code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import json
import os
import re
import sys
import urllib.request
import requests
from bsa import BeautifulSoup
_UpperCamelCase = {
'''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'''
''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582'''
}
def lowerCAmelCase__( lowercase : str = "dhaka" , lowercase : int = 5 ) -> int:
__snake_case : List[Any] = min(lowercase , 50 ) # Prevent abuse!
__snake_case : Dict = {
"q": query,
"tbm": "isch",
"hl": "en",
"ijn": "0",
}
__snake_case : List[str] = requests.get("https://www.google.com/search" , params=lowercase , headers=lowercase )
__snake_case : int = BeautifulSoup(html.text , "html.parser" )
__snake_case : Optional[int] = "".join(
re.findall(R"AF_initDataCallback\(([^<]+)\);" , str(soup.select("script" ) ) ) )
__snake_case : Tuple = json.dumps(lowercase )
__snake_case : Any = json.loads(lowercase )
__snake_case : List[Any] = re.findall(
R"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," , lowercase , )
if not matched_google_image_data:
return 0
__snake_case : Optional[int] = re.sub(
R"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" , "" , str(lowercase ) , )
__snake_case : List[Any] = re.findall(
R"(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]" , lowercase , )
for index, fixed_full_res_image in enumerate(lowercase ):
if index >= max_images:
return index
__snake_case : str = bytes(lowercase , "ascii" ).decode(
"unicode-escape" )
__snake_case : Optional[int] = bytes(lowercase , "ascii" ).decode(
"unicode-escape" )
__snake_case : Tuple = urllib.request.build_opener()
__snake_case : Tuple = [
(
"User-Agent",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
" (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582",
)
]
urllib.request.install_opener(lowercase )
__snake_case : Tuple = f"""query_{query.replace(" " , "_" )}"""
if not os.path.exists(lowercase ):
os.makedirs(lowercase )
urllib.request.urlretrieve( # noqa: S310
lowercase , f"""{path_name}/original_size_img_{index}.jpg""" )
return index
if __name__ == "__main__":
try:
_UpperCamelCase = download_images_from_google_query(sys.argv[1])
print(F'''{image_count} images were downloaded to disk.''')
except IndexError:
print('''Please provide a search term.''')
raise
| 326 |
import math
def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list:
__snake_case : Any = end or len(lowercase )
for i in range(lowercase , lowercase ):
__snake_case : List[str] = i
__snake_case : Union[str, Any] = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
__snake_case : Optional[Any] = array[temp_index - 1]
temp_index -= 1
__snake_case : Any = temp_index_value
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap
__snake_case : Any = index
__snake_case : Optional[Any] = 2 * index + 1 # Left Node
__snake_case : str = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
__snake_case : Optional[int] = left_index
if right_index < heap_size and array[largest] < array[right_index]:
__snake_case : Tuple = right_index
if largest != index:
__snake_case , __snake_case : int = array[largest], array[index]
heapify(lowercase , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list ) -> list:
__snake_case : List[str] = len(lowercase )
for i in range(n // 2 , -1 , -1 ):
heapify(lowercase , lowercase , lowercase )
for i in range(n - 1 , 0 , -1 ):
__snake_case , __snake_case : Optional[Any] = array[0], array[i]
heapify(lowercase , 0 , lowercase )
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
__snake_case : Union[str, Any] = low
__snake_case : Union[str, Any] = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
__snake_case , __snake_case : str = array[j], array[i]
i += 1
def lowerCAmelCase__( lowercase : list ) -> list:
if len(lowercase ) == 0:
return array
__snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) )
__snake_case : Dict = 16
return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list:
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
__snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 )
__snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase )
intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase )
__snake_case : List[str] = p
return insertion_sort(lowercase , lowercase , lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip()
_UpperCamelCase = [float(item) for item in user_input.split(''',''')]
print(sort(unsorted))
| 326 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''',
'''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''',
'''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''',
'''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''',
'''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''',
}
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Tuple ="rwkv"
UpperCAmelCase_ : Union[str, Any] ={"max_position_embeddings": "context_length"}
def __init__( self , UpperCAmelCase=50277 , UpperCAmelCase=1024 , UpperCAmelCase=4096 , UpperCAmelCase=32 , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1E-5 , UpperCAmelCase=0 , UpperCAmelCase=0 , UpperCAmelCase=6 , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> Tuple:
'''simple docstring'''
__snake_case : int = vocab_size
__snake_case : Optional[Any] = context_length
__snake_case : str = hidden_size
__snake_case : int = num_hidden_layers
__snake_case : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size
__snake_case : Dict = intermediate_size if intermediate_size is not None else 4 * hidden_size
__snake_case : List[str] = layer_norm_epsilon
__snake_case : Optional[Any] = rescale_every
__snake_case : Tuple = use_cache
__snake_case : Union[str, Any] = bos_token_id
__snake_case : List[Any] = eos_token_id
super().__init__(
tie_word_embeddings=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
| 326 |
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def lowerCAmelCase__( ) -> List[Any]:
with parallel_backend("spark" ):
assert ParallelBackendConfig.backend_name == "spark"
__snake_case : Any = [1, 2, 3]
with pytest.raises(lowercase ):
with parallel_backend("unsupported backend" ):
map_nested(lowercase , lowercase , num_proc=2 )
with pytest.raises(lowercase ):
with parallel_backend("unsupported backend" ):
map_nested(lowercase , lowercase , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("num_proc" , [2, -1] )
def lowerCAmelCase__( lowercase : Dict ) -> Dict:
__snake_case : Any = [1, 2]
__snake_case : Dict = {"a": 1, "b": 2}
__snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]}
__snake_case : int = {"a": {"1": 1}, "b": 2}
__snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4}
__snake_case : Dict = [2, 3]
__snake_case : Tuple = {"a": 2, "b": 3}
__snake_case : int = {"a": [2, 3], "b": [4, 5]}
__snake_case : Dict = {"a": {"1": 2}, "b": 3}
__snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5}
with parallel_backend("spark" ):
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
| 326 | 1 |
from __future__ import annotations
from dataclasses import dataclass
@dataclass
class _lowerCamelCase :
"""simple docstring"""
UpperCAmelCase_ : float
UpperCAmelCase_ : TreeNode | None =None
UpperCAmelCase_ : TreeNode | None =None
def lowerCAmelCase__( lowercase : TreeNode | None ) -> bool:
# Validation
def is_valid_tree(lowercase : TreeNode | None ) -> bool:
if node is None:
return True
if not isinstance(lowercase , lowercase ):
return False
try:
float(node.data )
except (TypeError, ValueError):
return False
return is_valid_tree(node.left ) and is_valid_tree(node.right )
if not is_valid_tree(lowercase ):
raise ValueError(
"Each node should be type of TreeNode and data should be float." )
def is_binary_search_tree_recursive_check(
lowercase : TreeNode | None , lowercase : float , lowercase : float ) -> bool:
if node is None:
return True
return (
left_bound < node.data < right_bound
and is_binary_search_tree_recursive_check(node.left , lowercase , node.data )
and is_binary_search_tree_recursive_check(
node.right , node.data , lowercase )
)
return is_binary_search_tree_recursive_check(lowercase , -float("inf" ) , float("inf" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any:
__snake_case : Optional[Any] = False
__snake_case : Optional[Any] = search_prob
__snake_case : str = start_temperate
__snake_case : List[Any] = []
__snake_case : str = 0
__snake_case : Dict = None
while not search_end:
__snake_case : List[Any] = current_state.score()
if best_state is None or current_score > best_state.score():
__snake_case : List[Any] = current_state
scores.append(lowercase )
iterations += 1
__snake_case : Dict = None
__snake_case : str = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
__snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor
__snake_case : int = neighbors.pop(lowercase )
__snake_case : Optional[Any] = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
__snake_case : Any = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
__snake_case : List[str] = picked_neighbor
else:
__snake_case : Optional[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
__snake_case : str = picked_neighbor
__snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
__snake_case : Optional[Any] = True
else:
__snake_case : str = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(lowercase ) , lowercase )
plt.xlabel("Iterations" )
plt.ylabel("Function values" )
plt.show()
return best_state
if __name__ == "__main__":
def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any:
return (3 * x**2) - (6 * y)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True)
print(
'''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True)
print(
'''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
| 326 | 1 |
import torch
from torch import nn
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1 , UpperCAmelCase=False ) -> List[Any]:
'''simple docstring'''
super().__init__()
__snake_case : Dict = n_token
__snake_case : Union[str, Any] = d_embed
__snake_case : Union[str, Any] = d_proj
__snake_case : List[str] = cutoffs + [n_token]
__snake_case : List[str] = [0] + self.cutoffs
__snake_case : Any = div_val
__snake_case : str = self.cutoffs[0]
__snake_case : Any = len(self.cutoffs ) - 1
__snake_case : Union[str, Any] = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
__snake_case : List[str] = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) )
__snake_case : str = nn.Parameter(torch.zeros(self.n_clusters ) )
__snake_case : Dict = nn.ModuleList()
__snake_case : Optional[Any] = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs ) ):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase , UpperCAmelCase ) ) )
else:
self.out_projs.append(UpperCAmelCase )
self.out_layers.append(nn.Linear(UpperCAmelCase , UpperCAmelCase ) )
else:
for i in range(len(self.cutoffs ) ):
__snake_case , __snake_case : Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
__snake_case : int = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase , UpperCAmelCase ) ) )
self.out_layers.append(nn.Linear(UpperCAmelCase , r_idx - l_idx ) )
__snake_case : Union[str, Any] = keep_order
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
if proj is None:
__snake_case : Any = nn.functional.linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase )
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
__snake_case : Any = nn.functional.linear(UpperCAmelCase , proj.t().contiguous() )
__snake_case : List[Any] = nn.functional.linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase )
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) -> List[Any]:
'''simple docstring'''
if labels is not None:
# Shift so that tokens < n predict n
__snake_case : Optional[Any] = hidden[..., :-1, :].contiguous()
__snake_case : List[Any] = labels[..., 1:].contiguous()
__snake_case : Union[str, Any] = hidden.view(-1 , hidden.size(-1 ) )
__snake_case : List[Any] = labels.view(-1 )
if hidden.size(0 ) != labels.size(0 ):
raise RuntimeError("Input and labels should have the same size in the batch dimension." )
else:
__snake_case : Dict = hidden.view(-1 , hidden.size(-1 ) )
if self.n_clusters == 0:
__snake_case : List[Any] = self._compute_logit(UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
if labels is not None:
__snake_case : Any = labels != -100
__snake_case : Optional[Any] = torch.zeros_like(UpperCAmelCase , dtype=hidden.dtype , device=hidden.device )
__snake_case : Any = (
-nn.functional.log_softmax(UpperCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 )
)
else:
__snake_case : Dict = nn.functional.log_softmax(UpperCAmelCase , dim=-1 )
else:
# construct weights and biases
__snake_case , __snake_case : Dict = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
__snake_case , __snake_case : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
__snake_case : List[str] = self.out_layers[0].weight[l_idx:r_idx]
__snake_case : str = self.out_layers[0].bias[l_idx:r_idx]
else:
__snake_case : List[str] = self.out_layers[i].weight
__snake_case : Optional[Any] = self.out_layers[i].bias
if i == 0:
__snake_case : int = torch.cat([weight_i, self.cluster_weight] , dim=0 )
__snake_case : Dict = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(UpperCAmelCase )
biases.append(UpperCAmelCase )
__snake_case , __snake_case , __snake_case : Any = weights[0], biases[0], self.out_projs[0]
__snake_case : Union[str, Any] = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
__snake_case : Union[str, Any] = nn.functional.log_softmax(UpperCAmelCase , dim=1 )
if labels is None:
__snake_case : Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) )
else:
__snake_case : Dict = torch.zeros_like(UpperCAmelCase , dtype=hidden.dtype , device=hidden.device )
__snake_case : Tuple = 0
__snake_case : Optional[Any] = [0] + self.cutoffs
for i in range(len(UpperCAmelCase ) - 1 ):
__snake_case , __snake_case : List[Any] = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
__snake_case : Dict = (labels >= l_idx) & (labels < r_idx)
__snake_case : List[str] = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
__snake_case : Dict = labels.index_select(0 , UpperCAmelCase ) - l_idx
__snake_case : Optional[int] = head_logprob.index_select(0 , UpperCAmelCase )
__snake_case : Union[str, Any] = hidden.index_select(0 , UpperCAmelCase )
else:
__snake_case : Optional[int] = hidden
if i == 0:
if labels is not None:
__snake_case : int = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 )
else:
__snake_case : List[Any] = head_logprob[:, : self.cutoffs[0]]
else:
__snake_case , __snake_case , __snake_case : Any = weights[i], biases[i], self.out_projs[i]
__snake_case : int = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
__snake_case : Optional[int] = nn.functional.log_softmax(UpperCAmelCase , dim=1 )
__snake_case : List[str] = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
__snake_case : str = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 , target_i[:, None] ).squeeze(1 )
else:
__snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
__snake_case : List[Any] = logprob_i
if labels is not None:
if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order:
out.index_copy_(0 , UpperCAmelCase , -logprob_i )
else:
out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i )
offset += logprob_i.size(0 )
return out
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
if self.n_clusters == 0:
__snake_case : int = self._compute_logit(UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
return nn.functional.log_softmax(UpperCAmelCase , dim=-1 )
else:
# construct weights and biases
__snake_case , __snake_case : str = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
__snake_case , __snake_case : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
__snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx]
__snake_case : List[str] = self.out_layers[0].bias[l_idx:r_idx]
else:
__snake_case : Any = self.out_layers[i].weight
__snake_case : Optional[int] = self.out_layers[i].bias
if i == 0:
__snake_case : Union[str, Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 )
__snake_case : int = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(UpperCAmelCase )
biases.append(UpperCAmelCase )
__snake_case , __snake_case , __snake_case : Any = weights[0], biases[0], self.out_projs[0]
__snake_case : List[str] = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
__snake_case : Optional[int] = hidden.new_empty((head_logit.size(0 ), self.n_token) )
__snake_case : Union[str, Any] = nn.functional.log_softmax(UpperCAmelCase , dim=1 )
__snake_case : List[str] = [0] + self.cutoffs
for i in range(len(UpperCAmelCase ) - 1 ):
__snake_case , __snake_case : List[str] = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
__snake_case : Dict = head_logprob[:, : self.cutoffs[0]]
else:
__snake_case , __snake_case , __snake_case : str = weights[i], biases[i], self.out_projs[i]
__snake_case : str = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
__snake_case : Union[str, Any] = nn.functional.log_softmax(UpperCAmelCase , dim=1 )
__snake_case : Union[str, Any] = head_logprob[:, -i] + tail_logprob_i
__snake_case : str = logprob_i
return out
| 326 |
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"]
UpperCAmelCase_ : Tuple ="FlavaImageProcessor"
UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast")
def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int:
'''simple docstring'''
__snake_case : List[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase , )
__snake_case : List[Any] = kwargs.pop("feature_extractor" )
__snake_case : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = self.image_processor
def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]:
'''simple docstring'''
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
__snake_case : Union[str, Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if images is not None:
__snake_case : Union[str, Any] = self.image_processor(
UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if text is not None and images is not None:
encoding.update(UpperCAmelCase )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : List[Any] = self.tokenizer.model_input_names
__snake_case : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , )
return self.image_processor
| 326 | 1 |
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=3 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=10 , UpperCAmelCase=[8, 16, 32, 64] , UpperCAmelCase=[1, 1, 2, 1] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=3 , UpperCAmelCase=None , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=[2, 3, 4] , UpperCAmelCase=1 , ) -> Optional[int]:
'''simple docstring'''
__snake_case : Union[str, Any] = parent
__snake_case : List[str] = batch_size
__snake_case : Optional[int] = image_size
__snake_case : Tuple = num_channels
__snake_case : List[Any] = embeddings_size
__snake_case : Optional[Any] = hidden_sizes
__snake_case : List[Any] = depths
__snake_case : Union[str, Any] = is_training
__snake_case : str = use_labels
__snake_case : Dict = hidden_act
__snake_case : Any = num_labels
__snake_case : Union[str, Any] = scope
__snake_case : Optional[Any] = len(UpperCAmelCase )
__snake_case : int = out_features
__snake_case : Optional[Any] = out_indices
__snake_case : Union[str, Any] = num_groups
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Optional[int] = None
if self.use_labels:
__snake_case : str = ids_tensor([self.batch_size] , self.num_labels )
__snake_case : Dict = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str:
'''simple docstring'''
__snake_case : Optional[int] = BitModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : Optional[Any] = model(UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Optional[Any] = self.num_labels
__snake_case : Optional[Any] = BitForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : Optional[int] = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__snake_case : int = BitBackbone(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : Tuple = model(UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__snake_case : int = None
__snake_case : Tuple = BitBackbone(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : str = model(UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : List[str] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : int = config_and_inputs
__snake_case : str = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _lowerCamelCase ( a , a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Any =(BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
UpperCAmelCase_ : Tuple =(
{"feature-extraction": BitModel, "image-classification": BitForImageClassification}
if is_torch_available()
else {}
)
UpperCAmelCase_ : List[Any] =False
UpperCAmelCase_ : str =False
UpperCAmelCase_ : List[Any] =False
UpperCAmelCase_ : Union[str, Any] =False
UpperCAmelCase_ : Dict =False
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case : Optional[Any] = BitModelTester(self )
__snake_case : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase )
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return
@unittest.skip(reason="Bit does not output attentions" )
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
pass
@unittest.skip(reason="Bit does not use inputs_embeds" )
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
pass
@unittest.skip(reason="Bit does not support input and output embeddings" )
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
pass
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : List[str] = model_class(UpperCAmelCase )
__snake_case : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : List[Any] = [*signature.parameters.keys()]
__snake_case : str = ["pixel_values"]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = model_class(config=UpperCAmelCase )
for name, module in model.named_modules():
if isinstance(UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
__snake_case : Optional[int] = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
__snake_case : Union[str, Any] = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
__snake_case : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__snake_case : Tuple = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Optional[int] = ["preactivation", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
__snake_case : Optional[Any] = layer_type
__snake_case : Union[str, Any] = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : Tuple = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
@unittest.skip(reason="Bit does not use feedforward chunking" )
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
pass
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
@slow
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : int = BitModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def lowerCAmelCase__( ) -> str:
__snake_case : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCAmelCase )
__snake_case : List[str] = self.default_image_processor
__snake_case : Optional[int] = prepare_img()
__snake_case : Dict = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
__snake_case : Tuple = model(**UpperCAmelCase )
# verify the logits
__snake_case : Optional[int] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
__snake_case : Optional[Any] = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) )
@require_torch
class _lowerCamelCase ( a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] =(BitBackbone,) if is_torch_available() else ()
UpperCAmelCase_ : Union[str, Any] =BitConfig
UpperCAmelCase_ : Union[str, Any] =False
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : List[Any] = BitModelTester(self )
| 326 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''}
_UpperCamelCase = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
}
}
_UpperCamelCase = {
'''camembert-base''': 512,
}
_UpperCamelCase = '''▁'''
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES
UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : str =["input_ids", "attention_mask"]
def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
'''simple docstring'''
__snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
__snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , )
__snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCAmelCase ) )
__snake_case : Dict = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
__snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
__snake_case : Optional[int] = len(self.fairseq_tokens_to_ids )
__snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
__snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Dict = [self.cls_token_id]
__snake_case : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1]
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__snake_case : int = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(UpperCAmelCase ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__snake_case : Tuple = []
__snake_case : Union[str, Any] = ""
__snake_case : Optional[int] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase ) + token
__snake_case : List[Any] = True
__snake_case : Union[str, Any] = []
else:
current_sub_tokens.append(UpperCAmelCase )
__snake_case : int = False
out_string += self.sp_model.decode(UpperCAmelCase )
return out_string.strip()
def __getstate__( self ) -> List[Any]:
'''simple docstring'''
__snake_case : str = self.__dict__.copy()
__snake_case : Optional[Any] = None
return state
def __setstate__( self , UpperCAmelCase ) -> str:
'''simple docstring'''
__snake_case : Optional[Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__snake_case : List[str] = {}
__snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__snake_case : Optional[Any] = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase , "wb" ) as fi:
__snake_case : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase )
return (out_vocab_file,)
| 326 | 1 |
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def lowerCAmelCase__( lowercase : Optional[int] ) -> List[str]:
__snake_case : Tuple = {}
__snake_case : List[Any] = job["started_at"]
__snake_case : List[str] = job["completed_at"]
__snake_case : List[Any] = date_parser.parse(lowercase )
__snake_case : str = date_parser.parse(lowercase )
__snake_case : List[Any] = round((end_datetime - start_datetime).total_seconds() / 6_0.0 )
__snake_case : Union[str, Any] = start
__snake_case : List[str] = end
__snake_case : Union[str, Any] = duration_in_min
return job_info
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : List[Any]=None ) -> Optional[int]:
__snake_case : Any = None
if token is not None:
__snake_case : Any = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""}
__snake_case : List[Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
__snake_case : Optional[int] = requests.get(lowercase , headers=lowercase ).json()
__snake_case : Optional[int] = {}
try:
job_time.update({job["name"]: extract_time_from_single_job(lowercase ) for job in result["jobs"]} )
__snake_case : Optional[int] = math.ceil((result["total_count"] - 100) / 100 )
for i in range(lowercase ):
__snake_case : str = requests.get(url + f"""&page={i + 2}""" , headers=lowercase ).json()
job_time.update({job["name"]: extract_time_from_single_job(lowercase ) for job in result["jobs"]} )
return job_time
except Exception:
print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''')
_UpperCamelCase = parser.parse_args()
_UpperCamelCase = get_job_time(args.workflow_run_id)
_UpperCamelCase = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(F'''{k}: {v['duration']}''')
| 326 |
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool:
__snake_case : List[str] = len(lowercase )
__snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__snake_case : Optional[Any] = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
__snake_case : Union[str, Any] = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
__snake_case : List[str] = subset[i - 1][j]
if arr[i - 1] <= j:
__snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 | 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''asapp/sew-tiny-100k''': '''https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json''',
# See all SEW models at https://huggingface.co/models?filter=sew
}
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : str ="sew"
def __init__( self , UpperCAmelCase=32 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase=2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1E-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , UpperCAmelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCAmelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCAmelCase=False , UpperCAmelCase=128 , UpperCAmelCase=16 , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=10 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=10 , UpperCAmelCase=0 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=256 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , **UpperCAmelCase , ) -> Any:
'''simple docstring'''
super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase )
__snake_case : str = hidden_size
__snake_case : Optional[Any] = feat_extract_norm
__snake_case : List[Any] = feat_extract_activation
__snake_case : Optional[int] = list(UpperCAmelCase )
__snake_case : Union[str, Any] = list(UpperCAmelCase )
__snake_case : Union[str, Any] = list(UpperCAmelCase )
__snake_case : Dict = conv_bias
__snake_case : Optional[Any] = num_conv_pos_embeddings
__snake_case : Optional[int] = num_conv_pos_embedding_groups
__snake_case : List[Any] = len(self.conv_dim )
__snake_case : Optional[int] = num_hidden_layers
__snake_case : Optional[int] = intermediate_size
__snake_case : Any = squeeze_factor
__snake_case : str = hidden_act
__snake_case : Optional[int] = num_attention_heads
__snake_case : int = hidden_dropout
__snake_case : Optional[int] = attention_dropout
__snake_case : Optional[int] = activation_dropout
__snake_case : int = feat_proj_dropout
__snake_case : Optional[Any] = final_dropout
__snake_case : Optional[Any] = layerdrop
__snake_case : List[Any] = layer_norm_eps
__snake_case : int = initializer_range
__snake_case : int = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect."
"It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"
F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"""
F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__snake_case : List[str] = apply_spec_augment
__snake_case : Tuple = mask_time_prob
__snake_case : Any = mask_time_length
__snake_case : List[str] = mask_time_min_masks
__snake_case : Optional[Any] = mask_feature_prob
__snake_case : List[str] = mask_feature_length
__snake_case : Optional[Any] = mask_feature_min_masks
# ctc loss
__snake_case : Union[str, Any] = ctc_loss_reduction
__snake_case : int = ctc_zero_infinity
# sequence classification
__snake_case : List[Any] = use_weighted_layer_sum
__snake_case : Tuple = classifier_proj_size
@property
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 326 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
_UpperCamelCase = 4
_UpperCamelCase = 3
class _lowerCamelCase ( a ):
"""simple docstring"""
pass
def lowerCAmelCase__( lowercase : List[str] ) -> Any:
for shard in shards:
for i in range(lowercase ):
yield {"i": i, "shard": shard}
def lowerCAmelCase__( ) -> Optional[int]:
__snake_case : List[Any] = int(os.environ["RANK"] )
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : List[str] = ArgumentParser()
parser.add_argument("--streaming" , type=lowercase )
parser.add_argument("--local_rank" , type=lowercase )
parser.add_argument("--num_workers" , type=lowercase , default=0 )
__snake_case : Any = parser.parse_args()
__snake_case : Dict = args.streaming
__snake_case : Union[str, Any] = args.num_workers
__snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]}
__snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase )
if not streaming:
__snake_case : Any = Dataset.from_list(list(lowercase ) )
__snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase )
__snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase )
__snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD
__snake_case : List[str] = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
__snake_case : Dict = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" )
if __name__ == "__main__":
main()
| 326 | 1 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=7 , UpperCAmelCase=3 , UpperCAmelCase=30 , UpperCAmelCase=400 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=[0.5, 0.5, 0.5] , UpperCAmelCase=[0.5, 0.5, 0.5] , UpperCAmelCase=True , UpperCAmelCase=1 / 255 , UpperCAmelCase=True , ) -> List[Any]:
'''simple docstring'''
__snake_case : Union[str, Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
__snake_case : Tuple = parent
__snake_case : Tuple = batch_size
__snake_case : List[str] = num_channels
__snake_case : Optional[int] = min_resolution
__snake_case : Any = max_resolution
__snake_case : Tuple = do_resize
__snake_case : Optional[Any] = size
__snake_case : Optional[int] = do_normalize
__snake_case : Union[str, Any] = image_mean
__snake_case : Union[str, Any] = image_std
__snake_case : Optional[Any] = do_rescale
__snake_case : Any = rescale_factor
__snake_case : str = do_pad
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> Dict:
'''simple docstring'''
if not batched:
__snake_case : Dict = image_inputs[0]
if isinstance(UpperCAmelCase , Image.Image ):
__snake_case , __snake_case : Optional[Any] = image.size
else:
__snake_case , __snake_case : Union[str, Any] = image.shape[1], image.shape[2]
if w < h:
__snake_case : str = int(self.size["shortest_edge"] * h / w )
__snake_case : List[str] = self.size["shortest_edge"]
elif w > h:
__snake_case : List[Any] = self.size["shortest_edge"]
__snake_case : Tuple = int(self.size["shortest_edge"] * w / h )
else:
__snake_case : str = self.size["shortest_edge"]
__snake_case : List[Any] = self.size["shortest_edge"]
else:
__snake_case : Optional[int] = []
for image in image_inputs:
__snake_case , __snake_case : Tuple = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__snake_case : List[str] = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[0] )[0]
__snake_case : Optional[int] = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _lowerCamelCase ( a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : str =ConditionalDetrImageProcessor if is_vision_available() else None
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Optional[Any] = ConditionalDetrImageProcessingTester(self )
@property
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase , "image_mean" ) )
self.assertTrue(hasattr(UpperCAmelCase , "image_std" ) )
self.assertTrue(hasattr(UpperCAmelCase , "do_normalize" ) )
self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) )
self.assertTrue(hasattr(UpperCAmelCase , "size" ) )
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} )
self.assertEqual(image_processor.do_pad , UpperCAmelCase )
__snake_case : Any = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase )
self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} )
self.assertEqual(image_processor.do_pad , UpperCAmelCase )
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
pass
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__snake_case : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , Image.Image )
# Test not batched input
__snake_case : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
__snake_case , __snake_case : int = self.image_processor_tester.get_expected_values(UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__snake_case , __snake_case : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase )
__snake_case : List[Any] = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__snake_case : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , np.ndarray )
# Test not batched input
__snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
__snake_case , __snake_case : Tuple = self.image_processor_tester.get_expected_values(UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__snake_case : Union[str, Any] = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values
__snake_case , __snake_case : str = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__snake_case : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , torch.Tensor )
# Test not batched input
__snake_case : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
__snake_case , __snake_case : Any = self.image_processor_tester.get_expected_values(UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__snake_case : Dict = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values
__snake_case , __snake_case : str = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
__snake_case : str = json.loads(f.read() )
__snake_case : int = {"image_id": 39769, "annotations": target}
# encode them
__snake_case : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" )
__snake_case : Tuple = image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , return_tensors="pt" )
# verify pixel values
__snake_case : List[Any] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase )
__snake_case : List[Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase , atol=1E-4 ) )
# verify area
__snake_case : Optional[int] = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase ) )
# verify boxes
__snake_case : Tuple = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase )
__snake_case : str = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase , atol=1E-3 ) )
# verify image_id
__snake_case : Optional[int] = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase ) )
# verify is_crowd
__snake_case : Dict = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase ) )
# verify class_labels
__snake_case : Tuple = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase ) )
# verify orig_size
__snake_case : str = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase ) )
# verify size
__snake_case : List[str] = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase ) )
@slow
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
__snake_case : List[str] = json.loads(f.read() )
__snake_case : Optional[int] = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
__snake_case : List[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
__snake_case : str = ConditionalDetrImageProcessor(format="coco_panoptic" )
__snake_case : Tuple = image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , masks_path=UpperCAmelCase , return_tensors="pt" )
# verify pixel values
__snake_case : Optional[Any] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase )
__snake_case : Union[str, Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase , atol=1E-4 ) )
# verify area
__snake_case : Optional[Any] = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase ) )
# verify boxes
__snake_case : Dict = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase )
__snake_case : str = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase , atol=1E-3 ) )
# verify image_id
__snake_case : List[str] = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase ) )
# verify is_crowd
__snake_case : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase ) )
# verify class_labels
__snake_case : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase ) )
# verify masks
__snake_case : int = 822873
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCAmelCase )
# verify orig_size
__snake_case : Optional[Any] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase ) )
# verify size
__snake_case : int = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase ) )
| 326 |
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int:
__snake_case : List[Any] = limit + 1
__snake_case : List[str] = [0] * limit
for first_term in range(1 , lowercase ):
for n in range(lowercase , lowercase , lowercase ):
__snake_case : Union[str, Any] = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
__snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 326 | 1 |
import numpy as np
def lowerCAmelCase__( lowercase : np.ndarray , lowercase : np.ndarray , lowercase : float = 1E-12 , lowercase : int = 100 , ) -> tuple[float, np.ndarray]:
assert np.shape(lowercase )[0] == np.shape(lowercase )[1]
# Ensure proper dimensionality.
assert np.shape(lowercase )[0] == np.shape(lowercase )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(lowercase ) == np.iscomplexobj(lowercase )
__snake_case : str = np.iscomplexobj(lowercase )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(lowercase , input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
__snake_case : Tuple = False
__snake_case : List[Any] = 0
__snake_case : Union[str, Any] = 0
__snake_case : Any = 1E12
while not convergence:
# Multiple matrix by the vector.
__snake_case : Dict = np.dot(lowercase , lowercase )
# Normalize the resulting output vector.
__snake_case : List[Any] = w / np.linalg.norm(lowercase )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
__snake_case : Optional[int] = vector.conj().T if is_complex else vector.T
__snake_case : Union[str, Any] = np.dot(lowercase , np.dot(lowercase , lowercase ) )
# Check convergence.
__snake_case : int = np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
__snake_case : List[Any] = True
__snake_case : str = lambda_
if is_complex:
__snake_case : Any = np.real(lambda_ )
return lambda_, vector
def lowerCAmelCase__( ) -> None:
__snake_case : List[Any] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] )
__snake_case : Dict = np.array([41, 4, 20] )
__snake_case : Tuple = real_input_matrix.astype(np.complexaaa )
__snake_case : str = np.triu(1j * complex_input_matrix , 1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
__snake_case : Optional[int] = np.array([41, 4, 20] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
__snake_case : Optional[int] = real_input_matrix
__snake_case : List[str] = real_vector
elif problem_type == "complex":
__snake_case : Any = complex_input_matrix
__snake_case : int = complex_vector
# Our implementation.
__snake_case , __snake_case : Any = power_iteration(lowercase , lowercase )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
__snake_case , __snake_case : Dict = np.linalg.eigh(lowercase )
# Last eigenvalue is the maximum one.
__snake_case : List[str] = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
__snake_case : str = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(lowercase ) - np.abs(lowercase ) ) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 326 |
from __future__ import annotations
def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]:
__snake_case : List[str] = word_bank or []
# create a table
__snake_case : int = len(lowercase ) + 1
__snake_case : list[list[list[str]]] = []
for _ in range(lowercase ):
table.append([] )
# seed value
__snake_case : Optional[int] = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(lowercase ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(lowercase )] == word:
__snake_case : list[list[str]] = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(lowercase )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(lowercase )]:
combination.reverse()
return table[len(lowercase )]
if __name__ == "__main__":
print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa''']))
print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t''']))
print(
all_construct(
'''hexagonosaurus''',
['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''],
)
)
| 326 | 1 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
_UpperCamelCase = get_tests_dir('''fixtures''')
_UpperCamelCase = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''')
_UpperCamelCase = get_tests_dir('''fixtures/dummy-config.json''')
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case : int = 0
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Any = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case : Optional[int] = AutoFeatureExtractor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
__snake_case : str = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
__snake_case : str = AutoFeatureExtractor.from_pretrained(UpperCAmelCase ).to_dict()
config_dict.pop("feature_extractor_type" )
__snake_case : List[str] = WavaVecaFeatureExtractor(**UpperCAmelCase )
# save in new folder
model_config.save_pretrained(UpperCAmelCase )
config.save_pretrained(UpperCAmelCase )
__snake_case : List[str] = AutoFeatureExtractor.from_pretrained(UpperCAmelCase )
# make sure private variable is not incorrectly saved
__snake_case : str = json.loads(config.to_json_string() )
self.assertTrue("_processor_class" not in dict_as_saved )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : Dict = AutoFeatureExtractor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
with self.assertRaisesRegex(
UpperCAmelCase , "bert-base is not a local folder and is not a valid model identifier" ):
__snake_case : List[Any] = AutoFeatureExtractor.from_pretrained("bert-base" )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
with self.assertRaisesRegex(
UpperCAmelCase , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
__snake_case : Optional[int] = AutoFeatureExtractor.from_pretrained(UpperCAmelCase , revision="aaaaaa" )
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
with self.assertRaisesRegex(
UpperCAmelCase , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ):
__snake_case : Optional[int] = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" )
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
with self.assertRaises(UpperCAmelCase ):
__snake_case : List[str] = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(UpperCAmelCase ):
__snake_case : str = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=UpperCAmelCase )
__snake_case : Tuple = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=UpperCAmelCase )
self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(UpperCAmelCase )
__snake_case : int = AutoFeatureExtractor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" )
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
try:
AutoConfig.register("custom" , UpperCAmelCase )
AutoFeatureExtractor.register(UpperCAmelCase , UpperCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(UpperCAmelCase ):
AutoFeatureExtractor.register(UpperCAmelCase , UpperCAmelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
__snake_case : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(UpperCAmelCase )
__snake_case : str = AutoFeatureExtractor.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =True
try:
AutoConfig.register("custom" , UpperCAmelCase )
AutoFeatureExtractor.register(UpperCAmelCase , UpperCAmelCase )
# If remote code is not set, the default is to use local
__snake_case : Tuple = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor" )
self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
__snake_case : Tuple = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=UpperCAmelCase )
self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
__snake_case : int = AutoFeatureExtractor.from_pretrained(
"hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=UpperCAmelCase )
self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" )
self.assertTrue(not hasattr(UpperCAmelCase , "is_local" ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
| 326 |
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple:
'''simple docstring'''
__snake_case : Optional[int] = parent
__snake_case : Tuple = batch_size
__snake_case : List[str] = seq_length
__snake_case : Optional[int] = is_training
__snake_case : int = use_attention_mask
__snake_case : Union[str, Any] = use_token_type_ids
__snake_case : Any = use_labels
__snake_case : List[str] = vocab_size
__snake_case : int = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : List[Any] = num_attention_heads
__snake_case : Optional[int] = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : Optional[int] = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : str = max_position_embeddings
__snake_case : List[Any] = type_vocab_size
__snake_case : int = type_sequence_label_size
__snake_case : Dict = initializer_range
__snake_case : List[Any] = num_choices
__snake_case : Union[str, Any] = rescale_embeddings
__snake_case : List[Any] = attention_type
__snake_case : str = use_bias
__snake_case : Dict = block_size
__snake_case : Optional[Any] = num_random_blocks
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Any = None
if self.use_attention_mask:
__snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Union[str, Any] = None
if self.use_token_type_ids:
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Optional[int] = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Optional[int] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs
__snake_case : int = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_flax
class _lowerCamelCase ( a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =(
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
UpperCAmelCase_ : Dict =False
UpperCAmelCase_ : str =False
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : Dict = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_hidden_states_output()
@slow
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" )
self.assertIsNotNone(UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = model_class(UpperCAmelCase )
@jax.jit
def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase )
with self.subTest("JIT Enabled" ):
__snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int:
'''simple docstring'''
if name.startswith("outputs.attentions" ):
return
else:
super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
| 326 | 1 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {
'''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''],
'''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''],
'''processing_mctct''': ['''MCTCTProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MCTCTForCTC''',
'''MCTCTModel''',
'''MCTCTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 326 |
import argparse
import datetime
def lowerCAmelCase__( lowercase : str ) -> str:
__snake_case : int = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
__snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowercase ) < 11:
raise ValueError("Must be 10 characters long" )
# Get month
__snake_case : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12" )
__snake_case : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get day
__snake_case : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31" )
# Get second separator
__snake_case : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get year
__snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?" )
# Get datetime obj for validation
__snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) )
# Start math
if m <= 2:
__snake_case : Optional[Any] = y - 1
__snake_case : Tuple = m + 12
# maths var
__snake_case : int = int(str(lowercase )[:2] )
__snake_case : int = int(str(lowercase )[2:] )
__snake_case : int = int(2.6 * m - 5.3_9 )
__snake_case : int = int(c / 4 )
__snake_case : int = int(k / 4 )
__snake_case : int = int(d + k )
__snake_case : int = int(t + u + v + x )
__snake_case : int = int(z - (2 * c) )
__snake_case : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer." )
# Response
__snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
_UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 326 | 1 |
import argparse
import os
from io import BytesIO
from pathlib import Path
import requests
from clip_retrieval.clip_client import ClipClient
from PIL import Image
from tqdm import tqdm
def lowerCAmelCase__( lowercase : str , lowercase : Any , lowercase : Tuple ) -> List[str]:
__snake_case : Any = 1.5
__snake_case : List[str] = int(factor * num_class_images )
__snake_case : List[str] = ClipClient(
url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=lowercase , aesthetic_weight=0.1 )
os.makedirs(f"""{class_data_dir}/images""" , exist_ok=lowercase )
if len(list(Path(f"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images:
return
while True:
__snake_case : str = client.query(text=lowercase )
if len(lowercase ) >= factor * num_class_images or num_images > 1E4:
break
else:
__snake_case : int = int(factor * num_images )
__snake_case : List[str] = ClipClient(
url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=lowercase , aesthetic_weight=0.1 , )
__snake_case : Optional[Any] = 0
__snake_case : List[str] = 0
__snake_case : Dict = tqdm(desc="downloading real regularization images" , total=lowercase )
with open(f"""{class_data_dir}/caption.txt""" , "w" ) as fa, open(f"""{class_data_dir}/urls.txt""" , "w" ) as fa, open(
f"""{class_data_dir}/images.txt""" , "w" ) as fa:
while total < num_class_images:
__snake_case : Union[str, Any] = class_images[count]
count += 1
try:
__snake_case : Optional[Any] = requests.get(images["url"] )
if img.status_code == 200:
__snake_case : Any = Image.open(BytesIO(img.content ) )
with open(f"""{class_data_dir}/images/{total}.jpg""" , "wb" ) as f:
f.write(img.content )
fa.write(images["caption"] + "\n" )
fa.write(images["url"] + "\n" )
fa.write(f"""{class_data_dir}/images/{total}.jpg""" + "\n" )
total += 1
pbar.update(1 )
else:
continue
except Exception:
continue
return
def lowerCAmelCase__( ) -> List[Any]:
__snake_case : Optional[Any] = argparse.ArgumentParser("" , add_help=lowercase )
parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=lowercase , type=lowercase )
parser.add_argument("--class_data_dir" , help="path to save images" , required=lowercase , type=lowercase )
parser.add_argument("--num_class_images" , help="number of images to download" , default=200 , type=lowercase )
return parser.parse_args()
if __name__ == "__main__":
_UpperCamelCase = parse_args()
retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
| 326 |
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int:
if index == r:
for j in range(lowercase ):
print(data[j] , end=" " )
print(" " )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
__snake_case : Union[str, Any] = arr[i]
combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]:
# A temporary array to store all combination one by one
__snake_case : Tuple = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 )
if __name__ == "__main__":
# Driver code to check the function above
_UpperCamelCase = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 326 | 1 |
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase = None ) -> None:
'''simple docstring'''
if components is None:
__snake_case : Tuple = []
__snake_case : Any = list(UpperCAmelCase )
def __len__( self ) -> int:
'''simple docstring'''
return len(self.__components )
def __str__( self ) -> str:
'''simple docstring'''
return "(" + ",".join(map(UpperCAmelCase , self.__components ) ) + ")"
def __add__( self , UpperCAmelCase ) -> Vector:
'''simple docstring'''
__snake_case : Any = len(self )
if size == len(UpperCAmelCase ):
__snake_case : Dict = [self.__components[i] + other.component(UpperCAmelCase ) for i in range(UpperCAmelCase )]
return Vector(UpperCAmelCase )
else:
raise Exception("must have the same size" )
def __sub__( self , UpperCAmelCase ) -> Vector:
'''simple docstring'''
__snake_case : Optional[int] = len(self )
if size == len(UpperCAmelCase ):
__snake_case : Optional[int] = [self.__components[i] - other.component(UpperCAmelCase ) for i in range(UpperCAmelCase )]
return Vector(UpperCAmelCase )
else: # error case
raise Exception("must have the same size" )
@overload
def __mul__( self , UpperCAmelCase ) -> Vector:
'''simple docstring'''
...
@overload
def __mul__( self , UpperCAmelCase ) -> float:
'''simple docstring'''
...
def __mul__( self , UpperCAmelCase ) -> float | Vector:
'''simple docstring'''
if isinstance(UpperCAmelCase , (float, int) ):
__snake_case : str = [c * other for c in self.__components]
return Vector(UpperCAmelCase )
elif isinstance(UpperCAmelCase , UpperCAmelCase ) and len(self ) == len(UpperCAmelCase ):
__snake_case : List[Any] = len(self )
__snake_case : Optional[Any] = [self.__components[i] * other.component(UpperCAmelCase ) for i in range(UpperCAmelCase )]
return sum(UpperCAmelCase )
else: # error case
raise Exception("invalid operand!" )
def UpperCAmelCase ( self ) -> Vector:
'''simple docstring'''
return Vector(self.__components )
def UpperCAmelCase ( self , UpperCAmelCase ) -> float:
'''simple docstring'''
if isinstance(UpperCAmelCase , UpperCAmelCase ) and -len(self.__components ) <= i < len(self.__components ):
return self.__components[i]
else:
raise Exception("index out of range" )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> None:
'''simple docstring'''
assert -len(self.__components ) <= pos < len(self.__components )
__snake_case : Dict = value
def UpperCAmelCase ( self ) -> float:
'''simple docstring'''
if len(self.__components ) == 0:
raise Exception("Vector is empty" )
__snake_case : Any = [c**2 for c in self.__components]
return math.sqrt(sum(UpperCAmelCase ) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = False ) -> float:
'''simple docstring'''
__snake_case : int = self * other
__snake_case : str = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den ) )
else:
return math.acos(num / den )
def lowerCAmelCase__( lowercase : int ) -> Vector:
assert isinstance(lowercase , lowercase )
return Vector([0] * dimension )
def lowerCAmelCase__( lowercase : int , lowercase : int ) -> Vector:
assert isinstance(lowercase , lowercase ) and (isinstance(lowercase , lowercase ))
__snake_case : int = [0] * dimension
__snake_case : Union[str, Any] = 1
return Vector(lowercase )
def lowerCAmelCase__( lowercase : float , lowercase : Vector , lowercase : Vector ) -> Vector:
assert (
isinstance(lowercase , lowercase )
and isinstance(lowercase , lowercase )
and (isinstance(lowercase , (int, float) ))
)
return x * scalar + y
def lowerCAmelCase__( lowercase : int , lowercase : int , lowercase : int ) -> Vector:
random.seed(lowercase )
__snake_case : Optional[int] = [random.randint(lowercase , lowercase ) for _ in range(lowercase )]
return Vector(lowercase )
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> None:
'''simple docstring'''
__snake_case : Optional[int] = matrix
__snake_case : Union[str, Any] = w
__snake_case : List[Any] = h
def __str__( self ) -> str:
'''simple docstring'''
__snake_case : Any = ""
for i in range(self.__height ):
ans += "|"
for j in range(self.__width ):
if j < self.__width - 1:
ans += str(self.__matrix[i][j] ) + ","
else:
ans += str(self.__matrix[i][j] ) + "|\n"
return ans
def __add__( self , UpperCAmelCase ) -> Matrix:
'''simple docstring'''
if self.__width == other.width() and self.__height == other.height():
__snake_case : str = []
for i in range(self.__height ):
__snake_case : List[Any] = [
self.__matrix[i][j] + other.component(UpperCAmelCase , UpperCAmelCase )
for j in range(self.__width )
]
matrix.append(UpperCAmelCase )
return Matrix(UpperCAmelCase , self.__width , self.__height )
else:
raise Exception("matrix must have the same dimension!" )
def __sub__( self , UpperCAmelCase ) -> Matrix:
'''simple docstring'''
if self.__width == other.width() and self.__height == other.height():
__snake_case : int = []
for i in range(self.__height ):
__snake_case : List[Any] = [
self.__matrix[i][j] - other.component(UpperCAmelCase , UpperCAmelCase )
for j in range(self.__width )
]
matrix.append(UpperCAmelCase )
return Matrix(UpperCAmelCase , self.__width , self.__height )
else:
raise Exception("matrices must have the same dimension!" )
@overload
def __mul__( self , UpperCAmelCase ) -> Matrix:
'''simple docstring'''
...
@overload
def __mul__( self , UpperCAmelCase ) -> Vector:
'''simple docstring'''
...
def __mul__( self , UpperCAmelCase ) -> Vector | Matrix:
'''simple docstring'''
if isinstance(UpperCAmelCase , UpperCAmelCase ): # matrix-vector
if len(UpperCAmelCase ) == self.__width:
__snake_case : Union[str, Any] = zero_vector(self.__height )
for i in range(self.__height ):
__snake_case : int = [
self.__matrix[i][j] * other.component(UpperCAmelCase )
for j in range(self.__width )
]
ans.change_component(UpperCAmelCase , sum(UpperCAmelCase ) )
return ans
else:
raise Exception(
"vector must have the same size as the "
"number of columns of the matrix!" )
elif isinstance(UpperCAmelCase , (int, float) ): # matrix-scalar
__snake_case : Union[str, Any] = [
[self.__matrix[i][j] * other for j in range(self.__width )]
for i in range(self.__height )
]
return Matrix(UpperCAmelCase , self.__width , self.__height )
return None
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return self.__height
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return self.__width
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> float:
'''simple docstring'''
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception("change_component: indices out of bounds" )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> None:
'''simple docstring'''
if 0 <= x < self.__height and 0 <= y < self.__width:
__snake_case : Optional[int] = value
else:
raise Exception("change_component: indices out of bounds" )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> float:
'''simple docstring'''
if self.__height != self.__width:
raise Exception("Matrix is not square" )
__snake_case : Any = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(UpperCAmelCase ) ):
__snake_case : int = minor[i][:y] + minor[i][y + 1 :]
return Matrix(UpperCAmelCase , self.__width - 1 , self.__height - 1 ).determinant()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> float:
'''simple docstring'''
if self.__height != self.__width:
raise Exception("Matrix is not square" )
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(UpperCAmelCase , UpperCAmelCase )
else:
raise Exception("Indices out of bounds" )
def UpperCAmelCase ( self ) -> float:
'''simple docstring'''
if self.__height != self.__width:
raise Exception("Matrix is not square" )
if self.__height < 1:
raise Exception("Matrix has no element" )
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
__snake_case : Optional[Any] = [
self.__matrix[0][y] * self.cofactor(0 , UpperCAmelCase ) for y in range(self.__width )
]
return sum(UpperCAmelCase )
def lowerCAmelCase__( lowercase : int ) -> Matrix:
__snake_case : list[list[float]] = [[0] * n for _ in range(lowercase )]
return Matrix(lowercase , lowercase , lowercase )
def lowerCAmelCase__( lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> Matrix:
random.seed(lowercase )
__snake_case : list[list[float]] = [
[random.randint(lowercase , lowercase ) for _ in range(lowercase )] for _ in range(lowercase )
]
return Matrix(lowercase , lowercase , lowercase )
| 326 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
_UpperCamelCase = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def lowerCAmelCase__( lowercase : str ) -> Optional[Any]:
__snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" )
return sd
def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict:
__snake_case : Tuple = OrderedDict()
__snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__snake_case : Optional[Any] = key
for name_pair in rename_keys_prefix:
__snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] )
__snake_case : List[str] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__snake_case : List[Any] = new_d["cls.predictions.bias"]
return new_d
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]:
assert (
checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS
), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."""
# Get Config
if "pre" in checkpoint_path:
__snake_case : Any = "pretraining"
if "vcr" in checkpoint_path:
__snake_case : Optional[Any] = {"visual_embedding_dim": 512}
elif "vqa_advanced" in checkpoint_path:
__snake_case : Tuple = {"visual_embedding_dim": 2048}
elif "vqa" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 2048}
elif "nlvr" in checkpoint_path:
__snake_case : Any = {"visual_embedding_dim": 1024}
else:
raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" )
else:
if "vcr" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 512}
__snake_case : Any = "multichoice"
elif "vqa_advanced" in checkpoint_path:
__snake_case : List[Any] = {"visual_embedding_dim": 2048}
__snake_case : Optional[Any] = "vqa_advanced"
elif "vqa" in checkpoint_path:
__snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129}
__snake_case : Union[str, Any] = "vqa"
elif "nlvr" in checkpoint_path:
__snake_case : Tuple = {
"visual_embedding_dim": 1024,
"num_labels": 2,
}
__snake_case : List[Any] = "nlvr"
__snake_case : Union[str, Any] = VisualBertConfig(**lowercase )
# Load State Dict
__snake_case : Any = load_state_dict(lowercase )
__snake_case : Dict = get_new_dict(lowercase , lowercase )
if model_type == "pretraining":
__snake_case : Optional[Any] = VisualBertForPreTraining(lowercase )
elif model_type == "vqa":
__snake_case : Tuple = VisualBertForQuestionAnswering(lowercase )
elif model_type == "nlvr":
__snake_case : Tuple = VisualBertForVisualReasoning(lowercase )
elif model_type == "multichoice":
__snake_case : List[Any] = VisualBertForMultipleChoice(lowercase )
model.load_state_dict(lowercase )
# Save Checkpoints
Path(lowercase ).mkdir(exist_ok=lowercase )
model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 326 | 1 |
def lowerCAmelCase__( lowercase : int , lowercase : int ) -> int:
while b:
__snake_case , __snake_case : Dict = b, a % b
return a
def lowerCAmelCase__( lowercase : int , lowercase : int ) -> int:
return a if b == 0 else euclidean_gcd_recursive(lowercase , a % b )
def lowerCAmelCase__( ) -> List[str]:
print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" )
print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" )
print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" )
print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" )
print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" )
print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" )
print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" )
print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" )
if __name__ == "__main__":
main()
| 326 |
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple:
# Load configuration defined in the metadata file
with open(lowercase ) as metadata_file:
__snake_case : int = json.load(lowercase )
__snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] )
# Load in the weights from the checkpoint_path
__snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"]
# Load the entity vocab file
__snake_case : Tuple = load_original_entity_vocab(lowercase )
# add an entry for [MASK2]
__snake_case : Optional[int] = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
__snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] )
# Add special tokens to the token vocabulary for downstream tasks
__snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase )
__snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase )
tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" )
tokenizer.save_pretrained(lowercase )
with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f:
__snake_case : Tuple = json.load(lowercase )
__snake_case : List[Any] = "MLukeTokenizer"
with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f:
json.dump(lowercase , lowercase )
with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f:
json.dump(lowercase , lowercase )
__snake_case : Any = MLukeTokenizer.from_pretrained(lowercase )
# Initialize the embeddings of the special tokens
__snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0]
__snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0]
__snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"]
__snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 )
__snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 )
__snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
__snake_case : List[Any] = state_dict[bias_name]
__snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 )
__snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 )
__snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
__snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self."""
__snake_case : Union[str, Any] = state_dict[prefix + matrix_name]
__snake_case : str = state_dict[prefix + matrix_name]
__snake_case : Union[str, Any] = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
__snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"]
__snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 )
__snake_case : Any = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
__snake_case : List[Any] = state_dict["entity_predictions.bias"]
__snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 )
__snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] )
__snake_case : Any = LukeForMaskedLM(config=lowercase ).eval()
state_dict.pop("entity_predictions.decoder.weight" )
state_dict.pop("lm_head.decoder.weight" )
state_dict.pop("lm_head.decoder.bias" )
__snake_case : int = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )):
__snake_case : str = state_dict[key]
else:
__snake_case : str = state_dict[key]
__snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase )
if set(lowercase ) != {"luke.embeddings.position_ids"}:
raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" )
if set(lowercase ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
__snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" )
__snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
__snake_case : Union[str, Any] = (0, 9)
__snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" )
__snake_case : Any = model(**lowercase )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
__snake_case : Optional[Any] = torch.Size((1, 33, 768) )
__snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
__snake_case : str = torch.Size((1, 1, 768) )
__snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"""
f""" {expected_shape}""" )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
__snake_case : str = MLukeTokenizer.from_pretrained(lowercase )
__snake_case : Dict = "Tokyo is the capital of <mask>."
__snake_case : Union[str, Any] = (24, 30)
__snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" )
__snake_case : int = model(**lowercase )
__snake_case : Dict = encoding["input_ids"][0].tolist()
__snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) )
__snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(lowercase )
__snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item()
__snake_case : Optional[int] = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print("Saving PyTorch model to {}".format(lowercase ) )
model.save_pretrained(lowercase )
def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]:
__snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"]
__snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )]
__snake_case : Any = {}
for entry in data:
__snake_case : Any = entry["id"]
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
__snake_case : Optional[int] = entity_id
break
__snake_case : Union[str, Any] = f"""{language}:{entity_name}"""
__snake_case : Any = entity_id
return new_mapping
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''')
parser.add_argument(
'''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.'''
)
parser.add_argument(
'''--entity_vocab_path''',
default=None,
type=str,
help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.'''
)
parser.add_argument(
'''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.'''
)
_UpperCamelCase = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 326 | 1 |
from __future__ import annotations
def lowerCAmelCase__( lowercase : int | str ) -> bool:
__snake_case : Optional[Any] = str(lowercase )
return n == n[::-1]
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> List[str]:
__snake_case : Optional[int] = 0
for i in range(1 , lowercase ):
if is_palindrome(lowercase ) and is_palindrome(bin(lowercase ).split("b" )[1] ):
total += i
return total
if __name__ == "__main__":
print(solution(int(str(input().strip()))))
| 326 |
from maths.prime_factors import prime_factors
def lowerCAmelCase__( lowercase : int ) -> int:
if not isinstance(lowercase , lowercase ):
__snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer"""
raise TypeError(lowercase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(lowercase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 | 1 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = [
['''attention''', '''attn'''],
['''encoder_attention''', '''encoder_attn'''],
['''q_lin''', '''q_proj'''],
['''k_lin''', '''k_proj'''],
['''v_lin''', '''v_proj'''],
['''out_lin''', '''out_proj'''],
['''norm_embeddings''', '''layernorm_embedding'''],
['''position_embeddings''', '''embed_positions'''],
['''embeddings''', '''embed_tokens'''],
['''ffn.lin''', '''fc'''],
]
def lowerCAmelCase__( lowercase : List[Any] ) -> Union[str, Any]:
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
__snake_case : Dict = k.replace(lowercase , lowercase )
if k.startswith("encoder" ):
__snake_case : Tuple = k.replace(".attn" , ".self_attn" )
__snake_case : Dict = k.replace("norm1" , "self_attn_layer_norm" )
__snake_case : str = k.replace("norm2" , "final_layer_norm" )
elif k.startswith("decoder" ):
__snake_case : int = k.replace("norm1" , "self_attn_layer_norm" )
__snake_case : str = k.replace("norm2" , "encoder_attn_layer_norm" )
__snake_case : Optional[Any] = k.replace("norm3" , "final_layer_norm" )
return k
def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Optional[Any]:
__snake_case : int = [
"model.encoder.layernorm_embedding.weight",
"model.encoder.layernorm_embedding.bias",
"model.decoder.layernorm_embedding.weight",
"model.decoder.layernorm_embedding.bias",
]
for k in keys:
__snake_case : Union[str, Any] = sd.pop(lowercase )
__snake_case : Dict = k.replace("layernorm_embedding" , "layer_norm" )
assert new_k not in sd
__snake_case : Union[str, Any] = v
_UpperCamelCase = ['''START''']
@torch.no_grad()
def lowerCAmelCase__( lowercase : List[str] , lowercase : Optional[int] , lowercase : Union[str, Any] ) -> Optional[int]:
__snake_case : Union[str, Any] = torch.load(lowercase , map_location="cpu" )
__snake_case : Dict = model["model"]
__snake_case : Dict = BlenderbotConfig.from_json_file(lowercase )
__snake_case : Dict = BlenderbotForConditionalGeneration(lowercase )
__snake_case : Dict = m.model.state_dict().keys()
__snake_case : Optional[int] = []
__snake_case : List[str] = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
__snake_case : Optional[int] = rename_state_dict_key(lowercase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
__snake_case : Tuple = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(lowercase )
m.model.load_state_dict(lowercase , strict=lowercase )
m.half()
m.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''')
parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''')
parser.add_argument(
'''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use'''
)
_UpperCamelCase = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 326 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" )
__snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" )
__snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids
__snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids
__snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
__snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits
__snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean()
__snake_case : Any = -(labels.shape[-1] * loss.item())
__snake_case : List[str] = -84.9_127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 326 | 1 |
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Tuple ) -> int:
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
__snake_case : Any = (boundary[1] - boundary[0]) / steps
__snake_case : Any = boundary[0]
__snake_case : Optional[Any] = boundary[1]
__snake_case : Union[str, Any] = make_points(lowercase , lowercase , lowercase )
__snake_case : str = 0.0
y += (h / 2.0) * f(lowercase )
for i in x_i:
# print(i)
y += h * f(lowercase )
y += (h / 2.0) * f(lowercase )
return y
def lowerCAmelCase__( lowercase : str , lowercase : Any , lowercase : Any ) -> int:
__snake_case : Dict = a + h
while x < (b - h):
yield x
__snake_case : Dict = x + h
def lowerCAmelCase__( lowercase : Optional[Any] ) -> Tuple: # enter your function here
__snake_case : Any = (x - 0) * (x - 0)
return y
def lowerCAmelCase__( ) -> Any:
__snake_case : Optional[Any] = 0.0 # Lower bound of integration
__snake_case : Union[str, Any] = 1.0 # Upper bound of integration
__snake_case : Tuple = 1_0.0 # define number of steps or resolution
__snake_case : Optional[Any] = [a, b] # define boundary of integration
__snake_case : List[Any] = method_a(lowercase , lowercase )
print(f"""y = {y}""" )
if __name__ == "__main__":
main()
| 326 |
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]:
'''simple docstring'''
super().__init__(UpperCAmelCase )
__snake_case : Optional[int] = proj_size
__snake_case : str = CLIPVisionModel(UpperCAmelCase )
__snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase )
__snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size )
__snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
__snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]:
'''simple docstring'''
__snake_case : int = self.model(pixel_values=UpperCAmelCase )
__snake_case : Optional[int] = clip_output.pooler_output
__snake_case : Any = self.mapper(latent_states[:, None] )
__snake_case : Any = self.final_layer_norm(UpperCAmelCase )
__snake_case : str = self.proj_out(UpperCAmelCase )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
super().__init__()
__snake_case : List[Any] = (config.num_hidden_layers + 1) // 5
__snake_case : Dict = config.hidden_size
__snake_case : str = 1
__snake_case : List[Any] = nn.ModuleList(
[
BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase )
for _ in range(UpperCAmelCase )
] )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
for block in self.blocks:
__snake_case : int = block(UpperCAmelCase )
return hidden_states
| 326 | 1 |
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput, deprecate
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : torch.FloatTensor
UpperCAmelCase_ : Optional[torch.FloatTensor] =None
def lowerCAmelCase__( lowercase : Any , lowercase : List[str]=0.9_9_9 , lowercase : Tuple="cosine" , ) -> Optional[int]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(lowercase : List[str] ):
return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(lowercase : Tuple ):
return math.exp(t * -1_2.0 )
else:
raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" )
__snake_case : List[str] = []
for i in range(lowercase ):
__snake_case : Union[str, Any] = i / num_diffusion_timesteps
__snake_case : Union[str, Any] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(lowercase ) / alpha_bar_fn(lowercase ) , lowercase ) )
return torch.tensor(lowercase , dtype=torch.floataa )
class _lowerCamelCase ( a , a ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] =1
@register_to_config
def __init__( self , UpperCAmelCase = 1000 , UpperCAmelCase = 0.0_001 , UpperCAmelCase = 0.02 , UpperCAmelCase = "linear" , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = 0 , UpperCAmelCase = "epsilon" , UpperCAmelCase = 1.0 , **UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
if kwargs.get("set_alpha_to_one" , UpperCAmelCase ) is not None:
__snake_case : str = (
"The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead."
)
deprecate("set_alpha_to_one" , "1.0.0" , UpperCAmelCase , standard_warn=UpperCAmelCase )
__snake_case : List[Any] = kwargs["set_alpha_to_one"]
if trained_betas is not None:
__snake_case : Optional[int] = torch.tensor(UpperCAmelCase , dtype=torch.floataa )
elif beta_schedule == "linear":
__snake_case : Optional[int] = torch.linspace(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__snake_case : Dict = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCAmelCase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__snake_case : Optional[Any] = betas_for_alpha_bar(UpperCAmelCase )
else:
raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" )
__snake_case : List[str] = 1.0 - self.betas
__snake_case : List[str] = torch.cumprod(self.alphas , dim=0 )
# At every step in inverted ddim, we are looking into the next alphas_cumprod
# For the final step, there is no next alphas_cumprod, and the index is out of bounds
# `set_alpha_to_zero` decides whether we set this parameter simply to zero
# in this case, self.step() just output the predicted noise
# or whether we use the final alpha of the "non-previous" one.
__snake_case : List[Any] = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1]
# standard deviation of the initial noise distribution
__snake_case : Optional[int] = 1.0
# setable values
__snake_case : List[str] = None
__snake_case : int = torch.from_numpy(np.arange(0 , UpperCAmelCase ).copy().astype(np.intaa ) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> torch.FloatTensor:
'''simple docstring'''
return sample
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[int]:
'''simple docstring'''
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
F"""`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"""
F""" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"""
F""" maximal {self.config.num_train_timesteps} timesteps.""" )
__snake_case : Union[str, Any] = num_inference_steps
__snake_case : int = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__snake_case : Any = (np.arange(0 , UpperCAmelCase ) * step_ratio).round().copy().astype(np.intaa )
__snake_case : Optional[Any] = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
self.timesteps += self.config.steps_offset
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0.0 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]:
'''simple docstring'''
__snake_case : Dict = timestep + self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
# change original implementation to exactly match noise levels for analogous forward process
__snake_case : List[Any] = self.alphas_cumprod[timestep]
__snake_case : Any = (
self.alphas_cumprod[prev_timestep]
if prev_timestep < self.config.num_train_timesteps
else self.final_alpha_cumprod
)
__snake_case : Union[str, Any] = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon":
__snake_case : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
__snake_case : Dict = model_output
elif self.config.prediction_type == "sample":
__snake_case : int = model_output
__snake_case : Any = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
elif self.config.prediction_type == "v_prediction":
__snake_case : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
__snake_case : str = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else:
raise ValueError(
F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"""
" `v_prediction`" )
# 4. Clip or threshold "predicted x_0"
if self.config.clip_sample:
__snake_case : Any = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
# 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__snake_case : Any = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon
# 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__snake_case : Dict = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if not return_dict:
return (prev_sample, pred_original_sample)
return DDIMSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def __len__( self ) -> Any:
'''simple docstring'''
return self.config.num_train_timesteps
| 326 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 326 | 1 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowerCAmelCase__( lowercase : Any , lowercase : str ) -> Union[str, Any]:
assert isinstance(lowercase , lowercase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def lowerCAmelCase__( lowercase : str , lowercase : int , lowercase : str ) -> Optional[int]:
__snake_case : Optional[int] = tmp_path / "cache"
__snake_case : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__snake_case : Union[str, Any] = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
@pytest.mark.parametrize(
"features" , [
None,
{"col_1": "string", "col_2": "int64", "col_3": "float64"},
{"col_1": "string", "col_2": "string", "col_3": "string"},
{"col_1": "int32", "col_2": "int32", "col_3": "int32"},
{"col_1": "float32", "col_2": "float32", "col_3": "float32"},
] , )
def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] ) -> Tuple:
__snake_case : Dict = tmp_path / "cache"
__snake_case : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"}
__snake_case : Dict = features.copy() if features else default_expected_features
__snake_case : str = (
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
__snake_case : Any = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : int , lowercase : Tuple ) -> Tuple:
__snake_case : str = tmp_path / "cache"
__snake_case : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"}
__snake_case : Tuple = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("path_type" , [str, list] )
def lowerCAmelCase__( lowercase : int , lowercase : Optional[int] , lowercase : Dict ) -> str:
if issubclass(lowercase , lowercase ):
__snake_case : Optional[Any] = parquet_path
elif issubclass(lowercase , lowercase ):
__snake_case : str = [parquet_path]
__snake_case : Tuple = tmp_path / "cache"
__snake_case : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"}
__snake_case : Union[str, Any] = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read()
_check_parquet_dataset(lowercase , lowercase )
def lowerCAmelCase__( lowercase : str , lowercase : Union[str, Any] , lowercase : Dict=("train",) ) -> Optional[Any]:
assert isinstance(lowercase , lowercase )
for split in splits:
__snake_case : str = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def lowerCAmelCase__( lowercase : str , lowercase : Optional[int] , lowercase : Union[str, Any] ) -> Dict:
__snake_case : List[str] = tmp_path / "cache"
__snake_case : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__snake_case : Any = ParquetDatasetReader(
{"train": parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read()
_check_parquet_datasetdict(lowercase , lowercase )
@pytest.mark.parametrize(
"features" , [
None,
{"col_1": "string", "col_2": "int64", "col_3": "float64"},
{"col_1": "string", "col_2": "string", "col_3": "string"},
{"col_1": "int32", "col_2": "int32", "col_3": "int32"},
{"col_1": "float32", "col_2": "float32", "col_3": "float32"},
] , )
def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : int , lowercase : List[Any] ) -> Dict:
__snake_case : Tuple = tmp_path / "cache"
__snake_case : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"}
__snake_case : List[Any] = features.copy() if features else default_expected_features
__snake_case : Optional[int] = (
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
__snake_case : Any = ParquetDatasetReader({"train": parquet_path} , features=lowercase , cache_dir=lowercase ).read()
_check_parquet_datasetdict(lowercase , lowercase )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : str , lowercase : Optional[Any] ) -> Optional[Any]:
if split:
__snake_case : int = {split: parquet_path}
else:
__snake_case : Dict = "train"
__snake_case : Optional[Any] = {"train": parquet_path, "test": parquet_path}
__snake_case : Tuple = tmp_path / "cache"
__snake_case : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"}
__snake_case : Dict = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read()
_check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> Any:
__snake_case : str = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" )
assert writer.write() > 0
__snake_case : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" )
__snake_case : Optional[Any] = pf.read()
assert dataset.data.table == output_table
def lowerCAmelCase__( lowercase : Any , lowercase : int ) -> int:
__snake_case : List[str] = str(shared_datadir / "test_image_rgb.jpg" )
__snake_case : Union[str, Any] = {"image": [image_path]}
__snake_case : List[str] = Features({"image": Image()} )
__snake_case : List[Any] = Dataset.from_dict(lowercase , features=lowercase )
__snake_case : Union[str, Any] = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" )
assert writer.write() > 0
__snake_case : Optional[int] = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) )
assert dataset.features == reloaded_dataset.features
__snake_case : Dict = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=lowercase ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
"feature, expected" , [
(Features({"foo": Value("int32" )} ), None),
(Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Tuple ) -> Union[str, Any]:
assert get_writer_batch_size(lowercase ) == expected
| 326 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = torch.device('''cpu''')
def lowerCAmelCase__( ) -> Any:
__snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
__snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw )
return im
def lowerCAmelCase__( lowercase : Dict ) -> List[Any]:
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] )
def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]:
__snake_case : List[Any] = dct.pop(lowercase )
__snake_case : List[Any] = val
def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple:
__snake_case : Optional[Any] = []
for k in state_dict.keys():
__snake_case : Union[str, Any] = k
if ".pwconv" in k:
__snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" )
if ".dwconv" in k:
__snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" )
if ".Proj." in k:
__snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." )
if "patch_embed" in k_new:
__snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" )
if "network" in k_new:
__snake_case : int = k_new.split("." )
if ls[2].isdigit():
__snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] )
else:
__snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]:
__snake_case : List[str] = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
__snake_case : Tuple = 1000
__snake_case : Any = "huggingface/label-files"
__snake_case : int = "imagenet-1k-id2label.json"
__snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) )
__snake_case : str = {int(lowercase ): v for k, v in idalabel.items()}
__snake_case : int = idalabel
__snake_case : Optional[int] = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
__snake_case : Optional[Any] = [3, 3, 6, 4]
__snake_case : Optional[int] = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
__snake_case : List[str] = [3, 3, 9, 6]
__snake_case : Optional[Any] = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
__snake_case : Optional[int] = [4, 3, 10, 5]
__snake_case : Dict = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
__snake_case : str = [4, 4, 12, 6]
__snake_case : Optional[Any] = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("https" ):
__snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase )
else:
__snake_case : Tuple = torch.load(lowercase , map_location="cpu" )
__snake_case : Optional[int] = checkpoint
__snake_case : Any = create_rename_keys(lowercase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(lowercase , lowercase , lowercase )
# load HuggingFace model
__snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval()
hf_model.load_state_dict(lowercase )
# prepare test inputs
__snake_case : Optional[Any] = prepare_img()
__snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" )
__snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" )
# compare outputs from both models
__snake_case : str = get_expected_output(lowercase )
__snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 )
Path(lowercase ).mkdir(exist_ok=lowercase )
print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" )
hf_model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--swiftformer_name''',
default='''swiftformer_xs''',
choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''],
type=str,
help='''Name of the SwiftFormer model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''./converted_outputs/''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''')
_UpperCamelCase = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 326 | 1 |
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def lowerCAmelCase__( lowercase : Dict ) -> str:
return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def lowerCAmelCase__( ) -> Optional[int]:
__snake_case : Optional[Any] = ArgumentParser(
"HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=lowercase )
__snake_case : Tuple = parser.add_subparsers(help="datasets-cli command helpers" )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(lowercase )
EnvironmentCommand.register_subcommand(lowercase )
TestCommand.register_subcommand(lowercase )
RunBeamCommand.register_subcommand(lowercase )
DummyDataCommand.register_subcommand(lowercase )
# Parse args
__snake_case , __snake_case : Dict = parser.parse_known_args()
if not hasattr(lowercase , "func" ):
parser.print_help()
exit(1 )
__snake_case : Union[str, Any] = parse_unknown_args(lowercase )
# Run
__snake_case : List[str] = args.func(lowercase , **lowercase )
service.run()
if __name__ == "__main__":
main()
| 326 |
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
_UpperCamelCase = logging.getLogger(__name__)
def lowerCAmelCase__( lowercase : str ) -> List[str]:
__snake_case : int = git.Repo(search_parent_directories=lowercase )
__snake_case : Union[str, Any] = {
"repo_id": str(lowercase ),
"repo_sha": str(repo.head.object.hexsha ),
"repo_branch": str(repo.active_branch ),
}
with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f:
json.dump(lowercase , lowercase , indent=4 )
def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]:
if params.n_gpu <= 0:
__snake_case : Union[str, Any] = 0
__snake_case : Optional[int] = -1
__snake_case : Union[str, Any] = True
__snake_case : Tuple = False
return
assert torch.cuda.is_available()
logger.info("Initializing GPUs" )
if params.n_gpu > 1:
assert params.local_rank != -1
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : int = int(os.environ["N_GPU_NODE"] )
__snake_case : Union[str, Any] = int(os.environ["RANK"] )
# number of nodes / node ID
__snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node
__snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node
__snake_case : Union[str, Any] = True
assert params.n_nodes == int(os.environ["N_NODES"] )
assert params.node_id == int(os.environ["NODE_RANK"] )
# local job (single GPU)
else:
assert params.local_rank == -1
__snake_case : Any = 1
__snake_case : str = 0
__snake_case : Optional[Any] = 0
__snake_case : Dict = 0
__snake_case : int = 1
__snake_case : Optional[Any] = 1
__snake_case : Tuple = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
__snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0
__snake_case : List[Any] = params.n_nodes > 1
# summary
__snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """
logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes )
logger.info(PREFIX + "Node ID : %i" % params.node_id )
logger.info(PREFIX + "Local rank : %i" % params.local_rank )
logger.info(PREFIX + "World size : %i" % params.world_size )
logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node )
logger.info(PREFIX + "Master : %s" % str(params.is_master ) )
logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) )
logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) )
logger.info(PREFIX + "Hostname : %s" % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info("Initializing PyTorch distributed" )
torch.distributed.init_process_group(
init_method="env://" , backend="nccl" , )
def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]:
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 326 | 1 |
from __future__ import annotations
from collections.abc import Callable
from typing import Any, Generic, TypeVar
_UpperCamelCase = TypeVar('''T''')
class _lowerCamelCase ( Generic[T] ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> None:
'''simple docstring'''
__snake_case : Any | T = None
__snake_case : int = len(UpperCAmelCase )
__snake_case : list[T] = [any_type for _ in range(self.N )] + arr
__snake_case : Union[str, Any] = fnc
self.build()
def UpperCAmelCase ( self ) -> None:
'''simple docstring'''
for p in range(self.N - 1 , 0 , -1 ):
__snake_case : Optional[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> None:
'''simple docstring'''
p += self.N
__snake_case : Any = v
while p > 1:
__snake_case : Union[str, Any] = p // 2
__snake_case : int = self.fn(self.st[p * 2] , self.st[p * 2 + 1] )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> T | None: # noqa: E741
'''simple docstring'''
__snake_case , __snake_case : Tuple = l + self.N, r + self.N
__snake_case : T | None = None
while l <= r:
if l % 2 == 1:
__snake_case : List[str] = self.st[l] if res is None else self.fn(UpperCAmelCase , self.st[l] )
if r % 2 == 0:
__snake_case : Dict = self.st[r] if res is None else self.fn(UpperCAmelCase , self.st[r] )
__snake_case , __snake_case : Optional[int] = (l + 1) // 2, (r - 1) // 2
return res
if __name__ == "__main__":
from functools import reduce
_UpperCamelCase = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12]
_UpperCamelCase = {
0: 7,
1: 2,
2: 6,
3: -14,
4: 5,
5: 4,
6: 7,
7: -10,
8: 9,
9: 10,
10: 12,
11: 1,
}
_UpperCamelCase = SegmentTree(test_array, min)
_UpperCamelCase = SegmentTree(test_array, max)
_UpperCamelCase = SegmentTree(test_array, lambda a, b: a + b)
def lowerCAmelCase__( ) -> None:
for i in range(len(lowercase ) ):
for j in range(lowercase , len(lowercase ) ):
__snake_case : List[str] = reduce(lowercase , test_array[i : j + 1] )
__snake_case : int = reduce(lowercase , test_array[i : j + 1] )
__snake_case : Union[str, Any] = reduce(lambda lowercase , lowercase : a + b , test_array[i : j + 1] )
assert min_range == min_segment_tree.query(lowercase , lowercase )
assert max_range == max_segment_tree.query(lowercase , lowercase )
assert sum_range == sum_segment_tree.query(lowercase , lowercase )
test_all_segments()
for index, value in test_updates.items():
_UpperCamelCase = value
min_segment_tree.update(index, value)
max_segment_tree.update(index, value)
sum_segment_tree.update(index, value)
test_all_segments()
| 326 |
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : str =JukeboxTokenizer
UpperCAmelCase_ : Tuple ={
"artist": "Zac Brown Band",
"genres": "Country",
"lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ",
}
@require_torch
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
import torch
__snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" )
__snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"]
# fmt: off
__snake_case : Optional[Any] = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
import torch
__snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" )
__snake_case : Tuple = tokenizer(**self.metas )["input_ids"]
# fmt: off
__snake_case : int = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 326 | 1 |
import json
import os
from typing import Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
}
_UpperCamelCase = {
'''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''},
'''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''},
}
_UpperCamelCase = {
'''ctrl''': 256,
}
_UpperCamelCase = {
'''Pregnancy''': 16_8629,
'''Christianity''': 7675,
'''Explain''': 10_6423,
'''Fitness''': 6_3440,
'''Saving''': 6_3163,
'''Ask''': 2_7171,
'''Ass''': 9_5985,
'''Joke''': 16_3509,
'''Questions''': 4_5622,
'''Thoughts''': 4_9605,
'''Retail''': 5_2342,
'''Feminism''': 16_4338,
'''Writing''': 1_1992,
'''Atheism''': 19_2263,
'''Netflix''': 4_8616,
'''Computing''': 3_9639,
'''Opinion''': 4_3213,
'''Alone''': 4_4967,
'''Funny''': 5_8917,
'''Gaming''': 4_0358,
'''Human''': 4088,
'''India''': 1331,
'''Joker''': 7_7138,
'''Diet''': 3_6206,
'''Legal''': 1_1859,
'''Norman''': 4939,
'''Tip''': 7_2689,
'''Weight''': 5_2343,
'''Movies''': 4_6273,
'''Running''': 2_3425,
'''Science''': 2090,
'''Horror''': 3_7793,
'''Confession''': 6_0572,
'''Finance''': 1_2250,
'''Politics''': 1_6360,
'''Scary''': 19_1985,
'''Support''': 1_2654,
'''Technologies''': 3_2516,
'''Teenage''': 6_6160,
'''Event''': 3_2769,
'''Learned''': 6_7460,
'''Notion''': 18_2770,
'''Wikipedia''': 3_7583,
'''Books''': 6665,
'''Extract''': 7_6050,
'''Confessions''': 10_2701,
'''Conspiracy''': 7_5932,
'''Links''': 6_3674,
'''Narcissus''': 15_0425,
'''Relationship''': 5_4766,
'''Relationships''': 13_4796,
'''Reviews''': 4_1671,
'''News''': 4256,
'''Translation''': 2_6820,
'''multilingual''': 12_8406,
}
def lowerCAmelCase__( lowercase : Tuple ) -> Union[str, Any]:
__snake_case : Optional[Any] = set()
__snake_case : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__snake_case : int = char
__snake_case : List[Any] = set(lowercase )
return pairs
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES
UpperCAmelCase_ : Dict =PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : Optional[Any] =CONTROL_CODES
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="<unk>" , **UpperCAmelCase ) -> Any:
'''simple docstring'''
super().__init__(unk_token=UpperCAmelCase , **UpperCAmelCase )
with open(UpperCAmelCase , encoding="utf-8" ) as vocab_handle:
__snake_case : Optional[int] = json.load(UpperCAmelCase )
__snake_case : str = {v: k for k, v in self.encoder.items()}
with open(UpperCAmelCase , encoding="utf-8" ) as merges_handle:
__snake_case : Tuple = merges_handle.read().split("\n" )[1:-1]
__snake_case : int = [tuple(merge.split() ) for merge in merges]
__snake_case : Union[str, Any] = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
__snake_case : Any = {}
@property
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
return len(self.encoder )
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Any:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
__snake_case : Tuple = tuple(UpperCAmelCase )
__snake_case : Tuple = tuple(list(word[:-1] ) + [word[-1] + "</w>"] )
__snake_case : Any = get_pairs(UpperCAmelCase )
if not pairs:
return token
while True:
__snake_case : Optional[Any] = min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__snake_case , __snake_case : Tuple = bigram
__snake_case : Union[str, Any] = []
__snake_case : Tuple = 0
while i < len(UpperCAmelCase ):
try:
__snake_case : Tuple = word.index(UpperCAmelCase , UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__snake_case : Tuple = j
if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__snake_case : Optional[int] = tuple(UpperCAmelCase )
__snake_case : str = new_word
if len(UpperCAmelCase ) == 1:
break
else:
__snake_case : Union[str, Any] = get_pairs(UpperCAmelCase )
__snake_case : Tuple = "@@ ".join(UpperCAmelCase )
__snake_case : str = word[:-4]
__snake_case : Dict = word
return word
def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict:
'''simple docstring'''
__snake_case : Optional[Any] = []
__snake_case : List[str] = re.findall(r"\S+\n?" , UpperCAmelCase )
for token in words:
split_tokens.extend(list(self.bpe(UpperCAmelCase ).split(" " ) ) )
return split_tokens
def UpperCAmelCase ( self , UpperCAmelCase ) -> Any:
'''simple docstring'''
return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return self.decoder.get(UpperCAmelCase , self.unk_token )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Any:
'''simple docstring'''
__snake_case : Optional[Any] = " ".join(UpperCAmelCase ).replace("@@ " , "" ).strip()
return out_string
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__snake_case : Any = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__snake_case : Tuple = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + "\n" )
__snake_case : int = 0
with open(UpperCAmelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
" Please check that the tokenizer is not corrupted!" )
__snake_case : Dict = token_index
writer.write(" ".join(UpperCAmelCase ) + "\n" )
index += 1
return vocab_file, merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
| 326 |
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
_UpperCamelCase = logging.get_logger(__name__)
class _lowerCamelCase :
"""simple docstring"""
UpperCAmelCase_ : str
UpperCAmelCase_ : str =None
@staticmethod
def UpperCAmelCase ( ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
if not self.is_available():
raise RuntimeError(
F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" )
@classmethod
def UpperCAmelCase ( cls ) -> Tuple:
'''simple docstring'''
return F"""`pip install {cls.pip_package or cls.name}`"""
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] ="optuna"
@staticmethod
def UpperCAmelCase ( ) -> Union[str, Any]:
'''simple docstring'''
return is_optuna_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict:
'''simple docstring'''
return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> int:
'''simple docstring'''
return default_hp_space_optuna(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : List[str] ="ray"
UpperCAmelCase_ : Dict ="'ray[tune]'"
@staticmethod
def UpperCAmelCase ( ) -> str:
'''simple docstring'''
return is_ray_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
return default_hp_space_ray(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Tuple ="sigopt"
@staticmethod
def UpperCAmelCase ( ) -> int:
'''simple docstring'''
return is_sigopt_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict:
'''simple docstring'''
return default_hp_space_sigopt(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : str ="wandb"
@staticmethod
def UpperCAmelCase ( ) -> Optional[Any]:
'''simple docstring'''
return is_wandb_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return default_hp_space_wandb(UpperCAmelCase )
_UpperCamelCase = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def lowerCAmelCase__( ) -> str:
__snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(lowercase ) > 0:
__snake_case : Dict = available_backends[0].name
if len(lowercase ) > 1:
logger.info(
f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" )
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
f""" - To install {backend.name} run {backend.pip_install()}"""
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 326 | 1 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, ClassLabel, Features
from .base import TaskTemplate
@dataclass(frozen=a )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : str =field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
UpperCAmelCase_ : ClassVar[Features] =Features({"audio": Audio()} )
UpperCAmelCase_ : ClassVar[Features] =Features({"labels": ClassLabel} )
UpperCAmelCase_ : str ="audio"
UpperCAmelCase_ : str ="labels"
def UpperCAmelCase ( self , UpperCAmelCase ) -> int:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(F"""Column {self.label_column} is not present in features.""" )
if not isinstance(features[self.label_column] , UpperCAmelCase ):
raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" )
__snake_case : Any = copy.deepcopy(self )
__snake_case : List[str] = self.label_schema.copy()
__snake_case : Dict = features[self.label_column]
__snake_case : Optional[Any] = label_schema
return task_template
@property
def UpperCAmelCase ( self ) -> Dict[str, str]:
'''simple docstring'''
return {
self.audio_column: "audio",
self.label_column: "labels",
}
| 326 |
import math
def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list:
__snake_case : Any = end or len(lowercase )
for i in range(lowercase , lowercase ):
__snake_case : List[str] = i
__snake_case : Union[str, Any] = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
__snake_case : Optional[Any] = array[temp_index - 1]
temp_index -= 1
__snake_case : Any = temp_index_value
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap
__snake_case : Any = index
__snake_case : Optional[Any] = 2 * index + 1 # Left Node
__snake_case : str = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
__snake_case : Optional[int] = left_index
if right_index < heap_size and array[largest] < array[right_index]:
__snake_case : Tuple = right_index
if largest != index:
__snake_case , __snake_case : int = array[largest], array[index]
heapify(lowercase , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list ) -> list:
__snake_case : List[str] = len(lowercase )
for i in range(n // 2 , -1 , -1 ):
heapify(lowercase , lowercase , lowercase )
for i in range(n - 1 , 0 , -1 ):
__snake_case , __snake_case : Optional[Any] = array[0], array[i]
heapify(lowercase , 0 , lowercase )
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
__snake_case : Union[str, Any] = low
__snake_case : Union[str, Any] = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
__snake_case , __snake_case : str = array[j], array[i]
i += 1
def lowerCAmelCase__( lowercase : list ) -> list:
if len(lowercase ) == 0:
return array
__snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) )
__snake_case : Dict = 16
return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list:
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
__snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 )
__snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase )
intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase )
__snake_case : List[str] = p
return insertion_sort(lowercase , lowercase , lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip()
_UpperCamelCase = [float(item) for item in user_input.split(''',''')]
print(sort(unsorted))
| 326 | 1 |
from ...configuration_utils import PretrainedConfig
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] ="bert-generation"
def __init__( self , UpperCAmelCase=50358 , UpperCAmelCase=1024 , UpperCAmelCase=24 , UpperCAmelCase=16 , UpperCAmelCase=4096 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0.02 , UpperCAmelCase=1E-12 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase="absolute" , UpperCAmelCase=True , **UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
__snake_case : str = vocab_size
__snake_case : Union[str, Any] = hidden_size
__snake_case : Optional[int] = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : str = hidden_act
__snake_case : Optional[Any] = intermediate_size
__snake_case : Tuple = hidden_dropout_prob
__snake_case : str = attention_probs_dropout_prob
__snake_case : Tuple = max_position_embeddings
__snake_case : Tuple = initializer_range
__snake_case : List[str] = layer_norm_eps
__snake_case : Dict = position_embedding_type
__snake_case : Optional[Any] = use_cache
| 326 |
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def lowerCAmelCase__( ) -> List[Any]:
with parallel_backend("spark" ):
assert ParallelBackendConfig.backend_name == "spark"
__snake_case : Any = [1, 2, 3]
with pytest.raises(lowercase ):
with parallel_backend("unsupported backend" ):
map_nested(lowercase , lowercase , num_proc=2 )
with pytest.raises(lowercase ):
with parallel_backend("unsupported backend" ):
map_nested(lowercase , lowercase , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("num_proc" , [2, -1] )
def lowerCAmelCase__( lowercase : Dict ) -> Dict:
__snake_case : Any = [1, 2]
__snake_case : Dict = {"a": 1, "b": 2}
__snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]}
__snake_case : int = {"a": {"1": 1}, "b": 2}
__snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4}
__snake_case : Dict = [2, 3]
__snake_case : Tuple = {"a": 2, "b": 3}
__snake_case : int = {"a": [2, 3], "b": [4, 5]}
__snake_case : Dict = {"a": {"1": 2}, "b": 3}
__snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5}
with parallel_backend("spark" ):
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
| 326 | 1 |
from sklearn.metrics import matthews_corrcoef
import datasets
_UpperCamelCase = '''
Compute the Matthews correlation coefficient (MCC)
The Matthews correlation coefficient is used in machine learning as a
measure of the quality of binary and multiclass classifications. It takes
into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are of
very different sizes. The MCC is in essence a correlation coefficient value
between -1 and +1. A coefficient of +1 represents a perfect prediction, 0
an average random prediction and -1 an inverse prediction. The statistic
is also known as the phi coefficient. [source: Wikipedia]
'''
_UpperCamelCase = '''
Args:
predictions (list of int): Predicted labels, as returned by a model.
references (list of int): Ground truth labels.
sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.
Returns:
matthews_correlation (dict containing float): Matthews correlation.
Examples:
Example 1, a basic example with only predictions and references as inputs:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3])
>>> print(round(results[\'matthews_correlation\'], 2))
0.54
Example 2, the same example as above, but also including sample weights:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 3, 1, 1, 1, 2])
>>> print(round(results[\'matthews_correlation\'], 2))
0.1
Example 3, the same example as above, but with sample weights that cause a negative correlation:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 1, 0, 0, 0, 1])
>>> print(round(results[\'matthews_correlation\'], 2))
-0.25
'''
_UpperCamelCase = '''\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCamelCase ( datasets.Metric ):
"""simple docstring"""
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("int32" ),
"references": datasets.Value("int32" ),
} ) , reference_urls=[
"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html"
] , )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]:
'''simple docstring'''
return {
"matthews_correlation": float(matthews_corrcoef(UpperCAmelCase , UpperCAmelCase , sample_weight=UpperCAmelCase ) ),
}
| 326 |
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any:
__snake_case : Optional[Any] = False
__snake_case : Optional[Any] = search_prob
__snake_case : str = start_temperate
__snake_case : List[Any] = []
__snake_case : str = 0
__snake_case : Dict = None
while not search_end:
__snake_case : List[Any] = current_state.score()
if best_state is None or current_score > best_state.score():
__snake_case : List[Any] = current_state
scores.append(lowercase )
iterations += 1
__snake_case : Dict = None
__snake_case : str = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
__snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor
__snake_case : int = neighbors.pop(lowercase )
__snake_case : Optional[Any] = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
__snake_case : Any = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
__snake_case : List[str] = picked_neighbor
else:
__snake_case : Optional[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
__snake_case : str = picked_neighbor
__snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
__snake_case : Optional[Any] = True
else:
__snake_case : str = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(lowercase ) , lowercase )
plt.xlabel("Iterations" )
plt.ylabel("Function values" )
plt.show()
return best_state
if __name__ == "__main__":
def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any:
return (3 * x**2) - (6 * y)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True)
print(
'''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True)
print(
'''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
| 326 | 1 |
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=99 , UpperCAmelCase=0 , UpperCAmelCase=32 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=12 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase="last" , UpperCAmelCase=None , UpperCAmelCase=None , ) -> List[Any]:
'''simple docstring'''
__snake_case : Dict = parent
__snake_case : int = batch_size
__snake_case : Optional[int] = seq_length
__snake_case : List[str] = is_training
__snake_case : Tuple = use_input_lengths
__snake_case : Dict = use_token_type_ids
__snake_case : List[str] = use_labels
__snake_case : Any = gelu_activation
__snake_case : Any = sinusoidal_embeddings
__snake_case : str = causal
__snake_case : Optional[int] = asm
__snake_case : Any = n_langs
__snake_case : Tuple = vocab_size
__snake_case : Optional[int] = n_special
__snake_case : List[Any] = hidden_size
__snake_case : Optional[int] = num_hidden_layers
__snake_case : str = num_attention_heads
__snake_case : Optional[int] = hidden_dropout_prob
__snake_case : Union[str, Any] = attention_probs_dropout_prob
__snake_case : Union[str, Any] = max_position_embeddings
__snake_case : Optional[Any] = type_vocab_size
__snake_case : Dict = type_sequence_label_size
__snake_case : str = initializer_range
__snake_case : Optional[int] = num_labels
__snake_case : Tuple = num_choices
__snake_case : Union[str, Any] = summary_type
__snake_case : str = use_proj
__snake_case : int = scope
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : int = None
if self.use_input_lengths:
__snake_case : Optional[int] = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
__snake_case : int = None
if self.use_token_type_ids:
__snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
__snake_case : str = None
__snake_case : Dict = None
__snake_case : Tuple = None
if self.use_labels:
__snake_case : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : int = ids_tensor([self.batch_size] , 2 ).float()
__snake_case : int = ids_tensor([self.batch_size] , self.num_choices )
__snake_case : Tuple = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Optional[Any] = FlaubertModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : str = model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase )
__snake_case : Union[str, Any] = model(UpperCAmelCase , langs=UpperCAmelCase )
__snake_case : Tuple = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[Any]:
'''simple docstring'''
__snake_case : List[str] = FlaubertWithLMHeadModel(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : str = model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Any:
'''simple docstring'''
__snake_case : str = FlaubertForQuestionAnsweringSimple(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : Union[str, Any] = model(UpperCAmelCase )
__snake_case : Union[str, Any] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> List[Any]:
'''simple docstring'''
__snake_case : List[str] = FlaubertForQuestionAnswering(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : Tuple = model(UpperCAmelCase )
__snake_case : Optional[int] = model(
UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , )
__snake_case : Optional[Any] = model(
UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , )
((__snake_case) , ) : Union[str, Any] = result_with_labels.to_tuple()
__snake_case : Dict = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase )
((__snake_case) , ) : Dict = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Dict:
'''simple docstring'''
__snake_case : int = FlaubertForSequenceClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : Any = model(UpperCAmelCase )
__snake_case : Dict = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__snake_case : Optional[Any] = self.num_labels
__snake_case : List[Any] = FlaubertForTokenClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : Any = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> int:
'''simple docstring'''
__snake_case : Dict = self.num_choices
__snake_case : Optional[Any] = FlaubertForMultipleChoice(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
__snake_case : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : int = model(
UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : Tuple = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Union[str, Any] = config_and_inputs
__snake_case : Optional[int] = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"lengths": input_lengths,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class _lowerCamelCase ( a , a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : List[str] =(
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
UpperCAmelCase_ : Union[str, Any] =(
{
"feature-extraction": FlaubertModel,
"fill-mask": FlaubertWithLMHeadModel,
"question-answering": FlaubertForQuestionAnsweringSimple,
"text-classification": FlaubertForSequenceClassification,
"token-classification": FlaubertForTokenClassification,
"zero-shot": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str:
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Any:
'''simple docstring'''
__snake_case : Optional[int] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
__snake_case : Optional[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase )
__snake_case : str = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase )
return inputs_dict
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : List[Any] = FlaubertModelTester(self )
__snake_case : str = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=37 )
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
__snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*UpperCAmelCase )
@slow
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Any = FlaubertModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@slow
@require_torch_gpu
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
__snake_case : str = True
__snake_case : Optional[int] = model_class(config=UpperCAmelCase )
__snake_case : List[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
__snake_case : Any = torch.jit.trace(
UpperCAmelCase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(UpperCAmelCase , os.path.join(UpperCAmelCase , "traced_model.pt" ) )
__snake_case : Optional[Any] = torch.jit.load(os.path.join(UpperCAmelCase , "traced_model.pt" ) , map_location=UpperCAmelCase )
loaded(inputs_dict["input_ids"].to(UpperCAmelCase ) , inputs_dict["attention_mask"].to(UpperCAmelCase ) )
@require_torch
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case : Union[str, Any] = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" )
__snake_case : Dict = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
with torch.no_grad():
__snake_case : str = model(UpperCAmelCase )[0]
__snake_case : Tuple = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , UpperCAmelCase )
__snake_case : str = torch.tensor(
[[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
| 326 |
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"]
UpperCAmelCase_ : Tuple ="FlavaImageProcessor"
UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast")
def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int:
'''simple docstring'''
__snake_case : List[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase , )
__snake_case : List[Any] = kwargs.pop("feature_extractor" )
__snake_case : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = self.image_processor
def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]:
'''simple docstring'''
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
__snake_case : Union[str, Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if images is not None:
__snake_case : Union[str, Any] = self.image_processor(
UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if text is not None and images is not None:
encoding.update(UpperCAmelCase )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : List[Any] = self.tokenizer.model_input_names
__snake_case : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , )
return self.image_processor
| 326 | 1 |
from __future__ import annotations
def lowerCAmelCase__( lowercase : list[float] , lowercase : Any ) -> Optional[int]:
print(f"""Vertex\tShortest Distance from vertex {src}""" )
for i, d in enumerate(lowercase ):
print(f"""{i}\t\t{d}""" )
def lowerCAmelCase__( lowercase : list[dict[str, int]] , lowercase : list[float] , lowercase : int ) -> Optional[int]:
for j in range(lowercase ):
__snake_case , __snake_case , __snake_case : List[Any] = (graph[j][k] for k in ["src", "dst", "weight"])
if distance[u] != float("inf" ) and distance[u] + w < distance[v]:
return True
return False
def lowerCAmelCase__( lowercase : list[dict[str, int]] , lowercase : int , lowercase : int , lowercase : int ) -> list[float]:
__snake_case : List[Any] = [float("inf" )] * vertex_count
__snake_case : Optional[int] = 0.0
for _ in range(vertex_count - 1 ):
for j in range(lowercase ):
__snake_case , __snake_case , __snake_case : List[Any] = (graph[j][k] for k in ["src", "dst", "weight"])
if distance[u] != float("inf" ) and distance[u] + w < distance[v]:
__snake_case : Optional[Any] = distance[u] + w
__snake_case : Union[str, Any] = check_negative_cycle(lowercase , lowercase , lowercase )
if negative_cycle_exists:
raise Exception("Negative cycle found" )
return distance
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = int(input('''Enter number of vertices: ''').strip())
_UpperCamelCase = int(input('''Enter number of edges: ''').strip())
_UpperCamelCase = [{} for _ in range(E)]
for i in range(E):
print('''Edge ''', i + 1)
_UpperCamelCase, _UpperCamelCase, _UpperCamelCase = (
int(x)
for x in input('''Enter source, destination, weight: ''').strip().split(''' ''')
)
_UpperCamelCase = {'''src''': src, '''dst''': dest, '''weight''': weight}
_UpperCamelCase = int(input('''\nEnter shortest path source:''').strip())
_UpperCamelCase = bellman_ford(graph, V, E, source)
print_distance(shortest_distance, 0)
| 326 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''}
_UpperCamelCase = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
}
}
_UpperCamelCase = {
'''camembert-base''': 512,
}
_UpperCamelCase = '''▁'''
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES
UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : str =["input_ids", "attention_mask"]
def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
'''simple docstring'''
__snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
__snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , )
__snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCAmelCase ) )
__snake_case : Dict = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
__snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
__snake_case : Optional[int] = len(self.fairseq_tokens_to_ids )
__snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
__snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Dict = [self.cls_token_id]
__snake_case : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1]
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__snake_case : int = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(UpperCAmelCase ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__snake_case : Tuple = []
__snake_case : Union[str, Any] = ""
__snake_case : Optional[int] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase ) + token
__snake_case : List[Any] = True
__snake_case : Union[str, Any] = []
else:
current_sub_tokens.append(UpperCAmelCase )
__snake_case : int = False
out_string += self.sp_model.decode(UpperCAmelCase )
return out_string.strip()
def __getstate__( self ) -> List[Any]:
'''simple docstring'''
__snake_case : str = self.__dict__.copy()
__snake_case : Optional[Any] = None
return state
def __setstate__( self , UpperCAmelCase ) -> str:
'''simple docstring'''
__snake_case : Optional[Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__snake_case : List[str] = {}
__snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__snake_case : Optional[Any] = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase , "wb" ) as fi:
__snake_case : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase )
return (out_vocab_file,)
| 326 | 1 |
from __future__ import annotations
def lowerCAmelCase__( lowercase : list[list[int]] ) -> bool:
__snake_case : int = len(lowercase )
# We need to create solution object to save path.
__snake_case : Tuple = [[0 for _ in range(lowercase )] for _ in range(lowercase )]
__snake_case : Any = run_maze(lowercase , 0 , 0 , lowercase )
if solved:
print("\n".join(str(lowercase ) for row in solutions ) )
else:
print("No solution exists!" )
return solved
def lowerCAmelCase__( lowercase : list[list[int]] , lowercase : int , lowercase : int , lowercase : list[list[int]] ) -> bool:
__snake_case : Dict = len(lowercase )
# Final check point.
if i == j == (size - 1):
__snake_case : int = 1
return True
__snake_case : Optional[Any] = (not i < 0) and (not j < 0) # Check lower bounds
__snake_case : Optional[int] = (i < size) and (j < size) # Check upper bounds
if lower_flag and upper_flag:
# check for already visited and block points.
__snake_case : Optional[int] = (not solutions[i][j]) and (not maze[i][j])
if block_flag:
# check visited
__snake_case : int = 1
# check for directions
if (
run_maze(lowercase , i + 1 , lowercase , lowercase )
or run_maze(lowercase , lowercase , j + 1 , lowercase )
or run_maze(lowercase , i - 1 , lowercase , lowercase )
or run_maze(lowercase , lowercase , j - 1 , lowercase )
):
return True
__snake_case : List[str] = 0
return False
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool:
__snake_case : List[str] = len(lowercase )
__snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__snake_case : Optional[Any] = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
__snake_case : Union[str, Any] = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
__snake_case : List[str] = subset[i - 1][j]
if arr[i - 1] <= j:
__snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 | 1 |
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any:
__snake_case : Optional[Any] = False
__snake_case : Optional[Any] = search_prob
__snake_case : str = start_temperate
__snake_case : List[Any] = []
__snake_case : str = 0
__snake_case : Dict = None
while not search_end:
__snake_case : List[Any] = current_state.score()
if best_state is None or current_score > best_state.score():
__snake_case : List[Any] = current_state
scores.append(lowercase )
iterations += 1
__snake_case : Dict = None
__snake_case : str = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
__snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor
__snake_case : int = neighbors.pop(lowercase )
__snake_case : Optional[Any] = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
__snake_case : Any = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
__snake_case : List[str] = picked_neighbor
else:
__snake_case : Optional[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
__snake_case : str = picked_neighbor
__snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
__snake_case : Optional[Any] = True
else:
__snake_case : str = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(lowercase ) , lowercase )
plt.xlabel("Iterations" )
plt.ylabel("Function values" )
plt.show()
return best_state
if __name__ == "__main__":
def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any:
return (3 * x**2) - (6 * y)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True)
print(
'''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True)
print(
'''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
| 326 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
_UpperCamelCase = 4
_UpperCamelCase = 3
class _lowerCamelCase ( a ):
"""simple docstring"""
pass
def lowerCAmelCase__( lowercase : List[str] ) -> Any:
for shard in shards:
for i in range(lowercase ):
yield {"i": i, "shard": shard}
def lowerCAmelCase__( ) -> Optional[int]:
__snake_case : List[Any] = int(os.environ["RANK"] )
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : List[str] = ArgumentParser()
parser.add_argument("--streaming" , type=lowercase )
parser.add_argument("--local_rank" , type=lowercase )
parser.add_argument("--num_workers" , type=lowercase , default=0 )
__snake_case : Any = parser.parse_args()
__snake_case : Dict = args.streaming
__snake_case : Union[str, Any] = args.num_workers
__snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]}
__snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase )
if not streaming:
__snake_case : Any = Dataset.from_list(list(lowercase ) )
__snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase )
__snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase )
__snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD
__snake_case : List[str] = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
__snake_case : Dict = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" )
if __name__ == "__main__":
main()
| 326 | 1 |
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"]
UpperCAmelCase_ : Tuple ="FlavaImageProcessor"
UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast")
def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int:
'''simple docstring'''
__snake_case : List[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase , )
__snake_case : List[Any] = kwargs.pop("feature_extractor" )
__snake_case : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = self.image_processor
def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]:
'''simple docstring'''
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
__snake_case : Union[str, Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if images is not None:
__snake_case : Union[str, Any] = self.image_processor(
UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if text is not None and images is not None:
encoding.update(UpperCAmelCase )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : List[Any] = self.tokenizer.model_input_names
__snake_case : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , )
return self.image_processor
| 326 |
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int:
__snake_case : List[Any] = limit + 1
__snake_case : List[str] = [0] * limit
for first_term in range(1 , lowercase ):
for n in range(lowercase , lowercase , lowercase ):
__snake_case : Union[str, Any] = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
__snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 326 | 1 |
def lowerCAmelCase__( lowercase : int ) -> list[int]:
if num <= 0:
raise ValueError("Input must be a positive integer" )
__snake_case : Union[str, Any] = [True] * (num + 1)
__snake_case : Union[str, Any] = 2
while p * p <= num:
if primes[p]:
for i in range(p * p , num + 1 , lowercase ):
__snake_case : Optional[int] = False
p += 1
return [prime for prime in range(2 , num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = int(input('''Enter a positive integer: ''').strip())
print(prime_sieve_eratosthenes(user_num))
| 326 |
from __future__ import annotations
def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]:
__snake_case : List[str] = word_bank or []
# create a table
__snake_case : int = len(lowercase ) + 1
__snake_case : list[list[list[str]]] = []
for _ in range(lowercase ):
table.append([] )
# seed value
__snake_case : Optional[int] = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(lowercase ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(lowercase )] == word:
__snake_case : list[list[str]] = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(lowercase )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(lowercase )]:
combination.reverse()
return table[len(lowercase )]
if __name__ == "__main__":
print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa''']))
print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t''']))
print(
all_construct(
'''hexagonosaurus''',
['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''],
)
)
| 326 | 1 |
def lowerCAmelCase__( lowercase : str ) -> bool:
__snake_case : List[str] = [int(lowercase ) for i in ip_va_address.split("." ) if i.isdigit()]
return len(lowercase ) == 4 and all(0 <= int(lowercase ) <= 254 for octet in octets )
if __name__ == "__main__":
_UpperCamelCase = input().strip()
_UpperCamelCase = '''valid''' if is_ip_va_address_valid(ip) else '''invalid'''
print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
| 326 |
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple:
'''simple docstring'''
__snake_case : Optional[int] = parent
__snake_case : Tuple = batch_size
__snake_case : List[str] = seq_length
__snake_case : Optional[int] = is_training
__snake_case : int = use_attention_mask
__snake_case : Union[str, Any] = use_token_type_ids
__snake_case : Any = use_labels
__snake_case : List[str] = vocab_size
__snake_case : int = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : List[Any] = num_attention_heads
__snake_case : Optional[int] = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : Optional[int] = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : str = max_position_embeddings
__snake_case : List[Any] = type_vocab_size
__snake_case : int = type_sequence_label_size
__snake_case : Dict = initializer_range
__snake_case : List[Any] = num_choices
__snake_case : Union[str, Any] = rescale_embeddings
__snake_case : List[Any] = attention_type
__snake_case : str = use_bias
__snake_case : Dict = block_size
__snake_case : Optional[Any] = num_random_blocks
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Any = None
if self.use_attention_mask:
__snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Union[str, Any] = None
if self.use_token_type_ids:
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Optional[int] = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Optional[int] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs
__snake_case : int = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_flax
class _lowerCamelCase ( a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =(
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
UpperCAmelCase_ : Dict =False
UpperCAmelCase_ : str =False
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : Dict = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_hidden_states_output()
@slow
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" )
self.assertIsNotNone(UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = model_class(UpperCAmelCase )
@jax.jit
def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase )
with self.subTest("JIT Enabled" ):
__snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int:
'''simple docstring'''
if name.startswith("outputs.attentions" ):
return
else:
super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
| 326 | 1 |
import math
def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list:
__snake_case : Any = end or len(lowercase )
for i in range(lowercase , lowercase ):
__snake_case : List[str] = i
__snake_case : Union[str, Any] = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
__snake_case : Optional[Any] = array[temp_index - 1]
temp_index -= 1
__snake_case : Any = temp_index_value
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap
__snake_case : Any = index
__snake_case : Optional[Any] = 2 * index + 1 # Left Node
__snake_case : str = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
__snake_case : Optional[int] = left_index
if right_index < heap_size and array[largest] < array[right_index]:
__snake_case : Tuple = right_index
if largest != index:
__snake_case , __snake_case : int = array[largest], array[index]
heapify(lowercase , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list ) -> list:
__snake_case : List[str] = len(lowercase )
for i in range(n // 2 , -1 , -1 ):
heapify(lowercase , lowercase , lowercase )
for i in range(n - 1 , 0 , -1 ):
__snake_case , __snake_case : Optional[Any] = array[0], array[i]
heapify(lowercase , 0 , lowercase )
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
__snake_case : Union[str, Any] = low
__snake_case : Union[str, Any] = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
__snake_case , __snake_case : str = array[j], array[i]
i += 1
def lowerCAmelCase__( lowercase : list ) -> list:
if len(lowercase ) == 0:
return array
__snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) )
__snake_case : Dict = 16
return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list:
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
__snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 )
__snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase )
intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase )
__snake_case : List[str] = p
return insertion_sort(lowercase , lowercase , lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip()
_UpperCamelCase = [float(item) for item in user_input.split(''',''')]
print(sort(unsorted))
| 326 |
import argparse
import datetime
def lowerCAmelCase__( lowercase : str ) -> str:
__snake_case : int = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
__snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowercase ) < 11:
raise ValueError("Must be 10 characters long" )
# Get month
__snake_case : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12" )
__snake_case : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get day
__snake_case : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31" )
# Get second separator
__snake_case : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get year
__snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?" )
# Get datetime obj for validation
__snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) )
# Start math
if m <= 2:
__snake_case : Optional[Any] = y - 1
__snake_case : Tuple = m + 12
# maths var
__snake_case : int = int(str(lowercase )[:2] )
__snake_case : int = int(str(lowercase )[2:] )
__snake_case : int = int(2.6 * m - 5.3_9 )
__snake_case : int = int(c / 4 )
__snake_case : int = int(k / 4 )
__snake_case : int = int(d + k )
__snake_case : int = int(t + u + v + x )
__snake_case : int = int(z - (2 * c) )
__snake_case : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer." )
# Response
__snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
_UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 326 | 1 |
def lowerCAmelCase__( lowercase : list ) -> list:
for i in range(len(lowercase ) - 1 , 0 , -1 ):
__snake_case : List[str] = False
for j in range(lowercase , 0 , -1 ):
if unsorted[j] < unsorted[j - 1]:
__snake_case , __snake_case : Union[str, Any] = unsorted[j - 1], unsorted[j]
__snake_case : Dict = True
for j in range(lowercase ):
if unsorted[j] > unsorted[j + 1]:
__snake_case , __snake_case : Dict = unsorted[j + 1], unsorted[j]
__snake_case : Any = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip()
_UpperCamelCase = [int(item) for item in user_input.split(''',''')]
print(F'''{cocktail_shaker_sort(unsorted) = }''')
| 326 |
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int:
if index == r:
for j in range(lowercase ):
print(data[j] , end=" " )
print(" " )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
__snake_case : Union[str, Any] = arr[i]
combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]:
# A temporary array to store all combination one by one
__snake_case : Tuple = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 )
if __name__ == "__main__":
# Driver code to check the function above
_UpperCamelCase = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 326 | 1 |
def lowerCAmelCase__( lowercase : int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError("The given input must be positive" )
# get the generated string sequence
__snake_case : Optional[int] = gray_code_sequence_string(lowercase )
#
# convert them to integers
for i in range(len(lowercase ) ):
__snake_case : Optional[Any] = int(sequence[i] , 2 )
return sequence
def lowerCAmelCase__( lowercase : int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
__snake_case : Union[str, Any] = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
__snake_case : List[Any] = gray_code_sequence_string(bit_count - 1 )
__snake_case : Dict = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
__snake_case : Optional[int] = "0" + smaller_sequence[i]
sequence.append(lowercase )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
__snake_case : List[Any] = "1" + smaller_sequence[i]
sequence.append(lowercase )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
_UpperCamelCase = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def lowerCAmelCase__( lowercase : str ) -> Optional[Any]:
__snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" )
return sd
def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict:
__snake_case : Tuple = OrderedDict()
__snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__snake_case : Optional[Any] = key
for name_pair in rename_keys_prefix:
__snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] )
__snake_case : List[str] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__snake_case : List[Any] = new_d["cls.predictions.bias"]
return new_d
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]:
assert (
checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS
), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."""
# Get Config
if "pre" in checkpoint_path:
__snake_case : Any = "pretraining"
if "vcr" in checkpoint_path:
__snake_case : Optional[Any] = {"visual_embedding_dim": 512}
elif "vqa_advanced" in checkpoint_path:
__snake_case : Tuple = {"visual_embedding_dim": 2048}
elif "vqa" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 2048}
elif "nlvr" in checkpoint_path:
__snake_case : Any = {"visual_embedding_dim": 1024}
else:
raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" )
else:
if "vcr" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 512}
__snake_case : Any = "multichoice"
elif "vqa_advanced" in checkpoint_path:
__snake_case : List[Any] = {"visual_embedding_dim": 2048}
__snake_case : Optional[Any] = "vqa_advanced"
elif "vqa" in checkpoint_path:
__snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129}
__snake_case : Union[str, Any] = "vqa"
elif "nlvr" in checkpoint_path:
__snake_case : Tuple = {
"visual_embedding_dim": 1024,
"num_labels": 2,
}
__snake_case : List[Any] = "nlvr"
__snake_case : Union[str, Any] = VisualBertConfig(**lowercase )
# Load State Dict
__snake_case : Any = load_state_dict(lowercase )
__snake_case : Dict = get_new_dict(lowercase , lowercase )
if model_type == "pretraining":
__snake_case : Optional[Any] = VisualBertForPreTraining(lowercase )
elif model_type == "vqa":
__snake_case : Tuple = VisualBertForQuestionAnswering(lowercase )
elif model_type == "nlvr":
__snake_case : Tuple = VisualBertForVisualReasoning(lowercase )
elif model_type == "multichoice":
__snake_case : List[Any] = VisualBertForMultipleChoice(lowercase )
model.load_state_dict(lowercase )
# Save Checkpoints
Path(lowercase ).mkdir(exist_ok=lowercase )
model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 326 | 1 |
def lowerCAmelCase__( lowercase : str ) -> str:
if not all(char in "01" for char in bin_string ):
raise ValueError("Non-binary value was passed to the function" )
if not bin_string:
raise ValueError("Empty string was passed to the function" )
__snake_case : List[Any] = ""
while len(lowercase ) % 3 != 0:
__snake_case : Tuple = "0" + bin_string
__snake_case : Any = [
bin_string[index : index + 3]
for index in range(len(lowercase ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
__snake_case : Optional[Any] = 0
for index, val in enumerate(lowercase ):
oct_val += int(2 ** (2 - index) * int(lowercase ) )
oct_string += str(lowercase )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 326 |
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple:
# Load configuration defined in the metadata file
with open(lowercase ) as metadata_file:
__snake_case : int = json.load(lowercase )
__snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] )
# Load in the weights from the checkpoint_path
__snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"]
# Load the entity vocab file
__snake_case : Tuple = load_original_entity_vocab(lowercase )
# add an entry for [MASK2]
__snake_case : Optional[int] = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
__snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] )
# Add special tokens to the token vocabulary for downstream tasks
__snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase )
__snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase )
tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" )
tokenizer.save_pretrained(lowercase )
with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f:
__snake_case : Tuple = json.load(lowercase )
__snake_case : List[Any] = "MLukeTokenizer"
with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f:
json.dump(lowercase , lowercase )
with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f:
json.dump(lowercase , lowercase )
__snake_case : Any = MLukeTokenizer.from_pretrained(lowercase )
# Initialize the embeddings of the special tokens
__snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0]
__snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0]
__snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"]
__snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 )
__snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 )
__snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
__snake_case : List[Any] = state_dict[bias_name]
__snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 )
__snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 )
__snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
__snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self."""
__snake_case : Union[str, Any] = state_dict[prefix + matrix_name]
__snake_case : str = state_dict[prefix + matrix_name]
__snake_case : Union[str, Any] = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
__snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"]
__snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 )
__snake_case : Any = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
__snake_case : List[Any] = state_dict["entity_predictions.bias"]
__snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 )
__snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] )
__snake_case : Any = LukeForMaskedLM(config=lowercase ).eval()
state_dict.pop("entity_predictions.decoder.weight" )
state_dict.pop("lm_head.decoder.weight" )
state_dict.pop("lm_head.decoder.bias" )
__snake_case : int = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )):
__snake_case : str = state_dict[key]
else:
__snake_case : str = state_dict[key]
__snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase )
if set(lowercase ) != {"luke.embeddings.position_ids"}:
raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" )
if set(lowercase ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
__snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" )
__snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
__snake_case : Union[str, Any] = (0, 9)
__snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" )
__snake_case : Any = model(**lowercase )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
__snake_case : Optional[Any] = torch.Size((1, 33, 768) )
__snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
__snake_case : str = torch.Size((1, 1, 768) )
__snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"""
f""" {expected_shape}""" )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
__snake_case : str = MLukeTokenizer.from_pretrained(lowercase )
__snake_case : Dict = "Tokyo is the capital of <mask>."
__snake_case : Union[str, Any] = (24, 30)
__snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" )
__snake_case : int = model(**lowercase )
__snake_case : Dict = encoding["input_ids"][0].tolist()
__snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) )
__snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(lowercase )
__snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item()
__snake_case : Optional[int] = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print("Saving PyTorch model to {}".format(lowercase ) )
model.save_pretrained(lowercase )
def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]:
__snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"]
__snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )]
__snake_case : Any = {}
for entry in data:
__snake_case : Any = entry["id"]
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
__snake_case : Optional[int] = entity_id
break
__snake_case : Union[str, Any] = f"""{language}:{entity_name}"""
__snake_case : Any = entity_id
return new_mapping
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''')
parser.add_argument(
'''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.'''
)
parser.add_argument(
'''--entity_vocab_path''',
default=None,
type=str,
help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.'''
)
parser.add_argument(
'''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.'''
)
_UpperCamelCase = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 326 | 1 |
def lowerCAmelCase__( lowercase : int ) -> bool:
if p < 2:
raise ValueError("p should not be less than 2!" )
elif p == 2:
return True
__snake_case : Tuple = 4
__snake_case : int = (1 << p) - 1
for _ in range(p - 2 ):
__snake_case : List[Any] = ((s * s) - 2) % m
return s == 0
if __name__ == "__main__":
print(lucas_lehmer_test(7))
print(lucas_lehmer_test(11))
| 326 |
from maths.prime_factors import prime_factors
def lowerCAmelCase__( lowercase : int ) -> int:
if not isinstance(lowercase , lowercase ):
__snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer"""
raise TypeError(lowercase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(lowercase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 | 1 |
def lowerCAmelCase__( lowercase : int ) -> int:
if not isinstance(lowercase , lowercase ):
raise ValueError("Input must be an integer" )
if input_num <= 0:
raise ValueError("Input must be positive" )
return sum(
divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" )
__snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" )
__snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids
__snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids
__snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
__snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits
__snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean()
__snake_case : Any = -(labels.shape[-1] * loss.item())
__snake_case : List[str] = -84.9_127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 326 | 1 |
from __future__ import annotations
def lowerCAmelCase__( lowercase : str ) -> list[int]:
return [ord(lowercase ) - 96 for elem in plain]
def lowerCAmelCase__( lowercase : list[int] ) -> str:
return "".join(chr(elem + 96 ) for elem in encoded )
def lowerCAmelCase__( ) -> None:
__snake_case : Optional[Any] = encode(input("-> " ).strip().lower() )
print("Encoded: " , lowercase )
print("Decoded:" , decode(lowercase ) )
if __name__ == "__main__":
main()
| 326 |
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]:
'''simple docstring'''
super().__init__(UpperCAmelCase )
__snake_case : Optional[int] = proj_size
__snake_case : str = CLIPVisionModel(UpperCAmelCase )
__snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase )
__snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size )
__snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
__snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]:
'''simple docstring'''
__snake_case : int = self.model(pixel_values=UpperCAmelCase )
__snake_case : Optional[int] = clip_output.pooler_output
__snake_case : Any = self.mapper(latent_states[:, None] )
__snake_case : Any = self.final_layer_norm(UpperCAmelCase )
__snake_case : str = self.proj_out(UpperCAmelCase )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
super().__init__()
__snake_case : List[Any] = (config.num_hidden_layers + 1) // 5
__snake_case : Dict = config.hidden_size
__snake_case : str = 1
__snake_case : List[Any] = nn.ModuleList(
[
BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase )
for _ in range(UpperCAmelCase )
] )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
for block in self.blocks:
__snake_case : int = block(UpperCAmelCase )
return hidden_states
| 326 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_UpperCamelCase = {
'''configuration_x_clip''': [
'''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''XCLIPConfig''',
'''XCLIPTextConfig''',
'''XCLIPVisionConfig''',
],
'''processing_x_clip''': ['''XCLIPProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCamelCase = [
'''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XCLIPModel''',
'''XCLIPPreTrainedModel''',
'''XCLIPTextModel''',
'''XCLIPVisionModel''',
]
if TYPE_CHECKING:
from .configuration_x_clip import (
XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
XCLIPConfig,
XCLIPTextConfig,
XCLIPVisionConfig,
)
from .processing_x_clip import XCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_x_clip import (
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
XCLIPModel,
XCLIPPreTrainedModel,
XCLIPTextModel,
XCLIPVisionModel,
)
else:
import sys
_UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 326 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 326 | 1 |
def lowerCAmelCase__( lowercase : bytes ) -> str:
return "".join([hex(lowercase )[2:].zfill(2 ).upper() for byte in list(lowercase )] )
def lowerCAmelCase__( lowercase : str ) -> bytes:
# Check data validity, following RFC3548
# https://www.ietf.org/rfc/rfc3548.txt
if (len(lowercase ) % 2) != 0:
raise ValueError(
"Base16 encoded data is invalid:\nData does not have an even number of hex digits." )
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(lowercase ) <= set("0123456789ABCDEF" ):
raise ValueError(
"Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." )
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowercase ) , 2 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = torch.device('''cpu''')
def lowerCAmelCase__( ) -> Any:
__snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
__snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw )
return im
def lowerCAmelCase__( lowercase : Dict ) -> List[Any]:
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] )
def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]:
__snake_case : List[Any] = dct.pop(lowercase )
__snake_case : List[Any] = val
def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple:
__snake_case : Optional[Any] = []
for k in state_dict.keys():
__snake_case : Union[str, Any] = k
if ".pwconv" in k:
__snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" )
if ".dwconv" in k:
__snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" )
if ".Proj." in k:
__snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." )
if "patch_embed" in k_new:
__snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" )
if "network" in k_new:
__snake_case : int = k_new.split("." )
if ls[2].isdigit():
__snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] )
else:
__snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]:
__snake_case : List[str] = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
__snake_case : Tuple = 1000
__snake_case : Any = "huggingface/label-files"
__snake_case : int = "imagenet-1k-id2label.json"
__snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) )
__snake_case : str = {int(lowercase ): v for k, v in idalabel.items()}
__snake_case : int = idalabel
__snake_case : Optional[int] = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
__snake_case : Optional[Any] = [3, 3, 6, 4]
__snake_case : Optional[int] = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
__snake_case : List[str] = [3, 3, 9, 6]
__snake_case : Optional[Any] = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
__snake_case : Optional[int] = [4, 3, 10, 5]
__snake_case : Dict = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
__snake_case : str = [4, 4, 12, 6]
__snake_case : Optional[Any] = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("https" ):
__snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase )
else:
__snake_case : Tuple = torch.load(lowercase , map_location="cpu" )
__snake_case : Optional[int] = checkpoint
__snake_case : Any = create_rename_keys(lowercase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(lowercase , lowercase , lowercase )
# load HuggingFace model
__snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval()
hf_model.load_state_dict(lowercase )
# prepare test inputs
__snake_case : Optional[Any] = prepare_img()
__snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" )
__snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" )
# compare outputs from both models
__snake_case : str = get_expected_output(lowercase )
__snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 )
Path(lowercase ).mkdir(exist_ok=lowercase )
print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" )
hf_model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--swiftformer_name''',
default='''swiftformer_xs''',
choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''],
type=str,
help='''Name of the SwiftFormer model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''./converted_outputs/''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''')
_UpperCamelCase = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 326 | 1 |
def lowerCAmelCase__( lowercase : float , lowercase : float ) -> float:
return price * (1 + tax_rate)
if __name__ == "__main__":
print(F'''{price_plus_tax(100, 0.25) = }''')
print(F'''{price_plus_tax(1_25.50, 0.05) = }''')
| 326 |
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
_UpperCamelCase = logging.getLogger(__name__)
def lowerCAmelCase__( lowercase : str ) -> List[str]:
__snake_case : int = git.Repo(search_parent_directories=lowercase )
__snake_case : Union[str, Any] = {
"repo_id": str(lowercase ),
"repo_sha": str(repo.head.object.hexsha ),
"repo_branch": str(repo.active_branch ),
}
with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f:
json.dump(lowercase , lowercase , indent=4 )
def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]:
if params.n_gpu <= 0:
__snake_case : Union[str, Any] = 0
__snake_case : Optional[int] = -1
__snake_case : Union[str, Any] = True
__snake_case : Tuple = False
return
assert torch.cuda.is_available()
logger.info("Initializing GPUs" )
if params.n_gpu > 1:
assert params.local_rank != -1
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : int = int(os.environ["N_GPU_NODE"] )
__snake_case : Union[str, Any] = int(os.environ["RANK"] )
# number of nodes / node ID
__snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node
__snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node
__snake_case : Union[str, Any] = True
assert params.n_nodes == int(os.environ["N_NODES"] )
assert params.node_id == int(os.environ["NODE_RANK"] )
# local job (single GPU)
else:
assert params.local_rank == -1
__snake_case : Any = 1
__snake_case : str = 0
__snake_case : Optional[Any] = 0
__snake_case : Dict = 0
__snake_case : int = 1
__snake_case : Optional[Any] = 1
__snake_case : Tuple = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
__snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0
__snake_case : List[Any] = params.n_nodes > 1
# summary
__snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """
logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes )
logger.info(PREFIX + "Node ID : %i" % params.node_id )
logger.info(PREFIX + "Local rank : %i" % params.local_rank )
logger.info(PREFIX + "World size : %i" % params.world_size )
logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node )
logger.info(PREFIX + "Master : %s" % str(params.is_master ) )
logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) )
logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) )
logger.info(PREFIX + "Hostname : %s" % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info("Initializing PyTorch distributed" )
torch.distributed.init_process_group(
init_method="env://" , backend="nccl" , )
def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]:
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 326 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_UpperCamelCase = logging.get_logger(__name__)
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Any =["pixel_values"]
def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
'''simple docstring'''
super().__init__(**UpperCAmelCase )
__snake_case : Tuple = size if size is not None else {"shortest_edge": 256}
__snake_case : Optional[int] = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase )
__snake_case : List[Any] = crop_size if crop_size is not None else {"height": 224, "width": 224}
__snake_case : int = get_size_dict(UpperCAmelCase )
__snake_case : Any = do_resize
__snake_case : Any = size
__snake_case : int = resample
__snake_case : List[str] = do_center_crop
__snake_case : Any = crop_size
__snake_case : Optional[int] = do_rescale
__snake_case : Union[str, Any] = rescale_factor
__snake_case : Any = do_normalize
__snake_case : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__snake_case : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__snake_case : str = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
__snake_case : Any = get_resize_output_image_size(UpperCAmelCase , size=size["shortest_edge"] , default_to_square=UpperCAmelCase )
return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
__snake_case : Any = get_size_dict(UpperCAmelCase )
return center_crop(UpperCAmelCase , size=(size["height"], size["width"]) , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase ) -> np.ndarray:
'''simple docstring'''
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
'''simple docstring'''
return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> List[Any]:
'''simple docstring'''
__snake_case : Tuple = do_resize if do_resize is not None else self.do_resize
__snake_case : Dict = size if size is not None else self.size
__snake_case : Any = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase )
__snake_case : str = resample if resample is not None else self.resample
__snake_case : int = do_center_crop if do_center_crop is not None else self.do_center_crop
__snake_case : Optional[int] = crop_size if crop_size is not None else self.crop_size
__snake_case : Dict = get_size_dict(UpperCAmelCase )
__snake_case : List[str] = do_rescale if do_rescale is not None else self.do_rescale
__snake_case : int = rescale_factor if rescale_factor is not None else self.rescale_factor
__snake_case : str = do_normalize if do_normalize is not None else self.do_normalize
__snake_case : int = image_mean if image_mean is not None else self.image_mean
__snake_case : Any = image_std if image_std is not None else self.image_std
__snake_case : Optional[Any] = make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
__snake_case : Optional[Any] = [to_numpy_array(UpperCAmelCase ) for image in images]
if do_resize:
__snake_case : Tuple = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_center_crop:
__snake_case : List[Any] = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images]
if do_rescale:
__snake_case : Dict = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images]
if do_normalize:
__snake_case : List[str] = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images]
__snake_case : List[Any] = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
__snake_case : List[Any] = {"pixel_values": images}
return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
| 326 |
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : str =JukeboxTokenizer
UpperCAmelCase_ : Tuple ={
"artist": "Zac Brown Band",
"genres": "Country",
"lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ",
}
@require_torch
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
import torch
__snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" )
__snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"]
# fmt: off
__snake_case : Optional[Any] = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
import torch
__snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" )
__snake_case : Tuple = tokenizer(**self.metas )["input_ids"]
# fmt: off
__snake_case : int = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 326 | 1 |
import random
from typing import Any
def lowerCAmelCase__( lowercase : list ) -> list[Any]:
for _ in range(len(lowercase ) ):
__snake_case : Union[str, Any] = random.randint(0 , len(lowercase ) - 1 )
__snake_case : Optional[int] = random.randint(0 , len(lowercase ) - 1 )
__snake_case , __snake_case : Any = data[b], data[a]
return data
if __name__ == "__main__":
_UpperCamelCase = [0, 1, 2, 3, 4, 5, 6, 7]
_UpperCamelCase = ['''python''', '''says''', '''hello''', '''!''']
print('''Fisher-Yates Shuffle:''')
print('''List''', integers, strings)
print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
| 326 |
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
_UpperCamelCase = logging.get_logger(__name__)
class _lowerCamelCase :
"""simple docstring"""
UpperCAmelCase_ : str
UpperCAmelCase_ : str =None
@staticmethod
def UpperCAmelCase ( ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
if not self.is_available():
raise RuntimeError(
F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" )
@classmethod
def UpperCAmelCase ( cls ) -> Tuple:
'''simple docstring'''
return F"""`pip install {cls.pip_package or cls.name}`"""
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] ="optuna"
@staticmethod
def UpperCAmelCase ( ) -> Union[str, Any]:
'''simple docstring'''
return is_optuna_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict:
'''simple docstring'''
return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> int:
'''simple docstring'''
return default_hp_space_optuna(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : List[str] ="ray"
UpperCAmelCase_ : Dict ="'ray[tune]'"
@staticmethod
def UpperCAmelCase ( ) -> str:
'''simple docstring'''
return is_ray_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
return default_hp_space_ray(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Tuple ="sigopt"
@staticmethod
def UpperCAmelCase ( ) -> int:
'''simple docstring'''
return is_sigopt_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict:
'''simple docstring'''
return default_hp_space_sigopt(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : str ="wandb"
@staticmethod
def UpperCAmelCase ( ) -> Optional[Any]:
'''simple docstring'''
return is_wandb_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return default_hp_space_wandb(UpperCAmelCase )
_UpperCamelCase = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def lowerCAmelCase__( ) -> str:
__snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(lowercase ) > 0:
__snake_case : Dict = available_backends[0].name
if len(lowercase ) > 1:
logger.info(
f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" )
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
f""" - To install {backend.name} run {backend.pip_install()}"""
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 326 | 1 |
from math import ceil, sqrt
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int:
__snake_case : int = 0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
__snake_case : Tuple = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
__snake_case : int = 1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(F'''{solution() = }''')
| 326 |
import math
def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list:
__snake_case : Any = end or len(lowercase )
for i in range(lowercase , lowercase ):
__snake_case : List[str] = i
__snake_case : Union[str, Any] = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
__snake_case : Optional[Any] = array[temp_index - 1]
temp_index -= 1
__snake_case : Any = temp_index_value
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap
__snake_case : Any = index
__snake_case : Optional[Any] = 2 * index + 1 # Left Node
__snake_case : str = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
__snake_case : Optional[int] = left_index
if right_index < heap_size and array[largest] < array[right_index]:
__snake_case : Tuple = right_index
if largest != index:
__snake_case , __snake_case : int = array[largest], array[index]
heapify(lowercase , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list ) -> list:
__snake_case : List[str] = len(lowercase )
for i in range(n // 2 , -1 , -1 ):
heapify(lowercase , lowercase , lowercase )
for i in range(n - 1 , 0 , -1 ):
__snake_case , __snake_case : Optional[Any] = array[0], array[i]
heapify(lowercase , 0 , lowercase )
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
__snake_case : Union[str, Any] = low
__snake_case : Union[str, Any] = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
__snake_case , __snake_case : str = array[j], array[i]
i += 1
def lowerCAmelCase__( lowercase : list ) -> list:
if len(lowercase ) == 0:
return array
__snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) )
__snake_case : Dict = 16
return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list:
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
__snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 )
__snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase )
intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase )
__snake_case : List[str] = p
return insertion_sort(lowercase , lowercase , lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip()
_UpperCamelCase = [float(item) for item in user_input.split(''',''')]
print(sort(unsorted))
| 326 | 1 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
_UpperCamelCase = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
['''memory_attention''', '''encoder_attn'''],
['''attention''', '''attn'''],
['''/''', '''.'''],
['''.LayerNorm.gamma''', '''_layer_norm.weight'''],
['''.LayerNorm.beta''', '''_layer_norm.bias'''],
['''r.layer_''', '''r.layers.'''],
['''output_proj''', '''out_proj'''],
['''ffn.dense_1.''', '''fc2.'''],
['''ffn.dense.''', '''fc1.'''],
['''ffn_layer_norm''', '''final_layer_norm'''],
['''kernel''', '''weight'''],
['''encoder_layer_norm.''', '''encoder.layer_norm.'''],
['''decoder_layer_norm.''', '''decoder.layer_norm.'''],
['''embeddings.weights''', '''shared.weight'''],
]
def lowerCAmelCase__( lowercase : List[Any] ) -> List[Any]:
for pegasus_name, hf_name in PATTERNS:
__snake_case : Optional[Any] = k.replace(lowercase , lowercase )
return k
def lowerCAmelCase__( lowercase : dict , lowercase : dict ) -> PegasusForConditionalGeneration:
__snake_case : List[Any] = DEFAULTS.copy()
cfg_kwargs.update(lowercase )
__snake_case : Optional[int] = PegasusConfig(**lowercase )
__snake_case : Optional[Any] = PegasusForConditionalGeneration(lowercase )
__snake_case : Dict = torch_model.model.state_dict()
__snake_case : Tuple = {}
for k, v in tf_weights.items():
__snake_case : List[Any] = rename_state_dict_key(lowercase )
if new_k not in sd:
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if "dense" in k or "proj" in new_k:
__snake_case : str = v.T
__snake_case : List[Any] = torch.tensor(lowercase , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}"""
# make sure embedding.padding_idx is respected
__snake_case : Union[str, Any] = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] )
__snake_case : int = mapping["shared.weight"]
__snake_case : int = mapping["shared.weight"]
__snake_case : Optional[Any] = {k: torch.zeros_like(lowercase ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping}
mapping.update(**lowercase )
__snake_case , __snake_case : Tuple = torch_model.model.load_state_dict(lowercase , strict=lowercase )
__snake_case : Tuple = [
k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"]
]
assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}"""
assert extra == [], f"""no matches found for the following tf keys {extra}"""
return torch_model
def lowerCAmelCase__( lowercase : int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
__snake_case : Any = tf.train.list_variables(lowercase )
__snake_case : Optional[int] = {}
__snake_case : Union[str, Any] = ["Adafactor", "global_step"]
for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ):
__snake_case : List[Any] = any(pat in name for pat in ignore_name )
if skip_key:
continue
__snake_case : List[str] = tf.train.load_variable(lowercase , lowercase )
__snake_case : Union[str, Any] = array
return tf_weights
def lowerCAmelCase__( lowercase : str , lowercase : str ) -> Dict:
# save tokenizer first
__snake_case : Any = Path(lowercase ).parent.name
__snake_case : Union[str, Any] = task_specific_params[f"""summarization_{dataset}"""]["max_position_embeddings"]
__snake_case : Union[str, Any] = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=lowercase )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(lowercase )
# convert model
__snake_case : List[str] = get_tf_weights_as_numpy(lowercase )
__snake_case : str = task_specific_params[f"""summarization_{dataset}"""]
if dataset == "large":
__snake_case : Dict = task_specific_params
__snake_case : str = convert_pegasus(lowercase , lowercase )
torch_model.save_pretrained(lowercase )
__snake_case : Tuple = torch_model.state_dict()
sd.pop("model.decoder.embed_positions.weight" )
sd.pop("model.encoder.embed_positions.weight" )
torch.save(lowercase , Path(lowercase ) / "pytorch_model.bin" )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
if args.save_dir is None:
_UpperCamelCase = Path(args.tf_ckpt_path).parent.name
_UpperCamelCase = os.path.join('''pegasus''', dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 326 |
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def lowerCAmelCase__( ) -> List[Any]:
with parallel_backend("spark" ):
assert ParallelBackendConfig.backend_name == "spark"
__snake_case : Any = [1, 2, 3]
with pytest.raises(lowercase ):
with parallel_backend("unsupported backend" ):
map_nested(lowercase , lowercase , num_proc=2 )
with pytest.raises(lowercase ):
with parallel_backend("unsupported backend" ):
map_nested(lowercase , lowercase , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("num_proc" , [2, -1] )
def lowerCAmelCase__( lowercase : Dict ) -> Dict:
__snake_case : Any = [1, 2]
__snake_case : Dict = {"a": 1, "b": 2}
__snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]}
__snake_case : int = {"a": {"1": 1}, "b": 2}
__snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4}
__snake_case : Dict = [2, 3]
__snake_case : Tuple = {"a": 2, "b": 3}
__snake_case : int = {"a": [2, 3], "b": [4, 5]}
__snake_case : Dict = {"a": {"1": 2}, "b": 3}
__snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5}
with parallel_backend("spark" ):
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
| 326 | 1 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Dict =["image_processor", "tokenizer"]
UpperCAmelCase_ : Optional[Any] ="ChineseCLIPImageProcessor"
UpperCAmelCase_ : Tuple =("BertTokenizer", "BertTokenizerFast")
def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Dict = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase , )
__snake_case : Dict = kwargs.pop("feature_extractor" )
__snake_case : Optional[int] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(UpperCAmelCase , UpperCAmelCase )
__snake_case : List[str] = self.image_processor
def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
__snake_case : Tuple = self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )
if images is not None:
__snake_case : Tuple = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )
if text is not None and images is not None:
__snake_case : str = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Dict:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case : Optional[int] = self.tokenizer.model_input_names
__snake_case : Optional[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , )
return self.image_processor_class
| 326 |
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any:
__snake_case : Optional[Any] = False
__snake_case : Optional[Any] = search_prob
__snake_case : str = start_temperate
__snake_case : List[Any] = []
__snake_case : str = 0
__snake_case : Dict = None
while not search_end:
__snake_case : List[Any] = current_state.score()
if best_state is None or current_score > best_state.score():
__snake_case : List[Any] = current_state
scores.append(lowercase )
iterations += 1
__snake_case : Dict = None
__snake_case : str = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
__snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor
__snake_case : int = neighbors.pop(lowercase )
__snake_case : Optional[Any] = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
__snake_case : Any = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
__snake_case : List[str] = picked_neighbor
else:
__snake_case : Optional[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
__snake_case : str = picked_neighbor
__snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
__snake_case : Optional[Any] = True
else:
__snake_case : str = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(lowercase ) , lowercase )
plt.xlabel("Iterations" )
plt.ylabel("Function values" )
plt.show()
return best_state
if __name__ == "__main__":
def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any:
return (3 * x**2) - (6 * y)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True)
print(
'''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True)
print(
'''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
| 326 | 1 |
from __future__ import annotations
from collections.abc import Callable
_UpperCamelCase = list[list[float | int]]
def lowerCAmelCase__( lowercase : Matrix , lowercase : Matrix ) -> Matrix:
__snake_case : int = len(lowercase )
__snake_case : Matrix = [[0 for _ in range(size + 1 )] for _ in range(lowercase )]
__snake_case : int
__snake_case : int
__snake_case : int
__snake_case : int
__snake_case : int
__snake_case : float
for row in range(lowercase ):
for col in range(lowercase ):
__snake_case : str = matrix[row][col]
__snake_case : Optional[Any] = vector[row][0]
__snake_case : List[Any] = 0
__snake_case : Union[str, Any] = 0
while row < size and col < size:
# pivoting
__snake_case : Dict = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowercase , lowercase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
__snake_case , __snake_case : Union[str, Any] = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , lowercase ):
__snake_case : Tuple = augmented[rowa][col] / augmented[row][col]
__snake_case : Dict = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , lowercase ):
for row in range(lowercase ):
__snake_case : Any = augmented[row][col] / augmented[col][col]
for cola in range(lowercase , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(lowercase )
]
def lowerCAmelCase__( lowercase : list[int] ) -> Callable[[int], int]:
__snake_case : int = len(lowercase )
__snake_case : Matrix = [[0 for _ in range(lowercase )] for _ in range(lowercase )]
__snake_case : Matrix = [[0] for _ in range(lowercase )]
__snake_case : Matrix
__snake_case : int
__snake_case : int
__snake_case : int
for x_val, y_val in enumerate(lowercase ):
for col in range(lowercase ):
__snake_case : Optional[Any] = (x_val + 1) ** (size - col - 1)
__snake_case : Dict = y_val
__snake_case : Union[str, Any] = solve(lowercase , lowercase )
def interpolated_func(lowercase : int ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(lowercase ) )
return interpolated_func
def lowerCAmelCase__( lowercase : int ) -> int:
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def lowerCAmelCase__( lowercase : Callable[[int], int] = question_function , lowercase : int = 10 ) -> int:
__snake_case : list[int] = [func(lowercase ) for x_val in range(1 , order + 1 )]
__snake_case : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
__snake_case : int = 0
__snake_case : Callable[[int], int]
__snake_case : int
for poly in polynomials:
__snake_case : Optional[int] = 1
while func(lowercase ) == poly(lowercase ):
x_val += 1
ret += poly(lowercase )
return ret
if __name__ == "__main__":
print(F'''{solution() = }''')
| 326 |
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"]
UpperCAmelCase_ : Tuple ="FlavaImageProcessor"
UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast")
def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int:
'''simple docstring'''
__snake_case : List[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase , )
__snake_case : List[Any] = kwargs.pop("feature_extractor" )
__snake_case : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = self.image_processor
def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]:
'''simple docstring'''
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
__snake_case : Union[str, Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if images is not None:
__snake_case : Union[str, Any] = self.image_processor(
UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if text is not None and images is not None:
encoding.update(UpperCAmelCase )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : List[Any] = self.tokenizer.model_input_names
__snake_case : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , )
return self.image_processor
| 326 | 1 |
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase ) -> None:
'''simple docstring'''
__snake_case : Optional[Any] = size
__snake_case : List[str] = [0] * size
__snake_case : List[str] = [0] * size
@staticmethod
def UpperCAmelCase ( UpperCAmelCase ) -> int:
'''simple docstring'''
return index | (index + 1)
@staticmethod
def UpperCAmelCase ( UpperCAmelCase ) -> int:
'''simple docstring'''
return (index & (index + 1)) - 1
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> None:
'''simple docstring'''
__snake_case : Union[str, Any] = value
while index < self.size:
__snake_case : Dict = self.get_prev(UpperCAmelCase ) + 1
if current_left_border == index:
__snake_case : str = value
else:
__snake_case : Any = max(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
__snake_case : Optional[Any] = self.get_next(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> int:
'''simple docstring'''
right -= 1 # Because of right is exclusive
__snake_case : Tuple = 0
while left <= right:
__snake_case : List[str] = self.get_prev(UpperCAmelCase )
if left <= current_left:
__snake_case : List[str] = max(UpperCAmelCase , self.tree[right] )
__snake_case : Union[str, Any] = current_left
else:
__snake_case : Optional[int] = max(UpperCAmelCase , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''}
_UpperCamelCase = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
}
}
_UpperCamelCase = {
'''camembert-base''': 512,
}
_UpperCamelCase = '''▁'''
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES
UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : str =["input_ids", "attention_mask"]
def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
'''simple docstring'''
__snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
__snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , )
__snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCAmelCase ) )
__snake_case : Dict = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
__snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
__snake_case : Optional[int] = len(self.fairseq_tokens_to_ids )
__snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
__snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Dict = [self.cls_token_id]
__snake_case : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1]
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__snake_case : int = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(UpperCAmelCase ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__snake_case : Tuple = []
__snake_case : Union[str, Any] = ""
__snake_case : Optional[int] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase ) + token
__snake_case : List[Any] = True
__snake_case : Union[str, Any] = []
else:
current_sub_tokens.append(UpperCAmelCase )
__snake_case : int = False
out_string += self.sp_model.decode(UpperCAmelCase )
return out_string.strip()
def __getstate__( self ) -> List[Any]:
'''simple docstring'''
__snake_case : str = self.__dict__.copy()
__snake_case : Optional[Any] = None
return state
def __setstate__( self , UpperCAmelCase ) -> str:
'''simple docstring'''
__snake_case : Optional[Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__snake_case : List[str] = {}
__snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__snake_case : Optional[Any] = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase , "wb" ) as fi:
__snake_case : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase )
return (out_vocab_file,)
| 326 | 1 |
_UpperCamelCase = '''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
_UpperCamelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
_UpperCamelCase = {
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 326 |
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool:
__snake_case : List[str] = len(lowercase )
__snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__snake_case : Optional[Any] = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
__snake_case : Union[str, Any] = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
__snake_case : List[str] = subset[i - 1][j]
if arr[i - 1] <= j:
__snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 | 1 |
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def lowerCAmelCase__( lowercase : List[str] ) -> Optional[int]:
return getitem, k
def lowerCAmelCase__( lowercase : Tuple , lowercase : Optional[int] ) -> Optional[int]:
return setitem, k, v
def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]:
return delitem, k
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : List[str] , *lowercase : Union[str, Any] ) -> List[str]:
try:
return fun(lowercase , *lowercase ), None
except Exception as e:
return None, e
_UpperCamelCase = (
_set('''key_a''', '''val_a'''),
_set('''key_b''', '''val_b'''),
)
_UpperCamelCase = [
_set('''key_a''', '''val_a'''),
_set('''key_a''', '''val_b'''),
]
_UpperCamelCase = [
_set('''key_a''', '''val_a'''),
_set('''key_b''', '''val_b'''),
_del('''key_a'''),
_del('''key_b'''),
_set('''key_a''', '''val_a'''),
_del('''key_a'''),
]
_UpperCamelCase = [
_get('''key_a'''),
_del('''key_a'''),
_set('''key_a''', '''val_a'''),
_del('''key_a'''),
_del('''key_a'''),
_get('''key_a'''),
]
_UpperCamelCase = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
_UpperCamelCase = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set('''key_a''', '''val_b'''),
]
@pytest.mark.parametrize(
"operations" , (
pytest.param(_add_items , id="add items" ),
pytest.param(_overwrite_items , id="overwrite items" ),
pytest.param(_delete_items , id="delete items" ),
pytest.param(_access_absent_items , id="access absent items" ),
pytest.param(_add_with_resize_up , id="add with resize up" ),
pytest.param(_add_with_resize_down , id="add with resize down" ),
) , )
def lowerCAmelCase__( lowercase : int ) -> Dict:
__snake_case : List[Any] = HashMap(initial_block_size=4 )
__snake_case : str = {}
for _, (fun, *args) in enumerate(lowercase ):
__snake_case , __snake_case : Dict = _run_operation(lowercase , lowercase , *lowercase )
__snake_case , __snake_case : Any = _run_operation(lowercase , lowercase , *lowercase )
assert my_res == py_res
assert str(lowercase ) == str(lowercase )
assert set(lowercase ) == set(lowercase )
assert len(lowercase ) == len(lowercase )
assert set(my.items() ) == set(py.items() )
def lowerCAmelCase__( ) -> Optional[int]:
def is_public(lowercase : str ) -> bool:
return not name.startswith("_" )
__snake_case : int = {name for name in dir({} ) if is_public(lowercase )}
__snake_case : Tuple = {name for name in dir(HashMap() ) if is_public(lowercase )}
assert dict_public_names > hash_public_names
| 326 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
_UpperCamelCase = 4
_UpperCamelCase = 3
class _lowerCamelCase ( a ):
"""simple docstring"""
pass
def lowerCAmelCase__( lowercase : List[str] ) -> Any:
for shard in shards:
for i in range(lowercase ):
yield {"i": i, "shard": shard}
def lowerCAmelCase__( ) -> Optional[int]:
__snake_case : List[Any] = int(os.environ["RANK"] )
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : List[str] = ArgumentParser()
parser.add_argument("--streaming" , type=lowercase )
parser.add_argument("--local_rank" , type=lowercase )
parser.add_argument("--num_workers" , type=lowercase , default=0 )
__snake_case : Any = parser.parse_args()
__snake_case : Dict = args.streaming
__snake_case : Union[str, Any] = args.num_workers
__snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]}
__snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase )
if not streaming:
__snake_case : Any = Dataset.from_list(list(lowercase ) )
__snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase )
__snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase )
__snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD
__snake_case : List[str] = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
__snake_case : Dict = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" )
if __name__ == "__main__":
main()
| 326 | 1 |
from __future__ import annotations
import numpy as np
def lowerCAmelCase__( lowercase : np.ndarray ) -> tuple[np.ndarray, np.ndarray]:
__snake_case , __snake_case : Optional[Any] = np.shape(lowercase )
if rows != columns:
__snake_case : Tuple = (
"'table' has to be of square shaped array but got a "
f"""{rows}x{columns} array:\n{table}"""
)
raise ValueError(lowercase )
__snake_case : Any = np.zeros((rows, columns) )
__snake_case : Optional[Any] = np.zeros((rows, columns) )
for i in range(lowercase ):
for j in range(lowercase ):
__snake_case : Union[str, Any] = sum(lower[i][k] * upper[k][j] for k in range(lowercase ) )
if upper[j][j] == 0:
raise ArithmeticError("No LU decomposition exists" )
__snake_case : Tuple = (table[i][j] - total) / upper[j][j]
__snake_case : Dict = 1
for j in range(lowercase , lowercase ):
__snake_case : Tuple = sum(lower[i][k] * upper[k][j] for k in range(lowercase ) )
__snake_case : Tuple = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int:
__snake_case : List[Any] = limit + 1
__snake_case : List[str] = [0] * limit
for first_term in range(1 , lowercase ):
for n in range(lowercase , lowercase , lowercase ):
__snake_case : Union[str, Any] = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
__snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 326 | 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'''microsoft/unispeech-sat-base-100h-libri-ft''': (
'''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'''
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Tuple ="unispeech-sat"
def __init__( self , UpperCAmelCase=32 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1E-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=128 , UpperCAmelCase=16 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=10 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=10 , UpperCAmelCase=0 , UpperCAmelCase=320 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=100 , UpperCAmelCase=256 , UpperCAmelCase=256 , UpperCAmelCase=0.1 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=256 , UpperCAmelCase=(512, 512, 512, 512, 1500) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=512 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=504 , **UpperCAmelCase , ) -> List[str]:
'''simple docstring'''
super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase )
__snake_case : Dict = hidden_size
__snake_case : Dict = feat_extract_norm
__snake_case : List[str] = feat_extract_activation
__snake_case : int = list(UpperCAmelCase )
__snake_case : Union[str, Any] = list(UpperCAmelCase )
__snake_case : List[Any] = list(UpperCAmelCase )
__snake_case : str = conv_bias
__snake_case : List[Any] = num_conv_pos_embeddings
__snake_case : List[Any] = num_conv_pos_embedding_groups
__snake_case : Union[str, Any] = len(self.conv_dim )
__snake_case : Tuple = num_hidden_layers
__snake_case : Optional[int] = intermediate_size
__snake_case : Tuple = hidden_act
__snake_case : Any = num_attention_heads
__snake_case : Tuple = hidden_dropout
__snake_case : int = attention_dropout
__snake_case : Union[str, Any] = activation_dropout
__snake_case : str = feat_proj_dropout
__snake_case : List[str] = final_dropout
__snake_case : str = layerdrop
__snake_case : Optional[int] = layer_norm_eps
__snake_case : int = initializer_range
__snake_case : Tuple = vocab_size
__snake_case : Optional[Any] = num_clusters
__snake_case : Union[str, Any] = do_stable_layer_norm
__snake_case : Any = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__snake_case : str = apply_spec_augment
__snake_case : Optional[int] = mask_time_prob
__snake_case : Union[str, Any] = mask_time_length
__snake_case : Optional[int] = mask_time_min_masks
__snake_case : List[Any] = mask_feature_prob
__snake_case : Union[str, Any] = mask_feature_length
__snake_case : Union[str, Any] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
__snake_case : Optional[int] = num_codevectors_per_group
__snake_case : int = num_codevector_groups
__snake_case : Any = contrastive_logits_temperature
__snake_case : int = feat_quantizer_dropout
__snake_case : Dict = num_negatives
__snake_case : int = codevector_dim
__snake_case : Any = proj_codevector_dim
__snake_case : Any = diversity_loss_weight
# ctc loss
__snake_case : str = ctc_loss_reduction
__snake_case : Optional[Any] = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__snake_case : Optional[Any] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__snake_case : List[Any] = list(UpperCAmelCase )
__snake_case : Optional[int] = list(UpperCAmelCase )
__snake_case : str = list(UpperCAmelCase )
__snake_case : List[str] = xvector_output_dim
@property
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 326 |
from __future__ import annotations
def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]:
__snake_case : List[str] = word_bank or []
# create a table
__snake_case : int = len(lowercase ) + 1
__snake_case : list[list[list[str]]] = []
for _ in range(lowercase ):
table.append([] )
# seed value
__snake_case : Optional[int] = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(lowercase ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(lowercase )] == word:
__snake_case : list[list[str]] = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(lowercase )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(lowercase )]:
combination.reverse()
return table[len(lowercase )]
if __name__ == "__main__":
print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa''']))
print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t''']))
print(
all_construct(
'''hexagonosaurus''',
['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''],
)
)
| 326 | 1 |
import re
import time
from typing import Optional
import IPython.display as disp
from ..trainer_callback import TrainerCallback
from ..trainer_utils import IntervalStrategy, has_length
def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple:
__snake_case : Union[str, Any] = int(lowercase )
__snake_case , __snake_case , __snake_case : Tuple = t // 3600, (t // 60) % 60, t % 60
return f"""{h}:{m:02d}:{s:02d}""" if h != 0 else f"""{m:02d}:{s:02d}"""
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Dict , lowercase : Tuple , lowercase : int , lowercase : Any=300 ) -> List[Any]:
# docstyle-ignore
return f"""
<div>
{prefix}
<progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>
{label}
</div>
"""
def lowerCAmelCase__( lowercase : Any ) -> Union[str, Any]:
__snake_case : Union[str, Any] = "<table border=\"1\" class=\"dataframe\">\n"
html_code += """ <thead>\n <tr style="text-align: left;">\n"""
for i in items[0]:
html_code += f""" <th>{i}</th>\n"""
html_code += " </tr>\n </thead>\n <tbody>\n"
for line in items[1:]:
html_code += " <tr>\n"
for elt in line:
__snake_case : Any = f"""{elt:.6f}""" if isinstance(lowercase , lowercase ) else str(lowercase )
html_code += f""" <td>{elt}</td>\n"""
html_code += " </tr>\n"
html_code += " </tbody>\n</table><p>"
return html_code
class _lowerCamelCase :
"""simple docstring"""
UpperCAmelCase_ : Any =5
UpperCAmelCase_ : str =0.2
def __init__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 300 , ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Tuple = total
__snake_case : List[Any] = "" if prefix is None else prefix
__snake_case : int = leave
__snake_case : Optional[int] = parent
__snake_case : int = width
__snake_case : int = None
__snake_case : Union[str, Any] = None
__snake_case : Union[str, Any] = None
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = None ) -> str:
'''simple docstring'''
__snake_case : Union[str, Any] = value
if comment is not None:
__snake_case : Optional[Any] = comment
if self.last_value is None:
__snake_case : List[str] = time.time()
__snake_case : str = value
__snake_case : List[Any] = None
__snake_case : int = self.warmup
__snake_case : List[str] = 1
self.update_bar(UpperCAmelCase )
elif value <= self.last_value and not force_update:
return
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ):
if self.first_calls > 0:
self.first_calls -= 1
__snake_case : Dict = time.time()
__snake_case : Dict = current_time - self.start_time
# We could have value = self.start_value if the update is called twixe with the same start value.
if value > self.start_value:
__snake_case : str = self.elapsed_time / (value - self.start_value)
else:
__snake_case : List[str] = None
if value >= self.total:
__snake_case : List[str] = self.total
__snake_case : Tuple = None
if not self.leave:
self.close()
elif self.average_time_per_item is not None:
__snake_case : List[str] = self.average_time_per_item * (self.total - value)
self.update_bar(UpperCAmelCase )
__snake_case : str = value
__snake_case : Any = current_time
if self.average_time_per_item is None:
__snake_case : int = 1
else:
__snake_case : Union[str, Any] = max(int(self.update_every / self.average_time_per_item ) , 1 )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=None ) -> int:
'''simple docstring'''
__snake_case : Tuple = " " * (len(str(self.total ) ) - len(str(UpperCAmelCase ) )) + str(UpperCAmelCase )
if self.elapsed_time is None:
__snake_case : Tuple = F"""[{spaced_value}/{self.total} : < :"""
elif self.predicted_remaining is None:
__snake_case : List[str] = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}"""
else:
__snake_case : int = (
F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <"""
F""" {format_time(self.predicted_remaining )}"""
)
self.label += F""", {1/self.average_time_per_item:.2f} it/s"""
self.label += "]" if self.comment is None or len(self.comment ) == 0 else F""", {self.comment}]"""
self.display()
def UpperCAmelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.parent is not None:
# If this is a child bar, the parent will take care of the display.
self.parent.display()
return
if self.output is None:
__snake_case : Optional[Any] = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase )
else:
self.output.update(disp.HTML(self.html_code ) )
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
if self.parent is None and self.output is not None:
self.output.update(disp.HTML("" ) )
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=None ) -> List[str]:
'''simple docstring'''
super().__init__(UpperCAmelCase )
__snake_case : Dict = None if column_names is None else [column_names]
__snake_case : Optional[int] = None
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Dict = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.inner_table is not None:
self.html_code += text_to_html_table(self.inner_table )
if self.child_bar is not None:
self.html_code += self.child_bar.html_code
if self.output is None:
__snake_case : List[str] = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase )
else:
self.output.update(disp.HTML(self.html_code ) )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
if self.inner_table is None:
__snake_case : Optional[int] = [list(values.keys() ), list(values.values() )]
else:
__snake_case : Tuple = self.inner_table[0]
if len(self.inner_table ) == 1:
# We give a chance to update the column names at the first iteration
for key in values.keys():
if key not in columns:
columns.append(UpperCAmelCase )
__snake_case : Union[str, Any] = columns
self.inner_table.append([values[c] for c in columns] )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=300 ) -> List[Any]:
'''simple docstring'''
__snake_case : List[str] = NotebookProgressBar(UpperCAmelCase , prefix=UpperCAmelCase , parent=self , width=UpperCAmelCase )
return self.child_bar
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : Any = None
self.display()
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self ) -> Any:
'''simple docstring'''
__snake_case : Any = None
__snake_case : Optional[int] = None
__snake_case : List[Any] = False
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__snake_case : Union[str, Any] = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step"
__snake_case : str = 0
__snake_case : Optional[int] = 0
__snake_case : List[Any] = [self.first_column] + ["Training Loss"]
if args.evaluation_strategy != IntervalStrategy.NO:
column_names.append("Validation Loss" )
__snake_case : Dict = NotebookTrainingTracker(state.max_steps , UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> int:
'''simple docstring'''
__snake_case : Union[str, Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F"""{state.epoch:.2f}"""
self.training_tracker.update(
state.global_step + 1 , comment=F"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , )
__snake_case : Optional[Any] = False
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
if not has_length(UpperCAmelCase ):
return
if self.prediction_bar is None:
if self.training_tracker is not None:
__snake_case : Optional[int] = self.training_tracker.add_child(len(UpperCAmelCase ) )
else:
__snake_case : Tuple = NotebookProgressBar(len(UpperCAmelCase ) )
self.prediction_bar.update(1 )
else:
self.prediction_bar.update(self.prediction_bar.value + 1 )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any:
'''simple docstring'''
if self.prediction_bar is not None:
self.prediction_bar.close()
__snake_case : Tuple = None
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
__snake_case : Optional[Any] = {"Training Loss": logs["loss"]}
# First column is necessarily Step sine we're not in epoch eval strategy
__snake_case : Union[str, Any] = state.global_step
self.training_tracker.write_line(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ) -> Dict:
'''simple docstring'''
if self.training_tracker is not None:
__snake_case : Any = {"Training Loss": "No log", "Validation Loss": "No log"}
for log in reversed(state.log_history ):
if "loss" in log:
__snake_case : List[Any] = log["loss"]
break
if self.first_column == "Epoch":
__snake_case : Optional[Any] = int(state.epoch )
else:
__snake_case : Dict = state.global_step
__snake_case : Optional[int] = "eval"
for k in metrics:
if k.endswith("_loss" ):
__snake_case : Optional[Any] = re.sub(r"\_loss$" , "" , UpperCAmelCase )
__snake_case : Tuple = metrics.pop("total_flos" , UpperCAmelCase )
__snake_case : List[str] = metrics.pop("epoch" , UpperCAmelCase )
__snake_case : Dict = metrics.pop(F"""{metric_key_prefix}_runtime""" , UpperCAmelCase )
__snake_case : str = metrics.pop(F"""{metric_key_prefix}_samples_per_second""" , UpperCAmelCase )
__snake_case : List[str] = metrics.pop(F"""{metric_key_prefix}_steps_per_second""" , UpperCAmelCase )
__snake_case : Any = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""" , UpperCAmelCase )
for k, v in metrics.items():
if k == F"""{metric_key_prefix}_loss""":
__snake_case : Optional[Any] = v
else:
__snake_case : List[str] = k.split("_" )
__snake_case : Optional[Any] = " ".join([part.capitalize() for part in splits[1:]] )
__snake_case : List[str] = v
self.training_tracker.write_line(UpperCAmelCase )
self.training_tracker.remove_child()
__snake_case : str = None
# Evaluation takes a long time so we should force the next update.
__snake_case : Optional[int] = True
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict:
'''simple docstring'''
self.training_tracker.update(
state.global_step , comment=F"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=UpperCAmelCase )
__snake_case : Dict = None
| 326 |
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple:
'''simple docstring'''
__snake_case : Optional[int] = parent
__snake_case : Tuple = batch_size
__snake_case : List[str] = seq_length
__snake_case : Optional[int] = is_training
__snake_case : int = use_attention_mask
__snake_case : Union[str, Any] = use_token_type_ids
__snake_case : Any = use_labels
__snake_case : List[str] = vocab_size
__snake_case : int = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : List[Any] = num_attention_heads
__snake_case : Optional[int] = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : Optional[int] = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : str = max_position_embeddings
__snake_case : List[Any] = type_vocab_size
__snake_case : int = type_sequence_label_size
__snake_case : Dict = initializer_range
__snake_case : List[Any] = num_choices
__snake_case : Union[str, Any] = rescale_embeddings
__snake_case : List[Any] = attention_type
__snake_case : str = use_bias
__snake_case : Dict = block_size
__snake_case : Optional[Any] = num_random_blocks
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Any = None
if self.use_attention_mask:
__snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Union[str, Any] = None
if self.use_token_type_ids:
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Optional[int] = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Optional[int] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs
__snake_case : int = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_flax
class _lowerCamelCase ( a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =(
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
UpperCAmelCase_ : Dict =False
UpperCAmelCase_ : str =False
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : Dict = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_hidden_states_output()
@slow
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" )
self.assertIsNotNone(UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = model_class(UpperCAmelCase )
@jax.jit
def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase )
with self.subTest("JIT Enabled" ):
__snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int:
'''simple docstring'''
if name.startswith("outputs.attentions" ):
return
else:
super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
| 326 | 1 |
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
_UpperCamelCase = logging.getLogger(__name__)
def lowerCAmelCase__( lowercase : str ) -> List[str]:
__snake_case : int = git.Repo(search_parent_directories=lowercase )
__snake_case : Union[str, Any] = {
"repo_id": str(lowercase ),
"repo_sha": str(repo.head.object.hexsha ),
"repo_branch": str(repo.active_branch ),
}
with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f:
json.dump(lowercase , lowercase , indent=4 )
def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]:
if params.n_gpu <= 0:
__snake_case : Union[str, Any] = 0
__snake_case : Optional[int] = -1
__snake_case : Union[str, Any] = True
__snake_case : Tuple = False
return
assert torch.cuda.is_available()
logger.info("Initializing GPUs" )
if params.n_gpu > 1:
assert params.local_rank != -1
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : int = int(os.environ["N_GPU_NODE"] )
__snake_case : Union[str, Any] = int(os.environ["RANK"] )
# number of nodes / node ID
__snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node
__snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node
__snake_case : Union[str, Any] = True
assert params.n_nodes == int(os.environ["N_NODES"] )
assert params.node_id == int(os.environ["NODE_RANK"] )
# local job (single GPU)
else:
assert params.local_rank == -1
__snake_case : Any = 1
__snake_case : str = 0
__snake_case : Optional[Any] = 0
__snake_case : Dict = 0
__snake_case : int = 1
__snake_case : Optional[Any] = 1
__snake_case : Tuple = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
__snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0
__snake_case : List[Any] = params.n_nodes > 1
# summary
__snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """
logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes )
logger.info(PREFIX + "Node ID : %i" % params.node_id )
logger.info(PREFIX + "Local rank : %i" % params.local_rank )
logger.info(PREFIX + "World size : %i" % params.world_size )
logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node )
logger.info(PREFIX + "Master : %s" % str(params.is_master ) )
logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) )
logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) )
logger.info(PREFIX + "Hostname : %s" % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info("Initializing PyTorch distributed" )
torch.distributed.init_process_group(
init_method="env://" , backend="nccl" , )
def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]:
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 326 |
import argparse
import datetime
def lowerCAmelCase__( lowercase : str ) -> str:
__snake_case : int = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
__snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowercase ) < 11:
raise ValueError("Must be 10 characters long" )
# Get month
__snake_case : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12" )
__snake_case : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get day
__snake_case : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31" )
# Get second separator
__snake_case : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get year
__snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?" )
# Get datetime obj for validation
__snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) )
# Start math
if m <= 2:
__snake_case : Optional[Any] = y - 1
__snake_case : Tuple = m + 12
# maths var
__snake_case : int = int(str(lowercase )[:2] )
__snake_case : int = int(str(lowercase )[2:] )
__snake_case : int = int(2.6 * m - 5.3_9 )
__snake_case : int = int(c / 4 )
__snake_case : int = int(k / 4 )
__snake_case : int = int(d + k )
__snake_case : int = int(t + u + v + x )
__snake_case : int = int(z - (2 * c) )
__snake_case : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer." )
# Response
__snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
_UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 326 | 1 |
from typing import Dict
import numpy as np
import torch
from . import residue_constants as rc
from .tensor_utils import tensor_tree_map, tree_map
def lowerCAmelCase__( lowercase : Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]:
__snake_case : List[Any] = []
__snake_case : int = []
__snake_case : List[Any] = []
for rt in rc.restypes:
__snake_case : Any = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]]
restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] )
__snake_case : Union[str, Any] = {name: i for i, name in enumerate(lowercase )}
restype_atomaa_to_atomaa_list.append(
[(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] )
restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] )
# Add dummy mapping for restype 'UNK'
restype_atomaa_to_atomaa_list.append([0] * 14 )
restype_atomaa_to_atomaa_list.append([0] * 37 )
restype_atomaa_mask_list.append([0.0] * 14 )
__snake_case : Optional[Any] = torch.tensor(
lowercase , dtype=torch.intaa , device=protein["aatype"].device , )
__snake_case : Tuple = torch.tensor(
lowercase , dtype=torch.intaa , device=protein["aatype"].device , )
__snake_case : List[Any] = torch.tensor(
lowercase , dtype=torch.floataa , device=protein["aatype"].device , )
__snake_case : Optional[int] = protein["aatype"].to(torch.long )
# create the mapping for (residx, atom14) --> atom37, i.e. an array
# with shape (num_res, 14) containing the atom37 indices for this protein
__snake_case : Any = restype_atomaa_to_atomaa[protein_aatype]
__snake_case : Tuple = restype_atomaa_mask[protein_aatype]
__snake_case : int = residx_atomaa_mask
__snake_case : Union[str, Any] = residx_atomaa_to_atomaa.long()
# create the gather indices for mapping back
__snake_case : Any = restype_atomaa_to_atomaa[protein_aatype]
__snake_case : Union[str, Any] = residx_atomaa_to_atomaa.long()
# create the corresponding mask
__snake_case : Union[str, Any] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["aatype"].device )
for restype, restype_letter in enumerate(rc.restypes ):
__snake_case : Any = rc.restype_atoa[restype_letter]
__snake_case : Any = rc.residue_atoms[restype_name]
for atom_name in atom_names:
__snake_case : str = rc.atom_order[atom_name]
__snake_case : int = 1
__snake_case : Optional[Any] = restype_atomaa_mask[protein_aatype]
__snake_case : Optional[Any] = residx_atomaa_mask
return protein
def lowerCAmelCase__( lowercase : Dict[str, torch.Tensor] ) -> Dict[str, np.ndarray]:
__snake_case : str = tree_map(lambda lowercase : torch.tensor(lowercase , device=batch["aatype"].device ) , lowercase , np.ndarray )
__snake_case : int = tensor_tree_map(lambda lowercase : np.array(lowercase ) , make_atomaa_masks(lowercase ) )
return out
| 326 |
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int:
if index == r:
for j in range(lowercase ):
print(data[j] , end=" " )
print(" " )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
__snake_case : Union[str, Any] = arr[i]
combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]:
# A temporary array to store all combination one by one
__snake_case : Tuple = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 )
if __name__ == "__main__":
# Driver code to check the function above
_UpperCamelCase = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 326 | 1 |
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int:
if index == r:
for j in range(lowercase ):
print(data[j] , end=" " )
print(" " )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
__snake_case : Union[str, Any] = arr[i]
combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]:
# A temporary array to store all combination one by one
__snake_case : Tuple = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 )
if __name__ == "__main__":
# Driver code to check the function above
_UpperCamelCase = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 326 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
_UpperCamelCase = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def lowerCAmelCase__( lowercase : str ) -> Optional[Any]:
__snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" )
return sd
def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict:
__snake_case : Tuple = OrderedDict()
__snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__snake_case : Optional[Any] = key
for name_pair in rename_keys_prefix:
__snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] )
__snake_case : List[str] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__snake_case : List[Any] = new_d["cls.predictions.bias"]
return new_d
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]:
assert (
checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS
), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."""
# Get Config
if "pre" in checkpoint_path:
__snake_case : Any = "pretraining"
if "vcr" in checkpoint_path:
__snake_case : Optional[Any] = {"visual_embedding_dim": 512}
elif "vqa_advanced" in checkpoint_path:
__snake_case : Tuple = {"visual_embedding_dim": 2048}
elif "vqa" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 2048}
elif "nlvr" in checkpoint_path:
__snake_case : Any = {"visual_embedding_dim": 1024}
else:
raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" )
else:
if "vcr" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 512}
__snake_case : Any = "multichoice"
elif "vqa_advanced" in checkpoint_path:
__snake_case : List[Any] = {"visual_embedding_dim": 2048}
__snake_case : Optional[Any] = "vqa_advanced"
elif "vqa" in checkpoint_path:
__snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129}
__snake_case : Union[str, Any] = "vqa"
elif "nlvr" in checkpoint_path:
__snake_case : Tuple = {
"visual_embedding_dim": 1024,
"num_labels": 2,
}
__snake_case : List[Any] = "nlvr"
__snake_case : Union[str, Any] = VisualBertConfig(**lowercase )
# Load State Dict
__snake_case : Any = load_state_dict(lowercase )
__snake_case : Dict = get_new_dict(lowercase , lowercase )
if model_type == "pretraining":
__snake_case : Optional[Any] = VisualBertForPreTraining(lowercase )
elif model_type == "vqa":
__snake_case : Tuple = VisualBertForQuestionAnswering(lowercase )
elif model_type == "nlvr":
__snake_case : Tuple = VisualBertForVisualReasoning(lowercase )
elif model_type == "multichoice":
__snake_case : List[Any] = VisualBertForMultipleChoice(lowercase )
model.load_state_dict(lowercase )
# Save Checkpoints
Path(lowercase ).mkdir(exist_ok=lowercase )
model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 326 | 1 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : int =["image_processor", "tokenizer"]
UpperCAmelCase_ : Dict ="LayoutLMv3ImageProcessor"
UpperCAmelCase_ : int =("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast")
def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__snake_case : Optional[int] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase , )
__snake_case : Dict = kwargs.pop("feature_extractor" )
__snake_case : Tuple = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(UpperCAmelCase , UpperCAmelCase )
def __call__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> BatchEncoding:
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True." )
# first, apply the image processor
__snake_case : Optional[Any] = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(UpperCAmelCase , UpperCAmelCase ):
__snake_case : Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension)
__snake_case : str = features["words"]
__snake_case : str = self.tokenizer(
text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
# add pixel values
__snake_case : Union[str, Any] = features.pop("pixel_values" )
if return_overflowing_tokens is True:
__snake_case : Any = self.get_overflowing_images(UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] )
__snake_case : List[str] = images
return encoded_inputs
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
__snake_case : Union[str, Any] = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(UpperCAmelCase ) != len(UpperCAmelCase ):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
F""" {len(UpperCAmelCase )} and {len(UpperCAmelCase )}""" )
return images_with_overflow
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Any:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , )
return self.image_processor
| 326 |
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple:
# Load configuration defined in the metadata file
with open(lowercase ) as metadata_file:
__snake_case : int = json.load(lowercase )
__snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] )
# Load in the weights from the checkpoint_path
__snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"]
# Load the entity vocab file
__snake_case : Tuple = load_original_entity_vocab(lowercase )
# add an entry for [MASK2]
__snake_case : Optional[int] = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
__snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] )
# Add special tokens to the token vocabulary for downstream tasks
__snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase )
__snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase )
tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" )
tokenizer.save_pretrained(lowercase )
with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f:
__snake_case : Tuple = json.load(lowercase )
__snake_case : List[Any] = "MLukeTokenizer"
with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f:
json.dump(lowercase , lowercase )
with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f:
json.dump(lowercase , lowercase )
__snake_case : Any = MLukeTokenizer.from_pretrained(lowercase )
# Initialize the embeddings of the special tokens
__snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0]
__snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0]
__snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"]
__snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 )
__snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 )
__snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
__snake_case : List[Any] = state_dict[bias_name]
__snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 )
__snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 )
__snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
__snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self."""
__snake_case : Union[str, Any] = state_dict[prefix + matrix_name]
__snake_case : str = state_dict[prefix + matrix_name]
__snake_case : Union[str, Any] = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
__snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"]
__snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 )
__snake_case : Any = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
__snake_case : List[Any] = state_dict["entity_predictions.bias"]
__snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 )
__snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] )
__snake_case : Any = LukeForMaskedLM(config=lowercase ).eval()
state_dict.pop("entity_predictions.decoder.weight" )
state_dict.pop("lm_head.decoder.weight" )
state_dict.pop("lm_head.decoder.bias" )
__snake_case : int = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )):
__snake_case : str = state_dict[key]
else:
__snake_case : str = state_dict[key]
__snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase )
if set(lowercase ) != {"luke.embeddings.position_ids"}:
raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" )
if set(lowercase ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
__snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" )
__snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
__snake_case : Union[str, Any] = (0, 9)
__snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" )
__snake_case : Any = model(**lowercase )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
__snake_case : Optional[Any] = torch.Size((1, 33, 768) )
__snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
__snake_case : str = torch.Size((1, 1, 768) )
__snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"""
f""" {expected_shape}""" )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
__snake_case : str = MLukeTokenizer.from_pretrained(lowercase )
__snake_case : Dict = "Tokyo is the capital of <mask>."
__snake_case : Union[str, Any] = (24, 30)
__snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" )
__snake_case : int = model(**lowercase )
__snake_case : Dict = encoding["input_ids"][0].tolist()
__snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) )
__snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(lowercase )
__snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item()
__snake_case : Optional[int] = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print("Saving PyTorch model to {}".format(lowercase ) )
model.save_pretrained(lowercase )
def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]:
__snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"]
__snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )]
__snake_case : Any = {}
for entry in data:
__snake_case : Any = entry["id"]
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
__snake_case : Optional[int] = entity_id
break
__snake_case : Union[str, Any] = f"""{language}:{entity_name}"""
__snake_case : Any = entity_id
return new_mapping
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''')
parser.add_argument(
'''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.'''
)
parser.add_argument(
'''--entity_vocab_path''',
default=None,
type=str,
help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.'''
)
parser.add_argument(
'''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.'''
)
_UpperCamelCase = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 326 | 1 |
from collections.abc import Sequence
def lowerCAmelCase__( lowercase : Sequence[int] | None = None ) -> int:
if nums is None or not nums:
raise ValueError("Input sequence should not be empty" )
__snake_case : Optional[Any] = nums[0]
for i in range(1 , len(lowercase ) ):
__snake_case : int = nums[i]
__snake_case : Any = max(lowercase , ans + num , lowercase )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_UpperCamelCase = int(input('''Enter number of elements : ''').strip())
_UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n]
print(max_subsequence_sum(array))
| 326 |
from maths.prime_factors import prime_factors
def lowerCAmelCase__( lowercase : int ) -> int:
if not isinstance(lowercase , lowercase ):
__snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer"""
raise TypeError(lowercase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(lowercase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json",
}
class lowercase_ ( lowercase , lowercase ):
'''simple docstring'''
__snake_case = '''convnextv2'''
def __init__( self : Any , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : Optional[Any]=4 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : List[str]=1e-1_2 , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : Any=224 , __UpperCAmelCase : Any=None , __UpperCAmelCase : List[Any]=None , **__UpperCAmelCase : str , ) ->Union[str, Any]:
"""simple docstring"""
super().__init__(**__UpperCAmelCase )
a = num_channels
a = patch_size
a = num_stages
a = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes
a = [3, 3, 9, 3] if depths is None else depths
a = hidden_act
a = initializer_range
a = layer_norm_eps
a = drop_path_rate
a = image_size
a = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )]
a , a = get_aligned_output_features_output_indices(
out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
| 0 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" )
__snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" )
__snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids
__snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids
__snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
__snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits
__snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean()
__snake_case : Any = -(labels.shape[-1] * loss.item())
__snake_case : List[str] = -84.9_127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 326 | 0 |
'''simple docstring'''
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
SCREAMING_SNAKE_CASE_: Any =Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
SCREAMING_SNAKE_CASE_: str ={'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
SCREAMING_SNAKE_CASE_: Union[str, Any] ='zero2'
SCREAMING_SNAKE_CASE_: Dict ='zero3'
SCREAMING_SNAKE_CASE_: Optional[Any] =[ZEROa, ZEROa]
def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = parameterized.to_safe_name("_".join(str(snake_case_ ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
SCREAMING_SNAKE_CASE_: List[Any] =list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A ( UpperCamelCase__ ):
@parameterized.expand(__a , name_func=__a )
def _lowercase (self : Union[str, Any] , __a : Dict , __a : Any ):
self.run_and_check(
stage=__a , model=__a , distributed=__a , fpaa=__a , )
@require_torch_multi_gpu
@parameterized.expand(__a , name_func=__a )
def _lowercase (self : Tuple , __a : Dict , __a : List[Any] ):
self.run_and_check(
stage=__a , model=__a , distributed=__a , fpaa=__a , )
@parameterized.expand(__a , name_func=__a )
def _lowercase (self : Tuple , __a : Any , __a : str ):
self.run_and_check(
stage=__a , model=__a , distributed=__a , fpaa=__a , )
@require_torch_multi_gpu
@parameterized.expand(__a , name_func=__a )
def _lowercase (self : int , __a : Union[str, Any] , __a : Any ):
self.run_and_check(
stage=__a , model=__a , distributed=__a , fpaa=__a , )
def _lowercase (self : str , __a : Optional[int] ):
# XXX: run_asr is premature and doesn't save any results
# so all we check for now is that the process didn't fail
pass
def _lowercase (self : List[str] , __a : str , __a : str , __a : int = 10 , __a : bool = True , __a : bool = True , __a : bool = True , ):
UpperCAmelCase_ = models[model]
UpperCAmelCase_ = self.run_trainer(
stage=__a , model_name=__a , eval_steps=__a , num_train_epochs=1 , distributed=__a , fpaa=__a , )
self.do_checks(__a )
return output_dir
def _lowercase (self : Any , __a : str , __a : str , __a : int = 10 , __a : int = 1 , __a : bool = True , __a : bool = True , ):
UpperCAmelCase_ = self.get_auto_remove_tmp_dir("./xxx" , after=__a )
UpperCAmelCase_ = f"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(__a )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["--fp16"] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
UpperCAmelCase_ = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
UpperCAmelCase_ = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
UpperCAmelCase_ = self.get_launcher(__a )
UpperCAmelCase_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(__a , env=self.get_env() )
return output_dir
def _lowercase (self : Any , __a : List[str]=False ):
# 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
# - it won't be able to handle that
# 2. for now testing with just 2 gpus max (since some quality tests may give different
# results with mode gpus because we use very little data)
UpperCAmelCase_ = min(2 , get_gpu_count() ) if distributed else 1
return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 1 |
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]:
'''simple docstring'''
super().__init__(UpperCAmelCase )
__snake_case : Optional[int] = proj_size
__snake_case : str = CLIPVisionModel(UpperCAmelCase )
__snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase )
__snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size )
__snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
__snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]:
'''simple docstring'''
__snake_case : int = self.model(pixel_values=UpperCAmelCase )
__snake_case : Optional[int] = clip_output.pooler_output
__snake_case : Any = self.mapper(latent_states[:, None] )
__snake_case : Any = self.final_layer_norm(UpperCAmelCase )
__snake_case : str = self.proj_out(UpperCAmelCase )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
super().__init__()
__snake_case : List[Any] = (config.num_hidden_layers + 1) // 5
__snake_case : Dict = config.hidden_size
__snake_case : str = 1
__snake_case : List[Any] = nn.ModuleList(
[
BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase )
for _ in range(UpperCAmelCase )
] )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
for block in self.blocks:
__snake_case : int = block(UpperCAmelCase )
return hidden_states
| 326 | 0 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowerCAmelCase (lowercase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ : Tuple = GPTSanJapaneseTokenizer
lowerCAmelCase__ : List[str] = False
lowerCAmelCase__ : Dict = {"""do_clean_text""": False, """add_prefix_space""": False}
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
super().setUp()
# fmt: off
lowercase__ = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>''']
# fmt: on
lowercase__ = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀
lowercase__ = {'''unk_token''': '''<unk>'''}
lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
with open(self.emoji_file , '''w''' ) as emoji_writer:
emoji_writer.write(json.dumps(UpperCamelCase ) )
def UpperCamelCase__ (self : Optional[Any] , **UpperCamelCase : Dict ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase )
def UpperCamelCase__ (self : Any , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
lowercase__ = '''こんにちは、世界。 \nこんばんは、㔺界。😀'''
lowercase__ = '''こんにちは、世界。 \nこんばんは、世界。😀'''
return input_text, output_text
def UpperCamelCase__ (self : Tuple , UpperCamelCase : Optional[int] ):
'''simple docstring'''
lowercase__ ,lowercase__ = self.get_input_output_texts(UpperCamelCase )
lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
lowercase__ = tokenizer.decode(UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase )
return text, ids
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
pass # TODO add if relevant
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
pass # TODO add if relevant
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
pass # TODO add if relevant
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
# Testing tokenization
lowercase__ = '''こんにちは、世界。 こんばんは、㔺界。'''
lowercase__ = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。''']
lowercase__ = tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
# Testing conversion to ids without special tokens
lowercase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
lowercase__ = tokenizer.convert_tokens_to_ids(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
# Testing conversion to ids with special tokens
lowercase__ = tokens + [tokenizer.unk_token]
lowercase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
lowercase__ = tokenizer.convert_tokens_to_ids(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
# Testing tokenization
lowercase__ = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。'''
lowercase__ = '''こんにちは、、、、世界。こんばんは、、、、世界。'''
lowercase__ = tokenizer.encode(UpperCamelCase )
lowercase__ = tokenizer.decode(UpperCamelCase )
self.assertEqual(UpperCamelCase , UpperCamelCase )
@slow
def UpperCamelCase__ (self : Dict ):
'''simple docstring'''
lowercase__ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' )
# Testing tokenization
lowercase__ = '''こんにちは、世界。'''
lowercase__ = '''こんばんは、㔺界。😀'''
lowercase__ = '''こんにちは、世界。こんばんは、世界。😀'''
lowercase__ = tokenizer.encode(prefix_text + input_text )
lowercase__ = tokenizer.encode('''''' , prefix_text=prefix_text + input_text )
lowercase__ = tokenizer.encode(UpperCamelCase , prefix_text=UpperCamelCase )
lowercase__ = tokenizer.decode(UpperCamelCase )
lowercase__ = tokenizer.decode(UpperCamelCase )
lowercase__ = tokenizer.decode(UpperCamelCase )
self.assertEqual(UpperCamelCase , UpperCamelCase )
self.assertEqual(UpperCamelCase , UpperCamelCase )
self.assertEqual(UpperCamelCase , UpperCamelCase )
@slow
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' )
# Testing tokenization
lowercase__ = '''こんにちは、世界。'''
lowercase__ = '''こんばんは、㔺界。😀'''
lowercase__ = len(tokenizer.encode(UpperCamelCase ) ) - 2
lowercase__ = len(tokenizer.encode(UpperCamelCase ) ) - 2
lowercase__ = [1] + [0] * (len_prefix + len_text + 1)
lowercase__ = [1] * (len_prefix + len_text + 1) + [0]
lowercase__ = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
lowercase__ = tokenizer(prefix_text + input_text ).token_type_ids
lowercase__ = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids
lowercase__ = tokenizer(UpperCamelCase , prefix_text=UpperCamelCase ).token_type_ids
self.assertListEqual(UpperCamelCase , UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
@slow
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' )
lowercase__ = tokenizer.encode('''あンいワ''' )
lowercase__ = tokenizer.encode('''''' , prefix_text='''あンいワ''' )
lowercase__ = tokenizer.encode('''いワ''' , prefix_text='''あン''' )
self.assertEqual(tokenizer.decode(UpperCamelCase ) , tokenizer.decode(UpperCamelCase ) )
self.assertEqual(tokenizer.decode(UpperCamelCase ) , tokenizer.decode(UpperCamelCase ) )
self.assertNotEqual(UpperCamelCase , UpperCamelCase )
self.assertNotEqual(UpperCamelCase , UpperCamelCase )
self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token
@slow
def UpperCamelCase__ (self : Dict ):
'''simple docstring'''
lowercase__ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' )
lowercase__ = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']]
lowercase__ = tokenizer(UpperCamelCase , padding=UpperCamelCase )
lowercase__ = tokenizer.batch_encode_plus(UpperCamelCase , padding=UpperCamelCase )
# fmt: off
lowercase__ = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]]
lowercase__ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
lowercase__ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids , UpperCamelCase )
self.assertListEqual(x_token.token_type_ids , UpperCamelCase )
self.assertListEqual(x_token.attention_mask , UpperCamelCase )
self.assertListEqual(x_token_a.input_ids , UpperCamelCase )
self.assertListEqual(x_token_a.token_type_ids , UpperCamelCase )
self.assertListEqual(x_token_a.attention_mask , UpperCamelCase )
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
pass
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
pass
| 2 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 326 | 0 |
'''simple docstring'''
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowercase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model')
@require_sentencepiece
@require_tokenizers
class A ( __snake_case , unittest.TestCase ):
__magic_name__ = PegasusTokenizer
__magic_name__ = PegasusTokenizerFast
__magic_name__ = True
__magic_name__ = True
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
A : List[Any] = PegasusTokenizer(SCREAMING_SNAKE_CASE )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
return PegasusTokenizer.from_pretrained('''google/pegasus-large''' )
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
return ("This is a test", "This is a test")
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Any = '''</s>'''
A : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<pad>''' )
self.assertEqual(vocab_keys[1] , '''</s>''' )
self.assertEqual(vocab_keys[-1] , '''v''' )
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 1103 )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Optional[int] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
A : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
A : List[Any] = (
'''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important'''
''' </s> <pad> <pad> <pad>'''
)
A : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids[0]
A : List[str] = py_tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids[0]
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Tuple = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
A : Any = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.'''
A : str = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1]
A : Dict = tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE ).input_ids[0]
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : str = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
A : Optional[Any] = '''To ensure a smooth flow of bank resolutions.'''
A : List[Any] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
A : Tuple = tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE ).input_ids[0]
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
A : List[str] = ['''This is going to be way too long.''' * 150, '''short example''']
A : Any = ['''not super long but more than 5 tokens''', '''tiny''']
A : Optional[int] = self._large_tokenizer(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , return_tensors='''pt''' )
A : Tuple = self._large_tokenizer(
text_target=SCREAMING_SNAKE_CASE , max_length=5 , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(SCREAMING_SNAKE_CASE ) == 2 # input_ids, attention_mask.
@slow
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : str = {'''input_ids''': [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , )
@require_sentencepiece
@require_tokenizers
class A ( __snake_case , unittest.TestCase ):
__magic_name__ = PegasusTokenizer
__magic_name__ = PegasusTokenizerFast
__magic_name__ = True
__magic_name__ = True
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
A : List[Any] = PegasusTokenizer(SCREAMING_SNAKE_CASE , offset=0 , mask_token_sent=SCREAMING_SNAKE_CASE , mask_token='''[MASK]''' )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' )
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
return ("This is a test", "This is a test")
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
A : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
A : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
A : int = (
'''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>'''
''' <pad> <pad> <pad>'''
)
A : Any = rust_tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids[0]
A : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids[0]
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@require_torch
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : int = ['''This is going to be way too long.''' * 1000, '''short example''']
A : Dict = ['''not super long but more than 5 tokens''', '''tiny''']
A : List[str] = self._large_tokenizer(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , return_tensors='''pt''' )
A : List[Any] = self._large_tokenizer(
text_target=SCREAMING_SNAKE_CASE , max_length=5 , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , return_tensors='''pt''' )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(SCREAMING_SNAKE_CASE ) == 2 # input_ids, attention_mask.
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Tuple = (
'''This is an example string that is used to test the original TF implementation against the HF'''
''' implementation'''
)
A : List[Any] = self._large_tokenizer(SCREAMING_SNAKE_CASE ).input_ids
self.assertListEqual(
SCREAMING_SNAKE_CASE , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
| 3 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = torch.device('''cpu''')
def lowerCAmelCase__( ) -> Any:
__snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
__snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw )
return im
def lowerCAmelCase__( lowercase : Dict ) -> List[Any]:
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] )
def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]:
__snake_case : List[Any] = dct.pop(lowercase )
__snake_case : List[Any] = val
def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple:
__snake_case : Optional[Any] = []
for k in state_dict.keys():
__snake_case : Union[str, Any] = k
if ".pwconv" in k:
__snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" )
if ".dwconv" in k:
__snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" )
if ".Proj." in k:
__snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." )
if "patch_embed" in k_new:
__snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" )
if "network" in k_new:
__snake_case : int = k_new.split("." )
if ls[2].isdigit():
__snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] )
else:
__snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]:
__snake_case : List[str] = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
__snake_case : Tuple = 1000
__snake_case : Any = "huggingface/label-files"
__snake_case : int = "imagenet-1k-id2label.json"
__snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) )
__snake_case : str = {int(lowercase ): v for k, v in idalabel.items()}
__snake_case : int = idalabel
__snake_case : Optional[int] = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
__snake_case : Optional[Any] = [3, 3, 6, 4]
__snake_case : Optional[int] = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
__snake_case : List[str] = [3, 3, 9, 6]
__snake_case : Optional[Any] = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
__snake_case : Optional[int] = [4, 3, 10, 5]
__snake_case : Dict = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
__snake_case : str = [4, 4, 12, 6]
__snake_case : Optional[Any] = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("https" ):
__snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase )
else:
__snake_case : Tuple = torch.load(lowercase , map_location="cpu" )
__snake_case : Optional[int] = checkpoint
__snake_case : Any = create_rename_keys(lowercase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(lowercase , lowercase , lowercase )
# load HuggingFace model
__snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval()
hf_model.load_state_dict(lowercase )
# prepare test inputs
__snake_case : Optional[Any] = prepare_img()
__snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" )
__snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" )
# compare outputs from both models
__snake_case : str = get_expected_output(lowercase )
__snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 )
Path(lowercase ).mkdir(exist_ok=lowercase )
print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" )
hf_model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--swiftformer_name''',
default='''swiftformer_xs''',
choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''],
type=str,
help='''Name of the SwiftFormer model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''./converted_outputs/''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''')
_UpperCamelCase = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 326 | 0 |
'''simple docstring'''
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class UpperCAmelCase_ ( unittest.TestCase ):
def __UpperCAmelCase ( self : List[str] ) -> None:
lowerCAmelCase = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
lowerCAmelCase = Vector()
def __UpperCAmelCase ( self : Union[str, Any] ) -> None:
lowerCAmelCase = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(UpperCAmelCase__ ) , '(0,0,0,0,0,1)' )
def __UpperCAmelCase ( self : List[str] ) -> None:
lowerCAmelCase = Vector([1, 2, 3, 4] )
self.assertEqual(len(UpperCAmelCase__ ) , 4 )
def __UpperCAmelCase ( self : Optional[int] ) -> None:
lowerCAmelCase = Vector([1, 2] )
lowerCAmelCase = Vector([1, 2, 3, 4, 5] )
lowerCAmelCase = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
lowerCAmelCase = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def __UpperCAmelCase ( self : int ) -> None:
lowerCAmelCase = Vector([1, 2, 3] )
lowerCAmelCase = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def __UpperCAmelCase ( self : Optional[Any] ) -> None:
lowerCAmelCase = Vector([1, 2, 3] )
lowerCAmelCase = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def __UpperCAmelCase ( self : str ) -> None:
lowerCAmelCase = Vector([1, 2, 3] )
lowerCAmelCase = Vector([2, -1, 4] ) # for test of dot product
lowerCAmelCase = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' )
self.assertEqual((a * b) , 0 )
def __UpperCAmelCase ( self : Union[str, Any] ) -> None:
self.assertEqual(str(zero_vector(1_0 ) ).count('0' ) , 1_0 )
def __UpperCAmelCase ( self : Tuple ) -> None:
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' )
def __UpperCAmelCase ( self : Union[str, Any] ) -> None:
lowerCAmelCase = Vector([1, 2, 3] )
lowerCAmelCase = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , UpperCAmelCase__ , UpperCAmelCase__ ) ) , '(3,4,7)' )
def __UpperCAmelCase ( self : Union[str, Any] ) -> None:
lowerCAmelCase = Vector([1, 0, 0, 0, 0, 0] )
lowerCAmelCase = x.copy()
self.assertEqual(str(UpperCAmelCase__ ) , str(UpperCAmelCase__ ) )
def __UpperCAmelCase ( self : str ) -> None:
lowerCAmelCase = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(UpperCAmelCase__ ) , '(0,1,0)' )
def __UpperCAmelCase ( self : str ) -> None:
lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(UpperCAmelCase__ ) )
def __UpperCAmelCase ( self : Tuple ) -> None:
lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase__ , UpperCAmelCase__ ) )
def __UpperCAmelCase ( self : List[Any] ) -> None:
lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase__ , UpperCAmelCase__ ) )
def __UpperCAmelCase ( self : List[str] ) -> None:
lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def __UpperCAmelCase ( self : int ) -> None:
lowerCAmelCase = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
lowerCAmelCase = Vector([1, 2, 3] )
self.assertEqual('(14,32,50)' , str(a * x ) )
self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) )
def __UpperCAmelCase ( self : Optional[int] ) -> None:
lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(UpperCAmelCase__ ) )
def __UpperCAmelCase ( self : int ) -> None:
lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def __UpperCAmelCase ( self : List[str] ) -> None:
lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 )
self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) )
def __UpperCAmelCase ( self : str ) -> None:
lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 )
self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) )
def __UpperCAmelCase ( self : Tuple ) -> None:
self.assertEqual(
'|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 4 |
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
_UpperCamelCase = logging.getLogger(__name__)
def lowerCAmelCase__( lowercase : str ) -> List[str]:
__snake_case : int = git.Repo(search_parent_directories=lowercase )
__snake_case : Union[str, Any] = {
"repo_id": str(lowercase ),
"repo_sha": str(repo.head.object.hexsha ),
"repo_branch": str(repo.active_branch ),
}
with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f:
json.dump(lowercase , lowercase , indent=4 )
def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]:
if params.n_gpu <= 0:
__snake_case : Union[str, Any] = 0
__snake_case : Optional[int] = -1
__snake_case : Union[str, Any] = True
__snake_case : Tuple = False
return
assert torch.cuda.is_available()
logger.info("Initializing GPUs" )
if params.n_gpu > 1:
assert params.local_rank != -1
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : int = int(os.environ["N_GPU_NODE"] )
__snake_case : Union[str, Any] = int(os.environ["RANK"] )
# number of nodes / node ID
__snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node
__snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node
__snake_case : Union[str, Any] = True
assert params.n_nodes == int(os.environ["N_NODES"] )
assert params.node_id == int(os.environ["NODE_RANK"] )
# local job (single GPU)
else:
assert params.local_rank == -1
__snake_case : Any = 1
__snake_case : str = 0
__snake_case : Optional[Any] = 0
__snake_case : Dict = 0
__snake_case : int = 1
__snake_case : Optional[Any] = 1
__snake_case : Tuple = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
__snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0
__snake_case : List[Any] = params.n_nodes > 1
# summary
__snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """
logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes )
logger.info(PREFIX + "Node ID : %i" % params.node_id )
logger.info(PREFIX + "Local rank : %i" % params.local_rank )
logger.info(PREFIX + "World size : %i" % params.world_size )
logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node )
logger.info(PREFIX + "Master : %s" % str(params.is_master ) )
logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) )
logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) )
logger.info(PREFIX + "Hostname : %s" % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info("Initializing PyTorch distributed" )
torch.distributed.init_process_group(
init_method="env://" , backend="nccl" , )
def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]:
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 326 | 0 |
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
UpperCAmelCase__ = '''src/transformers'''
UpperCAmelCase__ = '''docs/source/en'''
UpperCAmelCase__ = '''.'''
def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> List[Any]:
"""simple docstring"""
with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
_lowercase =f.readlines()
# Find the start prompt.
_lowercase =0
while not lines[start_index].startswith(__snake_case ):
start_index += 1
start_index += 1
_lowercase =start_index
while not lines[end_index].startswith(__snake_case ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
UpperCAmelCase__ = '''Model|Encoder|Decoder|ForConditionalGeneration'''
# Regexes that match TF/Flax/PT model names.
UpperCAmelCase__ = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
UpperCAmelCase__ = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
UpperCAmelCase__ = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
# This is to make sure the transformers module imported is the one in the repo.
UpperCAmelCase__ = direct_transformers_import(TRANSFORMERS_PATH)
def UpperCAmelCase_ ( __snake_case ) -> Tuple:
"""simple docstring"""
_lowercase =re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , __snake_case )
return [m.group(0 ) for m in matches]
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> str:
"""simple docstring"""
_lowercase =2 if text == '''✅''' or text == '''❌''' else len(__snake_case )
_lowercase =(width - text_length) // 2
_lowercase =width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def UpperCAmelCase_ ( ) -> Optional[Any]:
"""simple docstring"""
_lowercase =transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
_lowercase ={
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
_lowercase ={name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
_lowercase =collections.defaultdict(__snake_case )
_lowercase =collections.defaultdict(__snake_case )
_lowercase =collections.defaultdict(__snake_case )
_lowercase =collections.defaultdict(__snake_case )
_lowercase =collections.defaultdict(__snake_case )
# Let's lookup through all transformers object (once).
for attr_name in dir(__snake_case ):
_lowercase =None
if attr_name.endswith('''Tokenizer''' ):
_lowercase =slow_tokenizers
_lowercase =attr_name[:-9]
elif attr_name.endswith('''TokenizerFast''' ):
_lowercase =fast_tokenizers
_lowercase =attr_name[:-13]
elif _re_tf_models.match(__snake_case ) is not None:
_lowercase =tf_models
_lowercase =_re_tf_models.match(__snake_case ).groups()[0]
elif _re_flax_models.match(__snake_case ) is not None:
_lowercase =flax_models
_lowercase =_re_flax_models.match(__snake_case ).groups()[0]
elif _re_pt_models.match(__snake_case ) is not None:
_lowercase =pt_models
_lowercase =_re_pt_models.match(__snake_case ).groups()[0]
if lookup_dict is not None:
while len(__snake_case ) > 0:
if attr_name in model_name_to_prefix.values():
_lowercase =True
break
# Try again after removing the last word in the name
_lowercase =''''''.join(camel_case_split(__snake_case )[:-1] )
# Let's build that table!
_lowercase =list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
_lowercase =['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support''']
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
_lowercase =[len(__snake_case ) + 2 for c in columns]
_lowercase =max([len(__snake_case ) for name in model_names] ) + 2
# Build the table per se
_lowercase ='''|''' + '''|'''.join([_center_text(__snake_case , __snake_case ) for c, w in zip(__snake_case , __snake_case )] ) + '''|\n'''
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n"
_lowercase ={True: '''✅''', False: '''❌'''}
for name in model_names:
_lowercase =model_name_to_prefix[name]
_lowercase =[
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(__snake_case , __snake_case ) for l, w in zip(__snake_case , __snake_case )] ) + "|\n"
return table
def UpperCAmelCase_ ( __snake_case=False ) -> List[str]:
"""simple docstring"""
_lowercase , _lowercase , _lowercase , _lowercase =_find_text_in_file(
filename=os.path.join(__snake_case , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , )
_lowercase =get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(__snake_case , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
'''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' )
if __name__ == "__main__":
UpperCAmelCase__ = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
UpperCAmelCase__ = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 5 |
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : str =JukeboxTokenizer
UpperCAmelCase_ : Tuple ={
"artist": "Zac Brown Band",
"genres": "Country",
"lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ",
}
@require_torch
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
import torch
__snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" )
__snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"]
# fmt: off
__snake_case : Optional[Any] = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
import torch
__snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" )
__snake_case : Tuple = tokenizer(**self.metas )["input_ids"]
# fmt: off
__snake_case : int = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 326 | 0 |
def __lowerCAmelCase ( a__ ) -> List[Any]:
__a = 0
__a = len(a__ )
for i in range(n - 1 ):
for j in range(i + 1 , a__ ):
if arr[i] > arr[j]:
num_inversions += 1
return num_inversions
def __lowerCAmelCase ( a__ ) -> Dict:
if len(a__ ) <= 1:
return arr, 0
__a = len(a__ ) // 2
__a = arr[0:mid]
__a = arr[mid:]
__a , __a = count_inversions_recursive(a__ )
__a , __a = count_inversions_recursive(a__ )
__a , __a = _count_cross_inversions(a__ , a__ )
__a = inversion_p + inversions_q + cross_inversions
return c, num_inversions
def __lowerCAmelCase ( a__ , a__ ) -> Optional[Any]:
__a = []
__a = __a = __a = 0
while i < len(a__ ) and j < len(a__ ):
if p[i] > q[j]:
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
# These are all inversions. The claim emerges from the
# property that P is sorted.
num_inversion += len(a__ ) - i
r.append(q[j] )
j += 1
else:
r.append(p[i] )
i += 1
if i < len(a__ ):
r.extend(p[i:] )
else:
r.extend(q[j:] )
return r, num_inversion
def __lowerCAmelCase ( ) -> Any:
__a = [10, 2, 1, 5, 5, 2, 11]
# this arr has 8 inversions:
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
__a = count_inversions_bf(a__ )
__a , __a = count_inversions_recursive(a__ )
assert num_inversions_bf == num_inversions_recursive == 8
print('''number of inversions = ''' , a__ )
# testing an array with zero inversion (a sorted arr_1)
arr_a.sort()
__a = count_inversions_bf(a__ )
__a , __a = count_inversions_recursive(a__ )
assert num_inversions_bf == num_inversions_recursive == 0
print('''number of inversions = ''' , a__ )
# an empty list should also have zero inversions
__a = []
__a = count_inversions_bf(a__ )
__a , __a = count_inversions_recursive(a__ )
assert num_inversions_bf == num_inversions_recursive == 0
print('''number of inversions = ''' , a__ )
if __name__ == "__main__":
main() | 6 |
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
_UpperCamelCase = logging.get_logger(__name__)
class _lowerCamelCase :
"""simple docstring"""
UpperCAmelCase_ : str
UpperCAmelCase_ : str =None
@staticmethod
def UpperCAmelCase ( ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
if not self.is_available():
raise RuntimeError(
F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" )
@classmethod
def UpperCAmelCase ( cls ) -> Tuple:
'''simple docstring'''
return F"""`pip install {cls.pip_package or cls.name}`"""
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] ="optuna"
@staticmethod
def UpperCAmelCase ( ) -> Union[str, Any]:
'''simple docstring'''
return is_optuna_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict:
'''simple docstring'''
return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> int:
'''simple docstring'''
return default_hp_space_optuna(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : List[str] ="ray"
UpperCAmelCase_ : Dict ="'ray[tune]'"
@staticmethod
def UpperCAmelCase ( ) -> str:
'''simple docstring'''
return is_ray_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
return default_hp_space_ray(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Tuple ="sigopt"
@staticmethod
def UpperCAmelCase ( ) -> int:
'''simple docstring'''
return is_sigopt_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict:
'''simple docstring'''
return default_hp_space_sigopt(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : str ="wandb"
@staticmethod
def UpperCAmelCase ( ) -> Optional[Any]:
'''simple docstring'''
return is_wandb_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return default_hp_space_wandb(UpperCAmelCase )
_UpperCamelCase = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def lowerCAmelCase__( ) -> str:
__snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(lowercase ) > 0:
__snake_case : Dict = available_backends[0].name
if len(lowercase ) > 1:
logger.info(
f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" )
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
f""" - To install {backend.name} run {backend.pip_install()}"""
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 326 | 0 |
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class A ( unittest.TestCase , _UpperCAmelCase ):
"""simple docstring"""
def snake_case__ ( self : str )-> Union[str, Any]:
'''simple docstring'''
A__ = load_tool('text-to-speech' )
self.tool.setup()
def snake_case__ ( self : int )-> Optional[Any]:
'''simple docstring'''
torch.manual_seed(0 )
A__ = self.tool('hey' )
A__ = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3],torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ),) )
def snake_case__ ( self : int )-> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
A__ = self.tool('hey' )
A__ = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3],torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ),) )
| 7 |
import math
def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list:
__snake_case : Any = end or len(lowercase )
for i in range(lowercase , lowercase ):
__snake_case : List[str] = i
__snake_case : Union[str, Any] = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
__snake_case : Optional[Any] = array[temp_index - 1]
temp_index -= 1
__snake_case : Any = temp_index_value
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap
__snake_case : Any = index
__snake_case : Optional[Any] = 2 * index + 1 # Left Node
__snake_case : str = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
__snake_case : Optional[int] = left_index
if right_index < heap_size and array[largest] < array[right_index]:
__snake_case : Tuple = right_index
if largest != index:
__snake_case , __snake_case : int = array[largest], array[index]
heapify(lowercase , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list ) -> list:
__snake_case : List[str] = len(lowercase )
for i in range(n // 2 , -1 , -1 ):
heapify(lowercase , lowercase , lowercase )
for i in range(n - 1 , 0 , -1 ):
__snake_case , __snake_case : Optional[Any] = array[0], array[i]
heapify(lowercase , 0 , lowercase )
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
__snake_case : Union[str, Any] = low
__snake_case : Union[str, Any] = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
__snake_case , __snake_case : str = array[j], array[i]
i += 1
def lowerCAmelCase__( lowercase : list ) -> list:
if len(lowercase ) == 0:
return array
__snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) )
__snake_case : Dict = 16
return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list:
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
__snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 )
__snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase )
intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase )
__snake_case : List[str] = p
return insertion_sort(lowercase , lowercase , lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip()
_UpperCamelCase = [float(item) for item in user_input.split(''',''')]
print(sort(unsorted))
| 326 | 0 |
from sklearn.metrics import fa_score
import datasets
lowerCAmelCase_ = '''
The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:
F1 = 2 * (precision * recall) / (precision + recall)
'''
lowerCAmelCase_ = '''
Args:
predictions (`list` of `int`): Predicted labels.
references (`list` of `int`): Ground truth labels.
labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.
pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.
average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.
- \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.
- \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.
- \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.
- \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
sample_weight (`list` of `float`): Sample weights Defaults to None.
Returns:
f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.
Examples:
Example 1-A simple binary example
>>> f1_metric = datasets.load_metric("f1")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])
>>> print(results)
{\'f1\': 0.5}
Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.
>>> f1_metric = datasets.load_metric("f1")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)
>>> print(round(results[\'f1\'], 2))
0.67
Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.
>>> f1_metric = datasets.load_metric("f1")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])
>>> print(round(results[\'f1\'], 2))
0.35
Example 4-A multiclass example, with different values for the `average` input.
>>> predictions = [0, 2, 1, 0, 0, 1]
>>> references = [0, 1, 2, 0, 1, 2]
>>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")
>>> print(round(results[\'f1\'], 2))
0.27
>>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")
>>> print(round(results[\'f1\'], 2))
0.33
>>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")
>>> print(round(results[\'f1\'], 2))
0.27
>>> results = f1_metric.compute(predictions=predictions, references=references, average=None)
>>> print(results)
{\'f1\': array([0.8, 0. , 0. ])}
'''
lowerCAmelCase_ = '''
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class snake_case_ ( datasets.Metric ):
'''simple docstring'''
def snake_case__( self : Tuple ) ->Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ),
'''references''': datasets.Sequence(datasets.Value('''int32''' ) ),
}
if self.config_name == '''multilabel'''
else {
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , )
def snake_case__( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Optional[int]=1 , _UpperCamelCase : List[str]="binary" , _UpperCamelCase : Tuple=None ) ->Optional[Any]:
snake_case_ = fa_score(
_UpperCamelCase , _UpperCamelCase , labels=_UpperCamelCase , pos_label=_UpperCamelCase , average=_UpperCamelCase , sample_weight=_UpperCamelCase )
return {"f1": float(_UpperCamelCase ) if score.size == 1 else score} | 8 |
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def lowerCAmelCase__( ) -> List[Any]:
with parallel_backend("spark" ):
assert ParallelBackendConfig.backend_name == "spark"
__snake_case : Any = [1, 2, 3]
with pytest.raises(lowercase ):
with parallel_backend("unsupported backend" ):
map_nested(lowercase , lowercase , num_proc=2 )
with pytest.raises(lowercase ):
with parallel_backend("unsupported backend" ):
map_nested(lowercase , lowercase , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("num_proc" , [2, -1] )
def lowerCAmelCase__( lowercase : Dict ) -> Dict:
__snake_case : Any = [1, 2]
__snake_case : Dict = {"a": 1, "b": 2}
__snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]}
__snake_case : int = {"a": {"1": 1}, "b": 2}
__snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4}
__snake_case : Dict = [2, 3]
__snake_case : Tuple = {"a": 2, "b": 3}
__snake_case : int = {"a": [2, 3], "b": [4, 5]}
__snake_case : Dict = {"a": {"1": 2}, "b": 3}
__snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5}
with parallel_backend("spark" ):
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
| 326 | 0 |
__lowerCAmelCase : Optional[int] ='\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
__lowerCAmelCase : Tuple =[{'type': 'code', 'content': INSTALL_CONTENT}]
__lowerCAmelCase : int ={
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 9 |
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any:
__snake_case : Optional[Any] = False
__snake_case : Optional[Any] = search_prob
__snake_case : str = start_temperate
__snake_case : List[Any] = []
__snake_case : str = 0
__snake_case : Dict = None
while not search_end:
__snake_case : List[Any] = current_state.score()
if best_state is None or current_score > best_state.score():
__snake_case : List[Any] = current_state
scores.append(lowercase )
iterations += 1
__snake_case : Dict = None
__snake_case : str = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
__snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor
__snake_case : int = neighbors.pop(lowercase )
__snake_case : Optional[Any] = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
__snake_case : Any = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
__snake_case : List[str] = picked_neighbor
else:
__snake_case : Optional[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
__snake_case : str = picked_neighbor
__snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
__snake_case : Optional[Any] = True
else:
__snake_case : str = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(lowercase ) , lowercase )
plt.xlabel("Iterations" )
plt.ylabel("Function values" )
plt.show()
return best_state
if __name__ == "__main__":
def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any:
return (3 * x**2) - (6 * y)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True)
print(
'''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True)
print(
'''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
| 326 | 0 |
def lowerCAmelCase_ ( __a = 50 ) -> int:
"""simple docstring"""
lowerCamelCase__: List[str] =[1] * (length + 1)
for row_length in range(3 , length + 1 ):
for block_length in range(3 , row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f'{solution() = }')
| 10 |
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"]
UpperCAmelCase_ : Tuple ="FlavaImageProcessor"
UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast")
def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int:
'''simple docstring'''
__snake_case : List[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase , )
__snake_case : List[Any] = kwargs.pop("feature_extractor" )
__snake_case : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = self.image_processor
def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]:
'''simple docstring'''
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
__snake_case : Union[str, Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if images is not None:
__snake_case : Union[str, Any] = self.image_processor(
UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if text is not None and images is not None:
encoding.update(UpperCAmelCase )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : List[Any] = self.tokenizer.model_input_names
__snake_case : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , )
return self.image_processor
| 326 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
lowerCAmelCase__ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['GPTSw3Tokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_swa import GPTSwaTokenizer
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 11 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''}
_UpperCamelCase = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
}
}
_UpperCamelCase = {
'''camembert-base''': 512,
}
_UpperCamelCase = '''▁'''
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES
UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : str =["input_ids", "attention_mask"]
def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
'''simple docstring'''
__snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
__snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , )
__snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCAmelCase ) )
__snake_case : Dict = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
__snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
__snake_case : Optional[int] = len(self.fairseq_tokens_to_ids )
__snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
__snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Dict = [self.cls_token_id]
__snake_case : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1]
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__snake_case : int = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(UpperCAmelCase ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__snake_case : Tuple = []
__snake_case : Union[str, Any] = ""
__snake_case : Optional[int] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase ) + token
__snake_case : List[Any] = True
__snake_case : Union[str, Any] = []
else:
current_sub_tokens.append(UpperCAmelCase )
__snake_case : int = False
out_string += self.sp_model.decode(UpperCAmelCase )
return out_string.strip()
def __getstate__( self ) -> List[Any]:
'''simple docstring'''
__snake_case : str = self.__dict__.copy()
__snake_case : Optional[Any] = None
return state
def __setstate__( self , UpperCAmelCase ) -> str:
'''simple docstring'''
__snake_case : Optional[Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__snake_case : List[str] = {}
__snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__snake_case : Optional[Any] = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase , "wb" ) as fi:
__snake_case : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase )
return (out_vocab_file,)
| 326 | 0 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
UpperCAmelCase_ = 4
UpperCAmelCase_ = 3
class lowerCamelCase__( __lowerCamelCase):
pass
def lowerCamelCase__ ( A__ : List[str] ):
'''simple docstring'''
for shard in shards:
for i in range(A__ ):
yield {"i": i, "shard": shard}
def lowerCamelCase__ ( ):
'''simple docstring'''
__lowerCamelCase = int(os.environ["""RANK"""] )
__lowerCamelCase = int(os.environ["""WORLD_SIZE"""] )
__lowerCamelCase = ArgumentParser()
parser.add_argument("""--streaming""" , type=A__ )
parser.add_argument("""--local_rank""" , type=A__ )
parser.add_argument("""--num_workers""" , type=A__ , default=0 )
__lowerCamelCase = parser.parse_args()
__lowerCamelCase = args.streaming
__lowerCamelCase = args.num_workers
__lowerCamelCase = {"""shards""": [f'shard_{shard_idx}' for shard_idx in range(A__ )]}
__lowerCamelCase = IterableDataset.from_generator(A__ , gen_kwargs=A__ )
if not streaming:
__lowerCamelCase = Dataset.from_list(list(A__ ) )
__lowerCamelCase = split_dataset_by_node(A__ , rank=A__ , world_size=A__ )
__lowerCamelCase = torch.utils.data.DataLoader(A__ , num_workers=A__ )
__lowerCamelCase = NUM_SHARDS * NUM_ITEMS_PER_SHARD
__lowerCamelCase = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
__lowerCamelCase = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' )
if __name__ == "__main__":
main()
| 12 |
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool:
__snake_case : List[str] = len(lowercase )
__snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__snake_case : Optional[Any] = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
__snake_case : Union[str, Any] = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
__snake_case : List[str] = subset[i - 1][j]
if arr[i - 1] <= j:
__snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 | 0 |
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401
from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401
deprecate(
"""stable diffusion controlnet""",
"""0.22.0""",
"""Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""",
standard_warn=False,
stacklevel=3,
)
| 13 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
_UpperCamelCase = 4
_UpperCamelCase = 3
class _lowerCamelCase ( a ):
"""simple docstring"""
pass
def lowerCAmelCase__( lowercase : List[str] ) -> Any:
for shard in shards:
for i in range(lowercase ):
yield {"i": i, "shard": shard}
def lowerCAmelCase__( ) -> Optional[int]:
__snake_case : List[Any] = int(os.environ["RANK"] )
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : List[str] = ArgumentParser()
parser.add_argument("--streaming" , type=lowercase )
parser.add_argument("--local_rank" , type=lowercase )
parser.add_argument("--num_workers" , type=lowercase , default=0 )
__snake_case : Any = parser.parse_args()
__snake_case : Dict = args.streaming
__snake_case : Union[str, Any] = args.num_workers
__snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]}
__snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase )
if not streaming:
__snake_case : Any = Dataset.from_list(list(lowercase ) )
__snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase )
__snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase )
__snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD
__snake_case : List[str] = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
__snake_case : Dict = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" )
if __name__ == "__main__":
main()
| 326 | 0 |
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = (DDIMParallelScheduler,)
UpperCAmelCase__ = (('''eta''', 0.0), ('''num_inference_steps''', 50))
def SCREAMING_SNAKE_CASE ( self : str , **UpperCAmelCase__ : str) ->List[str]:
'''simple docstring'''
A__ = {
'''num_train_timesteps''': 1_000,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''clip_sample''': True,
}
config.update(**UpperCAmelCase__)
return config
def SCREAMING_SNAKE_CASE ( self : int , **UpperCAmelCase__ : List[Any]) ->Tuple:
'''simple docstring'''
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(**UpperCAmelCase__)
A__ = scheduler_class(**UpperCAmelCase__)
A__ , A__ = 10, 0.0
A__ = self.dummy_model()
A__ = self.dummy_sample_deter
scheduler.set_timesteps(UpperCAmelCase__)
for t in scheduler.timesteps:
A__ = model(UpperCAmelCase__ , UpperCAmelCase__)
A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__).prev_sample
return sample
def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]:
'''simple docstring'''
for timesteps in [100, 500, 1_000]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Tuple:
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=UpperCAmelCase__)
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config(steps_offset=1)
A__ = scheduler_class(**UpperCAmelCase__)
scheduler.set_timesteps(5)
assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1]))
def SCREAMING_SNAKE_CASE ( self : str) ->int:
'''simple docstring'''
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=UpperCAmelCase__ , beta_end=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->int:
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]:
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]:
'''simple docstring'''
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]:
'''simple docstring'''
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]:
'''simple docstring'''
self.check_over_configs(thresholding=UpperCAmelCase__)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCAmelCase__ , prediction_type=UpperCAmelCase__ , sample_max_value=UpperCAmelCase__ , )
def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]:
'''simple docstring'''
for t in [1, 10, 49]:
self.check_over_forward(time_step=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[str]:
'''simple docstring'''
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500]):
self.check_over_forward(time_step=UpperCAmelCase__ , num_inference_steps=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]:
'''simple docstring'''
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]):
self.check_over_forward(time_step=UpperCAmelCase__ , eta=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict:
'''simple docstring'''
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config()
A__ = scheduler_class(**UpperCAmelCase__)
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(420 , 400) - 0.14771)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(980 , 960) - 0.32460)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 , 486) - 0.00979)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 , 998) - 0.02)) < 1e-5
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict:
'''simple docstring'''
A__ = self.scheduler_classes[0]
A__ = self.get_scheduler_config()
A__ = scheduler_class(**UpperCAmelCase__)
A__ , A__ = 10, 0.0
scheduler.set_timesteps(UpperCAmelCase__)
A__ = self.dummy_model()
A__ = self.dummy_sample_deter
A__ = self.dummy_sample_deter + 0.1
A__ = self.dummy_sample_deter - 0.1
A__ = samplea.shape[0]
A__ = torch.stack([samplea, samplea, samplea] , dim=0)
A__ = torch.arange(UpperCAmelCase__)[0:3, None].repeat(1 , UpperCAmelCase__)
A__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1))
A__ = scheduler.batch_step_no_noise(UpperCAmelCase__ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , UpperCAmelCase__)
A__ = torch.sum(torch.abs(UpperCAmelCase__))
A__ = torch.mean(torch.abs(UpperCAmelCase__))
assert abs(result_sum.item() - 1147.7904) < 1e-2
assert abs(result_mean.item() - 0.4982) < 1e-3
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]:
'''simple docstring'''
A__ = self.full_loop()
A__ = torch.sum(torch.abs(UpperCAmelCase__))
A__ = torch.mean(torch.abs(UpperCAmelCase__))
assert abs(result_sum.item() - 172.0067) < 1e-2
assert abs(result_mean.item() - 0.223967) < 1e-3
def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]:
'''simple docstring'''
A__ = self.full_loop(prediction_type='''v_prediction''')
A__ = torch.sum(torch.abs(UpperCAmelCase__))
A__ = torch.mean(torch.abs(UpperCAmelCase__))
assert abs(result_sum.item() - 52.5302) < 1e-2
assert abs(result_mean.item() - 0.0684) < 1e-3
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict:
'''simple docstring'''
A__ = self.full_loop(set_alpha_to_one=UpperCAmelCase__ , beta_start=0.01)
A__ = torch.sum(torch.abs(UpperCAmelCase__))
A__ = torch.mean(torch.abs(UpperCAmelCase__))
assert abs(result_sum.item() - 149.8295) < 1e-2
assert abs(result_mean.item() - 0.1951) < 1e-3
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]:
'''simple docstring'''
A__ = self.full_loop(set_alpha_to_one=UpperCAmelCase__ , beta_start=0.01)
A__ = torch.sum(torch.abs(UpperCAmelCase__))
A__ = torch.mean(torch.abs(UpperCAmelCase__))
assert abs(result_sum.item() - 149.0784) < 1e-2
assert abs(result_mean.item() - 0.1941) < 1e-3
| 14 |
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int:
__snake_case : List[Any] = limit + 1
__snake_case : List[str] = [0] * limit
for first_term in range(1 , lowercase ):
for n in range(lowercase , lowercase , lowercase ):
__snake_case : Union[str, Any] = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
__snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 326 | 0 |
def UpperCAmelCase ( a_ , a_ ) -> Tuple:
"""simple docstring"""
_enforce_args(a_ , a_ )
if n == 0:
return 0
__A = float("-inf" )
for i in range(1 , n + 1 ):
__A = max(
a_ , prices[i - 1] + naive_cut_rod_recursive(n - i , a_ ) )
return max_revue
def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]:
"""simple docstring"""
_enforce_args(a_ , a_ )
__A = [float("-inf" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(a_ , a_ , a_ )
def UpperCAmelCase ( a_ , a_ , a_ ) -> str:
"""simple docstring"""
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
__A = float("-inf" )
for i in range(1 , n + 1 ):
__A = max(
a_ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , a_ , a_ ) , )
__A = max_revenue
return max_rev[n]
def UpperCAmelCase ( a_ , a_ ) -> List[str]:
"""simple docstring"""
_enforce_args(a_ , a_ )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
__A = [float("-inf" ) for _ in range(n + 1 )]
__A = 0
for i in range(1 , n + 1 ):
__A = max_rev[i]
for j in range(1 , i + 1 ):
__A = max(a_ , prices[j - 1] + max_rev[i - j] )
__A = max_revenue_i
return max_rev[n]
def UpperCAmelCase ( a_ , a_ ) -> int:
"""simple docstring"""
if n < 0:
__A = F'''n must be greater than or equal to 0. Got n = {n}'''
raise ValueError(a_ )
if n > len(a_ ):
__A = (
"Each integral piece of rod must have a corresponding price. "
F'''Got n = {n} but length of prices = {len(a_ )}'''
)
raise ValueError(a_ )
def UpperCAmelCase ( ) -> List[str]:
"""simple docstring"""
__A = [6, 1_0, 1_2, 1_5, 2_0, 2_3]
__A = len(a_ )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
__A = 3_6
__A = top_down_cut_rod(a_ , a_ )
__A = bottom_up_cut_rod(a_ , a_ )
__A = naive_cut_rod_recursive(a_ , a_ )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 15 |
from __future__ import annotations
def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]:
__snake_case : List[str] = word_bank or []
# create a table
__snake_case : int = len(lowercase ) + 1
__snake_case : list[list[list[str]]] = []
for _ in range(lowercase ):
table.append([] )
# seed value
__snake_case : Optional[int] = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(lowercase ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(lowercase )] == word:
__snake_case : list[list[str]] = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(lowercase )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(lowercase )]:
combination.reverse()
return table[len(lowercase )]
if __name__ == "__main__":
print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa''']))
print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t''']))
print(
all_construct(
'''hexagonosaurus''',
['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''],
)
)
| 326 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCAmelCase_ = {
'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['MobileViTFeatureExtractor']
lowerCAmelCase_ = ['MobileViTImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MobileViTForImageClassification',
'MobileViTForSemanticSegmentation',
'MobileViTModel',
'MobileViTPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFMobileViTForImageClassification',
'TFMobileViTForSemanticSegmentation',
'TFMobileViTModel',
'TFMobileViTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 16 |
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple:
'''simple docstring'''
__snake_case : Optional[int] = parent
__snake_case : Tuple = batch_size
__snake_case : List[str] = seq_length
__snake_case : Optional[int] = is_training
__snake_case : int = use_attention_mask
__snake_case : Union[str, Any] = use_token_type_ids
__snake_case : Any = use_labels
__snake_case : List[str] = vocab_size
__snake_case : int = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : List[Any] = num_attention_heads
__snake_case : Optional[int] = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : Optional[int] = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : str = max_position_embeddings
__snake_case : List[Any] = type_vocab_size
__snake_case : int = type_sequence_label_size
__snake_case : Dict = initializer_range
__snake_case : List[Any] = num_choices
__snake_case : Union[str, Any] = rescale_embeddings
__snake_case : List[Any] = attention_type
__snake_case : str = use_bias
__snake_case : Dict = block_size
__snake_case : Optional[Any] = num_random_blocks
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Any = None
if self.use_attention_mask:
__snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Union[str, Any] = None
if self.use_token_type_ids:
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Optional[int] = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Optional[int] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs
__snake_case : int = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_flax
class _lowerCamelCase ( a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =(
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
UpperCAmelCase_ : Dict =False
UpperCAmelCase_ : str =False
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : Dict = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_hidden_states_output()
@slow
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" )
self.assertIsNotNone(UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = model_class(UpperCAmelCase )
@jax.jit
def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase )
with self.subTest("JIT Enabled" ):
__snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int:
'''simple docstring'''
if name.startswith("outputs.attentions" ):
return
else:
super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
| 326 | 0 |
"""simple docstring"""
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="session")
def _A ( ) -> Any:
'''simple docstring'''
__lowercase = 10
__lowercase = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string")),
"labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"])),
"answers": datasets.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
}),
"id": datasets.Value("int64"),
})
__lowercase = datasets.Dataset.from_dict(
{
"tokens": [["foo"] * 5] * n,
"labels": [[1] * 5] * n,
"answers": [{"answer_start": [97], "text": ["1976"]}] * 10,
"id": list(range(UpperCamelCase_)),
}, features=UpperCamelCase_, )
return dataset
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Optional[int]) -> Any:
'''simple docstring'''
__lowercase = str(tmp_path_factory.mktemp("data") / "file.arrow")
dataset.map(cache_file_name=UpperCamelCase_)
return filename
# FILE_CONTENT + files
_a = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Optional[int]) -> List[Any]:
'''simple docstring'''
__lowercase = tmp_path_factory.mktemp("data") / "file.txt"
__lowercase = FILE_CONTENT
with open(UpperCamelCase_, "w") as f:
f.write(UpperCamelCase_)
return filename
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : int) -> Any:
'''simple docstring'''
import bza
__lowercase = tmp_path_factory.mktemp("data") / "file.txt.bz2"
__lowercase = bytes(UpperCamelCase_, "utf-8")
with bza.open(UpperCamelCase_, "wb") as f:
f.write(UpperCamelCase_)
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Union[str, Any]) -> Optional[Any]:
'''simple docstring'''
import gzip
__lowercase = str(tmp_path_factory.mktemp("data") / "file.txt.gz")
__lowercase = bytes(UpperCamelCase_, "utf-8")
with gzip.open(UpperCamelCase_, "wb") as f:
f.write(UpperCamelCase_)
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Tuple) -> Union[str, Any]:
'''simple docstring'''
if datasets.config.LZ4_AVAILABLE:
import lza.frame
__lowercase = tmp_path_factory.mktemp("data") / "file.txt.lz4"
__lowercase = bytes(UpperCamelCase_, "utf-8")
with lza.frame.open(UpperCamelCase_, "wb") as f:
f.write(UpperCamelCase_)
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : Any) -> Optional[Any]:
'''simple docstring'''
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
__lowercase = tmp_path_factory.mktemp("data") / "file.txt.7z"
with pyazr.SevenZipFile(UpperCamelCase_, "w") as archive:
archive.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_))
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> Optional[Any]:
'''simple docstring'''
import tarfile
__lowercase = tmp_path_factory.mktemp("data") / "file.txt.tar"
with tarfile.TarFile(UpperCamelCase_, "w") as f:
f.add(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_))
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Optional[int]) -> int:
'''simple docstring'''
import lzma
__lowercase = tmp_path_factory.mktemp("data") / "file.txt.xz"
__lowercase = bytes(UpperCamelCase_, "utf-8")
with lzma.open(UpperCamelCase_, "wb") as f:
f.write(UpperCamelCase_)
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Tuple) -> int:
'''simple docstring'''
import zipfile
__lowercase = tmp_path_factory.mktemp("data") / "file.txt.zip"
with zipfile.ZipFile(UpperCamelCase_, "w") as f:
f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_))
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : str) -> Union[str, Any]:
'''simple docstring'''
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
__lowercase = tmp_path_factory.mktemp("data") / "file.txt.zst"
__lowercase = bytes(UpperCamelCase_, "utf-8")
with zstd.open(UpperCamelCase_, "wb") as f:
f.write(UpperCamelCase_)
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : List[Any]) -> Optional[Any]:
'''simple docstring'''
__lowercase = tmp_path_factory.mktemp("data") / "file.xml"
__lowercase = textwrap.dedent(
"\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>")
with open(UpperCamelCase_, "w") as f:
f.write(UpperCamelCase_)
return filename
_a = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
_a = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
_a = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
_a = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
_a = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="session")
def _A ( ) -> Any:
'''simple docstring'''
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Union[str, Any]) -> Optional[Any]:
'''simple docstring'''
__lowercase = datasets.Dataset.from_dict(UpperCamelCase_)
__lowercase = str(tmp_path_factory.mktemp("data") / "dataset.arrow")
dataset.map(cache_file_name=UpperCamelCase_)
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Optional[Any]) -> Union[str, Any]:
'''simple docstring'''
__lowercase = str(tmp_path_factory.mktemp("data") / "dataset.sqlite")
with contextlib.closing(sqlitea.connect(UpperCamelCase_)) as con:
__lowercase = con.cursor()
cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)")
for item in DATA:
cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values()))
con.commit()
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Any) -> int:
'''simple docstring'''
__lowercase = str(tmp_path_factory.mktemp("data") / "dataset.csv")
with open(UpperCamelCase_, "w", newline="") as f:
__lowercase = csv.DictWriter(UpperCamelCase_, fieldnames=["col_1", "col_2", "col_3"])
writer.writeheader()
for item in DATA:
writer.writerow(UpperCamelCase_)
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Dict) -> Dict:
'''simple docstring'''
__lowercase = str(tmp_path_factory.mktemp("data") / "dataset2.csv")
with open(UpperCamelCase_, "w", newline="") as f:
__lowercase = csv.DictWriter(UpperCamelCase_, fieldnames=["col_1", "col_2", "col_3"])
writer.writeheader()
for item in DATA:
writer.writerow(UpperCamelCase_)
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : int) -> Optional[Any]:
'''simple docstring'''
import bza
__lowercase = tmp_path_factory.mktemp("data") / "dataset.csv.bz2"
with open(UpperCamelCase_, "rb") as f:
__lowercase = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(UpperCamelCase_, "wb") as f:
f.write(UpperCamelCase_)
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : Dict, UpperCamelCase_ : List[str]) -> str:
'''simple docstring'''
__lowercase = tmp_path_factory.mktemp("data") / "dataset.csv.zip"
with zipfile.ZipFile(UpperCamelCase_, "w") as f:
f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_))
f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_))
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : List[Any], UpperCamelCase_ : str, UpperCamelCase_ : Optional[Any]) -> Union[str, Any]:
'''simple docstring'''
__lowercase = tmp_path_factory.mktemp("data") / "dataset.csv.zip"
with zipfile.ZipFile(UpperCamelCase_, "w") as f:
f.write(UpperCamelCase_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV")))
f.write(UpperCamelCase_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV")))
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : int) -> int:
'''simple docstring'''
__lowercase = tmp_path_factory.mktemp("data") / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(UpperCamelCase_, "w") as f:
f.write(UpperCamelCase_, arcname=os.path.join("main_dir", os.path.basename(UpperCamelCase_)))
f.write(UpperCamelCase_, arcname=os.path.join("main_dir", os.path.basename(UpperCamelCase_)))
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : List[str]) -> Union[str, Any]:
'''simple docstring'''
__lowercase = str(tmp_path_factory.mktemp("data") / "dataset.parquet")
__lowercase = pa.schema(
{
"col_1": pa.string(),
"col_2": pa.intaa(),
"col_3": pa.floataa(),
})
with open(UpperCamelCase_, "wb") as f:
__lowercase = pq.ParquetWriter(UpperCamelCase_, schema=UpperCamelCase_)
__lowercase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(UpperCamelCase_))] for k in DATA[0]}, schema=UpperCamelCase_)
writer.write_table(UpperCamelCase_)
writer.close()
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : str) -> Tuple:
'''simple docstring'''
__lowercase = str(tmp_path_factory.mktemp("data") / "dataset.json")
__lowercase = {"data": DATA}
with open(UpperCamelCase_, "w") as f:
json.dump(UpperCamelCase_, UpperCamelCase_)
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Optional[Any]) -> Any:
'''simple docstring'''
__lowercase = str(tmp_path_factory.mktemp("data") / "dataset.json")
__lowercase = {"data": DATA_DICT_OF_LISTS}
with open(UpperCamelCase_, "w") as f:
json.dump(UpperCamelCase_, UpperCamelCase_)
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : str) -> int:
'''simple docstring'''
__lowercase = str(tmp_path_factory.mktemp("data") / "dataset.jsonl")
with open(UpperCamelCase_, "w") as f:
for item in DATA:
f.write(json.dumps(UpperCamelCase_) + "\n")
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Optional[int]) -> Tuple:
'''simple docstring'''
__lowercase = str(tmp_path_factory.mktemp("data") / "dataset2.jsonl")
with open(UpperCamelCase_, "w") as f:
for item in DATA:
f.write(json.dumps(UpperCamelCase_) + "\n")
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : str) -> Any:
'''simple docstring'''
__lowercase = str(tmp_path_factory.mktemp("data") / "dataset_312.jsonl")
with open(UpperCamelCase_, "w") as f:
for item in DATA_312:
f.write(json.dumps(UpperCamelCase_) + "\n")
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Dict) -> Tuple:
'''simple docstring'''
__lowercase = str(tmp_path_factory.mktemp("data") / "dataset-str.jsonl")
with open(UpperCamelCase_, "w") as f:
for item in DATA_STR:
f.write(json.dumps(UpperCamelCase_) + "\n")
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : int) -> Union[str, Any]:
'''simple docstring'''
import gzip
__lowercase = str(tmp_path_factory.mktemp("data") / "dataset.txt.gz")
with open(UpperCamelCase_, "rb") as orig_file:
with gzip.open(UpperCamelCase_, "wb") as zipped_file:
zipped_file.writelines(UpperCamelCase_)
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : List[str]) -> List[str]:
'''simple docstring'''
import gzip
__lowercase = str(tmp_path_factory.mktemp("data") / "dataset.jsonl.gz")
with open(UpperCamelCase_, "rb") as orig_file:
with gzip.open(UpperCamelCase_, "wb") as zipped_file:
zipped_file.writelines(UpperCamelCase_)
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : Any, UpperCamelCase_ : Union[str, Any]) -> Tuple:
'''simple docstring'''
__lowercase = tmp_path_factory.mktemp("data") / "dataset.jsonl.zip"
with zipfile.ZipFile(UpperCamelCase_, "w") as f:
f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_))
f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_))
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : List[Any], UpperCamelCase_ : Dict, UpperCamelCase_ : List[Any], UpperCamelCase_ : List[str]) -> Union[str, Any]:
'''simple docstring'''
__lowercase = tmp_path_factory.mktemp("data") / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(UpperCamelCase_, "w") as f:
f.write(UpperCamelCase_, arcname=os.path.join("nested", os.path.basename(UpperCamelCase_)))
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : List[Any], UpperCamelCase_ : Union[str, Any]) -> Dict:
'''simple docstring'''
__lowercase = tmp_path_factory.mktemp("data") / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(UpperCamelCase_, "w") as f:
f.write(UpperCamelCase_, arcname=os.path.join("main_dir", os.path.basename(UpperCamelCase_)))
f.write(UpperCamelCase_, arcname=os.path.join("main_dir", os.path.basename(UpperCamelCase_)))
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : List[Any], UpperCamelCase_ : Dict) -> Tuple:
'''simple docstring'''
__lowercase = tmp_path_factory.mktemp("data") / "dataset.jsonl.tar"
with tarfile.TarFile(UpperCamelCase_, "w") as f:
f.add(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_))
f.add(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_))
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Optional[int]) -> Optional[Any]:
'''simple docstring'''
__lowercase = tmp_path_factory.mktemp("data") / "dataset_nested.jsonl.tar"
with tarfile.TarFile(UpperCamelCase_, "w") as f:
f.add(UpperCamelCase_, arcname=os.path.join("nested", os.path.basename(UpperCamelCase_)))
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Any) -> Dict:
'''simple docstring'''
__lowercase = ["0", "1", "2", "3"]
__lowercase = str(tmp_path_factory.mktemp("data") / "dataset.txt")
with open(UpperCamelCase_, "w") as f:
for item in data:
f.write(item + "\n")
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : str) -> str:
'''simple docstring'''
__lowercase = ["0", "1", "2", "3"]
__lowercase = str(tmp_path_factory.mktemp("data") / "dataset2.txt")
with open(UpperCamelCase_, "w") as f:
for item in data:
f.write(item + "\n")
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : str) -> Optional[Any]:
'''simple docstring'''
__lowercase = ["0", "1", "2", "3"]
__lowercase = tmp_path_factory.mktemp("data") / "dataset.abc"
with open(UpperCamelCase_, "w") as f:
for item in data:
f.write(item + "\n")
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : List[Any], UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Union[str, Any]) -> str:
'''simple docstring'''
__lowercase = tmp_path_factory.mktemp("data") / "dataset.text.zip"
with zipfile.ZipFile(UpperCamelCase_, "w") as f:
f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_))
f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_))
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : str, UpperCamelCase_ : Dict, UpperCamelCase_ : int) -> Tuple:
'''simple docstring'''
__lowercase = tmp_path_factory.mktemp("data") / "dataset_with_dir.text.zip"
with zipfile.ZipFile(UpperCamelCase_, "w") as f:
f.write(UpperCamelCase_, arcname=os.path.join("main_dir", os.path.basename(UpperCamelCase_)))
f.write(UpperCamelCase_, arcname=os.path.join("main_dir", os.path.basename(UpperCamelCase_)))
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : int, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> Optional[int]:
'''simple docstring'''
__lowercase = tmp_path_factory.mktemp("data") / "dataset.ext.zip"
with zipfile.ZipFile(UpperCamelCase_, "w") as f:
f.write(UpperCamelCase_, arcname=os.path.basename("unsupported.ext"))
f.write(UpperCamelCase_, arcname=os.path.basename("unsupported_2.ext"))
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Dict) -> Union[str, Any]:
'''simple docstring'''
__lowercase = "\n".join(["First", "Second\u2029with Unicode new line", "Third"])
__lowercase = str(tmp_path_factory.mktemp("data") / "dataset_with_unicode_new_lines.txt")
with open(UpperCamelCase_, "w", encoding="utf-8") as f:
f.write(UpperCamelCase_)
return path
@pytest.fixture(scope="session")
def _A ( ) -> Any:
'''simple docstring'''
return os.path.join("tests", "features", "data", "test_image_rgb.jpg")
@pytest.fixture(scope="session")
def _A ( ) -> Union[str, Any]:
'''simple docstring'''
return os.path.join("tests", "features", "data", "test_audio_44100.wav")
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : List[str]) -> Tuple:
'''simple docstring'''
__lowercase = tmp_path_factory.mktemp("data") / "dataset.img.zip"
with zipfile.ZipFile(UpperCamelCase_, "w") as f:
f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_))
f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_).replace(".jpg", "2.jpg"))
return path
@pytest.fixture(scope="session")
def _A ( UpperCamelCase_ : Union[str, Any]) -> Optional[Any]:
'''simple docstring'''
__lowercase = tmp_path_factory.mktemp("data_dir")
(data_dir / "subdir").mkdir()
with open(data_dir / "subdir" / "train.txt", "w") as f:
f.write("foo\n" * 10)
with open(data_dir / "subdir" / "test.txt", "w") as f:
f.write("bar\n" * 10)
# hidden file
with open(data_dir / "subdir" / ".test.txt", "w") as f:
f.write("bar\n" * 10)
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / ".subdir" / "train.txt", "w") as f:
f.write("foo\n" * 10)
with open(data_dir / ".subdir" / "test.txt", "w") as f:
f.write("bar\n" * 10)
return data_dir
| 17 |
import argparse
import datetime
def lowerCAmelCase__( lowercase : str ) -> str:
__snake_case : int = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
__snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowercase ) < 11:
raise ValueError("Must be 10 characters long" )
# Get month
__snake_case : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12" )
__snake_case : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get day
__snake_case : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31" )
# Get second separator
__snake_case : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get year
__snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?" )
# Get datetime obj for validation
__snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) )
# Start math
if m <= 2:
__snake_case : Optional[Any] = y - 1
__snake_case : Tuple = m + 12
# maths var
__snake_case : int = int(str(lowercase )[:2] )
__snake_case : int = int(str(lowercase )[2:] )
__snake_case : int = int(2.6 * m - 5.3_9 )
__snake_case : int = int(c / 4 )
__snake_case : int = int(k / 4 )
__snake_case : int = int(d + k )
__snake_case : int = int(t + u + v + x )
__snake_case : int = int(z - (2 * c) )
__snake_case : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer." )
# Response
__snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
_UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 326 | 0 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def _snake_case ( lowerCAmelCase : Dict ):
"""simple docstring"""
if (
(cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F)
or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) #
or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) #
or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) #
or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) #
or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) #
or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F)
or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) #
): #
return True
return False
def _snake_case ( lowerCAmelCase : str ):
"""simple docstring"""
for char in word:
SCREAMING_SNAKE_CASE_ : Any = ord(lowerCAmelCase )
if not _is_chinese_char(lowerCAmelCase ):
return 0
return 1
def _snake_case ( lowerCAmelCase : List[str] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = set()
for token in tokens:
SCREAMING_SNAKE_CASE_ : int = len(lowerCAmelCase ) > 1 and is_chinese(lowerCAmelCase )
if chinese_word:
word_set.add(lowerCAmelCase )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(lowerCAmelCase )
return word_list
def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
SCREAMING_SNAKE_CASE_ : str = max([len(lowerCAmelCase ) for w in chinese_word_set] )
SCREAMING_SNAKE_CASE_ : int = bert_tokens
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = 0, len(lowerCAmelCase )
while start < end:
SCREAMING_SNAKE_CASE_ : Optional[int] = True
if is_chinese(bert_word[start] ):
SCREAMING_SNAKE_CASE_ : List[str] = min(end - start , lowerCAmelCase )
for i in range(lowerCAmelCase , 1 , -1 ):
SCREAMING_SNAKE_CASE_ : Tuple = "".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
SCREAMING_SNAKE_CASE_ : Optional[int] = "##" + bert_word[j]
SCREAMING_SNAKE_CASE_ : int = start + i
SCREAMING_SNAKE_CASE_ : Optional[Any] = False
break
if single_word:
start += 1
return bert_word
def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : LTP , lowerCAmelCase : BertTokenizer ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = []
for i in range(0 , len(lowerCAmelCase ) , 1_0_0 ):
SCREAMING_SNAKE_CASE_ : Optional[int] = ltp_tokenizer.seg(lines[i : i + 1_0_0] )[0]
SCREAMING_SNAKE_CASE_ : List[Any] = [get_chinese_word(lowerCAmelCase ) for r in res]
ltp_res.extend(lowerCAmelCase )
assert len(lowerCAmelCase ) == len(lowerCAmelCase )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = []
for i in range(0 , len(lowerCAmelCase ) , 1_0_0 ):
SCREAMING_SNAKE_CASE_ : str = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=lowerCAmelCase , truncation=lowerCAmelCase , max_length=5_1_2 )
bert_res.extend(res["input_ids"] )
assert len(lowerCAmelCase ) == len(lowerCAmelCase )
SCREAMING_SNAKE_CASE_ : int = []
for input_ids, chinese_word in zip(lowerCAmelCase , lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ : str = []
for id in input_ids:
SCREAMING_SNAKE_CASE_ : Tuple = bert_tokenizer._convert_id_to_token(lowerCAmelCase )
input_tokens.append(lowerCAmelCase )
SCREAMING_SNAKE_CASE_ : Any = add_sub_symbol(lowerCAmelCase , lowerCAmelCase )
SCREAMING_SNAKE_CASE_ : Tuple = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(lowerCAmelCase ):
if token[:2] == "##":
SCREAMING_SNAKE_CASE_ : List[Any] = token[2:]
# save chinese tokens' pos
if len(lowerCAmelCase ) == 1 and _is_chinese_char(ord(lowerCAmelCase ) ):
ref_id.append(lowerCAmelCase )
ref_ids.append(lowerCAmelCase )
assert len(lowerCAmelCase ) == len(lowerCAmelCase )
return ref_ids
def _snake_case ( lowerCAmelCase : Optional[int] ):
"""simple docstring"""
with open(args.file_name , "r" , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE_ : List[Any] = f.readlines()
SCREAMING_SNAKE_CASE_ : int = [line.strip() for line in data if len(lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
SCREAMING_SNAKE_CASE_ : Union[str, Any] = LTP(args.ltp ) # faster in GPU device
SCREAMING_SNAKE_CASE_ : Tuple = BertTokenizer.from_pretrained(args.bert )
SCREAMING_SNAKE_CASE_ : List[str] = prepare_ref(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
with open(args.save_path , "w" , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE_ : Optional[int] = [json.dumps(lowerCAmelCase ) + "\n" for ref in ref_ids]
f.writelines(lowerCAmelCase )
if __name__ == "__main__":
__lowerCamelCase : Any = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path'''
)
parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''')
parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''')
__lowerCamelCase : int = parser.parse_args()
main(args)
| 18 |
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int:
if index == r:
for j in range(lowercase ):
print(data[j] , end=" " )
print(" " )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
__snake_case : Union[str, Any] = arr[i]
combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]:
# A temporary array to store all combination one by one
__snake_case : Tuple = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 )
if __name__ == "__main__":
# Driver code to check the function above
_UpperCamelCase = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 326 | 0 |
import numpy
# List of input, output pairs
__A =(
((5, 2, 3), 1_5),
((6, 5, 9), 2_5),
((1_1, 1_2, 1_3), 4_1),
((1, 1, 1), 8),
((1_1, 1_2, 1_3), 4_1),
)
__A =(((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0))
__A =[2, 4, 1, 5]
__A =len(train_data)
__A =0.009
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__="train" ):
return calculate_hypothesis_value(lowerCamelCase__ , lowerCamelCase__ ) - output(
lowerCamelCase__ , lowerCamelCase__ )
def lowerCamelCase_ ( lowerCamelCase__ ):
lowerCamelCase_ = 0
for i in range(len(lowerCamelCase__ ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ):
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ):
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=m ):
lowerCamelCase_ = 0
for i in range(lowerCamelCase__ ):
if index == -1:
summation_value += _error(lowerCamelCase__ )
else:
summation_value += _error(lowerCamelCase__ ) * train_data[i][0][index]
return summation_value
def lowerCamelCase_ ( lowerCamelCase__ ):
lowerCamelCase_ = summation_of_cost_derivative(lowerCamelCase__ , lowerCamelCase__ ) / m
return cost_derivative_value
def lowerCamelCase_ ( ):
global parameter_vector
# Tune these values to set a tolerance value for predicted output
lowerCamelCase_ = 0.00_00_02
lowerCamelCase_ = 0
lowerCamelCase_ = 0
while True:
j += 1
lowerCamelCase_ = [0, 0, 0, 0]
for i in range(0 , len(lowerCamelCase__ ) ):
lowerCamelCase_ = get_cost_derivative(i - 1 )
lowerCamelCase_ = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
lowerCamelCase__ , lowerCamelCase__ , atol=lowerCamelCase__ , rtol=lowerCamelCase__ , ):
break
lowerCamelCase_ = temp_parameter_vector
print(("Number of iterations:", j) )
def lowerCamelCase_ ( ):
for i in range(len(lowerCamelCase__ ) ):
print(("Actual output value:", output(lowerCamelCase__ , "test" )) )
print(("Hypothesis output:", calculate_hypothesis_value(lowerCamelCase__ , "test" )) )
if __name__ == "__main__":
run_gradient_descent()
print('''\nTesting gradient descent for a linear hypothesis function.\n''')
test_gradient_descent()
| 19 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
_UpperCamelCase = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def lowerCAmelCase__( lowercase : str ) -> Optional[Any]:
__snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" )
return sd
def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict:
__snake_case : Tuple = OrderedDict()
__snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__snake_case : Optional[Any] = key
for name_pair in rename_keys_prefix:
__snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] )
__snake_case : List[str] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__snake_case : List[Any] = new_d["cls.predictions.bias"]
return new_d
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]:
assert (
checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS
), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."""
# Get Config
if "pre" in checkpoint_path:
__snake_case : Any = "pretraining"
if "vcr" in checkpoint_path:
__snake_case : Optional[Any] = {"visual_embedding_dim": 512}
elif "vqa_advanced" in checkpoint_path:
__snake_case : Tuple = {"visual_embedding_dim": 2048}
elif "vqa" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 2048}
elif "nlvr" in checkpoint_path:
__snake_case : Any = {"visual_embedding_dim": 1024}
else:
raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" )
else:
if "vcr" in checkpoint_path:
__snake_case : Dict = {"visual_embedding_dim": 512}
__snake_case : Any = "multichoice"
elif "vqa_advanced" in checkpoint_path:
__snake_case : List[Any] = {"visual_embedding_dim": 2048}
__snake_case : Optional[Any] = "vqa_advanced"
elif "vqa" in checkpoint_path:
__snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129}
__snake_case : Union[str, Any] = "vqa"
elif "nlvr" in checkpoint_path:
__snake_case : Tuple = {
"visual_embedding_dim": 1024,
"num_labels": 2,
}
__snake_case : List[Any] = "nlvr"
__snake_case : Union[str, Any] = VisualBertConfig(**lowercase )
# Load State Dict
__snake_case : Any = load_state_dict(lowercase )
__snake_case : Dict = get_new_dict(lowercase , lowercase )
if model_type == "pretraining":
__snake_case : Optional[Any] = VisualBertForPreTraining(lowercase )
elif model_type == "vqa":
__snake_case : Tuple = VisualBertForQuestionAnswering(lowercase )
elif model_type == "nlvr":
__snake_case : Tuple = VisualBertForVisualReasoning(lowercase )
elif model_type == "multichoice":
__snake_case : List[Any] = VisualBertForMultipleChoice(lowercase )
model.load_state_dict(lowercase )
# Save Checkpoints
Path(lowercase ).mkdir(exist_ok=lowercase )
model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
_UpperCamelCase = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 326 | 0 |
from ..utils import DummyObject, requires_backends
class __snake_case ( metaclass=lowerCAmelCase ):
_a : Any= ["flax", "transformers"]
def __init__( self ,*snake_case ,**snake_case ):
'''simple docstring'''
requires_backends(self ,["""flax""", """transformers"""] )
@classmethod
def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ):
'''simple docstring'''
requires_backends(cls ,["""flax""", """transformers"""] )
@classmethod
def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ):
'''simple docstring'''
requires_backends(cls ,["""flax""", """transformers"""] )
class __snake_case ( metaclass=lowerCAmelCase ):
_a : str= ["flax", "transformers"]
def __init__( self ,*snake_case ,**snake_case ):
'''simple docstring'''
requires_backends(self ,["""flax""", """transformers"""] )
@classmethod
def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ):
'''simple docstring'''
requires_backends(cls ,["""flax""", """transformers"""] )
@classmethod
def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ):
'''simple docstring'''
requires_backends(cls ,["""flax""", """transformers"""] )
class __snake_case ( metaclass=lowerCAmelCase ):
_a : List[str]= ["flax", "transformers"]
def __init__( self ,*snake_case ,**snake_case ):
'''simple docstring'''
requires_backends(self ,["""flax""", """transformers"""] )
@classmethod
def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ):
'''simple docstring'''
requires_backends(cls ,["""flax""", """transformers"""] )
@classmethod
def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ):
'''simple docstring'''
requires_backends(cls ,["""flax""", """transformers"""] )
class __snake_case ( metaclass=lowerCAmelCase ):
_a : Any= ["flax", "transformers"]
def __init__( self ,*snake_case ,**snake_case ):
'''simple docstring'''
requires_backends(self ,["""flax""", """transformers"""] )
@classmethod
def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ):
'''simple docstring'''
requires_backends(cls ,["""flax""", """transformers"""] )
@classmethod
def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ):
'''simple docstring'''
requires_backends(cls ,["""flax""", """transformers"""] )
| 20 |
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple:
# Load configuration defined in the metadata file
with open(lowercase ) as metadata_file:
__snake_case : int = json.load(lowercase )
__snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] )
# Load in the weights from the checkpoint_path
__snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"]
# Load the entity vocab file
__snake_case : Tuple = load_original_entity_vocab(lowercase )
# add an entry for [MASK2]
__snake_case : Optional[int] = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
__snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] )
# Add special tokens to the token vocabulary for downstream tasks
__snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase )
__snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase )
tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" )
tokenizer.save_pretrained(lowercase )
with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f:
__snake_case : Tuple = json.load(lowercase )
__snake_case : List[Any] = "MLukeTokenizer"
with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f:
json.dump(lowercase , lowercase )
with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f:
json.dump(lowercase , lowercase )
__snake_case : Any = MLukeTokenizer.from_pretrained(lowercase )
# Initialize the embeddings of the special tokens
__snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0]
__snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0]
__snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"]
__snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 )
__snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 )
__snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
__snake_case : List[Any] = state_dict[bias_name]
__snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 )
__snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 )
__snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
__snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self."""
__snake_case : Union[str, Any] = state_dict[prefix + matrix_name]
__snake_case : str = state_dict[prefix + matrix_name]
__snake_case : Union[str, Any] = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
__snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"]
__snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 )
__snake_case : Any = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
__snake_case : List[Any] = state_dict["entity_predictions.bias"]
__snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 )
__snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] )
__snake_case : Any = LukeForMaskedLM(config=lowercase ).eval()
state_dict.pop("entity_predictions.decoder.weight" )
state_dict.pop("lm_head.decoder.weight" )
state_dict.pop("lm_head.decoder.bias" )
__snake_case : int = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )):
__snake_case : str = state_dict[key]
else:
__snake_case : str = state_dict[key]
__snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase )
if set(lowercase ) != {"luke.embeddings.position_ids"}:
raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" )
if set(lowercase ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
__snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" )
__snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
__snake_case : Union[str, Any] = (0, 9)
__snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" )
__snake_case : Any = model(**lowercase )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
__snake_case : Optional[Any] = torch.Size((1, 33, 768) )
__snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
__snake_case : str = torch.Size((1, 1, 768) )
__snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"""
f""" {expected_shape}""" )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ):
raise ValueError
# Verify masked word/entity prediction
__snake_case : str = MLukeTokenizer.from_pretrained(lowercase )
__snake_case : Dict = "Tokyo is the capital of <mask>."
__snake_case : Union[str, Any] = (24, 30)
__snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" )
__snake_case : int = model(**lowercase )
__snake_case : Dict = encoding["input_ids"][0].tolist()
__snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) )
__snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(lowercase )
__snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item()
__snake_case : Optional[int] = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print("Saving PyTorch model to {}".format(lowercase ) )
model.save_pretrained(lowercase )
def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]:
__snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"]
__snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )]
__snake_case : Any = {}
for entry in data:
__snake_case : Any = entry["id"]
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
__snake_case : Optional[int] = entity_id
break
__snake_case : Union[str, Any] = f"""{language}:{entity_name}"""
__snake_case : Any = entity_id
return new_mapping
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''')
parser.add_argument(
'''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.'''
)
parser.add_argument(
'''--entity_vocab_path''',
default=None,
type=str,
help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.'''
)
parser.add_argument(
'''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.'''
)
_UpperCamelCase = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 326 | 0 |
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _lowerCamelCase( _a, unittest.TestCase ):
# TODO: is there an appropriate internal test set?
lowercase_ : int = """ssube/stable-diffusion-x4-upscaler-onnx"""
def UpperCamelCase ( self, lowerCamelCase=0) -> Union[str, Any]:
"""simple docstring"""
_lowercase : Dict = floats_tensor((1, 3, 1_28, 1_28), rng=random.Random(lowerCamelCase))
_lowercase : Union[str, Any] = torch.manual_seed(lowerCamelCase)
_lowercase : Optional[Any] = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase ( self) -> Tuple:
"""simple docstring"""
_lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider')
pipe.set_progress_bar_config(disable=lowerCamelCase)
_lowercase : Dict = self.get_dummy_inputs()
_lowercase : Optional[int] = pipe(**lowerCamelCase).images
_lowercase : Optional[int] = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_12, 5_12, 3)
_lowercase : Union[str, Any] = np.array(
[0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3])
assert np.abs(image_slice - expected_slice).max() < 1E-1
def UpperCamelCase ( self) -> Union[str, Any]:
"""simple docstring"""
_lowercase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider')
_lowercase : str = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCamelCase)
pipe.set_progress_bar_config(disable=lowerCamelCase)
_lowercase : List[str] = self.get_dummy_inputs()
_lowercase : List[Any] = pipe(**lowerCamelCase).images
_lowercase : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_lowercase : int = np.array(
[0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1
def UpperCamelCase ( self) -> Optional[Any]:
"""simple docstring"""
_lowercase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider')
_lowercase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowerCamelCase)
_lowercase : Optional[int] = self.get_dummy_inputs()
_lowercase : Union[str, Any] = pipe(**lowerCamelCase).images
_lowercase : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_lowercase : Optional[int] = np.array(
[0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1
def UpperCamelCase ( self) -> Optional[int]:
"""simple docstring"""
_lowercase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider')
_lowercase : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowerCamelCase)
_lowercase : Dict = self.get_dummy_inputs()
_lowercase : Optional[Any] = pipe(**lowerCamelCase).images
_lowercase : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_lowercase : Union[str, Any] = np.array(
[0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1
def UpperCamelCase ( self) -> Dict:
"""simple docstring"""
_lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider')
_lowercase : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=lowerCamelCase)
_lowercase : Any = self.get_dummy_inputs()
_lowercase : List[str] = pipe(**lowerCamelCase).images
_lowercase : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_lowercase : Union[str, Any] = np.array(
[0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class _lowerCamelCase( unittest.TestCase ):
@property
def UpperCamelCase ( self) -> List[Any]:
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCamelCase ( self) -> Any:
"""simple docstring"""
_lowercase : Union[str, Any] = ort.SessionOptions()
_lowercase : str = False
return options
def UpperCamelCase ( self) -> Any:
"""simple docstring"""
_lowercase : Optional[int] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg')
_lowercase : int = init_image.resize((1_28, 1_28))
# using the PNDM scheduler by default
_lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'ssube/stable-diffusion-x4-upscaler-onnx', provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=lowerCamelCase)
_lowercase : Optional[int] = 'A fantasy landscape, trending on artstation'
_lowercase : List[Any] = torch.manual_seed(0)
_lowercase : str = pipe(
prompt=lowerCamelCase, image=lowerCamelCase, guidance_scale=7.5, num_inference_steps=10, generator=lowerCamelCase, output_type='np', )
_lowercase : List[Any] = output.images
_lowercase : List[Any] = images[0, 2_55:2_58, 3_83:3_86, -1]
assert images.shape == (1, 5_12, 5_12, 3)
_lowercase : List[Any] = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2
def UpperCamelCase ( self) -> Any:
"""simple docstring"""
_lowercase : Optional[int] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg')
_lowercase : int = init_image.resize((1_28, 1_28))
_lowercase : str = LMSDiscreteScheduler.from_pretrained(
'ssube/stable-diffusion-x4-upscaler-onnx', subfolder='scheduler')
_lowercase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'ssube/stable-diffusion-x4-upscaler-onnx', scheduler=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, )
pipe.set_progress_bar_config(disable=lowerCamelCase)
_lowercase : Optional[int] = 'A fantasy landscape, trending on artstation'
_lowercase : List[Any] = torch.manual_seed(0)
_lowercase : str = pipe(
prompt=lowerCamelCase, image=lowerCamelCase, guidance_scale=7.5, num_inference_steps=20, generator=lowerCamelCase, output_type='np', )
_lowercase : str = output.images
_lowercase : str = images[0, 2_55:2_58, 3_83:3_86, -1]
assert images.shape == (1, 5_12, 5_12, 3)
_lowercase : Union[str, Any] = np.array(
[0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2
| 21 |
from maths.prime_factors import prime_factors
def lowerCAmelCase__( lowercase : int ) -> int:
if not isinstance(lowercase , lowercase ):
__snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer"""
raise TypeError(lowercase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(lowercase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 | 0 |
'''simple docstring'''
from __future__ import annotations
def UpperCAmelCase_ ( __lowercase : list[float] , __lowercase : list[float] ) -> float:
'''simple docstring'''
_UpperCAmelCase = sorted(numsa + numsa )
_UpperCAmelCase , _UpperCAmelCase = divmod(len(__lowercase ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
__SCREAMING_SNAKE_CASE :Tuple = [float(x) for x in input('''Enter the elements of first array: ''').split()]
__SCREAMING_SNAKE_CASE :Any = [float(x) for x in input('''Enter the elements of second array: ''').split()]
print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
| 22 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
__snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" )
__snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" )
__snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids
__snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids
__snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id )
__snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits
__snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean()
__snake_case : Any = -(labels.shape[-1] * loss.item())
__snake_case : List[str] = -84.9_127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 326 | 0 |
'''simple docstring'''
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = 42
lowerCamelCase__ = None
def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any=0.9_9_9 , _lowerCAmelCase : Optional[Any]="cosine" , ) -> List[Any]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(_lowerCAmelCase : List[Any] ):
return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_lowerCAmelCase : Any ):
return math.exp(t * -1_2.0 )
else:
raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" )
UpperCAmelCase : Any = []
for i in range(_lowerCAmelCase ):
UpperCAmelCase : Dict = i / num_diffusion_timesteps
UpperCAmelCase : List[Any] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_lowerCAmelCase ) / alpha_bar_fn(_lowerCAmelCase ) , _lowerCAmelCase ) )
return torch.tensor(_lowerCAmelCase , dtype=torch.floataa )
class SCREAMING_SNAKE_CASE( A__ , A__ ):
"""simple docstring"""
@register_to_config
def __init__( self : Union[str, Any] , __snake_case : int = 1000 , __snake_case : str = "fixed_small_log" , __snake_case : bool = True , __snake_case : Optional[float] = 1.0 , __snake_case : str = "epsilon" , __snake_case : str = "squaredcos_cap_v2" , ) -> str:
if beta_schedule != "squaredcos_cap_v2":
raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' )
UpperCAmelCase : Union[str, Any] = betas_for_alpha_bar(__snake_case )
UpperCAmelCase : List[Any] = 1.0 - self.betas
UpperCAmelCase : List[Any] = torch.cumprod(self.alphas , dim=0 )
UpperCAmelCase : List[Any] = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
UpperCAmelCase : int = 1.0
# setable values
UpperCAmelCase : str = None
UpperCAmelCase : Union[str, Any] = torch.from_numpy(np.arange(0 , __snake_case )[::-1].copy() )
UpperCAmelCase : Optional[Any] = variance_type
def A ( self : Optional[Any] , __snake_case : torch.FloatTensor , __snake_case : Optional[int] = None ) -> torch.FloatTensor:
return sample
def A ( self : Dict , __snake_case : int , __snake_case : Union[str, torch.device] = None ) -> Optional[Any]:
UpperCAmelCase : List[str] = num_inference_steps
UpperCAmelCase : Optional[int] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
UpperCAmelCase : str = (np.arange(0 , __snake_case ) * step_ratio).round()[::-1].copy().astype(np.intaa )
UpperCAmelCase : Optional[int] = torch.from_numpy(__snake_case ).to(__snake_case )
def A ( self : Any , __snake_case : str , __snake_case : List[str]=None , __snake_case : str=None , __snake_case : List[str]=None ) -> int:
if prev_timestep is None:
UpperCAmelCase : Optional[int] = t - 1
UpperCAmelCase : Any = self.alphas_cumprod[t]
UpperCAmelCase : Any = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
UpperCAmelCase : Any = 1 - alpha_prod_t
UpperCAmelCase : int = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
UpperCAmelCase : Optional[int] = self.betas[t]
else:
UpperCAmelCase : List[str] = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
UpperCAmelCase : int = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
UpperCAmelCase : Any = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
UpperCAmelCase : Optional[Any] = torch.log(torch.clamp(__snake_case , min=1E-20 ) )
UpperCAmelCase : int = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
UpperCAmelCase : Tuple = variance.log()
UpperCAmelCase : List[Any] = beta.log()
UpperCAmelCase : List[Any] = (predicted_variance + 1) / 2
UpperCAmelCase : List[Any] = frac * max_log + (1 - frac) * min_log
return variance
def A ( self : Union[str, Any] , __snake_case : torch.FloatTensor , __snake_case : int , __snake_case : torch.FloatTensor , __snake_case : Optional[int] = None , __snake_case : int=None , __snake_case : bool = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]:
UpperCAmelCase : Optional[int] = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
UpperCAmelCase , UpperCAmelCase : Tuple = torch.split(__snake_case , sample.shape[1] , dim=1 )
else:
UpperCAmelCase : int = None
# 1. compute alphas, betas
if prev_timestep is None:
UpperCAmelCase : Optional[Any] = t - 1
UpperCAmelCase : str = self.alphas_cumprod[t]
UpperCAmelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
UpperCAmelCase : Union[str, Any] = 1 - alpha_prod_t
UpperCAmelCase : Dict = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
UpperCAmelCase : Tuple = self.betas[t]
UpperCAmelCase : Optional[Any] = self.alphas[t]
else:
UpperCAmelCase : List[str] = 1 - alpha_prod_t / alpha_prod_t_prev
UpperCAmelCase : Union[str, Any] = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
UpperCAmelCase : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
UpperCAmelCase : Union[str, Any] = model_output
else:
raise ValueError(
F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`"""
''' for the UnCLIPScheduler.''' )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
UpperCAmelCase : int = torch.clamp(
__snake_case , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
UpperCAmelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
UpperCAmelCase : int = 0
if t > 0:
UpperCAmelCase : Union[str, Any] = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=__snake_case , device=model_output.device )
UpperCAmelCase : Optional[Any] = self._get_variance(
__snake_case , predicted_variance=__snake_case , prev_timestep=__snake_case , )
if self.variance_type == "fixed_small_log":
UpperCAmelCase : Tuple = variance
elif self.variance_type == "learned_range":
UpperCAmelCase : List[Any] = (0.5 * variance).exp()
else:
raise ValueError(
F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`"""
''' for the UnCLIPScheduler.''' )
UpperCAmelCase : Dict = variance * variance_noise
UpperCAmelCase : Tuple = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=__snake_case , pred_original_sample=__snake_case )
def A ( self : Optional[Any] , __snake_case : torch.FloatTensor , __snake_case : torch.FloatTensor , __snake_case : torch.IntTensor , ) -> torch.FloatTensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
UpperCAmelCase : Dict = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
UpperCAmelCase : Tuple = timesteps.to(original_samples.device )
UpperCAmelCase : int = alphas_cumprod[timesteps] ** 0.5
UpperCAmelCase : Optional[int] = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
UpperCAmelCase : Optional[int] = sqrt_alpha_prod.unsqueeze(-1 )
UpperCAmelCase : Any = (1 - alphas_cumprod[timesteps]) ** 0.5
UpperCAmelCase : Any = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
UpperCAmelCase : int = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
UpperCAmelCase : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 23 |
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
class _lowerCamelCase ( a ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]:
'''simple docstring'''
super().__init__(UpperCAmelCase )
__snake_case : Optional[int] = proj_size
__snake_case : str = CLIPVisionModel(UpperCAmelCase )
__snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase )
__snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size )
__snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
__snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]:
'''simple docstring'''
__snake_case : int = self.model(pixel_values=UpperCAmelCase )
__snake_case : Optional[int] = clip_output.pooler_output
__snake_case : Any = self.mapper(latent_states[:, None] )
__snake_case : Any = self.final_layer_norm(UpperCAmelCase )
__snake_case : str = self.proj_out(UpperCAmelCase )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
super().__init__()
__snake_case : List[Any] = (config.num_hidden_layers + 1) // 5
__snake_case : Dict = config.hidden_size
__snake_case : str = 1
__snake_case : List[Any] = nn.ModuleList(
[
BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase )
for _ in range(UpperCAmelCase )
] )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
for block in self.blocks:
__snake_case : int = block(UpperCAmelCase )
return hidden_states
| 326 | 0 |
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def __init__(self : List[Any] , a__ : Optional[int] , a__ : Optional[int]=13 , a__ : List[Any]=7 , a__ : Dict=True , a__ : Optional[Any]=True , a__ : List[Any]=True , a__ : Optional[Any]=True , a__ : Optional[int]=99 , a__ : Optional[Any]=32 , a__ : List[str]=5 , a__ : Any=4 , a__ : str=37 , a__ : Optional[int]="gelu" , a__ : Optional[Any]=0.1 , a__ : Dict=0.1 , a__ : Any=512 , a__ : Union[str, Any]=16 , a__ : Any=2 , a__ : Optional[int]=0.0_2 , a__ : Optional[int]=4 , ):
"""simple docstring"""
__snake_case = parent
__snake_case = batch_size
__snake_case = seq_length
__snake_case = is_training
__snake_case = use_attention_mask
__snake_case = use_token_type_ids
__snake_case = use_labels
__snake_case = vocab_size
__snake_case = hidden_size
__snake_case = num_hidden_layers
__snake_case = num_attention_heads
__snake_case = intermediate_size
__snake_case = hidden_act
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = max_position_embeddings
__snake_case = type_vocab_size
__snake_case = type_sequence_label_size
__snake_case = initializer_range
__snake_case = num_choices
def a (self : Union[str, Any] ):
"""simple docstring"""
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case = None
if self.use_attention_mask:
__snake_case = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case = None
if self.use_token_type_ids:
__snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def a (self : List[Any] ):
"""simple docstring"""
__snake_case = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs
__snake_case = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def a (self : Dict ):
"""simple docstring"""
__snake_case = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs
__snake_case = True
__snake_case = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ):
A_ : Any = True
A_ : Optional[Any] = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def a (self : Dict ):
"""simple docstring"""
__snake_case = FlaxRobertaPreLayerNormModelTester(self )
@slow
def a (self : List[Any] ):
"""simple docstring"""
for model_class_name in self.all_model_classes:
__snake_case = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ )
__snake_case = model(np.ones((1, 1) ) )
self.assertIsNotNone(a__ )
@require_flax
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@slow
def a (self : str ):
"""simple docstring"""
__snake_case = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ )
__snake_case = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa )
__snake_case = model(a__ )[0]
__snake_case = [1, 11, 5_0265]
self.assertEqual(list(output.shape ) , a__ )
# compare the actual values for a slice.
__snake_case = np.array(
[[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , a__ , atol=1E-4 ) )
@slow
def a (self : Any ):
"""simple docstring"""
__snake_case = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ )
__snake_case = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa )
__snake_case = model(a__ )[0]
# compare the actual values for a slice.
__snake_case = np.array(
[[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , a__ , atol=1E-4 ) )
| 24 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 326 | 0 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
UpperCAmelCase__ : str = logging.get_logger(__name__)
UpperCAmelCase__ : int = {
'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class lowerCAmelCase_ (a__ ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] = '''mctct'''
def __init__(self , SCREAMING_SNAKE_CASE__=80_65 , SCREAMING_SNAKE_CASE__=15_36 , SCREAMING_SNAKE_CASE__=36 , SCREAMING_SNAKE_CASE__=61_44 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3_84 , SCREAMING_SNAKE_CASE__=9_20 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__="relu" , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=(7,) , SCREAMING_SNAKE_CASE__=(3,) , SCREAMING_SNAKE_CASE__=80 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="sum" , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ) -> str:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : int = vocab_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size
SCREAMING_SNAKE_CASE__ : Optional[int] = num_hidden_layers
SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size
SCREAMING_SNAKE_CASE__ : Tuple = num_attention_heads
SCREAMING_SNAKE_CASE__ : Optional[int] = attention_head_dim
SCREAMING_SNAKE_CASE__ : str = max_position_embeddings
SCREAMING_SNAKE_CASE__ : Union[str, Any] = layer_norm_eps
SCREAMING_SNAKE_CASE__ : List[str] = layerdrop
SCREAMING_SNAKE_CASE__ : Any = hidden_act
SCREAMING_SNAKE_CASE__ : str = initializer_range
SCREAMING_SNAKE_CASE__ : str = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : List[Any] = pad_token_id
SCREAMING_SNAKE_CASE__ : Any = bos_token_id
SCREAMING_SNAKE_CASE__ : List[Any] = eos_token_id
SCREAMING_SNAKE_CASE__ : Any = conv_glu_dim
SCREAMING_SNAKE_CASE__ : Tuple = conv_dropout
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_conv_layers
SCREAMING_SNAKE_CASE__ : Tuple = input_feat_per_channel
SCREAMING_SNAKE_CASE__ : Dict = input_channels
SCREAMING_SNAKE_CASE__ : Optional[int] = conv_channels
SCREAMING_SNAKE_CASE__ : List[str] = ctc_loss_reduction
SCREAMING_SNAKE_CASE__ : Any = ctc_zero_infinity
# prevents config testing fail with exporting to json
SCREAMING_SNAKE_CASE__ : int = list(SCREAMING_SNAKE_CASE__ )
SCREAMING_SNAKE_CASE__ : List[Any] = list(SCREAMING_SNAKE_CASE__ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """
F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, '''
F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
| 25 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = torch.device('''cpu''')
def lowerCAmelCase__( ) -> Any:
__snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
__snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw )
return im
def lowerCAmelCase__( lowercase : Dict ) -> List[Any]:
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] )
def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]:
__snake_case : List[Any] = dct.pop(lowercase )
__snake_case : List[Any] = val
def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple:
__snake_case : Optional[Any] = []
for k in state_dict.keys():
__snake_case : Union[str, Any] = k
if ".pwconv" in k:
__snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" )
if ".dwconv" in k:
__snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" )
if ".Proj." in k:
__snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." )
if "patch_embed" in k_new:
__snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" )
if "network" in k_new:
__snake_case : int = k_new.split("." )
if ls[2].isdigit():
__snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] )
else:
__snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]:
__snake_case : List[str] = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
__snake_case : Tuple = 1000
__snake_case : Any = "huggingface/label-files"
__snake_case : int = "imagenet-1k-id2label.json"
__snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) )
__snake_case : str = {int(lowercase ): v for k, v in idalabel.items()}
__snake_case : int = idalabel
__snake_case : Optional[int] = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
__snake_case : Optional[Any] = [3, 3, 6, 4]
__snake_case : Optional[int] = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
__snake_case : List[str] = [3, 3, 9, 6]
__snake_case : Optional[Any] = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
__snake_case : Optional[int] = [4, 3, 10, 5]
__snake_case : Dict = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
__snake_case : str = [4, 4, 12, 6]
__snake_case : Optional[Any] = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("https" ):
__snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase )
else:
__snake_case : Tuple = torch.load(lowercase , map_location="cpu" )
__snake_case : Optional[int] = checkpoint
__snake_case : Any = create_rename_keys(lowercase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(lowercase , lowercase , lowercase )
# load HuggingFace model
__snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval()
hf_model.load_state_dict(lowercase )
# prepare test inputs
__snake_case : Optional[Any] = prepare_img()
__snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" )
__snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" )
# compare outputs from both models
__snake_case : str = get_expected_output(lowercase )
__snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 )
Path(lowercase ).mkdir(exist_ok=lowercase )
print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" )
hf_model.save_pretrained(lowercase )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--swiftformer_name''',
default='''swiftformer_xs''',
choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''],
type=str,
help='''Name of the SwiftFormer model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''./converted_outputs/''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''')
_UpperCamelCase = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 326 | 0 |
from __future__ import annotations
import numpy as np
def lowerCAmelCase_ ( snake_case_ ):
return np.maximum(0,snake_case_ )
if __name__ == "__main__":
print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
| 26 |
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
_UpperCamelCase = logging.getLogger(__name__)
def lowerCAmelCase__( lowercase : str ) -> List[str]:
__snake_case : int = git.Repo(search_parent_directories=lowercase )
__snake_case : Union[str, Any] = {
"repo_id": str(lowercase ),
"repo_sha": str(repo.head.object.hexsha ),
"repo_branch": str(repo.active_branch ),
}
with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f:
json.dump(lowercase , lowercase , indent=4 )
def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]:
if params.n_gpu <= 0:
__snake_case : Union[str, Any] = 0
__snake_case : Optional[int] = -1
__snake_case : Union[str, Any] = True
__snake_case : Tuple = False
return
assert torch.cuda.is_available()
logger.info("Initializing GPUs" )
if params.n_gpu > 1:
assert params.local_rank != -1
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : int = int(os.environ["N_GPU_NODE"] )
__snake_case : Union[str, Any] = int(os.environ["RANK"] )
# number of nodes / node ID
__snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node
__snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node
__snake_case : Union[str, Any] = True
assert params.n_nodes == int(os.environ["N_NODES"] )
assert params.node_id == int(os.environ["NODE_RANK"] )
# local job (single GPU)
else:
assert params.local_rank == -1
__snake_case : Any = 1
__snake_case : str = 0
__snake_case : Optional[Any] = 0
__snake_case : Dict = 0
__snake_case : int = 1
__snake_case : Optional[Any] = 1
__snake_case : Tuple = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
__snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0
__snake_case : List[Any] = params.n_nodes > 1
# summary
__snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """
logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes )
logger.info(PREFIX + "Node ID : %i" % params.node_id )
logger.info(PREFIX + "Local rank : %i" % params.local_rank )
logger.info(PREFIX + "World size : %i" % params.world_size )
logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node )
logger.info(PREFIX + "Master : %s" % str(params.is_master ) )
logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) )
logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) )
logger.info(PREFIX + "Hostname : %s" % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info("Initializing PyTorch distributed" )
torch.distributed.init_process_group(
init_method="env://" , backend="nccl" , )
def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]:
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 326 | 0 |
'''simple docstring'''
import gc
import unittest
from transformers import CTRLConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
)
class __UpperCamelCase :
def __init__( self , __a , __a=14 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ):
'''simple docstring'''
__a : Union[str, Any] = parent
__a : str = batch_size
__a : Optional[int] = seq_length
__a : Any = is_training
__a : Tuple = use_token_type_ids
__a : Optional[int] = use_input_mask
__a : Optional[int] = use_labels
__a : Dict = use_mc_token_ids
__a : Union[str, Any] = vocab_size
__a : Optional[Any] = hidden_size
__a : Optional[int] = num_hidden_layers
__a : List[str] = num_attention_heads
__a : List[Any] = intermediate_size
__a : int = hidden_act
__a : List[str] = hidden_dropout_prob
__a : str = attention_probs_dropout_prob
__a : Any = max_position_embeddings
__a : Union[str, Any] = type_vocab_size
__a : int = type_sequence_label_size
__a : Union[str, Any] = initializer_range
__a : Optional[Any] = num_labels
__a : List[str] = num_choices
__a : Any = scope
__a : List[Any] = self.vocab_size - 1
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__a : Union[str, Any] = None
if self.use_input_mask:
__a : Any = random_attention_mask([self.batch_size, self.seq_length] )
__a : Tuple = None
if self.use_token_type_ids:
__a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__a : Optional[int] = None
if self.use_mc_token_ids:
__a : Optional[Any] = ids_tensor([self.batch_size, self.num_choices] , self.seq_length )
__a : List[Any] = None
__a : Dict = None
__a : Tuple = None
if self.use_labels:
__a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__a : Any = ids_tensor([self.batch_size] , self.num_choices )
__a : Optional[int] = self.get_config()
__a : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def __UpperCAmelCase ( self ):
'''simple docstring'''
return CTRLConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a ):
'''simple docstring'''
__a : Optional[int] = CTRLModel(config=__a )
model.to(__a )
model.eval()
model(__a , token_type_ids=__a , head_mask=__a )
model(__a , token_type_ids=__a )
__a : Any = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(len(result.past_key_values ) , config.n_layer )
def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a ):
'''simple docstring'''
__a : Dict = CTRLLMHeadModel(__a )
model.to(__a )
model.eval()
__a : List[str] = model(__a , token_type_ids=__a , labels=__a )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : Union[str, Any] = self.prepare_config_and_inputs()
(
(
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) ,
) : Any = config_and_inputs
__a : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask}
return config, inputs_dict
def __UpperCAmelCase ( self , __a , __a , __a , __a , *__a ):
'''simple docstring'''
__a : Any = self.num_labels
__a : Union[str, Any] = CTRLForSequenceClassification(__a )
model.to(__a )
model.eval()
__a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__a : str = model(__a , token_type_ids=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
@require_torch
class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ):
A_ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else ()
A_ = (CTRLLMHeadModel,) if is_torch_available() else ()
A_ = (
{
"feature-extraction": CTRLModel,
"text-classification": CTRLForSequenceClassification,
"text-generation": CTRLLMHeadModel,
"zero-shot": CTRLForSequenceClassification,
}
if is_torch_available()
else {}
)
A_ = True
A_ = False
A_ = False
def __UpperCAmelCase ( self , __a , __a , __a , __a , __a ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny
# config could not be created.
return True
return False
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : Optional[int] = CTRLModelTester(self )
__a : str = ConfigTester(self , config_class=__a , n_embd=37 )
def __UpperCAmelCase ( self ):
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_ctrl_model(*__a )
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*__a )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def __UpperCAmelCase ( self ):
'''simple docstring'''
pass
@slow
def __UpperCAmelCase ( self ):
'''simple docstring'''
for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a : Dict = CTRLModel.from_pretrained(__a )
self.assertIsNotNone(__a )
@unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :)
def __UpperCAmelCase ( self ):
'''simple docstring'''
pass
@require_torch
class __UpperCamelCase ( unittest.TestCase ):
def __UpperCAmelCase ( self ):
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
@slow
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : int = CTRLLMHeadModel.from_pretrained('ctrl' )
model.to(__a )
__a : Union[str, Any] = torch.tensor(
[[1_1859, 0, 1611, 8]] , dtype=torch.long , device=__a ) # Legal the president is
__a : List[Any] = [
1_1859,
0,
1611,
8,
5,
150,
2_6449,
2,
19,
348,
469,
3,
2595,
48,
2_0740,
24_6533,
24_6533,
19,
30,
5,
] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
__a : List[str] = model.generate(__a , do_sample=__a )
self.assertListEqual(output_ids[0].tolist() , __a )
| 27 |
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : str =JukeboxTokenizer
UpperCAmelCase_ : Tuple ={
"artist": "Zac Brown Band",
"genres": "Country",
"lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ",
}
@require_torch
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
import torch
__snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" )
__snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"]
# fmt: off
__snake_case : Optional[Any] = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
import torch
__snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" )
__snake_case : Tuple = tokenizer(**self.metas )["input_ids"]
# fmt: off
__snake_case : int = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 326 | 0 |
'''simple docstring'''
_lowerCamelCase : List[str] = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def __lowerCamelCase ( A__ , A__ , A__ , A__ ) -> List[str]:
"""simple docstring"""
# Return True if there is node that has not iterated.
UpperCamelCase = [False] * len(A__ )
UpperCamelCase = [s]
UpperCamelCase = True
while queue:
UpperCamelCase = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(A__ )
UpperCamelCase = True
UpperCamelCase = u
return visited[t]
def __lowerCamelCase ( A__ , A__ , A__ ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = [-1] * (len(A__ ))
UpperCamelCase = 0
UpperCamelCase = []
UpperCamelCase = [i[:] for i in graph] # Record original cut, copy.
while bfs(A__ , A__ , A__ , A__ ):
UpperCamelCase = float('Inf' )
UpperCamelCase = sink
while s != source:
# Find the minimum value in select path
UpperCamelCase = min(A__ , graph[parent[s]][s] )
UpperCamelCase = parent[s]
max_flow += path_flow
UpperCamelCase = sink
while v != source:
UpperCamelCase = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
UpperCamelCase = parent[v]
for i in range(len(A__ ) ):
for j in range(len(graph[0] ) ):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j) )
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5))
| 28 |
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
_UpperCamelCase = logging.get_logger(__name__)
class _lowerCamelCase :
"""simple docstring"""
UpperCAmelCase_ : str
UpperCAmelCase_ : str =None
@staticmethod
def UpperCAmelCase ( ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
if not self.is_available():
raise RuntimeError(
F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" )
@classmethod
def UpperCAmelCase ( cls ) -> Tuple:
'''simple docstring'''
return F"""`pip install {cls.pip_package or cls.name}`"""
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] ="optuna"
@staticmethod
def UpperCAmelCase ( ) -> Union[str, Any]:
'''simple docstring'''
return is_optuna_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict:
'''simple docstring'''
return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> int:
'''simple docstring'''
return default_hp_space_optuna(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : List[str] ="ray"
UpperCAmelCase_ : Dict ="'ray[tune]'"
@staticmethod
def UpperCAmelCase ( ) -> str:
'''simple docstring'''
return is_ray_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
return default_hp_space_ray(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Tuple ="sigopt"
@staticmethod
def UpperCAmelCase ( ) -> int:
'''simple docstring'''
return is_sigopt_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict:
'''simple docstring'''
return default_hp_space_sigopt(UpperCAmelCase )
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : str ="wandb"
@staticmethod
def UpperCAmelCase ( ) -> Optional[Any]:
'''simple docstring'''
return is_wandb_available()
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return default_hp_space_wandb(UpperCAmelCase )
_UpperCamelCase = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def lowerCAmelCase__( ) -> str:
__snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(lowercase ) > 0:
__snake_case : Dict = available_backends[0].name
if len(lowercase ) > 1:
logger.info(
f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" )
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
f""" - To install {backend.name} run {backend.pip_install()}"""
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 326 | 0 |
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'tensor(bool)': np.bool_,
'tensor(int8)': np.inta,
'tensor(uint8)': np.uinta,
'tensor(int16)': np.intaa,
'tensor(uint16)': np.uintaa,
'tensor(int32)': np.intaa,
'tensor(uint32)': np.uintaa,
'tensor(int64)': np.intaa,
'tensor(uint64)': np.uintaa,
'tensor(float16)': np.floataa,
'tensor(float)': np.floataa,
'tensor(double)': np.floataa,
}
class lowerCamelCase :
'''simple docstring'''
def __init__( self , _UpperCamelCase=None , **_UpperCamelCase ) -> Dict:
logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' )
UpperCAmelCase_ : Any = model
UpperCAmelCase_ : int = kwargs.get('model_save_dir' , _UpperCamelCase )
UpperCAmelCase_ : List[Any] = kwargs.get('latest_model_name' , _UpperCamelCase )
def __call__( self , **_UpperCamelCase ) -> str:
UpperCAmelCase_ : Optional[int] = {k: np.array(_UpperCamelCase ) for k, v in kwargs.items()}
return self.model.run(_UpperCamelCase , _UpperCamelCase )
@staticmethod
def __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[Any]:
if provider is None:
logger.info('No onnxruntime provider specified, using CPUExecutionProvider' )
UpperCAmelCase_ : List[str] = 'CPUExecutionProvider'
return ort.InferenceSession(_UpperCamelCase , providers=[provider] , sess_options=_UpperCamelCase )
def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> Dict:
UpperCAmelCase_ : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME
UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name )
UpperCAmelCase_ : str = Path(_UpperCamelCase ).joinpath(_UpperCamelCase )
try:
shutil.copyfile(_UpperCamelCase , _UpperCamelCase )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(_UpperCamelCase )
if src_path.exists():
UpperCAmelCase_ : List[Any] = Path(_UpperCamelCase ).joinpath(_UpperCamelCase )
try:
shutil.copyfile(_UpperCamelCase , _UpperCamelCase )
except shutil.SameFileError:
pass
def __UpperCAmelCase ( self , _UpperCamelCase , **_UpperCamelCase , ) -> List[str]:
if os.path.isfile(_UpperCamelCase ):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file" )
return
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
# saving model weights/files
self._save_pretrained(_UpperCamelCase , **_UpperCamelCase )
@classmethod
def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> List[str]:
UpperCAmelCase_ : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(_UpperCamelCase ):
UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model(
os.path.join(_UpperCamelCase , _UpperCamelCase ) , provider=_UpperCamelCase , sess_options=_UpperCamelCase )
UpperCAmelCase_ : Tuple = Path(_UpperCamelCase )
# load model from hub
else:
# download model
UpperCAmelCase_ : List[str] = hf_hub_download(
repo_id=_UpperCamelCase , filename=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , )
UpperCAmelCase_ : Union[str, Any] = Path(_UpperCamelCase ).parent
UpperCAmelCase_ : List[str] = Path(_UpperCamelCase ).name
UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model(_UpperCamelCase , provider=_UpperCamelCase , sess_options=_UpperCamelCase )
return cls(model=_UpperCamelCase , **_UpperCamelCase )
@classmethod
def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> Optional[int]:
UpperCAmelCase_ : List[str] = None
if len(str(_UpperCamelCase ).split('@' ) ) == 2:
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = model_id.split('@' )
return cls._from_pretrained(
model_id=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , use_auth_token=_UpperCamelCase , **_UpperCamelCase , )
| 29 |
import math
def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list:
__snake_case : Any = end or len(lowercase )
for i in range(lowercase , lowercase ):
__snake_case : List[str] = i
__snake_case : Union[str, Any] = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
__snake_case : Optional[Any] = array[temp_index - 1]
temp_index -= 1
__snake_case : Any = temp_index_value
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap
__snake_case : Any = index
__snake_case : Optional[Any] = 2 * index + 1 # Left Node
__snake_case : str = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
__snake_case : Optional[int] = left_index
if right_index < heap_size and array[largest] < array[right_index]:
__snake_case : Tuple = right_index
if largest != index:
__snake_case , __snake_case : int = array[largest], array[index]
heapify(lowercase , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list ) -> list:
__snake_case : List[str] = len(lowercase )
for i in range(n // 2 , -1 , -1 ):
heapify(lowercase , lowercase , lowercase )
for i in range(n - 1 , 0 , -1 ):
__snake_case , __snake_case : Optional[Any] = array[0], array[i]
heapify(lowercase , 0 , lowercase )
return array
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int:
__snake_case : Union[str, Any] = low
__snake_case : Union[str, Any] = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
__snake_case , __snake_case : str = array[j], array[i]
i += 1
def lowerCAmelCase__( lowercase : list ) -> list:
if len(lowercase ) == 0:
return array
__snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) )
__snake_case : Dict = 16
return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase )
def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list:
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
__snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 )
__snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase )
intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase )
__snake_case : List[str] = p
return insertion_sort(lowercase , lowercase , lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip()
_UpperCamelCase = [float(item) for item in user_input.split(''',''')]
print(sort(unsorted))
| 326 | 0 |
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase__:
"""simple docstring"""
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple=3 , SCREAMING_SNAKE_CASE_ : int=3_2 , SCREAMING_SNAKE_CASE_ : List[Any]=3 , SCREAMING_SNAKE_CASE_ : List[str]=1_0 , SCREAMING_SNAKE_CASE_ : Tuple=[1_0, 2_0, 3_0, 4_0] , SCREAMING_SNAKE_CASE_ : Optional[Any]=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Optional[Any]="relu" , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : Any=None , ) -> Optional[int]:
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = image_size
lowercase_ = num_channels
lowercase_ = embeddings_size
lowercase_ = hidden_sizes
lowercase_ = depths
lowercase_ = is_training
lowercase_ = use_labels
lowercase_ = hidden_act
lowercase_ = num_labels
lowercase_ = scope
lowercase_ = len(SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Optional[Any] ) -> Tuple:
lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase_ = None
if self.use_labels:
lowercase_ = ids_tensor([self.batch_size] , self.num_labels )
lowercase_ = self.get_config()
return config, pixel_values, labels
def _lowercase ( self : Dict ) -> Optional[int]:
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> str:
lowercase_ = TFRegNetModel(config=SCREAMING_SNAKE_CASE_ )
lowercase_ = model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[str]:
lowercase_ = self.num_labels
lowercase_ = TFRegNetForImageClassification(SCREAMING_SNAKE_CASE_ )
lowercase_ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowercase ( self : Any ) -> Optional[Any]:
lowercase_ = self.prepare_config_and_inputs()
lowercase_ , lowercase_ , lowercase_ = config_and_inputs
lowercase_ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class lowercase__( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
a :str = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
a :str = (
{'feature-extraction': TFRegNetModel, 'image-classification': TFRegNetForImageClassification}
if is_tf_available()
else {}
)
a :Tuple = False
a :List[str] = False
a :Union[str, Any] = False
a :List[Any] = False
a :List[Any] = False
def _lowercase ( self : List[str] ) -> List[str]:
lowercase_ = TFRegNetModelTester(self )
lowercase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Optional[int] ) -> Optional[Any]:
return
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def _lowercase ( self : Optional[int] ) -> Any:
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , )
@slow
def _lowercase ( self : Union[str, Any] ) -> int:
super().test_keras_fit()
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def _lowercase ( self : List[Any] ) -> List[Any]:
pass
def _lowercase ( self : int ) -> int:
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ = model_class(SCREAMING_SNAKE_CASE_ )
lowercase_ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ = [*signature.parameters.keys()]
lowercase_ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : List[Any] ) -> Optional[Any]:
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : Optional[Any] ) -> str:
def check_hidden_states_output(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] ):
lowercase_ = model_class(SCREAMING_SNAKE_CASE_ )
lowercase_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , training=SCREAMING_SNAKE_CASE_ )
lowercase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowercase_ = self.model_tester.num_stages
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ = ['''basic''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
lowercase_ = layer_type
lowercase_ = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase_ = True
check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _lowercase ( self : List[str] ) -> int:
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any={} ):
lowercase_ = model(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
lowercase_ = model(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple()
def recursive_check(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str ):
if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) , msg=(
'''Tuple and dict output are not equal. Difference:'''
f''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}'''
) , )
recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for model_class in self.all_model_classes:
lowercase_ = model_class(SCREAMING_SNAKE_CASE_ )
lowercase_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowercase_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowercase_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
lowercase_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowercase_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowercase_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'''output_hidden_states''': True} )
lowercase_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
lowercase_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ )
check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'''output_hidden_states''': True} )
def _lowercase ( self : Union[str, Any] ) -> List[Any]:
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ )
@slow
def _lowercase ( self : Dict ) -> Any:
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ = TFRegNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
def a ( ):
'''simple docstring'''
lowercase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class lowercase__( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowercase ( self : str ) -> List[Any]:
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def _lowercase ( self : Any ) -> Any:
lowercase_ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
lowercase_ = self.default_image_processor
lowercase_ = prepare_img()
lowercase_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''tf''' )
# forward pass
lowercase_ = model(**SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ )
# verify the logits
lowercase_ = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ )
lowercase_ = tf.constant([-0.41_80, -1.50_51, -3.48_36] )
tf.debugging.assert_near(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
| 30 |
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def lowerCAmelCase__( ) -> List[Any]:
with parallel_backend("spark" ):
assert ParallelBackendConfig.backend_name == "spark"
__snake_case : Any = [1, 2, 3]
with pytest.raises(lowercase ):
with parallel_backend("unsupported backend" ):
map_nested(lowercase , lowercase , num_proc=2 )
with pytest.raises(lowercase ):
with parallel_backend("unsupported backend" ):
map_nested(lowercase , lowercase , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize("num_proc" , [2, -1] )
def lowerCAmelCase__( lowercase : Dict ) -> Dict:
__snake_case : Any = [1, 2]
__snake_case : Dict = {"a": 1, "b": 2}
__snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]}
__snake_case : int = {"a": {"1": 1}, "b": 2}
__snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4}
__snake_case : Dict = [2, 3]
__snake_case : Tuple = {"a": 2, "b": 3}
__snake_case : int = {"a": [2, 3], "b": [4, 5]}
__snake_case : Dict = {"a": {"1": 2}, "b": 3}
__snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5}
with parallel_backend("spark" ):
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
| 326 | 0 |
'''simple docstring'''
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
__SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Tuple = TypeVar("""DatasetType""", Dataset, IterableDataset)
def UpperCamelCase_ ( _UpperCAmelCase : List[DatasetType] , _UpperCAmelCase : Optional[List[float]] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[DatasetInfo] = None , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType:
"""simple docstring"""
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError("Unable to interleave an empty list of datasets." )
for i, dataset in enumerate(_UpperCAmelCase ):
if not isinstance(_UpperCAmelCase , (Dataset, IterableDataset) ):
if isinstance(_UpperCAmelCase , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
"is an empty dataset dictionary." )
raise ValueError(
F"""Dataset at position {i} has at least one split: {list(_UpperCAmelCase )}\n"""
F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_UpperCAmelCase ) )}']""" )
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCAmelCase ).__name__}.""" )
if i == 0:
_UpperCAmelCase , _UpperCAmelCase : Dict = (
(Dataset, IterableDataset) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(
F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , info=_UpperCAmelCase , split=_UpperCAmelCase , stopping_strategy=_UpperCAmelCase )
else:
return _interleave_iterable_datasets(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , info=_UpperCAmelCase , split=_UpperCAmelCase , stopping_strategy=_UpperCAmelCase )
def UpperCamelCase_ ( _UpperCAmelCase : List[DatasetType] , _UpperCAmelCase : Optional[DatasetInfo] = None , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : int = 0 , ) -> DatasetType:
"""simple docstring"""
if not dsets:
raise ValueError("Unable to concatenate an empty list of datasets." )
for i, dataset in enumerate(_UpperCAmelCase ):
if not isinstance(_UpperCAmelCase , (Dataset, IterableDataset) ):
if isinstance(_UpperCAmelCase , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
"is an empty dataset dictionary." )
raise ValueError(
F"""Dataset at position {i} has at least one split: {list(_UpperCAmelCase )}\n"""
F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_UpperCAmelCase ) )}']""" )
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCAmelCase ).__name__}.""" )
if i == 0:
_UpperCAmelCase , _UpperCAmelCase : Dict = (
(Dataset, IterableDataset) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else (IterableDataset, Dataset)
)
elif not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(
F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(_UpperCAmelCase , info=_UpperCAmelCase , split=_UpperCAmelCase , axis=_UpperCAmelCase )
else:
return _concatenate_iterable_datasets(_UpperCAmelCase , info=_UpperCAmelCase , split=_UpperCAmelCase , axis=_UpperCAmelCase )
| 31 |
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any:
__snake_case : Optional[Any] = False
__snake_case : Optional[Any] = search_prob
__snake_case : str = start_temperate
__snake_case : List[Any] = []
__snake_case : str = 0
__snake_case : Dict = None
while not search_end:
__snake_case : List[Any] = current_state.score()
if best_state is None or current_score > best_state.score():
__snake_case : List[Any] = current_state
scores.append(lowercase )
iterations += 1
__snake_case : Dict = None
__snake_case : str = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
__snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor
__snake_case : int = neighbors.pop(lowercase )
__snake_case : Optional[Any] = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
__snake_case : Any = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
__snake_case : List[str] = picked_neighbor
else:
__snake_case : Optional[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
__snake_case : str = picked_neighbor
__snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
__snake_case : Optional[Any] = True
else:
__snake_case : str = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(lowercase ) , lowercase )
plt.xlabel("Iterations" )
plt.ylabel("Function values" )
plt.show()
return best_state
if __name__ == "__main__":
def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
_UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
'''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any:
return (3 * x**2) - (6 * y)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True)
print(
'''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
_UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True)
print(
'''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
| 326 | 0 |
import random
def SCREAMING_SNAKE_CASE_ ( __A : int ) -> bool:
"""simple docstring"""
a_ : Union[str, Any] = num - 1
a_ : List[Any] = 0
while s % 2 == 0:
a_ : Optional[int] = s // 2
t += 1
for _ in range(5 ):
a_ : Tuple = random.randrange(2 , num - 1 )
a_ : Tuple = pow(__A , __A , __A )
if v != 1:
a_ : Optional[int] = 0
while v != (num - 1):
if i == t - 1:
return False
else:
a_ : Optional[int] = i + 1
a_ : Optional[int] = (v**2) % num
return True
def SCREAMING_SNAKE_CASE_ ( __A : int ) -> bool:
"""simple docstring"""
if num < 2:
return False
a_ : Dict = [
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
1_01,
1_03,
1_07,
1_09,
1_13,
1_27,
1_31,
1_37,
1_39,
1_49,
1_51,
1_57,
1_63,
1_67,
1_73,
1_79,
1_81,
1_91,
1_93,
1_97,
1_99,
2_11,
2_23,
2_27,
2_29,
2_33,
2_39,
2_41,
2_51,
2_57,
2_63,
2_69,
2_71,
2_77,
2_81,
2_83,
2_93,
3_07,
3_11,
3_13,
3_17,
3_31,
3_37,
3_47,
3_49,
3_53,
3_59,
3_67,
3_73,
3_79,
3_83,
3_89,
3_97,
4_01,
4_09,
4_19,
4_21,
4_31,
4_33,
4_39,
4_43,
4_49,
4_57,
4_61,
4_63,
4_67,
4_79,
4_87,
4_91,
4_99,
5_03,
5_09,
5_21,
5_23,
5_41,
5_47,
5_57,
5_63,
5_69,
5_71,
5_77,
5_87,
5_93,
5_99,
6_01,
6_07,
6_13,
6_17,
6_19,
6_31,
6_41,
6_43,
6_47,
6_53,
6_59,
6_61,
6_73,
6_77,
6_83,
6_91,
7_01,
7_09,
7_19,
7_27,
7_33,
7_39,
7_43,
7_51,
7_57,
7_61,
7_69,
7_73,
7_87,
7_97,
8_09,
8_11,
8_21,
8_23,
8_27,
8_29,
8_39,
8_53,
8_57,
8_59,
8_63,
8_77,
8_81,
8_83,
8_87,
9_07,
9_11,
9_19,
9_29,
9_37,
9_41,
9_47,
9_53,
9_67,
9_71,
9_77,
9_83,
9_91,
9_97,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(__A )
def SCREAMING_SNAKE_CASE_ ( __A : int = 10_24 ) -> int:
"""simple docstring"""
while True:
a_ : str = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) )
if is_prime_low_num(__A ):
return num
if __name__ == "__main__":
UpperCAmelCase_ : List[Any] = generate_large_prime()
print(('Prime number:', num))
print(('is_prime_low_num:', is_prime_low_num(num)))
| 32 |
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"]
UpperCAmelCase_ : Tuple ="FlavaImageProcessor"
UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast")
def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int:
'''simple docstring'''
__snake_case : List[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase , )
__snake_case : List[Any] = kwargs.pop("feature_extractor" )
__snake_case : Any = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = self.image_processor
def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]:
'''simple docstring'''
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
__snake_case : Union[str, Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if images is not None:
__snake_case : Union[str, Any] = self.image_processor(
UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
if text is not None and images is not None:
encoding.update(UpperCAmelCase )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : List[Any] = self.tokenizer.model_input_names
__snake_case : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , )
return self.image_processor
| 326 | 0 |
"""simple docstring"""
import contextlib
import os
import sqlitea
import pytest
from datasets import Dataset, Features, Value
from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy
def lowercase ( __snake_case : List[Any] , __snake_case : Any ):
assert isinstance(__snake_case , __snake_case )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@require_sqlalchemy
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def lowercase ( __snake_case : Optional[Any] , __snake_case : int , __snake_case : str , __snake_case : Any ):
lowercase_ : str = tmp_path / '''cache'''
lowercase_ : str = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowercase_ : List[Any] = SqlDatasetReader(
'''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__snake_case , keep_in_memory=__snake_case ).read()
_check_sql_dataset(__snake_case , __snake_case )
@require_sqlalchemy
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def lowercase ( __snake_case : int , __snake_case : int , __snake_case : str , __snake_case : Union[str, Any] ):
lowercase_ : List[str] = tmp_path / '''cache'''
lowercase_ : Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
lowercase_ : Optional[Any] = features.copy() if features else default_expected_features
lowercase_ : int = (
Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None
)
lowercase_ : Any = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=__snake_case , cache_dir=__snake_case ).read()
_check_sql_dataset(__snake_case , __snake_case )
def lowercase ( __snake_case : List[str] ):
with contextlib.closing(sqlitea.connect(__snake_case ) ) as con:
lowercase_ : Tuple = con.cursor()
cur.execute('''SELECT * FROM dataset''' )
for row in cur:
yield row
@require_sqlalchemy
def lowercase ( __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : List[Any] ):
lowercase_ : Optional[Any] = tmp_path / '''cache'''
lowercase_ : Union[str, Any] = os.path.join(__snake_case , '''tmp.sql''' )
lowercase_ : Any = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__snake_case ).read()
SqlDatasetWriter(__snake_case , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write()
lowercase_ : str = iter_sql_file(__snake_case )
lowercase_ : List[str] = iter_sql_file(__snake_case )
for rowa, rowa in zip(__snake_case , __snake_case ):
assert rowa == rowa
@require_sqlalchemy
def lowercase ( __snake_case : int , __snake_case : Optional[int] , __snake_case : Tuple ):
lowercase_ : Any = tmp_path / '''cache'''
lowercase_ : List[str] = os.path.join(__snake_case , '''tmp.sql''' )
lowercase_ : Union[str, Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__snake_case ).read()
SqlDatasetWriter(__snake_case , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write()
lowercase_ : Dict = iter_sql_file(__snake_case )
lowercase_ : Dict = iter_sql_file(__snake_case )
for rowa, rowa in zip(__snake_case , __snake_case ):
assert rowa == rowa
@require_sqlalchemy
def lowercase ( __snake_case : int , __snake_case : List[str] , __snake_case : str ):
lowercase_ : List[Any] = tmp_path / '''cache'''
lowercase_ : Union[str, Any] = os.path.join(__snake_case , '''tmp.sql''' )
lowercase_ : Optional[Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__snake_case ).read()
with pytest.raises(__snake_case ):
SqlDatasetWriter(__snake_case , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
| 33 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''}
_UpperCamelCase = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
}
}
_UpperCamelCase = {
'''camembert-base''': 512,
}
_UpperCamelCase = '''▁'''
class _lowerCamelCase ( a ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES
UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase_ : str =["input_ids", "attention_mask"]
def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
'''simple docstring'''
__snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
__snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , )
__snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCAmelCase ) )
__snake_case : Dict = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
__snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
__snake_case : Optional[int] = len(self.fairseq_tokens_to_ids )
__snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
__snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Dict = [self.cls_token_id]
__snake_case : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1]
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]:
'''simple docstring'''
__snake_case : int = [self.sep_token_id]
__snake_case : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(UpperCAmelCase ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__snake_case : Tuple = []
__snake_case : Union[str, Any] = ""
__snake_case : Optional[int] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(UpperCAmelCase ) + token
__snake_case : List[Any] = True
__snake_case : Union[str, Any] = []
else:
current_sub_tokens.append(UpperCAmelCase )
__snake_case : int = False
out_string += self.sp_model.decode(UpperCAmelCase )
return out_string.strip()
def __getstate__( self ) -> List[Any]:
'''simple docstring'''
__snake_case : str = self.__dict__.copy()
__snake_case : Optional[Any] = None
return state
def __setstate__( self , UpperCAmelCase ) -> str:
'''simple docstring'''
__snake_case : Optional[Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__snake_case : List[str] = {}
__snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
__snake_case : Optional[Any] = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase , "wb" ) as fi:
__snake_case : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase )
return (out_vocab_file,)
| 326 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A =logging.get_logger(__name__)
A ={
'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json',
'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json',
# See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl
}
class _a ( __a ):
__a : Optional[int] = """xlm-roberta-xl"""
def __init__( self : Union[str, Any] , lowercase : str=250_880 , lowercase : Dict=2_560 , lowercase : str=36 , lowercase : Optional[Any]=32 , lowercase : List[str]=10_240 , lowercase : List[Any]="gelu" , lowercase : Optional[int]=0.1 , lowercase : Dict=0.1 , lowercase : List[str]=514 , lowercase : Dict=1 , lowercase : Optional[int]=0.02 , lowercase : Optional[int]=1E-05 , lowercase : Optional[Any]=1 , lowercase : str=0 , lowercase : int=2 , lowercase : int="absolute" , lowercase : Optional[int]=True , lowercase : List[str]=None , **lowercase : int , ):
'''simple docstring'''
super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = position_embedding_type
UpperCAmelCase = use_cache
UpperCAmelCase = classifier_dropout
class _a ( __a ):
@property
def A ( self : int ):
'''simple docstring'''
if self.task == "multiple-choice":
UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 34 |
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool:
__snake_case : List[str] = len(lowercase )
__snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__snake_case : Optional[Any] = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
__snake_case : Union[str, Any] = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
__snake_case : List[str] = subset[i - 1][j]
if arr[i - 1] <= j:
__snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 | 0 |
'''simple docstring'''
import argparse
import json
import os
import time
import zipfile
from get_ci_error_statistics import download_artifact, get_artifacts_links
from transformers import logging
__a = logging.get_logger(__name__)
def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Any:
snake_case__ : Tuple = set()
snake_case__ : int = []
def parse_line(_lowerCAmelCase ):
for line in fp:
if isinstance(_lowerCAmelCase , _lowerCAmelCase ):
snake_case__ : Tuple = line.decode("""UTF-8""" )
if "warnings summary (final)" in line:
continue
# This means we are outside the body of a warning
elif not line.startswith(""" """ ):
# process a single warning and move it to `selected_warnings`.
if len(_lowerCAmelCase ) > 0:
snake_case__ : List[Any] = """\n""".join(_lowerCAmelCase )
# Only keep the warnings specified in `targets`
if any(f": {x}: " in warning for x in targets ):
selected_warnings.add(_lowerCAmelCase )
buffer.clear()
continue
else:
snake_case__ : int = line.strip()
buffer.append(_lowerCAmelCase )
if from_gh:
for filename in os.listdir(_lowerCAmelCase ):
snake_case__ : int = os.path.join(_lowerCAmelCase , _lowerCAmelCase )
if not os.path.isdir(_lowerCAmelCase ):
# read the file
if filename != "warnings.txt":
continue
with open(_lowerCAmelCase ) as fp:
parse_line(_lowerCAmelCase )
else:
try:
with zipfile.ZipFile(_lowerCAmelCase ) as z:
for filename in z.namelist():
if not os.path.isdir(_lowerCAmelCase ):
# read the file
if filename != "warnings.txt":
continue
with z.open(_lowerCAmelCase ) as fp:
parse_line(_lowerCAmelCase )
except Exception:
logger.warning(
f"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." )
return selected_warnings
def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]:
snake_case__ : int = set()
snake_case__ : Dict = [os.path.join(_lowerCAmelCase , _lowerCAmelCase ) for p in os.listdir(_lowerCAmelCase ) if (p.endswith(""".zip""" ) or from_gh)]
for p in paths:
selected_warnings.update(extract_warnings_from_single_artifact(_lowerCAmelCase , _lowerCAmelCase ) )
return selected_warnings
if __name__ == "__main__":
def __snake_case( _lowerCAmelCase ) -> Tuple:
return values.split(""",""" )
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
# optional parameters
parser.add_argument(
"--targets",
default="DeprecationWarning,UserWarning,FutureWarning",
type=list_str,
help="Comma-separated list of target warning(s) which we want to extract.",
)
parser.add_argument(
"--from_gh",
action="store_true",
help="If running from a GitHub action workflow and collecting warnings from its artifacts.",
)
__a = parser.parse_args()
__a = args.from_gh
if from_gh:
# The artifacts have to be downloaded using `actions/download-artifact@v3`
pass
else:
os.makedirs(args.output_dir, exist_ok=True)
# get download links
__a = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
# download artifacts
for idx, (name, url) in enumerate(artifacts.items()):
print(name)
print(url)
print("=" * 80)
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
# extract warnings from artifacts
__a = extract_warnings(args.output_dir, args.targets)
__a = sorted(selected_warnings)
with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp:
json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
| 35 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
_UpperCamelCase = 4
_UpperCamelCase = 3
class _lowerCamelCase ( a ):
"""simple docstring"""
pass
def lowerCAmelCase__( lowercase : List[str] ) -> Any:
for shard in shards:
for i in range(lowercase ):
yield {"i": i, "shard": shard}
def lowerCAmelCase__( ) -> Optional[int]:
__snake_case : List[Any] = int(os.environ["RANK"] )
__snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] )
__snake_case : List[str] = ArgumentParser()
parser.add_argument("--streaming" , type=lowercase )
parser.add_argument("--local_rank" , type=lowercase )
parser.add_argument("--num_workers" , type=lowercase , default=0 )
__snake_case : Any = parser.parse_args()
__snake_case : Dict = args.streaming
__snake_case : Union[str, Any] = args.num_workers
__snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]}
__snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase )
if not streaming:
__snake_case : Any = Dataset.from_list(list(lowercase ) )
__snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase )
__snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase )
__snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD
__snake_case : List[str] = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
__snake_case : Dict = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" )
if __name__ == "__main__":
main()
| 326 | 0 |
from typing import TYPE_CHECKING
from ...utils import _LazyModule
_snake_case = {"tokenization_bertweet": ["BertweetTokenizer"]}
if TYPE_CHECKING:
from .tokenization_bertweet import BertweetTokenizer
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 36 |
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int:
__snake_case : List[Any] = limit + 1
__snake_case : List[str] = [0] * limit
for first_term in range(1 , lowercase ):
for n in range(lowercase , lowercase , lowercase ):
__snake_case : Union[str, Any] = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
__snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 326 | 0 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import add_start_docstrings
_lowerCAmelCase = R'''
[`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and
can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.
Args:
title_sep (`str`, *optional*, defaults to `" / "`):
Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].
doc_sep (`str`, *optional*, defaults to `" // "`):
Separator inserted between the text of the retrieved document and the original input when calling
[`RagRetriever`].
n_docs (`int`, *optional*, defaults to 5):
Number of documents to retrieve.
max_combined_length (`int`, *optional*, defaults to 300):
Max length of contextualized input returned by [`~RagRetriever.__call__`].
retrieval_vector_size (`int`, *optional*, defaults to 768):
Dimensionality of the document embeddings indexed by [`RagRetriever`].
retrieval_batch_size (`int`, *optional*, defaults to 8):
Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated
[`RagRetriever`].
dataset (`str`, *optional*, defaults to `"wiki_dpr"`):
A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids
using `datasets.list_datasets()`).
dataset_split (`str`, *optional*, defaults to `"train"`)
Which split of the `dataset` to load.
index_name (`str`, *optional*, defaults to `"compressed"`)
The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and
`"compressed"`.
index_path (`str`, *optional*)
The path to the serialized faiss index on disk.
passages_path (`str`, *optional*):
A path to text passages compatible with the faiss index. Required if using
[`~models.rag.retrieval_rag.LegacyIndex`]
use_dummy_dataset (`bool`, *optional*, defaults to `False`)
Whether to load a "dummy" variant of the dataset specified by `dataset`.
label_smoothing (`float`, *optional*, defaults to 0.0):
Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing
in the loss calculation. If set to 0, no label smoothing is performed.
do_marginalize (`bool`, *optional*, defaults to `False`):
If `True`, the logits are marginalized over all documents by making use of
`torch.nn.functional.log_softmax`.
reduce_loss (`bool`, *optional*, defaults to `False`):
Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.
do_deduplication (`bool`, *optional*, defaults to `True`):
Whether or not to deduplicate the generations from different context documents for a given input. Has to be
set to `False` if used while training with distributed backend.
exclude_bos_score (`bool`, *optional*, defaults to `False`):
Whether or not to disregard the BOS token when computing the loss.
output_retrieved(`bool`, *optional*, defaults to `False`):
If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and
`context_attention_mask` are returned. See returned tensors for more detail.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
forced_eos_token_id (`int`, *optional*):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
'''
@add_start_docstrings(SCREAMING_SNAKE_CASE_ )
class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : str = '''rag'''
__lowercase : Any = True
def __init__( self ,__UpperCAmelCase=None ,__UpperCAmelCase=True ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=" / " ,__UpperCAmelCase=" // " ,__UpperCAmelCase=5 ,__UpperCAmelCase=300 ,__UpperCAmelCase=768 ,__UpperCAmelCase=8 ,__UpperCAmelCase="wiki_dpr" ,__UpperCAmelCase="train" ,__UpperCAmelCase="compressed" ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=True ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Optional[int]:
super().__init__(
bos_token_id=__UpperCAmelCase ,pad_token_id=__UpperCAmelCase ,eos_token_id=__UpperCAmelCase ,decoder_start_token_id=__UpperCAmelCase ,forced_eos_token_id=__UpperCAmelCase ,is_encoder_decoder=__UpperCAmelCase ,prefix=__UpperCAmelCase ,vocab_size=__UpperCAmelCase ,**__UpperCAmelCase ,)
assert (
"question_encoder" in kwargs and "generator" in kwargs
), "Config has to be initialized with question_encoder and generator config"
lowerCAmelCase__ : List[str] = kwargs.pop("""question_encoder""" )
lowerCAmelCase__ : Dict = question_encoder_config.pop("""model_type""" )
lowerCAmelCase__ : Optional[Any] = kwargs.pop("""generator""" )
lowerCAmelCase__ : Any = decoder_config.pop("""model_type""" )
from ..auto.configuration_auto import AutoConfig
lowerCAmelCase__ : Optional[int] = AutoConfig.for_model(__UpperCAmelCase ,**__UpperCAmelCase )
lowerCAmelCase__ : Union[str, Any] = AutoConfig.for_model(__UpperCAmelCase ,**__UpperCAmelCase )
lowerCAmelCase__ : Optional[Any] = reduce_loss
lowerCAmelCase__ : Dict = label_smoothing
lowerCAmelCase__ : List[Any] = exclude_bos_score
lowerCAmelCase__ : Union[str, Any] = do_marginalize
lowerCAmelCase__ : Tuple = title_sep
lowerCAmelCase__ : Union[str, Any] = doc_sep
lowerCAmelCase__ : Union[str, Any] = n_docs
lowerCAmelCase__ : Union[str, Any] = max_combined_length
lowerCAmelCase__ : str = dataset
lowerCAmelCase__ : List[Any] = dataset_split
lowerCAmelCase__ : Optional[Any] = index_name
lowerCAmelCase__ : Dict = retrieval_vector_size
lowerCAmelCase__ : Tuple = retrieval_batch_size
lowerCAmelCase__ : Optional[Any] = passages_path
lowerCAmelCase__ : Union[str, Any] = index_path
lowerCAmelCase__ : Dict = use_dummy_dataset
lowerCAmelCase__ : Optional[int] = output_retrieved
lowerCAmelCase__ : int = do_deduplication
lowerCAmelCase__ : Optional[Any] = use_cache
if self.forced_eos_token_id is None:
lowerCAmelCase__ : Tuple = getattr(self.generator ,"""forced_eos_token_id""" ,__UpperCAmelCase )
@classmethod
def UpperCAmelCase_ ( cls ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> PretrainedConfig:
return cls(question_encoder=question_encoder_config.to_dict() ,generator=generator_config.to_dict() ,**__UpperCAmelCase )
def UpperCAmelCase_ ( self ) -> str:
lowerCAmelCase__ : Optional[int] = copy.deepcopy(self.__dict__ )
lowerCAmelCase__ : Optional[Any] = self.question_encoder.to_dict()
lowerCAmelCase__ : List[Any] = self.generator.to_dict()
lowerCAmelCase__ : Tuple = self.__class__.model_type
return output
| 37 |
from __future__ import annotations
def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]:
__snake_case : List[str] = word_bank or []
# create a table
__snake_case : int = len(lowercase ) + 1
__snake_case : list[list[list[str]]] = []
for _ in range(lowercase ):
table.append([] )
# seed value
__snake_case : Optional[int] = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(lowercase ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(lowercase )] == word:
__snake_case : list[list[str]] = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(lowercase )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(lowercase )]:
combination.reverse()
return table[len(lowercase )]
if __name__ == "__main__":
print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa''']))
print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t''']))
print(
all_construct(
'''hexagonosaurus''',
['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''],
)
)
| 326 | 0 |
from __future__ import annotations
class _SCREAMING_SNAKE_CASE :
def __init__( self : List[Any] , __lowerCamelCase : int ):
UpperCamelCase :Tuple = order
# a_{0} ... a_{k}
UpperCamelCase :Dict = [1.0] + [0.0] * order
# b_{0} ... b_{k}
UpperCamelCase :str = [1.0] + [0.0] * order
# x[n-1] ... x[n-k]
UpperCamelCase :List[str] = [0.0] * self.order
# y[n-1] ... y[n-k]
UpperCamelCase :List[Any] = [0.0] * self.order
def _A ( self : Optional[Any] , __lowerCamelCase : list[float] , __lowerCamelCase : list[float] ):
if len(__lowerCamelCase ) < self.order:
UpperCamelCase :List[Any] = [1.0, *a_coeffs]
if len(__lowerCamelCase ) != self.order + 1:
UpperCamelCase :int = (
F"""Expected a_coeffs to have {self.order + 1} elements """
F"""for {self.order}-order filter, got {len(__lowerCamelCase )}"""
)
raise ValueError(__lowerCamelCase )
if len(__lowerCamelCase ) != self.order + 1:
UpperCamelCase :int = (
F"""Expected b_coeffs to have {self.order + 1} elements """
F"""for {self.order}-order filter, got {len(__lowerCamelCase )}"""
)
raise ValueError(__lowerCamelCase )
UpperCamelCase :Optional[Any] = a_coeffs
UpperCamelCase :Dict = b_coeffs
def _A ( self : List[str] , __lowerCamelCase : float ):
UpperCamelCase :Tuple = 0.0
# Start at index 1 and do index 0 at the end.
for i in range(1 , self.order + 1 ):
result += (
self.b_coeffs[i] * self.input_history[i - 1]
- self.a_coeffs[i] * self.output_history[i - 1]
)
UpperCamelCase :Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0]
UpperCamelCase :int = self.input_history[:-1]
UpperCamelCase :str = self.output_history[:-1]
UpperCamelCase :Optional[int] = sample
UpperCamelCase :List[Any] = result
return result
| 38 |
import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple:
'''simple docstring'''
__snake_case : Optional[int] = parent
__snake_case : Tuple = batch_size
__snake_case : List[str] = seq_length
__snake_case : Optional[int] = is_training
__snake_case : int = use_attention_mask
__snake_case : Union[str, Any] = use_token_type_ids
__snake_case : Any = use_labels
__snake_case : List[str] = vocab_size
__snake_case : int = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : List[Any] = num_attention_heads
__snake_case : Optional[int] = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : Optional[int] = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : str = max_position_embeddings
__snake_case : List[Any] = type_vocab_size
__snake_case : int = type_sequence_label_size
__snake_case : Dict = initializer_range
__snake_case : List[Any] = num_choices
__snake_case : Union[str, Any] = rescale_embeddings
__snake_case : List[Any] = attention_type
__snake_case : str = use_bias
__snake_case : Dict = block_size
__snake_case : Optional[Any] = num_random_blocks
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Any = None
if self.use_attention_mask:
__snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Union[str, Any] = None
if self.use_token_type_ids:
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : Optional[int] = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
__snake_case : Optional[int] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs
__snake_case : int = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_flax
class _lowerCamelCase ( a , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =(
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
UpperCAmelCase_ : Dict =False
UpperCAmelCase_ : str =False
def UpperCAmelCase ( self ) -> str:
'''simple docstring'''
__snake_case : Dict = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Any:
'''simple docstring'''
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
super().test_hidden_states_output()
@slow
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
for model_class_name in self.all_model_classes:
__snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" )
self.assertIsNotNone(UpperCAmelCase )
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
__snake_case : Tuple = model_class(UpperCAmelCase )
@jax.jit
def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase )
with self.subTest("JIT Enabled" ):
__snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int:
'''simple docstring'''
if name.startswith("outputs.attentions" ):
return
else:
super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
| 326 | 0 |
def __A ( __lowerCAmelCase )-> float:
"""simple docstring"""
if not nums: # Makes sure that the list is not empty
raise ValueError('List is empty' )
_UpperCAmelCase = sum(__lowerCAmelCase ) / len(__lowerCAmelCase ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 39 |
import argparse
import datetime
def lowerCAmelCase__( lowercase : str ) -> str:
__snake_case : int = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
__snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(lowercase ) < 11:
raise ValueError("Must be 10 characters long" )
# Get month
__snake_case : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12" )
__snake_case : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get day
__snake_case : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31" )
# Get second separator
__snake_case : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'" )
# Get year
__snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?" )
# Get datetime obj for validation
__snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) )
# Start math
if m <= 2:
__snake_case : Optional[Any] = y - 1
__snake_case : Tuple = m + 12
# maths var
__snake_case : int = int(str(lowercase )[:2] )
__snake_case : int = int(str(lowercase )[2:] )
__snake_case : int = int(2.6 * m - 5.3_9 )
__snake_case : int = int(c / 4 )
__snake_case : int = int(k / 4 )
__snake_case : int = int(d + k )
__snake_case : int = int(t + u + v + x )
__snake_case : int = int(z - (2 * c) )
__snake_case : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer." )
# Response
__snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!"""
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
_UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 326 | 0 |
"""simple docstring"""
def lowercase ( A_ )-> str:
'''simple docstring'''
if isinstance(A_ , A_ ):
raise TypeError("'float' object cannot be interpreted as an integer" )
if isinstance(A_ , A_ ):
raise TypeError("'str' object cannot be interpreted as an integer" )
if num == 0:
return "0b0"
a : Optional[Any] = False
if num < 0:
a : Tuple = True
a : str = -num
a : list[int] = []
while num > 0:
binary.insert(0 , num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(A_ ) for e in binary )
return "0b" + "".join(str(A_ ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 40 |
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int:
if index == r:
for j in range(lowercase ):
print(data[j] , end=" " )
print(" " )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
__snake_case : Union[str, Any] = arr[i]
combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]:
# A temporary array to store all combination one by one
__snake_case : Tuple = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 )
if __name__ == "__main__":
# Driver code to check the function above
_UpperCamelCase = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 326 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.