is not None else self.image_mean _A = image_std if image_std is not None else self.image_std _A = size if size is not None else self.size _A = get_size_dict(_A ) _A = crop_size if crop_size is not None else self.crop_size _A = get_size_dict(_A , param_name="""crop_size""" ) _A = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _A = [to_numpy_array(_A ) for image in images] if do_resize: _A = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: _A = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: _A = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: _A = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] _A = [to_channel_dimension_format(_A , _A ) for image in images] _A = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
180
from typing import Dict from .base import GenericTensor, Pipeline class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def UpperCAmelCase_ ( self : str , _A : Optional[Any]=None , _A : List[str]=None , _A : Optional[Any]=None , **_A : List[str] ) -> Any: """simple docstring""" if tokenize_kwargs is None: snake_case_ : Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) snake_case_ : int = truncation snake_case_ : Optional[int] = tokenize_kwargs snake_case_ : Dict = {} if return_tensors is not None: snake_case_ : Union[str, Any] = return_tensors return preprocess_params, {}, postprocess_params def UpperCAmelCase_ ( self : Optional[int] , _A : int , **_A : Any ) -> Dict[str, GenericTensor]: """simple docstring""" snake_case_ : Dict = self.framework snake_case_ : Any = self.tokenizer(_A , return_tensors=_A , **_A ) return model_inputs def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] ) -> int: """simple docstring""" snake_case_ : Tuple = self.model(**_A ) return model_outputs def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str=False ) -> Any: """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> List[str]: """simple docstring""" return super().__call__(*_A , **_A )
327
0
"""simple docstring""" def _snake_case ( lowercase__ : str , lowercase__ : str , lowercase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' if len(__a ) != len(__a ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. lowerCAmelCase_ :List[Any] = [p / w for p, w in zip(__a , __a )] # Creating a copy of the list and sorting profit/weight in ascending order lowerCAmelCase_ :str = sorted(__a ) # declaring useful variables lowerCAmelCase_ :str = len(__a ) lowerCAmelCase_ :Union[str, Any] = 0 lowerCAmelCase_ :str = 0 lowerCAmelCase_ :List[Any] = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight lowerCAmelCase_ :Tuple = sorted_profit_by_weight[length - i - 1] lowerCAmelCase_ :List[str] = profit_by_weight.index(__a ) lowerCAmelCase_ :int = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) __UpperCAmelCase = [int(x) for x in input('Input profits separated by spaces: ').split()] __UpperCAmelCase = [int(x) for x in input('Input weights separated by spaces: ').split()] __UpperCAmelCase = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
84
from itertools import permutations def SCREAMING_SNAKE_CASE__ ( __a ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False snake_case_ : Any = [7, 11, 13, 17] for i, test in enumerate(__a ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE__ ( __a = 10 ): return sum( int(''.join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(F'''{solution() = }''')
327
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowercase : int =logging.get_logger(__name__) def lowerCAmelCase_ ( _lowercase : List[Any] , _lowercase : Optional[int]=False , _lowercase : List[str]=False , _lowercase : Any=False) -> Optional[Any]: """simple docstring""" a__ : Tuple = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''transformer.blocks.{i}.norm1.weight''', F'''vilt.encoder.layer.{i}.layernorm_before.weight''')) rename_keys.append((F'''transformer.blocks.{i}.norm1.bias''', F'''vilt.encoder.layer.{i}.layernorm_before.bias''')) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.weight''', F'''vilt.encoder.layer.{i}.attention.output.dense.weight''')) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.bias''', F'''vilt.encoder.layer.{i}.attention.output.dense.bias''')) rename_keys.append((F'''transformer.blocks.{i}.norm2.weight''', F'''vilt.encoder.layer.{i}.layernorm_after.weight''')) rename_keys.append((F'''transformer.blocks.{i}.norm2.bias''', F'''vilt.encoder.layer.{i}.layernorm_after.bias''')) rename_keys.append( (F'''transformer.blocks.{i}.mlp.fc1.weight''', F'''vilt.encoder.layer.{i}.intermediate.dense.weight''')) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc1.bias''', F'''vilt.encoder.layer.{i}.intermediate.dense.bias''')) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.weight''', F'''vilt.encoder.layer.{i}.output.dense.weight''')) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.bias''', F'''vilt.encoder.layer.{i}.output.dense.bias''')) # embeddings rename_keys.extend( [ # text embeddings ("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""), ( """text_embeddings.position_embeddings.weight""", """vilt.embeddings.text_embeddings.position_embeddings.weight""", ), ("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""), ( """text_embeddings.token_type_embeddings.weight""", """vilt.embeddings.text_embeddings.token_type_embeddings.weight""", ), ("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""), ("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""), # patch embeddings ("""transformer.cls_token""", """vilt.embeddings.cls_token"""), ("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""), ("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""), ("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""), # token type embeddings ("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""), ]) # final layernorm + pooler rename_keys.extend( [ ("""transformer.norm.weight""", """vilt.layernorm.weight"""), ("""transformer.norm.bias""", """vilt.layernorm.bias"""), ("""pooler.dense.weight""", """vilt.pooler.dense.weight"""), ("""pooler.dense.bias""", """vilt.pooler.dense.bias"""), ]) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("""vqa_classifier.0.weight""", """classifier.0.weight"""), ("""vqa_classifier.0.bias""", """classifier.0.bias"""), ("""vqa_classifier.1.weight""", """classifier.1.weight"""), ("""vqa_classifier.1.bias""", """classifier.1.bias"""), ("""vqa_classifier.3.weight""", """classifier.3.weight"""), ("""vqa_classifier.3.bias""", """classifier.3.bias"""), ]) elif nlvr_model: # classification head rename_keys.extend( [ ("""nlvr2_classifier.0.weight""", """classifier.0.weight"""), ("""nlvr2_classifier.0.bias""", """classifier.0.bias"""), ("""nlvr2_classifier.1.weight""", """classifier.1.weight"""), ("""nlvr2_classifier.1.bias""", """classifier.1.bias"""), ("""nlvr2_classifier.3.weight""", """classifier.3.weight"""), ("""nlvr2_classifier.3.bias""", """classifier.3.bias"""), ]) else: pass return rename_keys def lowerCAmelCase_ ( _lowercase : Union[str, Any] , _lowercase : Optional[int]) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers): a__ : Optional[int] = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a__ : Dict = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.weight''') a__ : Tuple = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict a__ : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] a__ : List[Any] = in_proj_bias[: config.hidden_size] a__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__ : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a__ : Tuple = in_proj_weight[ -config.hidden_size :, : ] a__ : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( _lowercase : str) -> Optional[Any]: """simple docstring""" a__ : Tuple = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__a , __a) def lowerCAmelCase_ ( _lowercase : int , _lowercase : Dict , _lowercase : Optional[int]) -> int: """simple docstring""" a__ : Optional[int] = dct.pop(__a) a__ : Optional[int] = val @torch.no_grad() def lowerCAmelCase_ ( _lowercase : int , _lowercase : str) -> str: """simple docstring""" a__ : Dict = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=__a) a__ : List[Any] = False a__ : List[Any] = False a__ : List[str] = False a__ : Optional[int] = False if "vqa" in checkpoint_url: a__ : Optional[Any] = True a__ : List[str] = 3129 a__ : Any = 'huggingface/label-files' a__ : Optional[Any] = 'vqa2-id2label.json' a__ : List[Any] = json.load(open(hf_hub_download(__a , __a , repo_type="""dataset""") , """r""")) a__ : List[str] = {int(__a): v for k, v in idalabel.items()} a__ : Union[str, Any] = idalabel a__ : List[Any] = {v: k for k, v in idalabel.items()} a__ : List[Any] = ViltForQuestionAnswering(__a) elif "nlvr" in checkpoint_url: a__ : str = True a__ : List[Any] = 2 a__ : List[str] = {0: 'False', 1: 'True'} a__ : Optional[Any] = {v: k for k, v in config.idalabel.items()} a__ : Tuple = 3 a__ : str = ViltForImagesAndTextClassification(__a) elif "irtr" in checkpoint_url: a__ : Optional[Any] = True a__ : Union[str, Any] = ViltForImageAndTextRetrieval(__a) elif "mlm_itm" in checkpoint_url: a__ : str = True a__ : int = ViltForMaskedLM(__a) else: raise ValueError("""Unknown model type""") # load state_dict of original model, remove and rename some keys a__ : Optional[int] = torch.hub.load_state_dict_from_url(__a , map_location="""cpu""")['state_dict'] a__ : List[str] = create_rename_keys(__a , __a , __a , __a) for src, dest in rename_keys: rename_key(__a , __a , __a) read_in_q_k_v(__a , __a) if mlm_model or irtr_model: a__ : List[str] = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(__a , __a) # load state dict into HuggingFace model model.eval() if mlm_model: a__ : List[Any] = model.load_state_dict(__a , strict=__a) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__a) # Define processor a__ : Union[str, Any] = ViltImageProcessor(size=384) a__ : Any = BertTokenizer.from_pretrained("""bert-base-uncased""") a__ : Optional[int] = ViltProcessor(__a , __a) # Forward pass on example inputs (image + text) if nlvr_model: a__ : Optional[Any] = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=__a).raw) a__ : Union[str, Any] = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=__a).raw) a__ : Any = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) a__ : Dict = processor(__a , __a , return_tensors="""pt""") a__ : List[str] = processor(__a , __a , return_tensors="""pt""") a__ : Dict = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: a__ : Dict = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" , stream=__a).raw) if mlm_model: a__ : Union[str, Any] = 'a bunch of [MASK] laying on a [MASK].' else: a__ : Optional[int] = 'How many cats are there?' a__ : List[str] = processor(__a , __a , return_tensors="""pt""") a__ : int = model(**__a) # Verify outputs if mlm_model: a__ : List[str] = torch.Size([1, 11, 3_0522]) a__ : Any = torch.tensor([-12.5061, -12.5123, -12.5174]) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __a , atol=1e-4) # verify masked token prediction equals "cats" a__ : str = outputs.logits[0, 4, :].argmax(-1).item() assert tokenizer.decode([predicted_id]) == "cats" elif vqa_model: a__ : Tuple = torch.Size([1, 3129]) a__ : Optional[int] = torch.tensor([-15.9495, -18.1472, -10.3041]) assert torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __a , atol=1e-4) # verify vqa prediction equals "2" a__ : Optional[Any] = outputs.logits.argmax(-1).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: a__ : str = torch.Size([1, 2]) a__ : Dict = torch.tensor([-2.8721, 2.1291]) assert torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4) assert outputs.logits.shape == expected_shape Path(__a).mkdir(exist_ok=__a) print(F'''Saving model and processor to {pytorch_dump_folder_path}''') model.save_pretrained(__a) processor.save_pretrained(__a) if __name__ == "__main__": _lowercase : int =argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _lowercase : Tuple =parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
170
from __future__ import annotations from collections import namedtuple def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Any = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
327
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__a ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__a ): http_head('''https://huggingface.co''' )
14
import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _SCREAMING_SNAKE_CASE = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _SCREAMING_SNAKE_CASE = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : int , _A : Tuple , _A : Tuple , _A : str=None , _A : Dict=False , _A : Tuple=False , _A : str=False , ) -> Tuple: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case_ : List[Any] = np.array([re.sub(_A , '' , _A ) for x in predictions] ) snake_case_ : Optional[Any] = np.array([re.sub(_A , '' , _A ) for x in references] ) else: snake_case_ : Dict = np.asarray(_A ) snake_case_ : Tuple = np.asarray(_A ) if ignore_case: snake_case_ : List[str] = np.char.lower(_A ) snake_case_ : Any = np.char.lower(_A ) if ignore_punctuation: snake_case_ : int = string.punctuation.maketrans('' , '' , string.punctuation ) snake_case_ : Tuple = np.char.translate(_A , table=_A ) snake_case_ : str = np.char.translate(_A , table=_A ) if ignore_numbers: snake_case_ : Optional[int] = string.digits.maketrans('' , '' , string.digits ) snake_case_ : str = np.char.translate(_A , table=_A ) snake_case_ : Union[str, Any] = np.char.translate(_A , table=_A ) snake_case_ : int = predictions == references return {"exact_match": np.mean(_A ) * 100}
327
0
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets a_ = """\ @inproceedings{snover-etal-2006-study, title = \"A Study of Translation Edit Rate with Targeted Human Annotation\", author = \"Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John\", booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\", month = aug # \" 8-12\", year = \"2006\", address = \"Cambridge, Massachusetts, USA\", publisher = \"Association for Machine Translation in the Americas\", url = \"https://aclanthology.org/2006.amta-papers.25\", pages = \"223--231\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ a_ = """\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. """ a_ = """ Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: 'score' (float): TER score (num_edits / sum_ref_lengths * 100) 'num_edits' (int): The cumulative number of edits 'ref_length' (float): The cumulative average reference length Examples: Example 1: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0} Example 2: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0} Example 3: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5} Example 4: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0} Example 5: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def lowerCamelCase ( self ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , ): '''simple docstring''' __lowerCamelCase = len(references[0] ) if any(len(_A ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __lowerCamelCase = [[refs[i] for refs in references] for i in range(_A )] __lowerCamelCase = TER( normalized=_A , no_punct=_A , asian_support=_A , case_sensitive=_A , ) __lowerCamelCase = sb_ter.corpus_score(_A , _A ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
330
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , _A : Optional[Any] , _A : Dict=13 , _A : Union[str, Any]=30 , _A : Tuple=2 , _A : Union[str, Any]=3 , _A : Optional[int]=True , _A : Optional[Any]=True , _A : str=32 , _A : int=2 , _A : List[str]=4 , _A : List[str]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[Any]=0.1 , _A : Optional[int]=10 , _A : Optional[int]=0.0_2 , _A : Optional[Any]=3 , _A : str=0.6 , _A : Union[str, Any]=None , ) -> Any: """simple docstring""" snake_case_ : Optional[int] = parent snake_case_ : Tuple = batch_size snake_case_ : List[Any] = image_size snake_case_ : List[str] = patch_size snake_case_ : List[str] = num_channels snake_case_ : Optional[Any] = is_training snake_case_ : Any = use_labels snake_case_ : Tuple = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : List[Any] = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : Tuple = type_sequence_label_size snake_case_ : List[str] = initializer_range snake_case_ : Optional[Any] = mask_ratio snake_case_ : Any = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case_ : Optional[int] = (image_size // patch_size) ** 2 snake_case_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Union[str, Any] = None if self.use_labels: snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : int ) -> Optional[Any]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase_ ( self : List[Any] , _A : int , _A : Dict , _A : str ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = TFViTMAEModel(config=_A ) snake_case_ : str = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Dict , _A : Dict , _A : Any , _A : List[Any] ) -> int: """simple docstring""" snake_case_ : Any = TFViTMAEForPreTraining(_A ) snake_case_ : Optional[Any] = model(_A , training=_A ) # expected sequence length = num_patches snake_case_ : List[str] = (self.image_size // self.patch_size) ** 2 snake_case_ : Optional[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case_ : str = 1 snake_case_ : Dict = TFViTMAEForPreTraining(_A ) snake_case_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ : List[str] = model(_A , training=_A ) snake_case_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ : List[Any] = self.prepare_config_and_inputs() ((snake_case_) ,(snake_case_) ,(snake_case_)) : Any = config_and_inputs snake_case_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ , unittest.TestCase ): __magic_name__: List[str] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __magic_name__: str = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} __magic_name__: Dict = False __magic_name__: Dict = False __magic_name__: List[Any] = False __magic_name__: Dict = False def UpperCAmelCase_ ( self : Any ) -> List[Any]: """simple docstring""" snake_case_ : List[Any] = TFViTMAEModelTester(self ) snake_case_ : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" snake_case_ ,snake_case_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[Any] = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: """simple docstring""" snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[str] = model_class(_A ) snake_case_ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Dict = [*signature.parameters.keys()] snake_case_ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: """simple docstring""" snake_case_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Union[str, Any] = self._prepare_for_class(_A , _A ) snake_case_ : List[str] = model(_A , noise=_A ) snake_case_ : Tuple = copy.deepcopy(self._prepare_for_class(_A , _A ) ) snake_case_ : str = model(**_A , noise=_A ) snake_case_ : Union[str, Any] = outputs_dict[0].numpy() snake_case_ : Optional[Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Tuple = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_A : int ): snake_case_ : Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(_A ): snake_case_ : str = v.numpy() else: snake_case_ : Optional[Any] = np.array(_A ) return inputs_np_dict for model_class in self.all_model_classes: snake_case_ : int = model_class(_A ) snake_case_ : List[Any] = self._prepare_for_class(_A , _A ) snake_case_ : Any = prepare_numpy_arrays(_A ) snake_case_ : List[Any] = model(_A , noise=_A ) snake_case_ : List[Any] = model(**_A , noise=_A ) self.assert_outputs_same(_A , _A ) def UpperCAmelCase_ ( self : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[Any] ) -> List[str]: """simple docstring""" np.random.seed(2 ) snake_case_ : Optional[int] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) snake_case_ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.constant(_A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case_ : Optional[Any] = tf_noise super().check_pt_tf_models(_A , _A , _A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(_A ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(_A , _A ),) if isinstance(_A , _A ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(_A , '_keras_serializable' , _A ) } snake_case_ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ : Optional[int] = tf.convert_to_tensor(_A ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: snake_case_ : Optional[Any] = main_layer_class(_A ) snake_case_ : List[str] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } snake_case_ : Union[str, Any] = tf.keras.Model(_A , outputs=main_layer(_A ) ) snake_case_ : int = model(_A ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ : List[Any] = os.path.join(_A , 'keras_model.h5' ) model.save(_A ) snake_case_ : str = tf.keras.models.load_model( _A , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(_A , tf.keras.Model ) snake_case_ : List[str] = model(_A ) self.assert_outputs_same(_A , _A ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : int = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_A ) snake_case_ : Optional[Any] = self._prepare_for_class(_A , _A ) snake_case_ : int = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Any = outputs.last_hidden_state.numpy() snake_case_ : Optional[int] = 0 else: snake_case_ : str = outputs.logits.numpy() snake_case_ : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A , saved_model=_A ) snake_case_ : Any = model_class.from_pretrained(_A ) snake_case_ : Any = model(_A , noise=_A ) if model_class.__name__ == "TFViTMAEModel": snake_case_ : Dict = after_outputs['last_hidden_state'].numpy() snake_case_ : Dict = 0 else: snake_case_ : Any = after_outputs['logits'].numpy() snake_case_ : Optional[Any] = 0 snake_case_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_A , 1E-5 ) def UpperCAmelCase_ ( self : Any ) -> str: """simple docstring""" np.random.seed(2 ) snake_case_ ,snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[int] = int((config.image_size // config.patch_size) ** 2 ) snake_case_ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ : str = model_class(_A ) snake_case_ : int = self._prepare_for_class(_A , _A ) snake_case_ : str = model(_A , noise=_A ) snake_case_ : Dict = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(_A ) snake_case_ : Any = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config snake_case_ : str = model_class.from_config(model.config ) snake_case_ : Union[str, Any] = new_model(_A ) # Build model new_model.set_weights(model.get_weights() ) snake_case_ : List[str] = new_model(_A , noise=_A ) self.assert_outputs_same(_A , _A ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @slow def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_A ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" np.random.seed(2 ) snake_case_ : List[str] = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) snake_case_ : List[Any] = self.default_image_processor snake_case_ : Dict = prepare_img() snake_case_ : Optional[Any] = image_processor(images=_A , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case_ : int = ViTMAEConfig() snake_case_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case_ : List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass snake_case_ : Optional[Any] = model(**_A , noise=_A ) # verify the logits snake_case_ : Optional[int] = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , _A ) snake_case_ : Any = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , _A , atol=1E-4 )
327
0
import random from .binary_exp_mod import bin_exp_mod def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : List[Any]=10_00 ) -> str: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd SCREAMING_SNAKE_CASE_ = n - 1 SCREAMING_SNAKE_CASE_ = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) SCREAMING_SNAKE_CASE_ = 0 while count < prec: SCREAMING_SNAKE_CASE_ = random.randint(2 , n - 1 ) SCREAMING_SNAKE_CASE_ = bin_exp_mod(__a , __a , __a ) if b != 1: SCREAMING_SNAKE_CASE_ = True for _ in range(__a ): if b == n - 1: SCREAMING_SNAKE_CASE_ = False break SCREAMING_SNAKE_CASE_ = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCamelCase__ : str = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
225
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : list[list[int]] = [] snake_case_ : list[int] = [] snake_case_ : List[Any] = 0 snake_case_ : Union[str, Any] = sum(__a ) create_state_space_tree(__a , __a , __a , __a , __a , __a ) return result def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ): if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum: return if sum(__a ) == max_sum: result.append(__a ) return for index in range(__a , len(__a ) ): create_state_space_tree( __a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , ) _SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2] _SCREAMING_SNAKE_CASE = 9 _SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
327
0
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowercase_ = re.compile(R'\s+') def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" return {"hash": hashlib.mda(re.sub(__a , '''''' , example['''content'''] ).encode('''utf-8''' ) ).hexdigest()} def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = [len(__a ) for line in example['content'].splitlines()] return {"line_mean": np.mean(__a ), "line_max": max(__a )} def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = np.mean([c.isalnum() for c in example['''content''']] ) return {"alpha_frac": alpha_frac} def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example['''hash'''] ) return True else: return False def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase=5 ): """simple docstring""" __A = ['auto-generated', 'autogenerated', 'automatically generated'] __A = example['content'].splitlines() for _, line in zip(range(__a ) , __a ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase=5 , __UpperCamelCase=0.05 ): """simple docstring""" __A = ['unit tests', 'test file', 'configuration file'] __A = example['content'].splitlines() __A = 0 __A = 0 # first test for _, line in zip(range(__a ) , __a ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __A = example['content'].count('''\n''' ) __A = int(coeff * nlines ) for line in lines: count_config += line.lower().count('''config''' ) count_test += line.lower().count('''test''' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = ['def ', 'class ', 'for ', 'while '] __A = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase=4 ): """simple docstring""" __A = example['content'].splitlines() __A = 0 for line in lines: counter += line.lower().count('''=''' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = tokenizer(example['''content'''] , truncation=__a )['input_ids'] __A = len(example['''content'''] ) / len(__a ) return {"ratio": ratio} def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = {} results.update(get_hash(__a ) ) results.update(line_stats(__a ) ) results.update(alpha_stats(__a ) ) results.update(char_token_ratio(__a ) ) results.update(is_autogenerated(__a ) ) results.update(is_config_or_test(__a ) ) results.update(has_no_keywords(__a ) ) results.update(has_few_assignments(__a ) ) return results def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if not check_uniques(__a , __a ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" with open(__a , '''rb''' ) as f_in: with gzip.open(str(__a ) + '''.gz''' , '''wb''' , compresslevel=6 ) as f_out: shutil.copyfileobj(__a , __a ) os.unlink(__a ) # Settings lowercase_ = HfArgumentParser(PreprocessingArguments) lowercase_ = parser.parse_args() if args.num_workers is None: lowercase_ = multiprocessing.cpu_count() lowercase_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowercase_ = time.time() lowercase_ = load_dataset(args.dataset_name, split='train') print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing lowercase_ = time.time() lowercase_ = ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes lowercase_ = set(ds.unique('hash')) lowercase_ = len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics lowercase_ = time.time() lowercase_ = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowercase_ = time.time() lowercase_ , lowercase_ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file lowercase_ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) lowercase_ = output_dir / 'data' data_dir.mkdir(exist_ok=True) lowercase_ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowercase_ = str(data_dir / F'''file-{file_number+1:012}.json''') lowercase_ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
266
def SCREAMING_SNAKE_CASE__ ( __a , __a ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
327
0
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : Tuple ) -> Dict: """simple docstring""" __magic_name__ = 'laion/clap-htsat-unfused' __magic_name__ = tempfile.mkdtemp() def _lowercase ( self : Union[str, Any] , **UpperCamelCase__ : str ) -> int: """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint , **_A ) def _lowercase ( self : List[str] , **UpperCamelCase__ : List[str] ) -> List[str]: """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint , **_A ) def _lowercase ( self : Tuple ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowercase ( self : Dict ) -> Optional[int]: """simple docstring""" __magic_name__ = self.get_tokenizer() __magic_name__ = self.get_feature_extractor() __magic_name__ = ClapProcessor(tokenizer=_A , feature_extractor=_A ) processor.save_pretrained(self.tmpdirname ) __magic_name__ = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) def _lowercase ( self : Tuple ) -> List[Any]: """simple docstring""" __magic_name__ = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ = self.get_feature_extractor(do_normalize=_A , padding_value=1.0 ) __magic_name__ = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = self.get_feature_extractor() __magic_name__ = self.get_tokenizer() __magic_name__ = ClapProcessor(tokenizer=_A , feature_extractor=_A ) __magic_name__ = floats_list((3, 1000) ) __magic_name__ = feature_extractor(_A , return_tensors="""np""" ) __magic_name__ = processor(audios=_A , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowercase ( self : Dict ) -> str: """simple docstring""" __magic_name__ = self.get_feature_extractor() __magic_name__ = self.get_tokenizer() __magic_name__ = ClapProcessor(tokenizer=_A , feature_extractor=_A ) __magic_name__ = 'This is a test string' __magic_name__ = processor(text=_A ) __magic_name__ = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self : int ) -> int: """simple docstring""" __magic_name__ = self.get_feature_extractor() __magic_name__ = self.get_tokenizer() __magic_name__ = ClapProcessor(tokenizer=_A , feature_extractor=_A ) __magic_name__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ = processor.batch_decode(_A ) __magic_name__ = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A ) def _lowercase ( self : Any ) -> Any: """simple docstring""" __magic_name__ = self.get_feature_extractor() __magic_name__ = self.get_tokenizer() __magic_name__ = ClapProcessor(tokenizer=_A , feature_extractor=_A ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
88
from math import pi def SCREAMING_SNAKE_CASE__ ( __a , __a ): return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
327
0
"""simple docstring""" import argparse import datetime def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Any = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } __lowercase : List[Any] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(__a ) < 11: raise ValueError('''Must be 10 characters long''' ) # Get month __lowercase : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('''Month must be between 1 - 12''' ) __lowercase : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day __lowercase : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator __lowercase : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year __lowercase : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 85_00: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation __lowercase : Any = datetime.date(int(__a ) , int(__a ) , int(__a ) ) # Start math if m <= 2: __lowercase : List[str] = y - 1 __lowercase : List[str] = m + 12 # maths var __lowercase : int = int(str(__a )[:2] ) __lowercase : int = int(str(__a )[2:] ) __lowercase : int = int(2.6 * m - 5.39 ) __lowercase : int = int(c / 4 ) __lowercase : int = int(k / 4 ) __lowercase : int = int(d + k ) __lowercase : int = int(t + u + v + x ) __lowercase : int = int(z - (2 * c) ) __lowercase : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response __lowercase : str = f"""Your date {date_input}, is a {days[str(__a )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() a_ = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) a_ = parser.parse_args() zeller(args.date_input)
249
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: Optional[Any] = ["pixel_values"] def __init__( self : str , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PIL.Image.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : str , ) -> None: """simple docstring""" super().__init__(**_A ) snake_case_ : Dict = size if size is not None else {'height': 256, 'width': 256} snake_case_ : Tuple = get_size_dict(_A ) snake_case_ : str = crop_size if crop_size is not None else {'height': 224, 'width': 224} snake_case_ : int = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Union[str, Any] = do_resize snake_case_ : str = size snake_case_ : List[str] = resample snake_case_ : List[Any] = do_center_crop snake_case_ : Dict = crop_size snake_case_ : Tuple = do_rescale snake_case_ : Optional[Any] = rescale_factor snake_case_ : Any = do_normalize snake_case_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PIL.Image.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray: """simple docstring""" snake_case_ : Tuple = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( _A , size=(size['height'], size['width']) , resample=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray: """simple docstring""" snake_case_ : Optional[int] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_A , size=(size['height'], size['width']) , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Dict , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : str , ) -> str: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : Any , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def UpperCAmelCase_ ( self : List[str] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : Union[str, Any]=None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : int , ) -> PIL.Image.Image: """simple docstring""" snake_case_ : int = do_resize if do_resize is not None else self.do_resize snake_case_ : str = resample if resample is not None else self.resample snake_case_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Any = image_mean if image_mean is not None else self.image_mean snake_case_ : Dict = image_std if image_std is not None else self.image_std snake_case_ : int = size if size is not None else self.size snake_case_ : Optional[int] = get_size_dict(_A ) snake_case_ : int = crop_size if crop_size is not None else self.crop_size snake_case_ : Any = get_size_dict(_A , param_name='crop_size' ) snake_case_ : Optional[Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case_ : Optional[Any] = [to_numpy_array(_A ) for image in images] if do_resize: snake_case_ : Dict = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: snake_case_ : Optional[Any] = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: snake_case_ : Optional[int] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: snake_case_ : str = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] snake_case_ : Dict = [to_channel_dimension_format(_A , _A ) for image in images] snake_case_ : Tuple = {'pixel_values': images} return BatchFeature(data=_A , tensor_type=_A )
327
0
"""simple docstring""" UpperCAmelCase__ : Dict = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : List[Any] = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} SCREAMING_SNAKE_CASE__ : Stack[int] = Stack() SCREAMING_SNAKE_CASE__ : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__a ) ) elif i in operators: # RULE 2 operator_stack.push(__a ) elif i == ")": # RULE 4 SCREAMING_SNAKE_CASE__ : Tuple = operator_stack.peek() operator_stack.pop() SCREAMING_SNAKE_CASE__ : Union[str, Any] = operand_stack.peek() operand_stack.pop() SCREAMING_SNAKE_CASE__ : List[str] = operand_stack.peek() operand_stack.pop() SCREAMING_SNAKE_CASE__ : Optional[int] = operators[opr](__a ,__a ) operand_stack.push(__a ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
25
import sys _SCREAMING_SNAKE_CASE = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE__ ( __a = N ): snake_case_ : Optional[Any] = -sys.maxsize - 1 for i in range(len(__a ) - 12 ): snake_case_ : Optional[Any] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case_ : int = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
327
0
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): # Construct model if openai_config_file == "": lowercase :Any = OpenAIGPTConfig() else: lowercase :List[str] = OpenAIGPTConfig.from_json_file(__a ) lowercase :str = OpenAIGPTModel(__a ) # Load weights from numpy load_tf_weights_in_openai_gpt(__a, __a, __a ) # Save pytorch-model lowercase :Optional[Any] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowercase :Union[str, Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict(), __a ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(__a, "w", encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) _UpperCAmelCase : str = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
236
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __magic_name__: Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) __magic_name__: Optional[int] = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} ) __magic_name__: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} ) __magic_name__: bool = field( default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(__a , os.path.join(__a , f"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ ,snake_case_ ,snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ ,snake_case_ ,snake_case_ : List[str] = parser.parse_args_into_dataclasses() check_output_dir(__a ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , __a ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(__a , __a , __a ): assert hasattr(__a , __a ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(__a , __a , getattr(__a , __a ) ) snake_case_ : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=__a , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__a , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: snake_case_ : Any = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__a , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__a , __a ): snake_case_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang] else: snake_case_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__a ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) snake_case_ : List[Any] = SeqaSeqDataset # Get datasets snake_case_ : List[Any] = ( dataset_class( __a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) snake_case_ : List[str] = ( dataset_class( __a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) snake_case_ : List[Any] = ( dataset_class( __a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer snake_case_ : Any = ( build_compute_metrics_fn(data_args.task , __a ) if training_args.predict_with_generate else None ) snake_case_ : List[str] = SeqaSeqTrainer( model=__a , args=__a , data_args=__a , train_dataset=__a , eval_dataset=__a , data_collator=SeqaSeqDataCollator( __a , __a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__a , tokenizer=__a , ) snake_case_ : Optional[int] = {} # Training if training_args.do_train: logger.info('*** Train ***' ) snake_case_ : Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) snake_case_ : Tuple = train_result.metrics snake_case_ : List[str] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , __a , training_args.output_dir ) all_metrics.update(__a ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ : List[Any] = trainer.evaluate(metric_key_prefix='val' ) snake_case_ : str = data_args.n_val snake_case_ : Union[str, Any] = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.do_predict: logger.info('*** Predict ***' ) snake_case_ : Dict = trainer.predict(test_dataset=__a , metric_key_prefix='test' ) snake_case_ : Union[str, Any] = test_output.metrics snake_case_ : int = data_args.n_test if trainer.is_world_process_zero(): snake_case_ : List[str] = round(metrics['test_loss'] , 4 ) handle_metrics('test' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.predict_with_generate: snake_case_ : Any = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) snake_case_ : Any = lmap(str.strip , __a ) write_txt_file(__a , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(__a , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def SCREAMING_SNAKE_CASE__ ( __a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
327
0
def snake_case ( snake_case__ :Optional[Any]) -> Any: _A = 0 # if input_string is "aba" than new_input_string become "a|b|a" _A = '' _A = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__a) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _A = 0, 0 # length[i] shows the length of palindromic substring with center i _A = [1 for i in range(len(__a))] # for each character in new_string find corresponding palindromic string _A = 0 for j in range(len(__a)): _A = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1) while ( j - k >= 0 and j + k < len(__a) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _A = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _A = j - k + 1 # noqa: E741 _A = j + k - 1 # update max_length and start position if max_length < length[j]: _A = length[j] _A = j # create that string _A = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
180
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = { """configuration_poolformer""": [ """POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PoolFormerConfig""", """PoolFormerOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""PoolFormerFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""PoolFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PoolFormerForImageClassification""", """PoolFormerModel""", """PoolFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
327
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :Optional[int] = tempfile.mkdtemp() # fmt: off lowerCAmelCase_ :Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase_ :Tuple = dict(zip(_A , range(len(_A ) ) ) ) lowerCAmelCase_ :List[str] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase_ :str = {'unk_token': '<unk>'} lowerCAmelCase_ :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase_ :str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_A ) ) lowerCAmelCase_ :Tuple = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCAmelCase_ :Optional[Any] = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_A , _A ) def __lowerCAmelCase ( self , **__A ) -> Dict: return CLIPTokenizer.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self , **__A ) -> List[str]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self , **__A ) -> str: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase_ :List[Any] = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :int = self.get_tokenizer() lowerCAmelCase_ :Dict = self.get_rust_tokenizer() lowerCAmelCase_ :List[Any] = self.get_image_processor() lowerCAmelCase_ :int = CLIPSegProcessor(tokenizer=_A , image_processor=_A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase_ :Optional[Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) lowerCAmelCase_ :int = CLIPSegProcessor(tokenizer=_A , image_processor=_A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase_ :Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _A ) self.assertIsInstance(processor_fast.tokenizer , _A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _A ) self.assertIsInstance(processor_fast.image_processor , _A ) def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :int = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ :Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase_ :List[str] = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) lowerCAmelCase_ :List[str] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Optional[int] = self.get_image_processor() lowerCAmelCase_ :List[Any] = self.get_tokenizer() lowerCAmelCase_ :List[str] = CLIPSegProcessor(tokenizer=_A , image_processor=_A ) lowerCAmelCase_ :str = self.prepare_image_inputs() lowerCAmelCase_ :Any = image_processor(_A , return_tensors="""np""" ) lowerCAmelCase_ :int = processor(images=_A , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Tuple = self.get_image_processor() lowerCAmelCase_ :int = self.get_tokenizer() lowerCAmelCase_ :Dict = CLIPSegProcessor(tokenizer=_A , image_processor=_A ) lowerCAmelCase_ :Tuple = 'lower newer' lowerCAmelCase_ :List[Any] = processor(text=_A ) lowerCAmelCase_ :Optional[int] = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :List[Any] = self.get_image_processor() lowerCAmelCase_ :Optional[Any] = self.get_tokenizer() lowerCAmelCase_ :str = CLIPSegProcessor(tokenizer=_A , image_processor=_A ) lowerCAmelCase_ :Optional[Any] = 'lower newer' lowerCAmelCase_ :str = self.prepare_image_inputs() lowerCAmelCase_ :Tuple = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Union[str, Any] = self.get_image_processor() lowerCAmelCase_ :List[str] = self.get_tokenizer() lowerCAmelCase_ :int = CLIPSegProcessor(tokenizer=_A , image_processor=_A ) lowerCAmelCase_ :List[Any] = self.prepare_image_inputs() lowerCAmelCase_ :List[str] = self.prepare_image_inputs() lowerCAmelCase_ :Tuple = processor(images=_A , visual_prompt=_A ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """conditional_pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Tuple = self.get_image_processor() lowerCAmelCase_ :Any = self.get_tokenizer() lowerCAmelCase_ :int = CLIPSegProcessor(tokenizer=_A , image_processor=_A ) lowerCAmelCase_ :Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ :Union[str, Any] = processor.batch_decode(_A ) lowerCAmelCase_ :str = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A )
84
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Dict ) -> List[Any]: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_A ) snake_case_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : List[Any] = tokenizer('This is me' , return_tensors='pt' ) snake_case_ : Any = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case_ : Optional[Any] = model.generate(**_A ) snake_case_ : int = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) snake_case_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_A ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case_ : Optional[Any] = model_reloaded.generate(**_A ) self.assertTrue(torch.allclose(_A , _A ) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" snake_case_ : Any = 'hf-internal-testing/tiny-random-t5' snake_case_ : int = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case_ : Dict = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_A ): model.save_pretrained(_A ) snake_case_ : Union[str, Any] = model.reverse_bettertransformer() model.save_pretrained(_A )
327
0
import requests def lowerCAmelCase_ ( _lowercase : Tuple , _lowercase : List[Any]) -> int: """simple docstring""" a__ : Dict = {'Content-Type': 'application/json'} a__ : int = requests.post(__a , json={"""text""": message_body} , headers=__a) if response.status_code != 200: a__ : List[str] = ( 'Request to slack returned an error ' F'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(__a) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
170
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = params snake_case_ : int = np.array(_A ) snake_case_ : Optional[int] = np.array([len(_A ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Tuple , _A : Optional[int] ) -> str: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : List[str] ) -> str: """simple docstring""" return len(self.lengths ) def UpperCAmelCase_ ( self : Dict ) -> str: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: """simple docstring""" snake_case_ : Dict = self.params.max_model_input_size snake_case_ : Tuple = self.lengths > max_len logger.info(F"""Splitting {sum(_A )} too long sequences.""" ) def divide_chunks(_A : Union[str, Any] , _A : Dict ): return [l[i : i + n] for i in range(0 , len(_A ) , _A )] snake_case_ : Dict = [] snake_case_ : Union[str, Any] = [] if self.params.mlm: snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: snake_case_ : List[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: snake_case_ : Optional[int] = np.insert(_A , 0 , _A ) if sub_s[-1] != sep_id: snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A ) assert len(_A ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_A ) new_tok_ids.extend(_A ) new_lengths.extend([len(_A ) for l in sub_seqs] ) snake_case_ : Tuple = np.array(_A ) snake_case_ : int = np.array(_A ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ : Tuple = len(self ) snake_case_ : int = self.lengths > 11 snake_case_ : Dict = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : List[Any] = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = len(self ) snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) snake_case_ : Any = (unk_occs / self.lengths) < 0.5 snake_case_ : List[Any] = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : Tuple = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ : Any = [t[0] for t in batch] snake_case_ : int = [t[1] for t in batch] assert len(_A ) == len(_A ) # Max for paddings snake_case_ : str = max(_A ) # Pad token ids if self.params.mlm: snake_case_ : int = self.params.special_tok_ids['pad_token'] else: snake_case_ : Dict = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids] assert len(tk_ ) == len(_A ) assert all(len(_A ) == max_seq_len_ for t in tk_ ) snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs) return tk_t, lg_t
327
0
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class UpperCamelCase_ : '''simple docstring''' def __init__( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any]=13 , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Optional[int]=99 , UpperCAmelCase__ : int=32 , UpperCAmelCase__ : List[Any]=5 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Dict="gelu" , UpperCAmelCase__ : str=0.0 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Optional[Any]=512 , UpperCAmelCase__ : Dict=16 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Union[str, Any]=0.02 , UpperCAmelCase__ : List[Any]=3 , UpperCAmelCase__ : str=4 , UpperCAmelCase__ : Tuple=None , ) ->Optional[int]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_multiple_size A__ = hidden_act A__ = hidden_dropout A__ = attention_dropout A__ = weight_tying A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) A__ = self.get_config() return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]: '''simple docstring''' return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ = True return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ = GPTNeoXJapaneseModel(config=_A) model.to(_A) model.eval() A__ = model(_A , attention_mask=_A) A__ = model(_A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any]) ->List[str]: '''simple docstring''' A__ = True A__ = GPTNeoXJapaneseModel(_A) model.to(_A) model.eval() A__ = model(_A , attention_mask=_A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any]) ->int: '''simple docstring''' A__ = GPTNeoXJapaneseForCausalLM(config=_A) model.to(_A) model.eval() A__ = model(_A , attention_mask=_A , labels=_A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any]) ->Dict: '''simple docstring''' A__ = True A__ = GPTNeoXJapaneseForCausalLM(config=_A) model.to(_A) model.eval() # first forward pass A__ = model(_A , attention_mask=_A , use_cache=_A) A__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size) A__ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and A__ = torch.cat([input_ids, next_tokens] , dim=-1) A__ = torch.cat([input_mask, next_mask] , dim=-1) A__ = model(_A , attention_mask=_A , output_hidden_states=_A) A__ = output_from_no_past['hidden_states'][0] A__ = model( _A , attention_mask=_A , past_key_values=_A , output_hidden_states=_A , )['hidden_states'][0] # select random slice A__ = ids_tensor((1,) , output_from_past.shape[-1]).item() A__ = output_from_no_past[:, -3:, random_slice_idx].detach() A__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1e-3)) def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ = config_and_inputs A__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () UpperCAmelCase__ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () UpperCAmelCase__ = ( {"feature-extraction": GPTNeoXJapaneseModel, "text-generation": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' A__ = GPTNeoXJapaneseModelTester(self) A__ = ConfigTester(self , config_class=_A , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Any) ->Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_A , _A , _A) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_A , _A , _A) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs_for_decoder() A__ = None self.model_tester.create_and_check_model_as_decoder(_A , _A , _A) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_A , _A , _A) def SCREAMING_SNAKE_CASE ( self : Any) ->Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_A) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]: '''simple docstring''' A__ = 'abeja/gpt-neox-japanese-2.7b' A__ = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、'] A__ = [ 'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。', '100年後に必要とされる会社は、「人」が中心の会社です。', 'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。', '国境の長いトンネルを抜けると、そこは雪国だった。', '美味しい日本食といえば、やっぱりお寿司ですよね。', ] A__ = GPTNeoXJapaneseTokenizer.from_pretrained(_A) A__ = GPTNeoXJapaneseForCausalLM.from_pretrained(_A) A__ = [] for prompt in prompts: A__ = tokenizer(_A , return_tensors='''pt''').input_ids A__ = model.generate(_A , max_length=50) A__ = tokenizer.batch_decode(_A , skip_special_tokens=_A) predicted_outputs += generated_string self.assertListEqual(_A , _A)
14
def SCREAMING_SNAKE_CASE__ ( __a , __a ): while b: snake_case_ ,snake_case_ : Any = b, a % b return a def SCREAMING_SNAKE_CASE__ ( __a , __a ): return a if b == 0 else euclidean_gcd_recursive(__a , a % b ) def SCREAMING_SNAKE_CASE__ ( ): print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
327
0
from __future__ import annotations def a__ ( _UpperCamelCase : Any ,_UpperCamelCase : List[str] ): print(F"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(__a ): print(F"""{i}\t\t{d}""" ) def a__ ( _UpperCamelCase : Tuple ,_UpperCamelCase : str ,_UpperCamelCase : List[str] ): for j in range(__a ): __lowerCamelCase = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def a__ ( _UpperCamelCase : Dict ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Dict ,_UpperCamelCase : Union[str, Any] ): __lowerCamelCase = [float('''inf''' )] * vertex_count __lowerCamelCase = 0.0 for _ in range(vertex_count - 1 ): for j in range(__a ): __lowerCamelCase = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __lowerCamelCase = distance[u] + w __lowerCamelCase = check_negative_cycle(__a ,__a ,__a ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() a_ = int(input("""Enter number of vertices: """).strip()) a_ = int(input("""Enter number of edges: """).strip()) a_ = [{} for _ in range(E)] for i in range(E): print("""Edge """, i + 1) a_ , a_ , a_ = ( int(x) for x in input("""Enter source, destination, weight: """).strip().split(""" """) ) a_ = {"""src""": src, """dst""": dest, """weight""": weight} a_ = int(input("""\nEnter shortest path source:""").strip()) a_ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
330
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE = get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : Dict = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Dict = os.path.join(__a , __a ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Dict = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Dict = os.path.join(__a , __a ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving model to {ckpt_dir}""" ) snake_case_ : int = {'model': state_dict} dist_cp.save_state_dict( state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Optional[Any] = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[Any] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Optional[Any] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Tuple = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Tuple = ( os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) snake_case_ : List[Any] = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , ) snake_case_ : Any = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ : str = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : Any = os.path.join(__a , __a ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__a , __a ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ : Union[str, Any] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : List[Any] = os.path.join(__a , __a ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: snake_case_ : str = ( os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) snake_case_ : Any = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , ) snake_case_ : Optional[int] = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a ) optimizer.load_state_dict(__a )
327
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase_ ( snake_case_ ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 def __init__( self : str , _lowerCAmelCase : UNetaDModel , _lowerCAmelCase : KarrasVeScheduler ): super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self : Optional[Any] , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 50 , _lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCAmelCase : Optional[str] = "pil" , _lowerCAmelCase : bool = True , **_lowerCAmelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE_ = self.unet.config.sample_size SCREAMING_SNAKE_CASE_ = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE_ = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) SCREAMING_SNAKE_CASE_ = randn_tensor(_A , generator=_A , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper SCREAMING_SNAKE_CASE_ = self.scheduler.schedule[t] SCREAMING_SNAKE_CASE_ = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat SCREAMING_SNAKE_CASE_ = self.scheduler.add_noise_to_input(_A , _A , generator=_A ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. SCREAMING_SNAKE_CASE_ = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , _A , _A , _A ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. SCREAMING_SNAKE_CASE_ = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample SCREAMING_SNAKE_CASE_ = self.scheduler.step_correct( _A , _A , _A , _A , step_output.prev_sample , step_output['derivative'] , ) SCREAMING_SNAKE_CASE_ = step_output.prev_sample SCREAMING_SNAKE_CASE_ = (sample / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
225
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : int = 32 , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , _A : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , _A : bool = True , _A : Tuple=7 , _A : Tuple=30 , _A : int=400 , _A : Tuple=3 , ) -> Optional[int]: """simple docstring""" snake_case_ : str = parent snake_case_ : str = do_resize snake_case_ : str = size if size is not None else {'shortest_edge': 288} snake_case_ : Any = size_divisor snake_case_ : Any = do_rescale snake_case_ : Union[str, Any] = rescale_factor snake_case_ : str = do_normalize snake_case_ : int = do_center_crop snake_case_ : str = image_mean snake_case_ : int = image_std snake_case_ : Any = do_pad snake_case_ : Optional[int] = batch_size snake_case_ : List[str] = num_channels snake_case_ : Any = min_resolution snake_case_ : str = max_resolution def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase_ ( self : Dict , _A : str , _A : Union[str, Any]=False ) -> int: """simple docstring""" if not batched: snake_case_ : Optional[int] = self.size['shortest_edge'] snake_case_ : List[Any] = image_inputs[0] if isinstance(_A , Image.Image ): snake_case_ ,snake_case_ : Optional[Any] = image.size else: snake_case_ ,snake_case_ : str = image.shape[1], image.shape[2] snake_case_ : Dict = size / min(_A , _A ) if h < w: snake_case_ ,snake_case_ : str = size, scale * w else: snake_case_ ,snake_case_ : Tuple = scale * h, size snake_case_ : Dict = int((1333 / 800) * size ) if max(_A , _A ) > max_size: snake_case_ : Union[str, Any] = max_size / max(_A , _A ) snake_case_ : Any = newh * scale snake_case_ : Union[str, Any] = neww * scale snake_case_ ,snake_case_ : Any = int(newh + 0.5 ), int(neww + 0.5 ) snake_case_ ,snake_case_ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: snake_case_ : Optional[int] = [] for image in image_inputs: snake_case_ ,snake_case_ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : str = max(_A , key=lambda _A : item[0] )[0] snake_case_ : List[str] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( snake_case_ , unittest.TestCase ): __magic_name__: List[Any] = BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case_ : int = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'size_divisor' ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input snake_case_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : List[str] = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Any = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input snake_case_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : str = image_processing(_A , return_tensors='pt' ).pixel_values snake_case_ ,snake_case_ : Tuple = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
327
0
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if "model" in orig_key: __A = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: __A = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: __A = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: __A = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: __A = orig_key.split('''.''' )[0].split('''_''' )[-1] __A = orig_key.replace(f'transformer_{layer_num}' , f'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: __A = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: __A = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: __A = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: __A = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: __A = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: __A = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: __A = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: __A = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: __A = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: __A = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: __A = 'yoso.' + orig_key return orig_key def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" for key in orig_state_dict.copy().keys(): __A = orig_state_dict.pop(__a ) if ("pooler" in key) or ("sen_class" in key): continue else: __A = val __A = orig_state_dict['cls.predictions.decoder.bias'] __A = torch.arange(__a ).expand((1, -1) ) + 2 return orig_state_dict def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = torch.load(__a , map_location='''cpu''' )['model_state_dict'] __A = YosoConfig.from_json_file(__a ) __A = YosoForMaskedLM(__a ) __A = convert_checkpoint_helper(config.max_position_embeddings , __a ) print(model.load_state_dict(__a ) ) model.eval() model.save_pretrained(__a ) print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
266
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _SCREAMING_SNAKE_CASE = 50_00_00 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = os.path.split(__file__) _SCREAMING_SNAKE_CASE = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : int = dataset.map(**__a ) @get_duration def SCREAMING_SNAKE_CASE__ ( __a , **__a ): snake_case_ : Dict = dataset.filter(**__a ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Tuple = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Dict = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) snake_case_ : List[Any] = generate_example_dataset( os.path.join(__a , 'dataset.arrow' ) , __a , num_examples=__a ) snake_case_ : str = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=__a ) def tokenize(__a ): return tokenizer(examples['text'] ) snake_case_ : Any = map(__a ) snake_case_ : Tuple = map(__a , batched=__a ) snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='numpy' ): snake_case_ : Optional[int] = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='pandas' ): snake_case_ : str = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='torch' , columns='numbers' ): snake_case_ : int = map(__a , function=lambda __a : None , batched=__a ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): snake_case_ : List[Any] = map(__a , function=lambda __a : None , batched=__a ) snake_case_ : int = map(__a , function=__a , batched=__a ) snake_case_ : Optional[Any] = filter(__a ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__a , 'wb' ) as f: f.write(json.dumps(__a ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
327
0
from scipy.stats import pearsonr import datasets __lowerCAmelCase : int = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' __lowerCAmelCase : Any = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' __lowerCAmelCase : Tuple = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self : Dict ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict=False ) -> List[Any]: """simple docstring""" if return_pvalue: __magic_name__ = pearsonr(_A , _A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_A , _A )[0] )}
88
from collections import namedtuple import requests from lxml import html # type: ignore _SCREAMING_SNAKE_CASE = namedtuple("""covid_data""", """cases deaths recovered""") def SCREAMING_SNAKE_CASE__ ( __a = "https://www.worldometers.info/coronavirus/" ): snake_case_ : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) ) _SCREAMING_SNAKE_CASE = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
327
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
249
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": 5_12, } _SCREAMING_SNAKE_CASE = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE_ ( snake_case_ ): __magic_name__: List[Any] = VOCAB_FILES_NAMES __magic_name__: List[str] = PRETRAINED_VOCAB_FILES_MAP __magic_name__: List[str] = PRETRAINED_INIT_CONFIGURATION __magic_name__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__: Union[str, Any] = LxmertTokenizer def __init__( self : List[str] , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=True , _A : Dict="[UNK]" , _A : Optional[int]="[SEP]" , _A : Dict="[PAD]" , _A : Union[str, Any]="[CLS]" , _A : str="[MASK]" , _A : Tuple=True , _A : Dict=None , **_A : List[Any] , ) -> Optional[int]: """simple docstring""" super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _A ) != do_lower_case or normalizer_state.get('strip_accents' , _A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _A ) != tokenize_chinese_chars ): snake_case_ : Tuple = getattr(_A , normalizer_state.pop('type' ) ) snake_case_ : Union[str, Any] = do_lower_case snake_case_ : int = strip_accents snake_case_ : Optional[Any] = tokenize_chinese_chars snake_case_ : List[Any] = normalizer_class(**_A ) snake_case_ : Tuple = do_lower_case def UpperCAmelCase_ ( self : Dict , _A : Any , _A : List[Any]=None ) -> Dict: """simple docstring""" snake_case_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ : str = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ : Union[str, Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
327
0
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Any = '▁' UpperCAmelCase__ : Optional[int] = {'vocab_file': 'prophetnet.tokenizer'} UpperCAmelCase__ : List[Any] = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } UpperCAmelCase__ : Optional[Any] = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } UpperCAmelCase__ : List[str] = { 'microsoft/xprophetnet-large-wiki100-cased': 5_1_2, } def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Optional[Any] = collections.OrderedDict() with open(__a ,"""r""" ,encoding="""utf-8""" ) as reader: SCREAMING_SNAKE_CASE__ : int = reader.readlines() for index, token in enumerate(__a ): SCREAMING_SNAKE_CASE__ : Optional[int] = token.rstrip("""\n""" ) SCREAMING_SNAKE_CASE__ : List[Any] = index return vocab class lowerCAmelCase_ (snake_case_ ): """simple docstring""" __UpperCamelCase : int = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Any = ["input_ids", "attention_mask"] def __init__(self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="[UNK]" , SCREAMING_SNAKE_CASE__="[PAD]" , SCREAMING_SNAKE_CASE__="[CLS]" , SCREAMING_SNAKE_CASE__="[MASK]" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_A , eos_token=_A , sep_token=_A , unk_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) try: import sentencepiece as spm except ImportError: logger.warning( """You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece""" """ pip install sentencepiece""" ) raise SCREAMING_SNAKE_CASE__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab SCREAMING_SNAKE_CASE__ : Optional[Any] = {'[PAD]': 0, '[CLS]': 1, '[SEP]': 2, '[UNK]': 3, '[MASK]': 4} for i in range(10 ): SCREAMING_SNAKE_CASE__ : Optional[int] = F'''[unused{i}]''' SCREAMING_SNAKE_CASE__ : str = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE__ : Union[str, Any] = 12 SCREAMING_SNAKE_CASE__ : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(_A ) def __getstate__(self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.__dict__.copy() SCREAMING_SNAKE_CASE__ : Union[str, Any] = None return state def __setstate__(self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = d try: import sentencepiece as spm except ImportError: logger.warning( """You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece""" """ pip install sentencepiece""" ) raise # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): SCREAMING_SNAKE_CASE__ : Optional[int] = {} SCREAMING_SNAKE_CASE__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return ([0] * len(_A )) + [1] return ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1] def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __magic_name__ (self ) -> int: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" return self.sp_model.encode(_A , out_type=_A ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE__ : Optional[int] = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = ''.join(_A ).replace(_A , """ """ ).strip() return out_string def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join( _A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , """wb""" ) as fi: SCREAMING_SNAKE_CASE__ : Dict = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Optional[Any] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
25
def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): snake_case_ : int = f"""Input value of [number={number}] must be an integer""" raise TypeError(__a ) if number < 0: return False snake_case_ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
327
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _UpperCAmelCase : Dict = { "169M": 12, "430M": 24, "1B5": 24, "3B": 32, "7B": 32, "14B": 40, } _UpperCAmelCase : Optional[Any] = { "169M": 768, "430M": 1024, "1B5": 2048, "3B": 2560, "7B": 4096, "14B": 5120, } def UpperCAmelCase__ ( lowerCamelCase ): lowercase :Union[str, Any] = list(state_dict.keys() ) for name in state_dict_keys: lowercase :Any = state_dict.pop(__a ) # emb -> embedding if name.startswith("emb." ): lowercase :Any = name.replace("emb.", "embeddings." ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("blocks.0.ln0" ): lowercase :List[str] = name.replace("blocks.0.ln0", "blocks.0.pre_ln" ) # att -> attention lowercase :Any = re.sub(r"blocks\.(\d+)\.att", r"blocks.\1.attention", __a ) # ffn -> feed_forward lowercase :Optional[Any] = re.sub(r"blocks\.(\d+)\.ffn", r"blocks.\1.feed_forward", __a ) # time_mix_k -> time_mix_key and reshape if name.endswith(".time_mix_k" ): lowercase :Dict = name.replace(".time_mix_k", ".time_mix_key" ) # time_mix_v -> time_mix_value and reshape if name.endswith(".time_mix_v" ): lowercase :str = name.replace(".time_mix_v", ".time_mix_value" ) # time_mix_r -> time_mix_key and reshape if name.endswith(".time_mix_r" ): lowercase :List[str] = name.replace(".time_mix_r", ".time_mix_receptance" ) if name != "head.weight": lowercase :List[str] = 'rwkv.' + name lowercase :Tuple = weight return state_dict def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=False, lowerCamelCase=None ): # 1. If possible, build the tokenizer. if tokenizer_file is None: print("No `--tokenizer_file` provided, we will use the default tokenizer." ) lowercase :int = 50277 lowercase :str = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b" ) else: lowercase :List[str] = PreTrainedTokenizerFast(tokenizer_file=__a ) lowercase :Any = len(__a ) tokenizer.save_pretrained(__a ) # 2. Build the config lowercase :Tuple = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: lowercase :Any = candidate break if size is None: raise ValueError("Could not infer the size, please provide it with the `--size` argument." ) if size not in possible_sizes: raise ValueError(F"`size` should be one of {possible_sizes}, got {size}." ) lowercase :Union[str, Any] = RwkvConfig( vocab_size=__a, num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size], hidden_size=HIDEN_SIZE_MAPPING[size], ) config.save_pretrained(__a ) # 3. Download model file then convert state_dict lowercase :str = hf_hub_download(__a, __a ) lowercase :Union[str, Any] = torch.load(__a, map_location="cpu" ) lowercase :Any = convert_state_dict(__a ) # 4. Split in shards and save lowercase :Union[str, Any] = shard_checkpoint(__a ) for shard_file, shard in shards.items(): torch.save(__a, os.path.join(__a, __a ) ) if index is not None: lowercase :Optional[int] = os.path.join(__a, __a ) # Save the index as well with open(__a, "w", encoding="utf-8" ) as f: lowercase :List[Any] = json.dumps(__a, indent=2, sort_keys=__a ) + '\n' f.write(__a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( "Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model." ) lowercase :str = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: lowercase :Any = torch.load(os.path.join(__a, __a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()}, os.path.join(__a, __a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("Please provide a `model_name` to push the model to the Hub." ) lowercase :int = AutoModelForCausalLM.from_pretrained(__a ) model.push_to_hub(__a, max_shard_size="2GB" ) tokenizer.push_to_hub(__a ) if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--repo_id", default=None, type=str, required=True, help="Repo ID from which to pull the checkpoint." ) parser.add_argument( "--checkpoint_file", default=None, type=str, required=True, help="Name of the checkpoint file in the repo." ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="Where to save the converted model." ) parser.add_argument( "--tokenizer_file", default=None, type=str, help="Path to the tokenizer file to use (if not provided, only the model is converted).", ) parser.add_argument( "--size", default=None, type=str, help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Push to the Hub the converted model.", ) parser.add_argument( "--model_name", default=None, type=str, help="Name of the pushed model on the Hub, including the username / organization.", ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
236
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
327
0
import fire from utils import calculate_rouge, save_json def snake_case ( snake_case__ :Union[str, Any] , snake_case__ :Dict , snake_case__ :str=None , **snake_case__ :int) -> Optional[Any]: _A = [x.strip() for x in open(__a).readlines()] _A = [x.strip() for x in open(__a).readlines()][: len(__a)] _A = calculate_rouge(__a , __a , **__a) if save_path is not None: save_json(__a , __a , indent=__a) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
180
from typing import Dict from .base import GenericTensor, Pipeline class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def UpperCAmelCase_ ( self : str , _A : Optional[Any]=None , _A : List[str]=None , _A : Optional[Any]=None , **_A : List[str] ) -> Any: """simple docstring""" if tokenize_kwargs is None: snake_case_ : Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) snake_case_ : int = truncation snake_case_ : Optional[int] = tokenize_kwargs snake_case_ : Dict = {} if return_tensors is not None: snake_case_ : Union[str, Any] = return_tensors return preprocess_params, {}, postprocess_params def UpperCAmelCase_ ( self : Optional[int] , _A : int , **_A : Any ) -> Dict[str, GenericTensor]: """simple docstring""" snake_case_ : Dict = self.framework snake_case_ : Any = self.tokenizer(_A , return_tensors=_A , **_A ) return model_inputs def UpperCAmelCase_ ( self : Optional[Any] , _A : List[str] ) -> int: """simple docstring""" snake_case_ : Tuple = self.model(**_A ) return model_outputs def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str=False ) -> Any: """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> List[str]: """simple docstring""" return super().__call__(*_A , **_A )
327
0
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version __UpperCAmelCase = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize __UpperCAmelCase = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' __UpperCAmelCase = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' __UpperCAmelCase = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def __lowerCAmelCase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] , reference_urls=[ """https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""", """https://en.wikipedia.org/wiki/METEOR""", ] , ) def __lowerCAmelCase ( self , __A ) -> Optional[int]: import nltk nltk.download("""wordnet""" ) if NLTK_VERSION >= version.Version("""3.6.5""" ): nltk.download("""punkt""" ) if NLTK_VERSION >= version.Version("""3.6.6""" ): nltk.download("""omw-1.4""" ) def __lowerCAmelCase ( self , __A , __A , __A=0.9 , __A=3 , __A=0.5 ) -> Union[str, Any]: if NLTK_VERSION >= version.Version("""3.6.5""" ): lowerCAmelCase_ :Union[str, Any] = [ meteor_score.single_meteor_score( word_tokenize(_A ) , word_tokenize(_A ) , alpha=_A , beta=_A , gamma=_A ) for ref, pred in zip(_A , _A ) ] else: lowerCAmelCase_ :List[Any] = [ meteor_score.single_meteor_score(_A , _A , alpha=_A , beta=_A , gamma=_A ) for ref, pred in zip(_A , _A ) ] return {"meteor": np.mean(_A )}
84
from itertools import permutations def SCREAMING_SNAKE_CASE__ ( __a ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False snake_case_ : Any = [7, 11, 13, 17] for i, test in enumerate(__a ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE__ ( __a = 10 ): return sum( int(''.join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(F'''{solution() = }''')
327
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowercase : Optional[Any] =logging.get_logger(__name__) _lowercase : str ={ "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def lowerCAmelCase_ ( _lowercase : int , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : Any) -> str: """simple docstring""" for attribute in key.split("""."""): a__ : Tuple = getattr(__a , __a) if weight_type is not None: a__ : Optional[int] = getattr(__a , __a).shape else: a__ : Any = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": a__ : int = value elif weight_type == "weight_g": a__ : int = value elif weight_type == "weight_v": a__ : Optional[Any] = value elif weight_type == "bias": a__ : Any = value else: a__ : Dict = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''') def lowerCAmelCase_ ( _lowercase : Any , _lowercase : Dict , _lowercase : List[Any]) -> Union[str, Any]: """simple docstring""" a__ : Any = [] a__ : Union[str, Any] = fairseq_model.state_dict() a__ : Dict = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): a__ : Optional[Any] = False if "conv_layers" in name: load_conv_layer( __a , __a , __a , __a , hf_model.config.feat_extract_norm == """group""" , ) a__ : int = True else: for key, mapped_key in MAPPING.items(): a__ : Union[str, Any] = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split("""w2v_model.""")[-1] == name.split(""".""")[0]: a__ : str = True if "*" in mapped_key: a__ : Any = name.split(__a)[0].split(""".""")[-2] a__ : Dict = mapped_key.replace("""*""" , __a) if "weight_g" in name: a__ : Any = 'weight_g' elif "weight_v" in name: a__ : Dict = 'weight_v' elif "weight" in name: a__ : Tuple = 'weight' elif "bias" in name: a__ : Tuple = 'bias' else: a__ : Tuple = None set_recursively(__a , __a , __a , __a , __a) continue if not is_used: unused_weights.append(__a) logger.warning(F'''Unused weights: {unused_weights}''') def lowerCAmelCase_ ( _lowercase : Tuple , _lowercase : str , _lowercase : Dict , _lowercase : Union[str, Any] , _lowercase : Any) -> List[Any]: """simple docstring""" a__ : Any = full_name.split("""conv_layers.""")[-1] a__ : Tuple = name.split(""".""") a__ : Optional[int] = int(items[0]) a__ : List[str] = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) a__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) a__ : Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) a__ : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) a__ : Dict = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(__a) def lowerCAmelCase_ ( _lowercase : Optional[int] , _lowercase : Optional[Any]) -> Dict: """simple docstring""" a__ : Optional[int] = SEWConfig() if is_finetuned: a__ : Tuple = model.wav_encoder.wav_model.cfg else: a__ : List[str] = model.cfg a__ : Dict = fs_config.conv_bias a__ : int = eval(fs_config.conv_feature_layers) a__ : Dict = [x[0] for x in conv_layers] a__ : Any = [x[1] for x in conv_layers] a__ : Optional[int] = [x[2] for x in conv_layers] a__ : Any = 'gelu' a__ : Optional[Any] = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' a__ : Any = 0.0 a__ : Any = fs_config.activation_fn.name a__ : Optional[Any] = fs_config.encoder_embed_dim a__ : List[Any] = 0.02 a__ : Optional[Any] = fs_config.encoder_ffn_embed_dim a__ : int = 1e-5 a__ : Tuple = fs_config.encoder_layerdrop a__ : Optional[int] = fs_config.encoder_attention_heads a__ : Any = fs_config.conv_pos_groups a__ : int = fs_config.conv_pos a__ : Optional[Any] = len(__a) a__ : Optional[Any] = fs_config.encoder_layers a__ : Any = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: a__ : Union[str, Any] = model.cfg a__ : List[str] = fs_config.final_dropout a__ : Optional[int] = fs_config.layerdrop a__ : Optional[int] = fs_config.activation_dropout a__ : List[Any] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 a__ : str = fs_config.attention_dropout a__ : Tuple = fs_config.dropout_input a__ : Optional[Any] = fs_config.dropout a__ : Optional[Any] = fs_config.mask_channel_length a__ : Dict = fs_config.mask_channel_prob a__ : Dict = fs_config.mask_length a__ : List[Any] = fs_config.mask_prob a__ : int = 'Wav2Vec2FeatureExtractor' a__ : List[str] = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def lowerCAmelCase_ ( _lowercase : Union[str, Any] , _lowercase : List[Any] , _lowercase : List[Any]=None , _lowercase : Union[str, Any]=None , _lowercase : Union[str, Any]=True) -> str: """simple docstring""" if is_finetuned: a__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""")[:-1])}) else: a__ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) if config_path is not None: a__ : List[str] = SEWConfig.from_pretrained(__a) else: a__ : str = convert_config(model[0] , __a) a__ : Tuple = model[0].eval() a__ : Optional[int] = True if config.feat_extract_norm == 'layer' else False a__ : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__a , return_attention_mask=__a , ) if is_finetuned: if dict_path: a__ : Tuple = Dictionary.load(__a) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ : Optional[int] = target_dict.pad_index a__ : str = target_dict.bos_index a__ : int = target_dict.pad_index a__ : Any = target_dict.bos_index a__ : Union[str, Any] = target_dict.eos_index a__ : str = len(target_dict.symbols) a__ : Union[str, Any] = os.path.join(__a , """vocab.json""") if not os.path.isdir(__a): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__a)) return os.makedirs(__a , exist_ok=__a) with open(__a , """w""" , encoding="""utf-8""") as vocab_handle: json.dump(target_dict.indices , __a) a__ : Tuple = WavaVecaCTCTokenizer( __a , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__a , ) a__ : Optional[int] = WavaVecaProcessor(feature_extractor=__a , tokenizer=__a) processor.save_pretrained(__a) a__ : Dict = SEWForCTC(__a) else: a__ : List[str] = SEWModel(__a) feature_extractor.save_pretrained(__a) recursively_load_weights(__a , __a , __a) hf_model.save_pretrained(__a) if __name__ == "__main__": _lowercase : int =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _lowercase : List[str] =parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
170
from __future__ import annotations from collections import namedtuple def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): snake_case_ : Any = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
327
0
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]: """simple docstring""" A__ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__a , __a ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Union[str, Any]: """simple docstring""" A__ = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: A__ = s_dict.pop(__a ) elif "subsample" in key: A__ = s_dict.pop(__a ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = emb.weight.shape A__ = nn.Linear(__a , __a , bias=__a ) A__ = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: """simple docstring""" A__ = torch.load(__a , map_location='''cpu''' ) A__ = mam_aaa['args'] A__ = mam_aaa['model'] A__ = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(__a ) rename_keys(__a ) A__ = state_dict['decoder.embed_tokens.weight'].shape[0] A__ = args.share_decoder_input_output_embed A__ = [int(__a ) for i in args.conv_kernel_sizes.split(''',''' )] A__ = SpeechaTextConfig( vocab_size=__a , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(__a ) , conv_channels=args.conv_channels , conv_kernel_sizes=__a , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__a , num_beams=5 , max_length=200 , use_cache=__a , decoder_start_token_id=2 , early_stopping=__a , ) A__ = SpeechaTextForConditionalGeneration(__a ) A__ = model.model.load_state_dict(__a , strict=__a ) if len(__a ) > 0 and not set(__a ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f""" but all the following weights are missing {missing}""" ) if tie_embeds: A__ = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A__ = lm_head_weights model.save_pretrained(__a ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument("""--fairseq_path""", type=str, help="""Path to the fairseq model (.pt) file.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _lowerCamelCase : List[Any] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
14
import re import string import numpy as np import datasets _SCREAMING_SNAKE_CASE = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ _SCREAMING_SNAKE_CASE = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ _SCREAMING_SNAKE_CASE = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self : int , _A : Tuple , _A : Tuple , _A : str=None , _A : Dict=False , _A : Tuple=False , _A : str=False , ) -> Tuple: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case_ : List[Any] = np.array([re.sub(_A , '' , _A ) for x in predictions] ) snake_case_ : Optional[Any] = np.array([re.sub(_A , '' , _A ) for x in references] ) else: snake_case_ : Dict = np.asarray(_A ) snake_case_ : Tuple = np.asarray(_A ) if ignore_case: snake_case_ : List[str] = np.char.lower(_A ) snake_case_ : Any = np.char.lower(_A ) if ignore_punctuation: snake_case_ : int = string.punctuation.maketrans('' , '' , string.punctuation ) snake_case_ : Tuple = np.char.translate(_A , table=_A ) snake_case_ : str = np.char.translate(_A , table=_A ) if ignore_numbers: snake_case_ : Optional[int] = string.digits.maketrans('' , '' , string.digits ) snake_case_ : str = np.char.translate(_A , table=_A ) snake_case_ : Union[str, Any] = np.char.translate(_A , table=_A ) snake_case_ : int = predictions == references return {"exact_match": np.mean(_A ) * 100}
327
0