code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _UpperCamelCase = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def lowerCAmelCase__( lowercase : str = "dhaka" , lowercase : int = 5 ) -> int: __snake_case : List[Any] = min(lowercase , 50 ) # Prevent abuse! __snake_case : Dict = { "q": query, "tbm": "isch", "hl": "en", "ijn": "0", } __snake_case : List[str] = requests.get("https://www.google.com/search" , params=lowercase , headers=lowercase ) __snake_case : int = BeautifulSoup(html.text , "html.parser" ) __snake_case : Optional[int] = "".join( re.findall(R"AF_initDataCallback\(([^<]+)\);" , str(soup.select("script" ) ) ) ) __snake_case : Tuple = json.dumps(lowercase ) __snake_case : Any = json.loads(lowercase ) __snake_case : List[Any] = re.findall( R"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," , lowercase , ) if not matched_google_image_data: return 0 __snake_case : Optional[int] = re.sub( R"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" , "" , str(lowercase ) , ) __snake_case : List[Any] = re.findall( R"(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]" , lowercase , ) for index, fixed_full_res_image in enumerate(lowercase ): if index >= max_images: return index __snake_case : str = bytes(lowercase , "ascii" ).decode( "unicode-escape" ) __snake_case : Optional[int] = bytes(lowercase , "ascii" ).decode( "unicode-escape" ) __snake_case : Tuple = urllib.request.build_opener() __snake_case : Tuple = [ ( "User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582", ) ] urllib.request.install_opener(lowercase ) __snake_case : Tuple = f"""query_{query.replace(" " , "_" )}""" if not os.path.exists(lowercase ): os.makedirs(lowercase ) urllib.request.urlretrieve( # noqa: S310 lowercase , f"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: _UpperCamelCase = download_images_from_google_query(sys.argv[1]) print(F'''{image_count} images were downloaded to disk.''') except IndexError: print('''Please provide a search term.''') raise
326
import math def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list: __snake_case : Any = end or len(lowercase ) for i in range(lowercase , lowercase ): __snake_case : List[str] = i __snake_case : Union[str, Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case : Optional[Any] = array[temp_index - 1] temp_index -= 1 __snake_case : Any = temp_index_value return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap __snake_case : Any = index __snake_case : Optional[Any] = 2 * index + 1 # Left Node __snake_case : str = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case : Tuple = right_index if largest != index: __snake_case , __snake_case : int = array[largest], array[index] heapify(lowercase , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list ) -> list: __snake_case : List[str] = len(lowercase ) for i in range(n // 2 , -1 , -1 ): heapify(lowercase , lowercase , lowercase ) for i in range(n - 1 , 0 , -1 ): __snake_case , __snake_case : Optional[Any] = array[0], array[i] heapify(lowercase , 0 , lowercase ) return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: __snake_case : Union[str, Any] = low __snake_case : Union[str, Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case , __snake_case : str = array[j], array[i] i += 1 def lowerCAmelCase__( lowercase : list ) -> list: if len(lowercase ) == 0: return array __snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) ) __snake_case : Dict = 16 return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 __snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase ) intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase ) __snake_case : List[str] = p return insertion_sort(lowercase , lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip() _UpperCamelCase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
326
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="rwkv" UpperCAmelCase_ : Union[str, Any] ={"max_position_embeddings": "context_length"} def __init__( self , UpperCAmelCase=50277 , UpperCAmelCase=1024 , UpperCAmelCase=4096 , UpperCAmelCase=32 , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1E-5 , UpperCAmelCase=0 , UpperCAmelCase=0 , UpperCAmelCase=6 , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> Tuple: '''simple docstring''' __snake_case : int = vocab_size __snake_case : Optional[Any] = context_length __snake_case : str = hidden_size __snake_case : int = num_hidden_layers __snake_case : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size __snake_case : Dict = intermediate_size if intermediate_size is not None else 4 * hidden_size __snake_case : List[str] = layer_norm_epsilon __snake_case : Optional[Any] = rescale_every __snake_case : Tuple = use_cache __snake_case : Union[str, Any] = bos_token_id __snake_case : List[Any] = eos_token_id super().__init__( tie_word_embeddings=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
326
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Any = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase__( lowercase : Dict ) -> Dict: __snake_case : Any = [1, 2] __snake_case : Dict = {"a": 1, "b": 2} __snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]} __snake_case : int = {"a": {"1": 1}, "b": 2} __snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case : Dict = [2, 3] __snake_case : Tuple = {"a": 2, "b": 3} __snake_case : int = {"a": [2, 3], "b": [4, 5]} __snake_case : Dict = {"a": {"1": 2}, "b": 3} __snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
326
1
from __future__ import annotations from dataclasses import dataclass @dataclass class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : float UpperCAmelCase_ : TreeNode | None =None UpperCAmelCase_ : TreeNode | None =None def lowerCAmelCase__( lowercase : TreeNode | None ) -> bool: # Validation def is_valid_tree(lowercase : TreeNode | None ) -> bool: if node is None: return True if not isinstance(lowercase , lowercase ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(lowercase ): raise ValueError( "Each node should be type of TreeNode and data should be float." ) def is_binary_search_tree_recursive_check( lowercase : TreeNode | None , lowercase : float , lowercase : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , lowercase , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , lowercase ) ) return is_binary_search_tree_recursive_check(lowercase , -float("inf" ) , float("inf" ) ) if __name__ == "__main__": import doctest doctest.testmod()
326
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any: __snake_case : Optional[Any] = False __snake_case : Optional[Any] = search_prob __snake_case : str = start_temperate __snake_case : List[Any] = [] __snake_case : str = 0 __snake_case : Dict = None while not search_end: __snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case : List[Any] = current_state scores.append(lowercase ) iterations += 1 __snake_case : Dict = None __snake_case : str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor __snake_case : int = neighbors.pop(lowercase ) __snake_case : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case : List[str] = picked_neighbor else: __snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case : str = picked_neighbor __snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case : Optional[Any] = True else: __snake_case : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase ) , lowercase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any: return (3 * x**2) - (6 * y) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' ) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' )
326
1
import torch from torch import nn class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1 , UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' super().__init__() __snake_case : Dict = n_token __snake_case : Union[str, Any] = d_embed __snake_case : Union[str, Any] = d_proj __snake_case : List[str] = cutoffs + [n_token] __snake_case : List[str] = [0] + self.cutoffs __snake_case : Any = div_val __snake_case : str = self.cutoffs[0] __snake_case : Any = len(self.cutoffs ) - 1 __snake_case : Union[str, Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: __snake_case : List[str] = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) __snake_case : str = nn.Parameter(torch.zeros(self.n_clusters ) ) __snake_case : Dict = nn.ModuleList() __snake_case : Optional[Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase , UpperCAmelCase ) ) ) else: self.out_projs.append(UpperCAmelCase ) self.out_layers.append(nn.Linear(UpperCAmelCase , UpperCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): __snake_case , __snake_case : Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] __snake_case : int = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase , UpperCAmelCase ) ) ) self.out_layers.append(nn.Linear(UpperCAmelCase , r_idx - l_idx ) ) __snake_case : Union[str, Any] = keep_order def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if proj is None: __snake_case : Any = nn.functional.linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: __snake_case : Any = nn.functional.linear(UpperCAmelCase , proj.t().contiguous() ) __snake_case : List[Any] = nn.functional.linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n __snake_case : Optional[Any] = hidden[..., :-1, :].contiguous() __snake_case : List[Any] = labels[..., 1:].contiguous() __snake_case : Union[str, Any] = hidden.view(-1 , hidden.size(-1 ) ) __snake_case : List[Any] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: __snake_case : Dict = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: __snake_case : List[Any] = self._compute_logit(UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: __snake_case : Any = labels != -100 __snake_case : Optional[Any] = torch.zeros_like(UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) __snake_case : Any = ( -nn.functional.log_softmax(UpperCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: __snake_case : Dict = nn.functional.log_softmax(UpperCAmelCase , dim=-1 ) else: # construct weights and biases __snake_case , __snake_case : Dict = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __snake_case , __snake_case : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1] __snake_case : List[str] = self.out_layers[0].weight[l_idx:r_idx] __snake_case : str = self.out_layers[0].bias[l_idx:r_idx] else: __snake_case : List[str] = self.out_layers[i].weight __snake_case : Optional[Any] = self.out_layers[i].bias if i == 0: __snake_case : int = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __snake_case : Dict = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCAmelCase ) biases.append(UpperCAmelCase ) __snake_case , __snake_case , __snake_case : Any = weights[0], biases[0], self.out_projs[0] __snake_case : Union[str, Any] = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __snake_case : Union[str, Any] = nn.functional.log_softmax(UpperCAmelCase , dim=1 ) if labels is None: __snake_case : Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: __snake_case : Dict = torch.zeros_like(UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) __snake_case : Tuple = 0 __snake_case : Optional[Any] = [0] + self.cutoffs for i in range(len(UpperCAmelCase ) - 1 ): __snake_case , __snake_case : List[Any] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: __snake_case : Dict = (labels >= l_idx) & (labels < r_idx) __snake_case : List[str] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue __snake_case : Dict = labels.index_select(0 , UpperCAmelCase ) - l_idx __snake_case : Optional[int] = head_logprob.index_select(0 , UpperCAmelCase ) __snake_case : Union[str, Any] = hidden.index_select(0 , UpperCAmelCase ) else: __snake_case : Optional[int] = hidden if i == 0: if labels is not None: __snake_case : int = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: __snake_case : List[Any] = head_logprob[:, : self.cutoffs[0]] else: __snake_case , __snake_case , __snake_case : Any = weights[i], biases[i], self.out_projs[i] __snake_case : int = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __snake_case : Optional[int] = nn.functional.log_softmax(UpperCAmelCase , dim=1 ) __snake_case : List[str] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: __snake_case : str = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: __snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i __snake_case : List[Any] = logprob_i if labels is not None: if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0 , UpperCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' if self.n_clusters == 0: __snake_case : int = self._compute_logit(UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(UpperCAmelCase , dim=-1 ) else: # construct weights and biases __snake_case , __snake_case : str = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __snake_case , __snake_case : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] __snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] __snake_case : List[str] = self.out_layers[0].bias[l_idx:r_idx] else: __snake_case : Any = self.out_layers[i].weight __snake_case : Optional[int] = self.out_layers[i].bias if i == 0: __snake_case : Union[str, Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __snake_case : int = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCAmelCase ) biases.append(UpperCAmelCase ) __snake_case , __snake_case , __snake_case : Any = weights[0], biases[0], self.out_projs[0] __snake_case : List[str] = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __snake_case : Optional[int] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) __snake_case : Union[str, Any] = nn.functional.log_softmax(UpperCAmelCase , dim=1 ) __snake_case : List[str] = [0] + self.cutoffs for i in range(len(UpperCAmelCase ) - 1 ): __snake_case , __snake_case : List[str] = cutoff_values[i], cutoff_values[i + 1] if i == 0: __snake_case : Dict = head_logprob[:, : self.cutoffs[0]] else: __snake_case , __snake_case , __snake_case : str = weights[i], biases[i], self.out_projs[i] __snake_case : str = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __snake_case : Union[str, Any] = nn.functional.log_softmax(UpperCAmelCase , dim=1 ) __snake_case : Union[str, Any] = head_logprob[:, -i] + tail_logprob_i __snake_case : str = logprob_i return out
326
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : Tuple ="FlavaImageProcessor" UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = self.image_processor def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if images is not None: __snake_case : Union[str, Any] = self.image_processor( UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if text is not None and images is not None: encoding.update(UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
326
1
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=3 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=10 , UpperCAmelCase=[8, 16, 32, 64] , UpperCAmelCase=[1, 1, 2, 1] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=3 , UpperCAmelCase=None , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=[2, 3, 4] , UpperCAmelCase=1 , ) -> Optional[int]: '''simple docstring''' __snake_case : Union[str, Any] = parent __snake_case : List[str] = batch_size __snake_case : Optional[int] = image_size __snake_case : Tuple = num_channels __snake_case : List[Any] = embeddings_size __snake_case : Optional[Any] = hidden_sizes __snake_case : List[Any] = depths __snake_case : Union[str, Any] = is_training __snake_case : str = use_labels __snake_case : Dict = hidden_act __snake_case : Any = num_labels __snake_case : Union[str, Any] = scope __snake_case : Optional[Any] = len(UpperCAmelCase ) __snake_case : int = out_features __snake_case : Optional[Any] = out_indices __snake_case : Union[str, Any] = num_groups def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[int] = None if self.use_labels: __snake_case : str = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Dict = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : Optional[int] = BitModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __snake_case : Optional[Any] = model(UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __snake_case : Optional[Any] = self.num_labels __snake_case : Optional[Any] = BitForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __snake_case : Optional[int] = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : int = BitBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __snake_case : Tuple = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case : int = None __snake_case : Tuple = BitBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __snake_case : str = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : List[str] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : int = config_and_inputs __snake_case : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase ( a , a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Any =(BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () UpperCAmelCase_ : Tuple =( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) UpperCAmelCase_ : List[Any] =False UpperCAmelCase_ : str =False UpperCAmelCase_ : List[Any] =False UpperCAmelCase_ : Union[str, Any] =False UpperCAmelCase_ : Dict =False def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : Optional[Any] = BitModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return @unittest.skip(reason="Bit does not output attentions" ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="Bit does not use inputs_embeds" ) def UpperCAmelCase ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason="Bit does not support input and output embeddings" ) def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = model_class(UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[Any] = [*signature.parameters.keys()] __snake_case : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = model_class(config=UpperCAmelCase ) for name, module in model.named_modules(): if isinstance(UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __snake_case : Optional[int] = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) __snake_case : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : Tuple = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: __snake_case : Optional[Any] = layer_type __snake_case : Union[str, Any] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @unittest.skip(reason="Bit does not use feedforward chunking" ) def UpperCAmelCase ( self ) -> int: '''simple docstring''' pass def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : int = BitModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowerCAmelCase__( ) -> str: __snake_case : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> str: '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCAmelCase ) __snake_case : List[str] = self.default_image_processor __snake_case : Optional[int] = prepare_img() __snake_case : Dict = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**UpperCAmelCase ) # verify the logits __snake_case : Optional[int] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) __snake_case : Optional[Any] = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) ) @require_torch class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Optional[int] =(BitBackbone,) if is_torch_available() else () UpperCAmelCase_ : Union[str, Any] =BitConfig UpperCAmelCase_ : Union[str, Any] =False def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : List[Any] = BitModelTester(self )
326
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } _UpperCamelCase = { '''camembert-base''': 512, } _UpperCamelCase = '''▁''' class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : str =["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' __snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token __snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __snake_case : Dict = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __snake_case : Optional[int] = len(self.fairseq_tokens_to_ids ) __snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = [] __snake_case : Union[str, Any] = "" __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase ) + token __snake_case : List[Any] = True __snake_case : Union[str, Any] = [] else: current_sub_tokens.append(UpperCAmelCase ) __snake_case : int = False out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def __getstate__( self ) -> List[Any]: '''simple docstring''' __snake_case : str = self.__dict__.copy() __snake_case : Optional[Any] = None return state def __setstate__( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : List[str] = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Optional[Any] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: __snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
326
1
import argparse import math import traceback import dateutil.parser as date_parser import requests def lowerCAmelCase__( lowercase : Optional[int] ) -> List[str]: __snake_case : Tuple = {} __snake_case : List[Any] = job["started_at"] __snake_case : List[str] = job["completed_at"] __snake_case : List[Any] = date_parser.parse(lowercase ) __snake_case : str = date_parser.parse(lowercase ) __snake_case : List[Any] = round((end_datetime - start_datetime).total_seconds() / 6_0.0 ) __snake_case : Union[str, Any] = start __snake_case : List[str] = end __snake_case : Union[str, Any] = duration_in_min return job_info def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : List[Any]=None ) -> Optional[int]: __snake_case : Any = None if token is not None: __snake_case : Any = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} __snake_case : List[Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" __snake_case : Optional[int] = requests.get(lowercase , headers=lowercase ).json() __snake_case : Optional[int] = {} try: job_time.update({job["name"]: extract_time_from_single_job(lowercase ) for job in result["jobs"]} ) __snake_case : Optional[int] = math.ceil((result["total_count"] - 100) / 100 ) for i in range(lowercase ): __snake_case : str = requests.get(url + f"""&page={i + 2}""" , headers=lowercase ).json() job_time.update({job["name"]: extract_time_from_single_job(lowercase ) for job in result["jobs"]} ) return job_time except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') _UpperCamelCase = parser.parse_args() _UpperCamelCase = get_job_time(args.workflow_run_id) _UpperCamelCase = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v['duration']}''')
326
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool: __snake_case : List[str] = len(lowercase ) __snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __snake_case : Optional[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __snake_case : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __snake_case : List[str] = subset[i - 1][j] if arr[i - 1] <= j: __snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
326
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''asapp/sew-tiny-100k''': '''https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json''', # See all SEW models at https://huggingface.co/models?filter=sew } class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : str ="sew" def __init__( self , UpperCAmelCase=32 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase=2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1E-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , UpperCAmelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCAmelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCAmelCase=False , UpperCAmelCase=128 , UpperCAmelCase=16 , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=10 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=10 , UpperCAmelCase=0 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=256 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , **UpperCAmelCase , ) -> Any: '''simple docstring''' super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) __snake_case : str = hidden_size __snake_case : Optional[Any] = feat_extract_norm __snake_case : List[Any] = feat_extract_activation __snake_case : Optional[int] = list(UpperCAmelCase ) __snake_case : Union[str, Any] = list(UpperCAmelCase ) __snake_case : Union[str, Any] = list(UpperCAmelCase ) __snake_case : Dict = conv_bias __snake_case : Optional[Any] = num_conv_pos_embeddings __snake_case : Optional[int] = num_conv_pos_embedding_groups __snake_case : List[Any] = len(self.conv_dim ) __snake_case : Optional[int] = num_hidden_layers __snake_case : Optional[int] = intermediate_size __snake_case : Any = squeeze_factor __snake_case : str = hidden_act __snake_case : Optional[int] = num_attention_heads __snake_case : int = hidden_dropout __snake_case : Optional[int] = attention_dropout __snake_case : Optional[int] = activation_dropout __snake_case : int = feat_proj_dropout __snake_case : Optional[Any] = final_dropout __snake_case : Optional[Any] = layerdrop __snake_case : List[Any] = layer_norm_eps __snake_case : int = initializer_range __snake_case : int = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case : List[str] = apply_spec_augment __snake_case : Tuple = mask_time_prob __snake_case : Any = mask_time_length __snake_case : List[str] = mask_time_min_masks __snake_case : Optional[Any] = mask_feature_prob __snake_case : List[str] = mask_feature_length __snake_case : Optional[Any] = mask_feature_min_masks # ctc loss __snake_case : Union[str, Any] = ctc_loss_reduction __snake_case : int = ctc_zero_infinity # sequence classification __snake_case : List[Any] = use_weighted_layer_sum __snake_case : Tuple = classifier_proj_size @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
326
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _UpperCamelCase = 4 _UpperCamelCase = 3 class _lowerCamelCase ( a ): """simple docstring""" pass def lowerCAmelCase__( lowercase : List[str] ) -> Any: for shard in shards: for i in range(lowercase ): yield {"i": i, "shard": shard} def lowerCAmelCase__( ) -> Optional[int]: __snake_case : List[Any] = int(os.environ["RANK"] ) __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : List[str] = ArgumentParser() parser.add_argument("--streaming" , type=lowercase ) parser.add_argument("--local_rank" , type=lowercase ) parser.add_argument("--num_workers" , type=lowercase , default=0 ) __snake_case : Any = parser.parse_args() __snake_case : Dict = args.streaming __snake_case : Union[str, Any] = args.num_workers __snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]} __snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase ) if not streaming: __snake_case : Any = Dataset.from_list(list(lowercase ) ) __snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase ) __snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase ) __snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __snake_case : Dict = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
326
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=7 , UpperCAmelCase=3 , UpperCAmelCase=30 , UpperCAmelCase=400 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=[0.5, 0.5, 0.5] , UpperCAmelCase=[0.5, 0.5, 0.5] , UpperCAmelCase=True , UpperCAmelCase=1 / 255 , UpperCAmelCase=True , ) -> List[Any]: '''simple docstring''' __snake_case : Union[str, Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : List[str] = num_channels __snake_case : Optional[int] = min_resolution __snake_case : Any = max_resolution __snake_case : Tuple = do_resize __snake_case : Optional[Any] = size __snake_case : Optional[int] = do_normalize __snake_case : Union[str, Any] = image_mean __snake_case : Union[str, Any] = image_std __snake_case : Optional[Any] = do_rescale __snake_case : Any = rescale_factor __snake_case : str = do_pad def UpperCAmelCase ( self ) -> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> Dict: '''simple docstring''' if not batched: __snake_case : Dict = image_inputs[0] if isinstance(UpperCAmelCase , Image.Image ): __snake_case , __snake_case : Optional[Any] = image.size else: __snake_case , __snake_case : Union[str, Any] = image.shape[1], image.shape[2] if w < h: __snake_case : str = int(self.size["shortest_edge"] * h / w ) __snake_case : List[str] = self.size["shortest_edge"] elif w > h: __snake_case : List[Any] = self.size["shortest_edge"] __snake_case : Tuple = int(self.size["shortest_edge"] * w / h ) else: __snake_case : str = self.size["shortest_edge"] __snake_case : List[Any] = self.size["shortest_edge"] else: __snake_case : Optional[int] = [] for image in image_inputs: __snake_case , __snake_case : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __snake_case : List[str] = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[0] )[0] __snake_case : Optional[int] = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str =ConditionalDetrImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[Any] = ConditionalDetrImageProcessingTester(self ) @property def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "size" ) ) def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase ) __snake_case : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase ) def UpperCAmelCase ( self ) -> str: '''simple docstring''' pass def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input __snake_case : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __snake_case , __snake_case : int = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case , __snake_case : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) __snake_case : List[Any] = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input __snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Tuple = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Union[str, Any] = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values __snake_case , __snake_case : str = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input __snake_case : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Any = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Dict = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values __snake_case , __snake_case : str = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: __snake_case : str = json.loads(f.read() ) __snake_case : int = {"image_id": 39769, "annotations": target} # encode them __snake_case : Tuple = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) __snake_case : Tuple = image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , return_tensors="pt" ) # verify pixel values __snake_case : List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase ) __snake_case : List[Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase , atol=1E-4 ) ) # verify area __snake_case : Optional[int] = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase ) ) # verify boxes __snake_case : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase ) __snake_case : str = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase , atol=1E-3 ) ) # verify image_id __snake_case : Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase ) ) # verify is_crowd __snake_case : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase ) ) # verify class_labels __snake_case : Tuple = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase ) ) # verify orig_size __snake_case : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase ) ) # verify size __snake_case : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase ) ) @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: __snake_case : List[str] = json.loads(f.read() ) __snake_case : Optional[int] = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} __snake_case : List[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them __snake_case : str = ConditionalDetrImageProcessor(format="coco_panoptic" ) __snake_case : Tuple = image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , masks_path=UpperCAmelCase , return_tensors="pt" ) # verify pixel values __snake_case : Optional[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase ) __snake_case : Union[str, Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase , atol=1E-4 ) ) # verify area __snake_case : Optional[Any] = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase ) ) # verify boxes __snake_case : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase ) __snake_case : str = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase , atol=1E-3 ) ) # verify image_id __snake_case : List[str] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase ) ) # verify is_crowd __snake_case : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase ) ) # verify class_labels __snake_case : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase ) ) # verify masks __snake_case : int = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCAmelCase ) # verify orig_size __snake_case : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase ) ) # verify size __snake_case : int = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase ) )
326
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int: __snake_case : List[Any] = limit + 1 __snake_case : List[str] = [0] * limit for first_term in range(1 , lowercase ): for n in range(lowercase , lowercase , lowercase ): __snake_case : Union[str, Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
326
1
import numpy as np def lowerCAmelCase__( lowercase : np.ndarray , lowercase : np.ndarray , lowercase : float = 1E-12 , lowercase : int = 100 , ) -> tuple[float, np.ndarray]: assert np.shape(lowercase )[0] == np.shape(lowercase )[1] # Ensure proper dimensionality. assert np.shape(lowercase )[0] == np.shape(lowercase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowercase ) == np.iscomplexobj(lowercase ) __snake_case : str = np.iscomplexobj(lowercase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowercase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __snake_case : Tuple = False __snake_case : List[Any] = 0 __snake_case : Union[str, Any] = 0 __snake_case : Any = 1E12 while not convergence: # Multiple matrix by the vector. __snake_case : Dict = np.dot(lowercase , lowercase ) # Normalize the resulting output vector. __snake_case : List[Any] = w / np.linalg.norm(lowercase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __snake_case : Optional[int] = vector.conj().T if is_complex else vector.T __snake_case : Union[str, Any] = np.dot(lowercase , np.dot(lowercase , lowercase ) ) # Check convergence. __snake_case : int = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __snake_case : List[Any] = True __snake_case : str = lambda_ if is_complex: __snake_case : Any = np.real(lambda_ ) return lambda_, vector def lowerCAmelCase__( ) -> None: __snake_case : List[Any] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __snake_case : Dict = np.array([41, 4, 20] ) __snake_case : Tuple = real_input_matrix.astype(np.complexaaa ) __snake_case : str = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __snake_case : Optional[int] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __snake_case : Optional[int] = real_input_matrix __snake_case : List[str] = real_vector elif problem_type == "complex": __snake_case : Any = complex_input_matrix __snake_case : int = complex_vector # Our implementation. __snake_case , __snake_case : Any = power_iteration(lowercase , lowercase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __snake_case , __snake_case : Dict = np.linalg.eigh(lowercase ) # Last eigenvalue is the maximum one. __snake_case : List[str] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __snake_case : str = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowercase ) - np.abs(lowercase ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
326
from __future__ import annotations def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]: __snake_case : List[str] = word_bank or [] # create a table __snake_case : int = len(lowercase ) + 1 __snake_case : list[list[list[str]]] = [] for _ in range(lowercase ): table.append([] ) # seed value __snake_case : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase )] == word: __snake_case : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase )]: combination.reverse() return table[len(lowercase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
326
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _UpperCamelCase = get_tests_dir('''fixtures''') _UpperCamelCase = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') _UpperCamelCase = get_tests_dir('''fixtures/dummy-config.json''') class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : int = 0 def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Any = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : Optional[int] = AutoFeatureExtractor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : str = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __snake_case : str = AutoFeatureExtractor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop("feature_extractor_type" ) __snake_case : List[str] = WavaVecaFeatureExtractor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) __snake_case : List[str] = AutoFeatureExtractor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved __snake_case : str = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : Dict = AutoFeatureExtractor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , "bert-base is not a local folder and is not a valid model identifier" ): __snake_case : List[Any] = AutoFeatureExtractor.from_pretrained("bert-base" ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __snake_case : Optional[int] = AutoFeatureExtractor.from_pretrained(UpperCAmelCase , revision="aaaaaa" ) def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): __snake_case : Optional[int] = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" ) def UpperCAmelCase ( self ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): __snake_case : List[str] = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): __snake_case : str = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=UpperCAmelCase ) __snake_case : Tuple = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=UpperCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCAmelCase ) __snake_case : int = AutoFeatureExtractor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' try: AutoConfig.register("custom" , UpperCAmelCase ) AutoFeatureExtractor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoFeatureExtractor.register(UpperCAmelCase , UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __snake_case : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCAmelCase ) __snake_case : str = AutoFeatureExtractor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =True try: AutoConfig.register("custom" , UpperCAmelCase ) AutoFeatureExtractor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local __snake_case : Tuple = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __snake_case : Tuple = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=UpperCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __snake_case : int = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=UpperCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(not hasattr(UpperCAmelCase , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
326
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : int = use_attention_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[str] = vocab_size __snake_case : int = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[Any] = num_choices __snake_case : Union[str, Any] = rescale_embeddings __snake_case : List[Any] = attention_type __snake_case : str = use_bias __snake_case : Dict = block_size __snake_case : Optional[Any] = num_random_blocks def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase_ : Dict =False UpperCAmelCase_ : str =False def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
326
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
326
import argparse import datetime def lowerCAmelCase__( lowercase : str ) -> str: __snake_case : int = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } __snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase ) < 11: raise ValueError("Must be 10 characters long" ) # Get month __snake_case : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12" ) __snake_case : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day __snake_case : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31" ) # Get second separator __snake_case : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year __snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation __snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) ) # Start math if m <= 2: __snake_case : Optional[Any] = y - 1 __snake_case : Tuple = m + 12 # maths var __snake_case : int = int(str(lowercase )[:2] ) __snake_case : int = int(str(lowercase )[2:] ) __snake_case : int = int(2.6 * m - 5.3_9 ) __snake_case : int = int(c / 4 ) __snake_case : int = int(k / 4 ) __snake_case : int = int(d + k ) __snake_case : int = int(t + u + v + x ) __snake_case : int = int(z - (2 * c) ) __snake_case : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response __snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) _UpperCamelCase = parser.parse_args() zeller(args.date_input)
326
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowerCAmelCase__( lowercase : str , lowercase : Any , lowercase : Tuple ) -> List[str]: __snake_case : Any = 1.5 __snake_case : List[str] = int(factor * num_class_images ) __snake_case : List[str] = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=lowercase , aesthetic_weight=0.1 ) os.makedirs(f"""{class_data_dir}/images""" , exist_ok=lowercase ) if len(list(Path(f"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: __snake_case : str = client.query(text=lowercase ) if len(lowercase ) >= factor * num_class_images or num_images > 1E4: break else: __snake_case : int = int(factor * num_images ) __snake_case : List[str] = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=lowercase , aesthetic_weight=0.1 , ) __snake_case : Optional[Any] = 0 __snake_case : List[str] = 0 __snake_case : Dict = tqdm(desc="downloading real regularization images" , total=lowercase ) with open(f"""{class_data_dir}/caption.txt""" , "w" ) as fa, open(f"""{class_data_dir}/urls.txt""" , "w" ) as fa, open( f"""{class_data_dir}/images.txt""" , "w" ) as fa: while total < num_class_images: __snake_case : Union[str, Any] = class_images[count] count += 1 try: __snake_case : Optional[Any] = requests.get(images["url"] ) if img.status_code == 200: __snake_case : Any = Image.open(BytesIO(img.content ) ) with open(f"""{class_data_dir}/images/{total}.jpg""" , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(f"""{class_data_dir}/images/{total}.jpg""" + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowerCAmelCase__( ) -> List[Any]: __snake_case : Optional[Any] = argparse.ArgumentParser("" , add_help=lowercase ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=lowercase , type=lowercase ) parser.add_argument("--class_data_dir" , help="path to save images" , required=lowercase , type=lowercase ) parser.add_argument("--num_class_images" , help="number of images to download" , default=200 , type=lowercase ) return parser.parse_args() if __name__ == "__main__": _UpperCamelCase = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
326
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int: if index == r: for j in range(lowercase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __snake_case : Union[str, Any] = arr[i] combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]: # A temporary array to store all combination one by one __snake_case : Tuple = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 ) if __name__ == "__main__": # Driver code to check the function above _UpperCamelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
326
1
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase = None ) -> None: '''simple docstring''' if components is None: __snake_case : Tuple = [] __snake_case : Any = list(UpperCAmelCase ) def __len__( self ) -> int: '''simple docstring''' return len(self.__components ) def __str__( self ) -> str: '''simple docstring''' return "(" + ",".join(map(UpperCAmelCase , self.__components ) ) + ")" def __add__( self , UpperCAmelCase ) -> Vector: '''simple docstring''' __snake_case : Any = len(self ) if size == len(UpperCAmelCase ): __snake_case : Dict = [self.__components[i] + other.component(UpperCAmelCase ) for i in range(UpperCAmelCase )] return Vector(UpperCAmelCase ) else: raise Exception("must have the same size" ) def __sub__( self , UpperCAmelCase ) -> Vector: '''simple docstring''' __snake_case : Optional[int] = len(self ) if size == len(UpperCAmelCase ): __snake_case : Optional[int] = [self.__components[i] - other.component(UpperCAmelCase ) for i in range(UpperCAmelCase )] return Vector(UpperCAmelCase ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self , UpperCAmelCase ) -> Vector: '''simple docstring''' ... @overload def __mul__( self , UpperCAmelCase ) -> float: '''simple docstring''' ... def __mul__( self , UpperCAmelCase ) -> float | Vector: '''simple docstring''' if isinstance(UpperCAmelCase , (float, int) ): __snake_case : str = [c * other for c in self.__components] return Vector(UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ) and len(self ) == len(UpperCAmelCase ): __snake_case : List[Any] = len(self ) __snake_case : Optional[Any] = [self.__components[i] * other.component(UpperCAmelCase ) for i in range(UpperCAmelCase )] return sum(UpperCAmelCase ) else: # error case raise Exception("invalid operand!" ) def UpperCAmelCase ( self ) -> Vector: '''simple docstring''' return Vector(self.__components ) def UpperCAmelCase ( self , UpperCAmelCase ) -> float: '''simple docstring''' if isinstance(UpperCAmelCase , UpperCAmelCase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> None: '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) __snake_case : Dict = value def UpperCAmelCase ( self ) -> float: '''simple docstring''' if len(self.__components ) == 0: raise Exception("Vector is empty" ) __snake_case : Any = [c**2 for c in self.__components] return math.sqrt(sum(UpperCAmelCase ) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = False ) -> float: '''simple docstring''' __snake_case : int = self * other __snake_case : str = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def lowerCAmelCase__( lowercase : int ) -> Vector: assert isinstance(lowercase , lowercase ) return Vector([0] * dimension ) def lowerCAmelCase__( lowercase : int , lowercase : int ) -> Vector: assert isinstance(lowercase , lowercase ) and (isinstance(lowercase , lowercase )) __snake_case : int = [0] * dimension __snake_case : Union[str, Any] = 1 return Vector(lowercase ) def lowerCAmelCase__( lowercase : float , lowercase : Vector , lowercase : Vector ) -> Vector: assert ( isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) and (isinstance(lowercase , (int, float) )) ) return x * scalar + y def lowerCAmelCase__( lowercase : int , lowercase : int , lowercase : int ) -> Vector: random.seed(lowercase ) __snake_case : Optional[int] = [random.randint(lowercase , lowercase ) for _ in range(lowercase )] return Vector(lowercase ) class _lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> None: '''simple docstring''' __snake_case : Optional[int] = matrix __snake_case : Union[str, Any] = w __snake_case : List[Any] = h def __str__( self ) -> str: '''simple docstring''' __snake_case : Any = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , UpperCAmelCase ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): __snake_case : str = [] for i in range(self.__height ): __snake_case : List[Any] = [ self.__matrix[i][j] + other.component(UpperCAmelCase , UpperCAmelCase ) for j in range(self.__width ) ] matrix.append(UpperCAmelCase ) return Matrix(UpperCAmelCase , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self , UpperCAmelCase ) -> Matrix: '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): __snake_case : int = [] for i in range(self.__height ): __snake_case : List[Any] = [ self.__matrix[i][j] - other.component(UpperCAmelCase , UpperCAmelCase ) for j in range(self.__width ) ] matrix.append(UpperCAmelCase ) return Matrix(UpperCAmelCase , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self , UpperCAmelCase ) -> Matrix: '''simple docstring''' ... @overload def __mul__( self , UpperCAmelCase ) -> Vector: '''simple docstring''' ... def __mul__( self , UpperCAmelCase ) -> Vector | Matrix: '''simple docstring''' if isinstance(UpperCAmelCase , UpperCAmelCase ): # matrix-vector if len(UpperCAmelCase ) == self.__width: __snake_case : Union[str, Any] = zero_vector(self.__height ) for i in range(self.__height ): __snake_case : int = [ self.__matrix[i][j] * other.component(UpperCAmelCase ) for j in range(self.__width ) ] ans.change_component(UpperCAmelCase , sum(UpperCAmelCase ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(UpperCAmelCase , (int, float) ): # matrix-scalar __snake_case : Union[str, Any] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCAmelCase , self.__width , self.__height ) return None def UpperCAmelCase ( self ) -> int: '''simple docstring''' return self.__height def UpperCAmelCase ( self ) -> int: '''simple docstring''' return self.__width def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> float: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> None: '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: __snake_case : Optional[int] = value else: raise Exception("change_component: indices out of bounds" ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception("Matrix is not square" ) __snake_case : Any = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCAmelCase ) ): __snake_case : int = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCAmelCase , self.__width - 1 , self.__height - 1 ).determinant() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCAmelCase , UpperCAmelCase ) else: raise Exception("Indices out of bounds" ) def UpperCAmelCase ( self ) -> float: '''simple docstring''' if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __snake_case : Optional[Any] = [ self.__matrix[0][y] * self.cofactor(0 , UpperCAmelCase ) for y in range(self.__width ) ] return sum(UpperCAmelCase ) def lowerCAmelCase__( lowercase : int ) -> Matrix: __snake_case : list[list[float]] = [[0] * n for _ in range(lowercase )] return Matrix(lowercase , lowercase , lowercase ) def lowerCAmelCase__( lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> Matrix: random.seed(lowercase ) __snake_case : list[list[float]] = [ [random.randint(lowercase , lowercase ) for _ in range(lowercase )] for _ in range(lowercase ) ] return Matrix(lowercase , lowercase , lowercase )
326
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] _UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def lowerCAmelCase__( lowercase : str ) -> Optional[Any]: __snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" ) return sd def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict: __snake_case : Tuple = OrderedDict() __snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __snake_case : Optional[Any] = key for name_pair in rename_keys_prefix: __snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] ) __snake_case : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __snake_case : List[Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]: assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: __snake_case : Any = "pretraining" if "vcr" in checkpoint_path: __snake_case : Optional[Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __snake_case : Tuple = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __snake_case : Any = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 512} __snake_case : Any = "multichoice" elif "vqa_advanced" in checkpoint_path: __snake_case : List[Any] = {"visual_embedding_dim": 2048} __snake_case : Optional[Any] = "vqa_advanced" elif "vqa" in checkpoint_path: __snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} __snake_case : Union[str, Any] = "vqa" elif "nlvr" in checkpoint_path: __snake_case : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } __snake_case : List[Any] = "nlvr" __snake_case : Union[str, Any] = VisualBertConfig(**lowercase ) # Load State Dict __snake_case : Any = load_state_dict(lowercase ) __snake_case : Dict = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": __snake_case : Optional[Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": __snake_case : Tuple = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": __snake_case : Tuple = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": __snake_case : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
326
1
def lowerCAmelCase__( lowercase : int , lowercase : int ) -> int: while b: __snake_case , __snake_case : Dict = b, a % b return a def lowerCAmelCase__( lowercase : int , lowercase : int ) -> int: return a if b == 0 else euclidean_gcd_recursive(lowercase , a % b ) def lowerCAmelCase__( ) -> List[str]: print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" ) if __name__ == "__main__": main()
326
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple: # Load configuration defined in the metadata file with open(lowercase ) as metadata_file: __snake_case : int = json.load(lowercase ) __snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file __snake_case : Tuple = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] __snake_case : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) __snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: __snake_case : Tuple = json.load(lowercase ) __snake_case : List[Any] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) __snake_case : Any = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens __snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0] __snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0] __snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"] __snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __snake_case : List[Any] = state_dict[bias_name] __snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) __snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 ) __snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self.""" __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] __snake_case : str = state_dict[prefix + matrix_name] __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"] __snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __snake_case : List[Any] = state_dict["entity_predictions.bias"] __snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __snake_case : Any = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __snake_case : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __snake_case : str = state_dict[key] else: __snake_case : str = state_dict[key] __snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) __snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __snake_case : Union[str, Any] = (0, 9) __snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : Any = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : Optional[Any] = torch.Size((1, 33, 768) ) __snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : str = torch.Size((1, 1, 768) ) __snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __snake_case : str = MLukeTokenizer.from_pretrained(lowercase ) __snake_case : Dict = "Tokyo is the capital of <mask>." __snake_case : Union[str, Any] = (24, 30) __snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : int = model(**lowercase ) __snake_case : Dict = encoding["input_ids"][0].tolist() __snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) __snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item() __snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]: __snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"] __snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )] __snake_case : Any = {} for entry in data: __snake_case : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __snake_case : Optional[int] = entity_id break __snake_case : Union[str, Any] = f"""{language}:{entity_name}""" __snake_case : Any = entity_id return new_mapping if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
1
from __future__ import annotations def lowerCAmelCase__( lowercase : int | str ) -> bool: __snake_case : Optional[Any] = str(lowercase ) return n == n[::-1] def lowerCAmelCase__( lowercase : int = 100_0000 ) -> List[str]: __snake_case : Optional[int] = 0 for i in range(1 , lowercase ): if is_palindrome(lowercase ) and is_palindrome(bin(lowercase ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
326
from maths.prime_factors import prime_factors def lowerCAmelCase__( lowercase : int ) -> int: if not isinstance(lowercase , lowercase ): __snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(lowercase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
326
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def lowerCAmelCase__( lowercase : List[Any] ) -> Union[str, Any]: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __snake_case : Dict = k.replace(lowercase , lowercase ) if k.startswith("encoder" ): __snake_case : Tuple = k.replace(".attn" , ".self_attn" ) __snake_case : Dict = k.replace("norm1" , "self_attn_layer_norm" ) __snake_case : str = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): __snake_case : int = k.replace("norm1" , "self_attn_layer_norm" ) __snake_case : str = k.replace("norm2" , "encoder_attn_layer_norm" ) __snake_case : Optional[Any] = k.replace("norm3" , "final_layer_norm" ) return k def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Optional[Any]: __snake_case : int = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: __snake_case : Union[str, Any] = sd.pop(lowercase ) __snake_case : Dict = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd __snake_case : Union[str, Any] = v _UpperCamelCase = ['''START'''] @torch.no_grad() def lowerCAmelCase__( lowercase : List[str] , lowercase : Optional[int] , lowercase : Union[str, Any] ) -> Optional[int]: __snake_case : Union[str, Any] = torch.load(lowercase , map_location="cpu" ) __snake_case : Dict = model["model"] __snake_case : Dict = BlenderbotConfig.from_json_file(lowercase ) __snake_case : Dict = BlenderbotForConditionalGeneration(lowercase ) __snake_case : Dict = m.model.state_dict().keys() __snake_case : Optional[int] = [] __snake_case : List[str] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __snake_case : Optional[int] = rename_state_dict_key(lowercase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __snake_case : Tuple = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(lowercase ) m.model.load_state_dict(lowercase , strict=lowercase ) m.half() m.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) _UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
326
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" ) __snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids __snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids __snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits __snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() __snake_case : Any = -(labels.shape[-1] * loss.item()) __snake_case : List[str] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
326
1
def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Tuple ) -> int: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) __snake_case : Any = (boundary[1] - boundary[0]) / steps __snake_case : Any = boundary[0] __snake_case : Optional[Any] = boundary[1] __snake_case : Union[str, Any] = make_points(lowercase , lowercase , lowercase ) __snake_case : str = 0.0 y += (h / 2.0) * f(lowercase ) for i in x_i: # print(i) y += h * f(lowercase ) y += (h / 2.0) * f(lowercase ) return y def lowerCAmelCase__( lowercase : str , lowercase : Any , lowercase : Any ) -> int: __snake_case : Dict = a + h while x < (b - h): yield x __snake_case : Dict = x + h def lowerCAmelCase__( lowercase : Optional[Any] ) -> Tuple: # enter your function here __snake_case : Any = (x - 0) * (x - 0) return y def lowerCAmelCase__( ) -> Any: __snake_case : Optional[Any] = 0.0 # Lower bound of integration __snake_case : Union[str, Any] = 1.0 # Upper bound of integration __snake_case : Tuple = 1_0.0 # define number of steps or resolution __snake_case : Optional[Any] = [a, b] # define boundary of integration __snake_case : List[Any] = method_a(lowercase , lowercase ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
326
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]: '''simple docstring''' super().__init__(UpperCAmelCase ) __snake_case : Optional[int] = proj_size __snake_case : str = CLIPVisionModel(UpperCAmelCase ) __snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase ) __snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size ) __snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' __snake_case : int = self.model(pixel_values=UpperCAmelCase ) __snake_case : Optional[int] = clip_output.pooler_output __snake_case : Any = self.mapper(latent_states[:, None] ) __snake_case : Any = self.final_layer_norm(UpperCAmelCase ) __snake_case : str = self.proj_out(UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__() __snake_case : List[Any] = (config.num_hidden_layers + 1) // 5 __snake_case : Dict = config.hidden_size __snake_case : str = 1 __snake_case : List[Any] = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase ) for _ in range(UpperCAmelCase ) ] ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' for block in self.blocks: __snake_case : int = block(UpperCAmelCase ) return hidden_states
326
1
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : torch.FloatTensor UpperCAmelCase_ : Optional[torch.FloatTensor] =None def lowerCAmelCase__( lowercase : Any , lowercase : List[str]=0.9_9_9 , lowercase : Tuple="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase : List[str] ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase : Tuple ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __snake_case : List[str] = [] for i in range(lowercase ): __snake_case : Union[str, Any] = i / num_diffusion_timesteps __snake_case : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase ) / alpha_bar_fn(lowercase ) , lowercase ) ) return torch.tensor(lowercase , dtype=torch.floataa ) class _lowerCamelCase ( a , a ): """simple docstring""" UpperCAmelCase_ : List[Any] =1 @register_to_config def __init__( self , UpperCAmelCase = 1000 , UpperCAmelCase = 0.0_001 , UpperCAmelCase = 0.02 , UpperCAmelCase = "linear" , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = 0 , UpperCAmelCase = "epsilon" , UpperCAmelCase = 1.0 , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' if kwargs.get("set_alpha_to_one" , UpperCAmelCase ) is not None: __snake_case : str = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , UpperCAmelCase , standard_warn=UpperCAmelCase ) __snake_case : List[Any] = kwargs["set_alpha_to_one"] if trained_betas is not None: __snake_case : Optional[int] = torch.tensor(UpperCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": __snake_case : Optional[int] = torch.linspace(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case : Dict = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case : Optional[Any] = betas_for_alpha_bar(UpperCAmelCase ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) __snake_case : List[str] = 1.0 - self.betas __snake_case : List[str] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __snake_case : List[Any] = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __snake_case : Optional[int] = 1.0 # setable values __snake_case : List[str] = None __snake_case : int = torch.from_numpy(np.arange(0 , UpperCAmelCase ).copy().astype(np.intaa ) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> torch.FloatTensor: '''simple docstring''' return sample def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[int]: '''simple docstring''' if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F"""`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:""" F""" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle""" F""" maximal {self.config.num_train_timesteps} timesteps.""" ) __snake_case : Union[str, Any] = num_inference_steps __snake_case : int = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __snake_case : Any = (np.arange(0 , UpperCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) __snake_case : Optional[Any] = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) self.timesteps += self.config.steps_offset def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0.0 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]: '''simple docstring''' __snake_case : Dict = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __snake_case : List[Any] = self.alphas_cumprod[timestep] __snake_case : Any = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __snake_case : Union[str, Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __snake_case : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __snake_case : Dict = model_output elif self.config.prediction_type == "sample": __snake_case : int = model_output __snake_case : Any = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __snake_case : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __snake_case : str = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or""" " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __snake_case : Any = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case : Any = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case : Dict = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __len__( self ) -> Any: '''simple docstring''' return self.config.num_train_timesteps
326
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
326
1
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase__( lowercase : Any , lowercase : str ) -> Union[str, Any]: assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase__( lowercase : str , lowercase : int , lowercase : str ) -> Optional[int]: __snake_case : Optional[int] = tmp_path / "cache" __snake_case : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __snake_case : Union[str, Any] = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] ) -> Tuple: __snake_case : Dict = tmp_path / "cache" __snake_case : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __snake_case : Dict = features.copy() if features else default_expected_features __snake_case : str = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) __snake_case : Any = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : int , lowercase : Tuple ) -> Tuple: __snake_case : str = tmp_path / "cache" __snake_case : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __snake_case : Tuple = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase__( lowercase : int , lowercase : Optional[int] , lowercase : Dict ) -> str: if issubclass(lowercase , lowercase ): __snake_case : Optional[Any] = parquet_path elif issubclass(lowercase , lowercase ): __snake_case : str = [parquet_path] __snake_case : Tuple = tmp_path / "cache" __snake_case : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __snake_case : Union[str, Any] = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) def lowerCAmelCase__( lowercase : str , lowercase : Union[str, Any] , lowercase : Dict=("train",) ) -> Optional[Any]: assert isinstance(lowercase , lowercase ) for split in splits: __snake_case : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase__( lowercase : str , lowercase : Optional[int] , lowercase : Union[str, Any] ) -> Dict: __snake_case : List[str] = tmp_path / "cache" __snake_case : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __snake_case : Any = ParquetDatasetReader( {"train": parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : int , lowercase : List[Any] ) -> Dict: __snake_case : Tuple = tmp_path / "cache" __snake_case : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __snake_case : List[Any] = features.copy() if features else default_expected_features __snake_case : Optional[int] = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) __snake_case : Any = ParquetDatasetReader({"train": parquet_path} , features=lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : str , lowercase : Optional[Any] ) -> Optional[Any]: if split: __snake_case : int = {split: parquet_path} else: __snake_case : Dict = "train" __snake_case : Optional[Any] = {"train": parquet_path, "test": parquet_path} __snake_case : Tuple = tmp_path / "cache" __snake_case : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __snake_case : Dict = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> Any: __snake_case : str = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 __snake_case : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" ) __snake_case : Optional[Any] = pf.read() assert dataset.data.table == output_table def lowerCAmelCase__( lowercase : Any , lowercase : int ) -> int: __snake_case : List[str] = str(shared_datadir / "test_image_rgb.jpg" ) __snake_case : Union[str, Any] = {"image": [image_path]} __snake_case : List[str] = Features({"image": Image()} ) __snake_case : List[Any] = Dataset.from_dict(lowercase , features=lowercase ) __snake_case : Union[str, Any] = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 __snake_case : Optional[int] = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features __snake_case : Dict = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Tuple ) -> Union[str, Any]: assert get_writer_batch_size(lowercase ) == expected
326
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = torch.device('''cpu''') def lowerCAmelCase__( ) -> Any: __snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCAmelCase__( lowercase : Dict ) -> List[Any]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = dct.pop(lowercase ) __snake_case : List[Any] = val def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple: __snake_case : Optional[Any] = [] for k in state_dict.keys(): __snake_case : Union[str, Any] = k if ".pwconv" in k: __snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: __snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: __snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: __snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: __snake_case : int = k_new.split("." ) if ls[2].isdigit(): __snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: __snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]: __snake_case : List[str] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __snake_case : Tuple = 1000 __snake_case : Any = "huggingface/label-files" __snake_case : int = "imagenet-1k-id2label.json" __snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) __snake_case : str = {int(lowercase ): v for k, v in idalabel.items()} __snake_case : int = idalabel __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __snake_case : Optional[Any] = [3, 3, 6, 4] __snake_case : Optional[int] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __snake_case : List[str] = [3, 3, 9, 6] __snake_case : Optional[Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __snake_case : Optional[int] = [4, 3, 10, 5] __snake_case : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __snake_case : str = [4, 4, 12, 6] __snake_case : Optional[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): __snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase ) else: __snake_case : Tuple = torch.load(lowercase , map_location="cpu" ) __snake_case : Optional[int] = checkpoint __snake_case : Any = create_rename_keys(lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # load HuggingFace model __snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval() hf_model.load_state_dict(lowercase ) # prepare test inputs __snake_case : Optional[Any] = prepare_img() __snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" ) __snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" ) # compare outputs from both models __snake_case : str = get_expected_output(lowercase ) __snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _UpperCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
326
1
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowerCAmelCase__( lowercase : Dict ) -> str: return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def lowerCAmelCase__( ) -> Optional[int]: __snake_case : Optional[Any] = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=lowercase ) __snake_case : Tuple = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(lowercase ) EnvironmentCommand.register_subcommand(lowercase ) TestCommand.register_subcommand(lowercase ) RunBeamCommand.register_subcommand(lowercase ) DummyDataCommand.register_subcommand(lowercase ) # Parse args __snake_case , __snake_case : Dict = parser.parse_known_args() if not hasattr(lowercase , "func" ): parser.print_help() exit(1 ) __snake_case : Union[str, Any] = parse_unknown_args(lowercase ) # Run __snake_case : List[str] = args.func(lowercase , **lowercase ) service.run() if __name__ == "__main__": main()
326
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) _UpperCamelCase = logging.getLogger(__name__) def lowerCAmelCase__( lowercase : str ) -> List[str]: __snake_case : int = git.Repo(search_parent_directories=lowercase ) __snake_case : Union[str, Any] = { "repo_id": str(lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f: json.dump(lowercase , lowercase , indent=4 ) def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]: if params.n_gpu <= 0: __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = -1 __snake_case : Union[str, Any] = True __snake_case : Tuple = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : int = int(os.environ["N_GPU_NODE"] ) __snake_case : Union[str, Any] = int(os.environ["RANK"] ) # number of nodes / node ID __snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node __snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node __snake_case : Union[str, Any] = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 __snake_case : Any = 1 __snake_case : str = 0 __snake_case : Optional[Any] = 0 __snake_case : Dict = 0 __snake_case : int = 1 __snake_case : Optional[Any] = 1 __snake_case : Tuple = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0 __snake_case : List[Any] = params.n_nodes > 1 # summary __snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
326
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar _UpperCamelCase = TypeVar('''T''') class _lowerCamelCase ( Generic[T] ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> None: '''simple docstring''' __snake_case : Any | T = None __snake_case : int = len(UpperCAmelCase ) __snake_case : list[T] = [any_type for _ in range(self.N )] + arr __snake_case : Union[str, Any] = fnc self.build() def UpperCAmelCase ( self ) -> None: '''simple docstring''' for p in range(self.N - 1 , 0 , -1 ): __snake_case : Optional[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> None: '''simple docstring''' p += self.N __snake_case : Any = v while p > 1: __snake_case : Union[str, Any] = p // 2 __snake_case : int = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> T | None: # noqa: E741 '''simple docstring''' __snake_case , __snake_case : Tuple = l + self.N, r + self.N __snake_case : T | None = None while l <= r: if l % 2 == 1: __snake_case : List[str] = self.st[l] if res is None else self.fn(UpperCAmelCase , self.st[l] ) if r % 2 == 0: __snake_case : Dict = self.st[r] if res is None else self.fn(UpperCAmelCase , self.st[r] ) __snake_case , __snake_case : Optional[int] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce _UpperCamelCase = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] _UpperCamelCase = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } _UpperCamelCase = SegmentTree(test_array, min) _UpperCamelCase = SegmentTree(test_array, max) _UpperCamelCase = SegmentTree(test_array, lambda a, b: a + b) def lowerCAmelCase__( ) -> None: for i in range(len(lowercase ) ): for j in range(lowercase , len(lowercase ) ): __snake_case : List[str] = reduce(lowercase , test_array[i : j + 1] ) __snake_case : int = reduce(lowercase , test_array[i : j + 1] ) __snake_case : Union[str, Any] = reduce(lambda lowercase , lowercase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(lowercase , lowercase ) assert max_range == max_segment_tree.query(lowercase , lowercase ) assert sum_range == sum_segment_tree.query(lowercase , lowercase ) test_all_segments() for index, value in test_updates.items(): _UpperCamelCase = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
326
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str =JukeboxTokenizer UpperCAmelCase_ : Tuple ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : int = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
326
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } _UpperCamelCase = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } _UpperCamelCase = { '''ctrl''': 256, } _UpperCamelCase = { '''Pregnancy''': 16_8629, '''Christianity''': 7675, '''Explain''': 10_6423, '''Fitness''': 6_3440, '''Saving''': 6_3163, '''Ask''': 2_7171, '''Ass''': 9_5985, '''Joke''': 16_3509, '''Questions''': 4_5622, '''Thoughts''': 4_9605, '''Retail''': 5_2342, '''Feminism''': 16_4338, '''Writing''': 1_1992, '''Atheism''': 19_2263, '''Netflix''': 4_8616, '''Computing''': 3_9639, '''Opinion''': 4_3213, '''Alone''': 4_4967, '''Funny''': 5_8917, '''Gaming''': 4_0358, '''Human''': 4088, '''India''': 1331, '''Joker''': 7_7138, '''Diet''': 3_6206, '''Legal''': 1_1859, '''Norman''': 4939, '''Tip''': 7_2689, '''Weight''': 5_2343, '''Movies''': 4_6273, '''Running''': 2_3425, '''Science''': 2090, '''Horror''': 3_7793, '''Confession''': 6_0572, '''Finance''': 1_2250, '''Politics''': 1_6360, '''Scary''': 19_1985, '''Support''': 1_2654, '''Technologies''': 3_2516, '''Teenage''': 6_6160, '''Event''': 3_2769, '''Learned''': 6_7460, '''Notion''': 18_2770, '''Wikipedia''': 3_7583, '''Books''': 6665, '''Extract''': 7_6050, '''Confessions''': 10_2701, '''Conspiracy''': 7_5932, '''Links''': 6_3674, '''Narcissus''': 15_0425, '''Relationship''': 5_4766, '''Relationships''': 13_4796, '''Reviews''': 4_1671, '''News''': 4256, '''Translation''': 2_6820, '''multilingual''': 12_8406, } def lowerCAmelCase__( lowercase : Tuple ) -> Union[str, Any]: __snake_case : Optional[Any] = set() __snake_case : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __snake_case : int = char __snake_case : List[Any] = set(lowercase ) return pairs class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : Dict =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Optional[Any] =CONTROL_CODES def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="<unk>" , **UpperCAmelCase ) -> Any: '''simple docstring''' super().__init__(unk_token=UpperCAmelCase , **UpperCAmelCase ) with open(UpperCAmelCase , encoding="utf-8" ) as vocab_handle: __snake_case : Optional[int] = json.load(UpperCAmelCase ) __snake_case : str = {v: k for k, v in self.encoder.items()} with open(UpperCAmelCase , encoding="utf-8" ) as merges_handle: __snake_case : Tuple = merges_handle.read().split("\n" )[1:-1] __snake_case : int = [tuple(merge.split() ) for merge in merges] __snake_case : Union[str, Any] = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) __snake_case : Any = {} @property def UpperCAmelCase ( self ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Any: '''simple docstring''' if token in self.cache: return self.cache[token] __snake_case : Tuple = tuple(UpperCAmelCase ) __snake_case : Tuple = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) __snake_case : Any = get_pairs(UpperCAmelCase ) if not pairs: return token while True: __snake_case : Optional[Any] = min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __snake_case , __snake_case : Tuple = bigram __snake_case : Union[str, Any] = [] __snake_case : Tuple = 0 while i < len(UpperCAmelCase ): try: __snake_case : Tuple = word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __snake_case : Tuple = j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __snake_case : Optional[int] = tuple(UpperCAmelCase ) __snake_case : str = new_word if len(UpperCAmelCase ) == 1: break else: __snake_case : Union[str, Any] = get_pairs(UpperCAmelCase ) __snake_case : Tuple = "@@ ".join(UpperCAmelCase ) __snake_case : str = word[:-4] __snake_case : Dict = word return word def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' __snake_case : Optional[Any] = [] __snake_case : List[str] = re.findall(r"\S+\n?" , UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(UpperCAmelCase ).split(" " ) ) ) return split_tokens def UpperCAmelCase ( self , UpperCAmelCase ) -> Any: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.decoder.get(UpperCAmelCase , self.unk_token ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Any: '''simple docstring''' __snake_case : Optional[Any] = " ".join(UpperCAmelCase ).replace("@@ " , "" ).strip() return out_string def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Any = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __snake_case : Tuple = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + "\n" ) __snake_case : int = 0 with open(UpperCAmelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __snake_case : Dict = token_index writer.write(" ".join(UpperCAmelCase ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
326
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : str UpperCAmelCase_ : str =None @staticmethod def UpperCAmelCase ( ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def UpperCAmelCase ( cls ) -> Tuple: '''simple docstring''' return F"""`pip install {cls.pip_package or cls.name}`""" class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[int] ="optuna" @staticmethod def UpperCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' return is_optuna_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' return default_hp_space_optuna(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : List[str] ="ray" UpperCAmelCase_ : Dict ="'ray[tune]'" @staticmethod def UpperCAmelCase ( ) -> str: '''simple docstring''' return is_ray_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' return default_hp_space_ray(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="sigopt" @staticmethod def UpperCAmelCase ( ) -> int: '''simple docstring''' return is_sigopt_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return default_hp_space_sigopt(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : str ="wandb" @staticmethod def UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' return is_wandb_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return default_hp_space_wandb(UpperCAmelCase ) _UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase__( ) -> str: __snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase ) > 0: __snake_case : Dict = available_backends[0].name if len(lowercase ) > 1: logger.info( f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
326
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=a ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : str =field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) UpperCAmelCase_ : ClassVar[Features] =Features({"audio": Audio()} ) UpperCAmelCase_ : ClassVar[Features] =Features({"labels": ClassLabel} ) UpperCAmelCase_ : str ="audio" UpperCAmelCase_ : str ="labels" def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , UpperCAmelCase ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) __snake_case : Any = copy.deepcopy(self ) __snake_case : List[str] = self.label_schema.copy() __snake_case : Dict = features[self.label_column] __snake_case : Optional[Any] = label_schema return task_template @property def UpperCAmelCase ( self ) -> Dict[str, str]: '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
326
import math def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list: __snake_case : Any = end or len(lowercase ) for i in range(lowercase , lowercase ): __snake_case : List[str] = i __snake_case : Union[str, Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case : Optional[Any] = array[temp_index - 1] temp_index -= 1 __snake_case : Any = temp_index_value return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap __snake_case : Any = index __snake_case : Optional[Any] = 2 * index + 1 # Left Node __snake_case : str = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case : Tuple = right_index if largest != index: __snake_case , __snake_case : int = array[largest], array[index] heapify(lowercase , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list ) -> list: __snake_case : List[str] = len(lowercase ) for i in range(n // 2 , -1 , -1 ): heapify(lowercase , lowercase , lowercase ) for i in range(n - 1 , 0 , -1 ): __snake_case , __snake_case : Optional[Any] = array[0], array[i] heapify(lowercase , 0 , lowercase ) return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: __snake_case : Union[str, Any] = low __snake_case : Union[str, Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case , __snake_case : str = array[j], array[i] i += 1 def lowerCAmelCase__( lowercase : list ) -> list: if len(lowercase ) == 0: return array __snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) ) __snake_case : Dict = 16 return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 __snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase ) intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase ) __snake_case : List[str] = p return insertion_sort(lowercase , lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip() _UpperCamelCase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
326
1
from ...configuration_utils import PretrainedConfig class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] ="bert-generation" def __init__( self , UpperCAmelCase=50358 , UpperCAmelCase=1024 , UpperCAmelCase=24 , UpperCAmelCase=16 , UpperCAmelCase=4096 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0.02 , UpperCAmelCase=1E-12 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase="absolute" , UpperCAmelCase=True , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) __snake_case : str = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : str = hidden_act __snake_case : Optional[Any] = intermediate_size __snake_case : Tuple = hidden_dropout_prob __snake_case : str = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : Tuple = initializer_range __snake_case : List[str] = layer_norm_eps __snake_case : Dict = position_embedding_type __snake_case : Optional[Any] = use_cache
326
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Any = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase__( lowercase : Dict ) -> Dict: __snake_case : Any = [1, 2] __snake_case : Dict = {"a": 1, "b": 2} __snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]} __snake_case : int = {"a": {"1": 1}, "b": 2} __snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case : Dict = [2, 3] __snake_case : Tuple = {"a": 2, "b": 3} __snake_case : int = {"a": [2, 3], "b": [4, 5]} __snake_case : Dict = {"a": {"1": 2}, "b": 3} __snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
326
1
from sklearn.metrics import matthews_corrcoef import datasets _UpperCamelCase = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' _UpperCamelCase = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' _UpperCamelCase = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ] , ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(UpperCAmelCase , UpperCAmelCase , sample_weight=UpperCAmelCase ) ), }
326
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any: __snake_case : Optional[Any] = False __snake_case : Optional[Any] = search_prob __snake_case : str = start_temperate __snake_case : List[Any] = [] __snake_case : str = 0 __snake_case : Dict = None while not search_end: __snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case : List[Any] = current_state scores.append(lowercase ) iterations += 1 __snake_case : Dict = None __snake_case : str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor __snake_case : int = neighbors.pop(lowercase ) __snake_case : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case : List[str] = picked_neighbor else: __snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case : str = picked_neighbor __snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case : Optional[Any] = True else: __snake_case : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase ) , lowercase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any: return (3 * x**2) - (6 * y) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' ) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' )
326
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=99 , UpperCAmelCase=0 , UpperCAmelCase=32 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=12 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase="last" , UpperCAmelCase=None , UpperCAmelCase=None , ) -> List[Any]: '''simple docstring''' __snake_case : Dict = parent __snake_case : int = batch_size __snake_case : Optional[int] = seq_length __snake_case : List[str] = is_training __snake_case : Tuple = use_input_lengths __snake_case : Dict = use_token_type_ids __snake_case : List[str] = use_labels __snake_case : Any = gelu_activation __snake_case : Any = sinusoidal_embeddings __snake_case : str = causal __snake_case : Optional[int] = asm __snake_case : Any = n_langs __snake_case : Tuple = vocab_size __snake_case : Optional[int] = n_special __snake_case : List[Any] = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Optional[Any] = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : str = initializer_range __snake_case : Optional[int] = num_labels __snake_case : Tuple = num_choices __snake_case : Union[str, Any] = summary_type __snake_case : str = use_proj __snake_case : int = scope def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : int = None if self.use_input_lengths: __snake_case : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __snake_case : int = None if self.use_token_type_ids: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __snake_case : str = None __snake_case : Dict = None __snake_case : Tuple = None if self.use_labels: __snake_case : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : int = ids_tensor([self.batch_size] , 2 ).float() __snake_case : int = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : Tuple = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' __snake_case : Optional[Any] = FlaubertModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __snake_case : str = model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase ) __snake_case : Union[str, Any] = model(UpperCAmelCase , langs=UpperCAmelCase ) __snake_case : Tuple = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' __snake_case : List[str] = FlaubertWithLMHeadModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __snake_case : str = model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Any: '''simple docstring''' __snake_case : str = FlaubertForQuestionAnsweringSimple(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(UpperCAmelCase ) __snake_case : Union[str, Any] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> List[Any]: '''simple docstring''' __snake_case : List[str] = FlaubertForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __snake_case : Tuple = model(UpperCAmelCase ) __snake_case : Optional[int] = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , ) __snake_case : Optional[Any] = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , ) ((__snake_case) , ) : Union[str, Any] = result_with_labels.to_tuple() __snake_case : Dict = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) ((__snake_case) , ) : Dict = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Dict: '''simple docstring''' __snake_case : int = FlaubertForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __snake_case : Any = model(UpperCAmelCase ) __snake_case : Dict = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __snake_case : Optional[Any] = self.num_labels __snake_case : List[Any] = FlaubertForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __snake_case : Any = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> int: '''simple docstring''' __snake_case : Dict = self.num_choices __snake_case : Optional[Any] = FlaubertForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __snake_case : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : int = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Tuple = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] = config_and_inputs __snake_case : Optional[int] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _lowerCamelCase ( a , a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : List[str] =( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase_ : Union[str, Any] =( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Any: '''simple docstring''' __snake_case : Optional[int] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __snake_case : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) __snake_case : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : List[Any] = FlaubertModelTester(self ) __snake_case : str = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=37 ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*UpperCAmelCase ) def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*UpperCAmelCase ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*UpperCAmelCase ) def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCAmelCase ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*UpperCAmelCase ) @slow def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = FlaubertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @slow @require_torch_gpu def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __snake_case : str = True __snake_case : Optional[int] = model_class(config=UpperCAmelCase ) __snake_case : List[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Any = torch.jit.trace( UpperCAmelCase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCAmelCase , os.path.join(UpperCAmelCase , "traced_model.pt" ) ) __snake_case : Optional[Any] = torch.jit.load(os.path.join(UpperCAmelCase , "traced_model.pt" ) , map_location=UpperCAmelCase ) loaded(inputs_dict["input_ids"].to(UpperCAmelCase ) , inputs_dict["attention_mask"].to(UpperCAmelCase ) ) @require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : Union[str, Any] = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) __snake_case : Dict = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): __snake_case : str = model(UpperCAmelCase )[0] __snake_case : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCAmelCase ) __snake_case : str = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
326
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : Tuple ="FlavaImageProcessor" UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = self.image_processor def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if images is not None: __snake_case : Union[str, Any] = self.image_processor( UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if text is not None and images is not None: encoding.update(UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
326
1
from __future__ import annotations def lowerCAmelCase__( lowercase : list[float] , lowercase : Any ) -> Optional[int]: print(f"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(lowercase ): print(f"""{i}\t\t{d}""" ) def lowerCAmelCase__( lowercase : list[dict[str, int]] , lowercase : list[float] , lowercase : int ) -> Optional[int]: for j in range(lowercase ): __snake_case , __snake_case , __snake_case : List[Any] = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def lowerCAmelCase__( lowercase : list[dict[str, int]] , lowercase : int , lowercase : int , lowercase : int ) -> list[float]: __snake_case : List[Any] = [float("inf" )] * vertex_count __snake_case : Optional[int] = 0.0 for _ in range(vertex_count - 1 ): for j in range(lowercase ): __snake_case , __snake_case , __snake_case : List[Any] = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: __snake_case : Optional[Any] = distance[u] + w __snake_case : Union[str, Any] = check_negative_cycle(lowercase , lowercase , lowercase ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = int(input('''Enter number of vertices: ''').strip()) _UpperCamelCase = int(input('''Enter number of edges: ''').strip()) _UpperCamelCase = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) _UpperCamelCase = {'''src''': src, '''dst''': dest, '''weight''': weight} _UpperCamelCase = int(input('''\nEnter shortest path source:''').strip()) _UpperCamelCase = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
326
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } _UpperCamelCase = { '''camembert-base''': 512, } _UpperCamelCase = '''▁''' class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : str =["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' __snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token __snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __snake_case : Dict = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __snake_case : Optional[int] = len(self.fairseq_tokens_to_ids ) __snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = [] __snake_case : Union[str, Any] = "" __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase ) + token __snake_case : List[Any] = True __snake_case : Union[str, Any] = [] else: current_sub_tokens.append(UpperCAmelCase ) __snake_case : int = False out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def __getstate__( self ) -> List[Any]: '''simple docstring''' __snake_case : str = self.__dict__.copy() __snake_case : Optional[Any] = None return state def __setstate__( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : List[str] = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Optional[Any] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: __snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
326
1
from __future__ import annotations def lowerCAmelCase__( lowercase : list[list[int]] ) -> bool: __snake_case : int = len(lowercase ) # We need to create solution object to save path. __snake_case : Tuple = [[0 for _ in range(lowercase )] for _ in range(lowercase )] __snake_case : Any = run_maze(lowercase , 0 , 0 , lowercase ) if solved: print("\n".join(str(lowercase ) for row in solutions ) ) else: print("No solution exists!" ) return solved def lowerCAmelCase__( lowercase : list[list[int]] , lowercase : int , lowercase : int , lowercase : list[list[int]] ) -> bool: __snake_case : Dict = len(lowercase ) # Final check point. if i == j == (size - 1): __snake_case : int = 1 return True __snake_case : Optional[Any] = (not i < 0) and (not j < 0) # Check lower bounds __snake_case : Optional[int] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __snake_case : Optional[int] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __snake_case : int = 1 # check for directions if ( run_maze(lowercase , i + 1 , lowercase , lowercase ) or run_maze(lowercase , lowercase , j + 1 , lowercase ) or run_maze(lowercase , i - 1 , lowercase , lowercase ) or run_maze(lowercase , lowercase , j - 1 , lowercase ) ): return True __snake_case : List[str] = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
326
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool: __snake_case : List[str] = len(lowercase ) __snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __snake_case : Optional[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __snake_case : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __snake_case : List[str] = subset[i - 1][j] if arr[i - 1] <= j: __snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
326
1
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any: __snake_case : Optional[Any] = False __snake_case : Optional[Any] = search_prob __snake_case : str = start_temperate __snake_case : List[Any] = [] __snake_case : str = 0 __snake_case : Dict = None while not search_end: __snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case : List[Any] = current_state scores.append(lowercase ) iterations += 1 __snake_case : Dict = None __snake_case : str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor __snake_case : int = neighbors.pop(lowercase ) __snake_case : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case : List[str] = picked_neighbor else: __snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case : str = picked_neighbor __snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case : Optional[Any] = True else: __snake_case : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase ) , lowercase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any: return (3 * x**2) - (6 * y) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' ) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' )
326
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _UpperCamelCase = 4 _UpperCamelCase = 3 class _lowerCamelCase ( a ): """simple docstring""" pass def lowerCAmelCase__( lowercase : List[str] ) -> Any: for shard in shards: for i in range(lowercase ): yield {"i": i, "shard": shard} def lowerCAmelCase__( ) -> Optional[int]: __snake_case : List[Any] = int(os.environ["RANK"] ) __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : List[str] = ArgumentParser() parser.add_argument("--streaming" , type=lowercase ) parser.add_argument("--local_rank" , type=lowercase ) parser.add_argument("--num_workers" , type=lowercase , default=0 ) __snake_case : Any = parser.parse_args() __snake_case : Dict = args.streaming __snake_case : Union[str, Any] = args.num_workers __snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]} __snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase ) if not streaming: __snake_case : Any = Dataset.from_list(list(lowercase ) ) __snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase ) __snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase ) __snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __snake_case : Dict = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
326
1
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : Tuple ="FlavaImageProcessor" UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = self.image_processor def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if images is not None: __snake_case : Union[str, Any] = self.image_processor( UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if text is not None and images is not None: encoding.update(UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
326
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int: __snake_case : List[Any] = limit + 1 __snake_case : List[str] = [0] * limit for first_term in range(1 , lowercase ): for n in range(lowercase , lowercase , lowercase ): __snake_case : Union[str, Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
326
1
def lowerCAmelCase__( lowercase : int ) -> list[int]: if num <= 0: raise ValueError("Input must be a positive integer" ) __snake_case : Union[str, Any] = [True] * (num + 1) __snake_case : Union[str, Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowercase ): __snake_case : Optional[int] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
326
from __future__ import annotations def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]: __snake_case : List[str] = word_bank or [] # create a table __snake_case : int = len(lowercase ) + 1 __snake_case : list[list[list[str]]] = [] for _ in range(lowercase ): table.append([] ) # seed value __snake_case : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase )] == word: __snake_case : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase )]: combination.reverse() return table[len(lowercase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
326
1
def lowerCAmelCase__( lowercase : str ) -> bool: __snake_case : List[str] = [int(lowercase ) for i in ip_va_address.split("." ) if i.isdigit()] return len(lowercase ) == 4 and all(0 <= int(lowercase ) <= 254 for octet in octets ) if __name__ == "__main__": _UpperCamelCase = input().strip() _UpperCamelCase = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
326
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : int = use_attention_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[str] = vocab_size __snake_case : int = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[Any] = num_choices __snake_case : Union[str, Any] = rescale_embeddings __snake_case : List[Any] = attention_type __snake_case : str = use_bias __snake_case : Dict = block_size __snake_case : Optional[Any] = num_random_blocks def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase_ : Dict =False UpperCAmelCase_ : str =False def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
326
1
import math def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list: __snake_case : Any = end or len(lowercase ) for i in range(lowercase , lowercase ): __snake_case : List[str] = i __snake_case : Union[str, Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case : Optional[Any] = array[temp_index - 1] temp_index -= 1 __snake_case : Any = temp_index_value return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap __snake_case : Any = index __snake_case : Optional[Any] = 2 * index + 1 # Left Node __snake_case : str = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case : Tuple = right_index if largest != index: __snake_case , __snake_case : int = array[largest], array[index] heapify(lowercase , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list ) -> list: __snake_case : List[str] = len(lowercase ) for i in range(n // 2 , -1 , -1 ): heapify(lowercase , lowercase , lowercase ) for i in range(n - 1 , 0 , -1 ): __snake_case , __snake_case : Optional[Any] = array[0], array[i] heapify(lowercase , 0 , lowercase ) return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: __snake_case : Union[str, Any] = low __snake_case : Union[str, Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case , __snake_case : str = array[j], array[i] i += 1 def lowerCAmelCase__( lowercase : list ) -> list: if len(lowercase ) == 0: return array __snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) ) __snake_case : Dict = 16 return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 __snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase ) intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase ) __snake_case : List[str] = p return insertion_sort(lowercase , lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip() _UpperCamelCase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
326
import argparse import datetime def lowerCAmelCase__( lowercase : str ) -> str: __snake_case : int = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } __snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase ) < 11: raise ValueError("Must be 10 characters long" ) # Get month __snake_case : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12" ) __snake_case : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day __snake_case : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31" ) # Get second separator __snake_case : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year __snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation __snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) ) # Start math if m <= 2: __snake_case : Optional[Any] = y - 1 __snake_case : Tuple = m + 12 # maths var __snake_case : int = int(str(lowercase )[:2] ) __snake_case : int = int(str(lowercase )[2:] ) __snake_case : int = int(2.6 * m - 5.3_9 ) __snake_case : int = int(c / 4 ) __snake_case : int = int(k / 4 ) __snake_case : int = int(d + k ) __snake_case : int = int(t + u + v + x ) __snake_case : int = int(z - (2 * c) ) __snake_case : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response __snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) _UpperCamelCase = parser.parse_args() zeller(args.date_input)
326
1
def lowerCAmelCase__( lowercase : list ) -> list: for i in range(len(lowercase ) - 1 , 0 , -1 ): __snake_case : List[str] = False for j in range(lowercase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __snake_case , __snake_case : Union[str, Any] = unsorted[j - 1], unsorted[j] __snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: __snake_case , __snake_case : Dict = unsorted[j + 1], unsorted[j] __snake_case : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() _UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(F'''{cocktail_shaker_sort(unsorted) = }''')
326
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int: if index == r: for j in range(lowercase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __snake_case : Union[str, Any] = arr[i] combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]: # A temporary array to store all combination one by one __snake_case : Tuple = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 ) if __name__ == "__main__": # Driver code to check the function above _UpperCamelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
326
1
def lowerCAmelCase__( lowercase : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __snake_case : Optional[int] = gray_code_sequence_string(lowercase ) # # convert them to integers for i in range(len(lowercase ) ): __snake_case : Optional[Any] = int(sequence[i] , 2 ) return sequence def lowerCAmelCase__( lowercase : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __snake_case : Union[str, Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __snake_case : List[Any] = gray_code_sequence_string(bit_count - 1 ) __snake_case : Dict = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __snake_case : Optional[int] = "0" + smaller_sequence[i] sequence.append(lowercase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __snake_case : List[Any] = "1" + smaller_sequence[i] sequence.append(lowercase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
326
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] _UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def lowerCAmelCase__( lowercase : str ) -> Optional[Any]: __snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" ) return sd def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict: __snake_case : Tuple = OrderedDict() __snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __snake_case : Optional[Any] = key for name_pair in rename_keys_prefix: __snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] ) __snake_case : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __snake_case : List[Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]: assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: __snake_case : Any = "pretraining" if "vcr" in checkpoint_path: __snake_case : Optional[Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __snake_case : Tuple = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __snake_case : Any = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 512} __snake_case : Any = "multichoice" elif "vqa_advanced" in checkpoint_path: __snake_case : List[Any] = {"visual_embedding_dim": 2048} __snake_case : Optional[Any] = "vqa_advanced" elif "vqa" in checkpoint_path: __snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} __snake_case : Union[str, Any] = "vqa" elif "nlvr" in checkpoint_path: __snake_case : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } __snake_case : List[Any] = "nlvr" __snake_case : Union[str, Any] = VisualBertConfig(**lowercase ) # Load State Dict __snake_case : Any = load_state_dict(lowercase ) __snake_case : Dict = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": __snake_case : Optional[Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": __snake_case : Tuple = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": __snake_case : Tuple = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": __snake_case : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
326
1
def lowerCAmelCase__( lowercase : str ) -> str: if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) __snake_case : List[Any] = "" while len(lowercase ) % 3 != 0: __snake_case : Tuple = "0" + bin_string __snake_case : Any = [ bin_string[index : index + 3] for index in range(len(lowercase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __snake_case : Optional[Any] = 0 for index, val in enumerate(lowercase ): oct_val += int(2 ** (2 - index) * int(lowercase ) ) oct_string += str(lowercase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
326
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple: # Load configuration defined in the metadata file with open(lowercase ) as metadata_file: __snake_case : int = json.load(lowercase ) __snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file __snake_case : Tuple = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] __snake_case : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) __snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: __snake_case : Tuple = json.load(lowercase ) __snake_case : List[Any] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) __snake_case : Any = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens __snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0] __snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0] __snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"] __snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __snake_case : List[Any] = state_dict[bias_name] __snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) __snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 ) __snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self.""" __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] __snake_case : str = state_dict[prefix + matrix_name] __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"] __snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __snake_case : List[Any] = state_dict["entity_predictions.bias"] __snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __snake_case : Any = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __snake_case : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __snake_case : str = state_dict[key] else: __snake_case : str = state_dict[key] __snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) __snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __snake_case : Union[str, Any] = (0, 9) __snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : Any = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : Optional[Any] = torch.Size((1, 33, 768) ) __snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : str = torch.Size((1, 1, 768) ) __snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __snake_case : str = MLukeTokenizer.from_pretrained(lowercase ) __snake_case : Dict = "Tokyo is the capital of <mask>." __snake_case : Union[str, Any] = (24, 30) __snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : int = model(**lowercase ) __snake_case : Dict = encoding["input_ids"][0].tolist() __snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) __snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item() __snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]: __snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"] __snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )] __snake_case : Any = {} for entry in data: __snake_case : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __snake_case : Optional[int] = entity_id break __snake_case : Union[str, Any] = f"""{language}:{entity_name}""" __snake_case : Any = entity_id return new_mapping if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
1
def lowerCAmelCase__( lowercase : int ) -> bool: if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True __snake_case : Tuple = 4 __snake_case : int = (1 << p) - 1 for _ in range(p - 2 ): __snake_case : List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
326
from maths.prime_factors import prime_factors def lowerCAmelCase__( lowercase : int ) -> int: if not isinstance(lowercase , lowercase ): __snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(lowercase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
326
1
def lowerCAmelCase__( lowercase : int ) -> int: if not isinstance(lowercase , lowercase ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
326
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" ) __snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids __snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids __snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits __snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() __snake_case : Any = -(labels.shape[-1] * loss.item()) __snake_case : List[str] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
326
1
from __future__ import annotations def lowerCAmelCase__( lowercase : str ) -> list[int]: return [ord(lowercase ) - 96 for elem in plain] def lowerCAmelCase__( lowercase : list[int] ) -> str: return "".join(chr(elem + 96 ) for elem in encoded ) def lowerCAmelCase__( ) -> None: __snake_case : Optional[Any] = encode(input("-> " ).strip().lower() ) print("Encoded: " , lowercase ) print("Decoded:" , decode(lowercase ) ) if __name__ == "__main__": main()
326
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]: '''simple docstring''' super().__init__(UpperCAmelCase ) __snake_case : Optional[int] = proj_size __snake_case : str = CLIPVisionModel(UpperCAmelCase ) __snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase ) __snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size ) __snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' __snake_case : int = self.model(pixel_values=UpperCAmelCase ) __snake_case : Optional[int] = clip_output.pooler_output __snake_case : Any = self.mapper(latent_states[:, None] ) __snake_case : Any = self.final_layer_norm(UpperCAmelCase ) __snake_case : str = self.proj_out(UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__() __snake_case : List[Any] = (config.num_hidden_layers + 1) // 5 __snake_case : Dict = config.hidden_size __snake_case : str = 1 __snake_case : List[Any] = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase ) for _ in range(UpperCAmelCase ) ] ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' for block in self.blocks: __snake_case : int = block(UpperCAmelCase ) return hidden_states
326
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
326
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
326
1
def lowerCAmelCase__( lowercase : bytes ) -> str: return "".join([hex(lowercase )[2:].zfill(2 ).upper() for byte in list(lowercase )] ) def lowerCAmelCase__( lowercase : str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowercase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowercase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowercase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
326
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = torch.device('''cpu''') def lowerCAmelCase__( ) -> Any: __snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCAmelCase__( lowercase : Dict ) -> List[Any]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = dct.pop(lowercase ) __snake_case : List[Any] = val def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple: __snake_case : Optional[Any] = [] for k in state_dict.keys(): __snake_case : Union[str, Any] = k if ".pwconv" in k: __snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: __snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: __snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: __snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: __snake_case : int = k_new.split("." ) if ls[2].isdigit(): __snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: __snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]: __snake_case : List[str] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __snake_case : Tuple = 1000 __snake_case : Any = "huggingface/label-files" __snake_case : int = "imagenet-1k-id2label.json" __snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) __snake_case : str = {int(lowercase ): v for k, v in idalabel.items()} __snake_case : int = idalabel __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __snake_case : Optional[Any] = [3, 3, 6, 4] __snake_case : Optional[int] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __snake_case : List[str] = [3, 3, 9, 6] __snake_case : Optional[Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __snake_case : Optional[int] = [4, 3, 10, 5] __snake_case : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __snake_case : str = [4, 4, 12, 6] __snake_case : Optional[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): __snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase ) else: __snake_case : Tuple = torch.load(lowercase , map_location="cpu" ) __snake_case : Optional[int] = checkpoint __snake_case : Any = create_rename_keys(lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # load HuggingFace model __snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval() hf_model.load_state_dict(lowercase ) # prepare test inputs __snake_case : Optional[Any] = prepare_img() __snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" ) __snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" ) # compare outputs from both models __snake_case : str = get_expected_output(lowercase ) __snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _UpperCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
326
1
def lowerCAmelCase__( lowercase : float , lowercase : float ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.25) = }''') print(F'''{price_plus_tax(1_25.50, 0.05) = }''')
326
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) _UpperCamelCase = logging.getLogger(__name__) def lowerCAmelCase__( lowercase : str ) -> List[str]: __snake_case : int = git.Repo(search_parent_directories=lowercase ) __snake_case : Union[str, Any] = { "repo_id": str(lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f: json.dump(lowercase , lowercase , indent=4 ) def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]: if params.n_gpu <= 0: __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = -1 __snake_case : Union[str, Any] = True __snake_case : Tuple = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : int = int(os.environ["N_GPU_NODE"] ) __snake_case : Union[str, Any] = int(os.environ["RANK"] ) # number of nodes / node ID __snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node __snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node __snake_case : Union[str, Any] = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 __snake_case : Any = 1 __snake_case : str = 0 __snake_case : Optional[Any] = 0 __snake_case : Dict = 0 __snake_case : int = 1 __snake_case : Optional[Any] = 1 __snake_case : Tuple = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0 __snake_case : List[Any] = params.n_nodes > 1 # summary __snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
326
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Any =["pixel_values"] def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) __snake_case : Tuple = size if size is not None else {"shortest_edge": 256} __snake_case : Optional[int] = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) __snake_case : List[Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} __snake_case : int = get_size_dict(UpperCAmelCase ) __snake_case : Any = do_resize __snake_case : Any = size __snake_case : int = resample __snake_case : List[str] = do_center_crop __snake_case : Any = crop_size __snake_case : Optional[int] = do_rescale __snake_case : Union[str, Any] = rescale_factor __snake_case : Any = do_normalize __snake_case : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __snake_case : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __snake_case : str = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __snake_case : Any = get_resize_output_image_size(UpperCAmelCase , size=size["shortest_edge"] , default_to_square=UpperCAmelCase ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __snake_case : Any = get_size_dict(UpperCAmelCase ) return center_crop(UpperCAmelCase , size=(size["height"], size["width"]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = do_resize if do_resize is not None else self.do_resize __snake_case : Dict = size if size is not None else self.size __snake_case : Any = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) __snake_case : str = resample if resample is not None else self.resample __snake_case : int = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case : Optional[int] = crop_size if crop_size is not None else self.crop_size __snake_case : Dict = get_size_dict(UpperCAmelCase ) __snake_case : List[str] = do_rescale if do_rescale is not None else self.do_rescale __snake_case : int = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : str = do_normalize if do_normalize is not None else self.do_normalize __snake_case : int = image_mean if image_mean is not None else self.image_mean __snake_case : Any = image_std if image_std is not None else self.image_std __snake_case : Optional[Any] = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __snake_case : Optional[Any] = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: __snake_case : Tuple = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_center_crop: __snake_case : List[Any] = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images] if do_rescale: __snake_case : Dict = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: __snake_case : List[str] = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] __snake_case : List[Any] = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] __snake_case : List[Any] = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
326
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str =JukeboxTokenizer UpperCAmelCase_ : Tuple ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : int = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
326
1
import random from typing import Any def lowerCAmelCase__( lowercase : list ) -> list[Any]: for _ in range(len(lowercase ) ): __snake_case : Union[str, Any] = random.randint(0 , len(lowercase ) - 1 ) __snake_case : Optional[int] = random.randint(0 , len(lowercase ) - 1 ) __snake_case , __snake_case : Any = data[b], data[a] return data if __name__ == "__main__": _UpperCamelCase = [0, 1, 2, 3, 4, 5, 6, 7] _UpperCamelCase = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
326
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : str UpperCAmelCase_ : str =None @staticmethod def UpperCAmelCase ( ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def UpperCAmelCase ( cls ) -> Tuple: '''simple docstring''' return F"""`pip install {cls.pip_package or cls.name}`""" class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[int] ="optuna" @staticmethod def UpperCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' return is_optuna_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' return default_hp_space_optuna(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : List[str] ="ray" UpperCAmelCase_ : Dict ="'ray[tune]'" @staticmethod def UpperCAmelCase ( ) -> str: '''simple docstring''' return is_ray_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' return default_hp_space_ray(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="sigopt" @staticmethod def UpperCAmelCase ( ) -> int: '''simple docstring''' return is_sigopt_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return default_hp_space_sigopt(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : str ="wandb" @staticmethod def UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' return is_wandb_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return default_hp_space_wandb(UpperCAmelCase ) _UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase__( ) -> str: __snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase ) > 0: __snake_case : Dict = available_backends[0].name if len(lowercase ) > 1: logger.info( f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
326
1
from math import ceil, sqrt def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int: __snake_case : int = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __snake_case : Tuple = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __snake_case : int = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'''{solution() = }''')
326
import math def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list: __snake_case : Any = end or len(lowercase ) for i in range(lowercase , lowercase ): __snake_case : List[str] = i __snake_case : Union[str, Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case : Optional[Any] = array[temp_index - 1] temp_index -= 1 __snake_case : Any = temp_index_value return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap __snake_case : Any = index __snake_case : Optional[Any] = 2 * index + 1 # Left Node __snake_case : str = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case : Tuple = right_index if largest != index: __snake_case , __snake_case : int = array[largest], array[index] heapify(lowercase , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list ) -> list: __snake_case : List[str] = len(lowercase ) for i in range(n // 2 , -1 , -1 ): heapify(lowercase , lowercase , lowercase ) for i in range(n - 1 , 0 , -1 ): __snake_case , __snake_case : Optional[Any] = array[0], array[i] heapify(lowercase , 0 , lowercase ) return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: __snake_case : Union[str, Any] = low __snake_case : Union[str, Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case , __snake_case : str = array[j], array[i] i += 1 def lowerCAmelCase__( lowercase : list ) -> list: if len(lowercase ) == 0: return array __snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) ) __snake_case : Dict = 16 return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 __snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase ) intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase ) __snake_case : List[str] = p return insertion_sort(lowercase , lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip() _UpperCamelCase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
326
1
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _UpperCamelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def lowerCAmelCase__( lowercase : List[Any] ) -> List[Any]: for pegasus_name, hf_name in PATTERNS: __snake_case : Optional[Any] = k.replace(lowercase , lowercase ) return k def lowerCAmelCase__( lowercase : dict , lowercase : dict ) -> PegasusForConditionalGeneration: __snake_case : List[Any] = DEFAULTS.copy() cfg_kwargs.update(lowercase ) __snake_case : Optional[int] = PegasusConfig(**lowercase ) __snake_case : Optional[Any] = PegasusForConditionalGeneration(lowercase ) __snake_case : Dict = torch_model.model.state_dict() __snake_case : Tuple = {} for k, v in tf_weights.items(): __snake_case : List[Any] = rename_state_dict_key(lowercase ) if new_k not in sd: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __snake_case : str = v.T __snake_case : List[Any] = torch.tensor(lowercase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __snake_case : Union[str, Any] = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) __snake_case : int = mapping["shared.weight"] __snake_case : int = mapping["shared.weight"] __snake_case : Optional[Any] = {k: torch.zeros_like(lowercase ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**lowercase ) __snake_case , __snake_case : Tuple = torch_model.model.load_state_dict(lowercase , strict=lowercase ) __snake_case : Tuple = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def lowerCAmelCase__( lowercase : int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: __snake_case : Any = tf.train.list_variables(lowercase ) __snake_case : Optional[int] = {} __snake_case : Union[str, Any] = ["Adafactor", "global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): __snake_case : List[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue __snake_case : List[str] = tf.train.load_variable(lowercase , lowercase ) __snake_case : Union[str, Any] = array return tf_weights def lowerCAmelCase__( lowercase : str , lowercase : str ) -> Dict: # save tokenizer first __snake_case : Any = Path(lowercase ).parent.name __snake_case : Union[str, Any] = task_specific_params[f"""summarization_{dataset}"""]["max_position_embeddings"] __snake_case : Union[str, Any] = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=lowercase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(lowercase ) # convert model __snake_case : List[str] = get_tf_weights_as_numpy(lowercase ) __snake_case : str = task_specific_params[f"""summarization_{dataset}"""] if dataset == "large": __snake_case : Dict = task_specific_params __snake_case : str = convert_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) __snake_case : Tuple = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(lowercase , Path(lowercase ) / "pytorch_model.bin" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() if args.save_dir is None: _UpperCamelCase = Path(args.tf_ckpt_path).parent.name _UpperCamelCase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
326
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Any = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase__( lowercase : Dict ) -> Dict: __snake_case : Any = [1, 2] __snake_case : Dict = {"a": 1, "b": 2} __snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]} __snake_case : int = {"a": {"1": 1}, "b": 2} __snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case : Dict = [2, 3] __snake_case : Tuple = {"a": 2, "b": 3} __snake_case : int = {"a": [2, 3], "b": [4, 5]} __snake_case : Dict = {"a": {"1": 2}, "b": 3} __snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
326
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Dict =["image_processor", "tokenizer"] UpperCAmelCase_ : Optional[Any] ="ChineseCLIPImageProcessor" UpperCAmelCase_ : Tuple =("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __snake_case : Dict = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) __snake_case : Dict = kwargs.pop("feature_extractor" ) __snake_case : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) __snake_case : List[str] = self.image_processor def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __snake_case : Tuple = self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if images is not None: __snake_case : Tuple = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: __snake_case : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case : Optional[int] = self.tokenizer.model_input_names __snake_case : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> str: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class
326
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any: __snake_case : Optional[Any] = False __snake_case : Optional[Any] = search_prob __snake_case : str = start_temperate __snake_case : List[Any] = [] __snake_case : str = 0 __snake_case : Dict = None while not search_end: __snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case : List[Any] = current_state scores.append(lowercase ) iterations += 1 __snake_case : Dict = None __snake_case : str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor __snake_case : int = neighbors.pop(lowercase ) __snake_case : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case : List[str] = picked_neighbor else: __snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case : str = picked_neighbor __snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case : Optional[Any] = True else: __snake_case : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase ) , lowercase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any: return (3 * x**2) - (6 * y) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' ) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' )
326
1
from __future__ import annotations from collections.abc import Callable _UpperCamelCase = list[list[float | int]] def lowerCAmelCase__( lowercase : Matrix , lowercase : Matrix ) -> Matrix: __snake_case : int = len(lowercase ) __snake_case : Matrix = [[0 for _ in range(size + 1 )] for _ in range(lowercase )] __snake_case : int __snake_case : int __snake_case : int __snake_case : int __snake_case : int __snake_case : float for row in range(lowercase ): for col in range(lowercase ): __snake_case : str = matrix[row][col] __snake_case : Optional[Any] = vector[row][0] __snake_case : List[Any] = 0 __snake_case : Union[str, Any] = 0 while row < size and col < size: # pivoting __snake_case : Dict = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowercase , lowercase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __snake_case , __snake_case : Union[str, Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , lowercase ): __snake_case : Tuple = augmented[rowa][col] / augmented[row][col] __snake_case : Dict = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , lowercase ): for row in range(lowercase ): __snake_case : Any = augmented[row][col] / augmented[col][col] for cola in range(lowercase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(lowercase ) ] def lowerCAmelCase__( lowercase : list[int] ) -> Callable[[int], int]: __snake_case : int = len(lowercase ) __snake_case : Matrix = [[0 for _ in range(lowercase )] for _ in range(lowercase )] __snake_case : Matrix = [[0] for _ in range(lowercase )] __snake_case : Matrix __snake_case : int __snake_case : int __snake_case : int for x_val, y_val in enumerate(lowercase ): for col in range(lowercase ): __snake_case : Optional[Any] = (x_val + 1) ** (size - col - 1) __snake_case : Dict = y_val __snake_case : Union[str, Any] = solve(lowercase , lowercase ) def interpolated_func(lowercase : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(lowercase ) ) return interpolated_func def lowerCAmelCase__( lowercase : int ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCAmelCase__( lowercase : Callable[[int], int] = question_function , lowercase : int = 10 ) -> int: __snake_case : list[int] = [func(lowercase ) for x_val in range(1 , order + 1 )] __snake_case : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __snake_case : int = 0 __snake_case : Callable[[int], int] __snake_case : int for poly in polynomials: __snake_case : Optional[int] = 1 while func(lowercase ) == poly(lowercase ): x_val += 1 ret += poly(lowercase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
326
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : Tuple ="FlavaImageProcessor" UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = self.image_processor def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if images is not None: __snake_case : Union[str, Any] = self.image_processor( UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if text is not None and images is not None: encoding.update(UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
326
1
class _lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase ) -> None: '''simple docstring''' __snake_case : Optional[Any] = size __snake_case : List[str] = [0] * size __snake_case : List[str] = [0] * size @staticmethod def UpperCAmelCase ( UpperCAmelCase ) -> int: '''simple docstring''' return index | (index + 1) @staticmethod def UpperCAmelCase ( UpperCAmelCase ) -> int: '''simple docstring''' return (index & (index + 1)) - 1 def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> None: '''simple docstring''' __snake_case : Union[str, Any] = value while index < self.size: __snake_case : Dict = self.get_prev(UpperCAmelCase ) + 1 if current_left_border == index: __snake_case : str = value else: __snake_case : Any = max(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __snake_case : Optional[Any] = self.get_next(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' right -= 1 # Because of right is exclusive __snake_case : Tuple = 0 while left <= right: __snake_case : List[str] = self.get_prev(UpperCAmelCase ) if left <= current_left: __snake_case : List[str] = max(UpperCAmelCase , self.tree[right] ) __snake_case : Union[str, Any] = current_left else: __snake_case : Optional[int] = max(UpperCAmelCase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
326
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } _UpperCamelCase = { '''camembert-base''': 512, } _UpperCamelCase = '''▁''' class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : str =["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' __snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token __snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __snake_case : Dict = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __snake_case : Optional[int] = len(self.fairseq_tokens_to_ids ) __snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = [] __snake_case : Union[str, Any] = "" __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase ) + token __snake_case : List[Any] = True __snake_case : Union[str, Any] = [] else: current_sub_tokens.append(UpperCAmelCase ) __snake_case : int = False out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def __getstate__( self ) -> List[Any]: '''simple docstring''' __snake_case : str = self.__dict__.copy() __snake_case : Optional[Any] = None return state def __setstate__( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : List[str] = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Optional[Any] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: __snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
326
1
_UpperCamelCase = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _UpperCamelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _UpperCamelCase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
326
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool: __snake_case : List[str] = len(lowercase ) __snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __snake_case : Optional[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __snake_case : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __snake_case : List[str] = subset[i - 1][j] if arr[i - 1] <= j: __snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
326
1
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCAmelCase__( lowercase : List[str] ) -> Optional[int]: return getitem, k def lowerCAmelCase__( lowercase : Tuple , lowercase : Optional[int] ) -> Optional[int]: return setitem, k, v def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]: return delitem, k def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : List[str] , *lowercase : Union[str, Any] ) -> List[str]: try: return fun(lowercase , *lowercase ), None except Exception as e: return None, e _UpperCamelCase = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) _UpperCamelCase = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] _UpperCamelCase = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] _UpperCamelCase = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] _UpperCamelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] _UpperCamelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def lowerCAmelCase__( lowercase : int ) -> Dict: __snake_case : List[Any] = HashMap(initial_block_size=4 ) __snake_case : str = {} for _, (fun, *args) in enumerate(lowercase ): __snake_case , __snake_case : Dict = _run_operation(lowercase , lowercase , *lowercase ) __snake_case , __snake_case : Any = _run_operation(lowercase , lowercase , *lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def lowerCAmelCase__( ) -> Optional[int]: def is_public(lowercase : str ) -> bool: return not name.startswith("_" ) __snake_case : int = {name for name in dir({} ) if is_public(lowercase )} __snake_case : Tuple = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
326
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _UpperCamelCase = 4 _UpperCamelCase = 3 class _lowerCamelCase ( a ): """simple docstring""" pass def lowerCAmelCase__( lowercase : List[str] ) -> Any: for shard in shards: for i in range(lowercase ): yield {"i": i, "shard": shard} def lowerCAmelCase__( ) -> Optional[int]: __snake_case : List[Any] = int(os.environ["RANK"] ) __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : List[str] = ArgumentParser() parser.add_argument("--streaming" , type=lowercase ) parser.add_argument("--local_rank" , type=lowercase ) parser.add_argument("--num_workers" , type=lowercase , default=0 ) __snake_case : Any = parser.parse_args() __snake_case : Dict = args.streaming __snake_case : Union[str, Any] = args.num_workers __snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]} __snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase ) if not streaming: __snake_case : Any = Dataset.from_list(list(lowercase ) ) __snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase ) __snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase ) __snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __snake_case : Dict = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
326
1
from __future__ import annotations import numpy as np def lowerCAmelCase__( lowercase : np.ndarray ) -> tuple[np.ndarray, np.ndarray]: __snake_case , __snake_case : Optional[Any] = np.shape(lowercase ) if rows != columns: __snake_case : Tuple = ( "'table' has to be of square shaped array but got a " f"""{rows}x{columns} array:\n{table}""" ) raise ValueError(lowercase ) __snake_case : Any = np.zeros((rows, columns) ) __snake_case : Optional[Any] = np.zeros((rows, columns) ) for i in range(lowercase ): for j in range(lowercase ): __snake_case : Union[str, Any] = sum(lower[i][k] * upper[k][j] for k in range(lowercase ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) __snake_case : Tuple = (table[i][j] - total) / upper[j][j] __snake_case : Dict = 1 for j in range(lowercase , lowercase ): __snake_case : Tuple = sum(lower[i][k] * upper[k][j] for k in range(lowercase ) ) __snake_case : Tuple = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
326
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int: __snake_case : List[Any] = limit + 1 __snake_case : List[str] = [0] * limit for first_term in range(1 , lowercase ): for n in range(lowercase , lowercase , lowercase ): __snake_case : Union[str, Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
326
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="unispeech-sat" def __init__( self , UpperCAmelCase=32 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1E-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase=False , UpperCAmelCase=128 , UpperCAmelCase=16 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=10 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=10 , UpperCAmelCase=0 , UpperCAmelCase=320 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , UpperCAmelCase=100 , UpperCAmelCase=256 , UpperCAmelCase=256 , UpperCAmelCase=0.1 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=256 , UpperCAmelCase=(512, 512, 512, 512, 1500) , UpperCAmelCase=(5, 3, 3, 1, 1) , UpperCAmelCase=(1, 2, 3, 1, 1) , UpperCAmelCase=512 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , UpperCAmelCase=504 , **UpperCAmelCase , ) -> List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase ) __snake_case : Dict = hidden_size __snake_case : Dict = feat_extract_norm __snake_case : List[str] = feat_extract_activation __snake_case : int = list(UpperCAmelCase ) __snake_case : Union[str, Any] = list(UpperCAmelCase ) __snake_case : List[Any] = list(UpperCAmelCase ) __snake_case : str = conv_bias __snake_case : List[Any] = num_conv_pos_embeddings __snake_case : List[Any] = num_conv_pos_embedding_groups __snake_case : Union[str, Any] = len(self.conv_dim ) __snake_case : Tuple = num_hidden_layers __snake_case : Optional[int] = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Any = num_attention_heads __snake_case : Tuple = hidden_dropout __snake_case : int = attention_dropout __snake_case : Union[str, Any] = activation_dropout __snake_case : str = feat_proj_dropout __snake_case : List[str] = final_dropout __snake_case : str = layerdrop __snake_case : Optional[int] = layer_norm_eps __snake_case : int = initializer_range __snake_case : Tuple = vocab_size __snake_case : Optional[Any] = num_clusters __snake_case : Union[str, Any] = do_stable_layer_norm __snake_case : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case : str = apply_spec_augment __snake_case : Optional[int] = mask_time_prob __snake_case : Union[str, Any] = mask_time_length __snake_case : Optional[int] = mask_time_min_masks __snake_case : List[Any] = mask_feature_prob __snake_case : Union[str, Any] = mask_feature_length __snake_case : Union[str, Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __snake_case : Optional[int] = num_codevectors_per_group __snake_case : int = num_codevector_groups __snake_case : Any = contrastive_logits_temperature __snake_case : int = feat_quantizer_dropout __snake_case : Dict = num_negatives __snake_case : int = codevector_dim __snake_case : Any = proj_codevector_dim __snake_case : Any = diversity_loss_weight # ctc loss __snake_case : str = ctc_loss_reduction __snake_case : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __snake_case : Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __snake_case : List[Any] = list(UpperCAmelCase ) __snake_case : Optional[int] = list(UpperCAmelCase ) __snake_case : str = list(UpperCAmelCase ) __snake_case : List[str] = xvector_output_dim @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
326
from __future__ import annotations def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]: __snake_case : List[str] = word_bank or [] # create a table __snake_case : int = len(lowercase ) + 1 __snake_case : list[list[list[str]]] = [] for _ in range(lowercase ): table.append([] ) # seed value __snake_case : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase )] == word: __snake_case : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase )]: combination.reverse() return table[len(lowercase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
326
1
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple: __snake_case : Union[str, Any] = int(lowercase ) __snake_case , __snake_case , __snake_case : Tuple = t // 3600, (t // 60) % 60, t % 60 return f"""{h}:{m:02d}:{s:02d}""" if h != 0 else f"""{m:02d}:{s:02d}""" def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Dict , lowercase : Tuple , lowercase : int , lowercase : Any=300 ) -> List[Any]: # docstyle-ignore return f""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def lowerCAmelCase__( lowercase : Any ) -> Union[str, Any]: __snake_case : Union[str, Any] = "<table border=\"1\" class=\"dataframe\">\n" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __snake_case : Any = f"""{elt:.6f}""" if isinstance(lowercase , lowercase ) else str(lowercase ) html_code += f""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : Any =5 UpperCAmelCase_ : str =0.2 def __init__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 300 , ) -> Union[str, Any]: '''simple docstring''' __snake_case : Tuple = total __snake_case : List[Any] = "" if prefix is None else prefix __snake_case : int = leave __snake_case : Optional[int] = parent __snake_case : int = width __snake_case : int = None __snake_case : Union[str, Any] = None __snake_case : Union[str, Any] = None def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = None ) -> str: '''simple docstring''' __snake_case : Union[str, Any] = value if comment is not None: __snake_case : Optional[Any] = comment if self.last_value is None: __snake_case : List[str] = time.time() __snake_case : str = value __snake_case : List[Any] = None __snake_case : int = self.warmup __snake_case : List[str] = 1 self.update_bar(UpperCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __snake_case : Dict = time.time() __snake_case : Dict = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __snake_case : str = self.elapsed_time / (value - self.start_value) else: __snake_case : List[str] = None if value >= self.total: __snake_case : List[str] = self.total __snake_case : Tuple = None if not self.leave: self.close() elif self.average_time_per_item is not None: __snake_case : List[str] = self.average_time_per_item * (self.total - value) self.update_bar(UpperCAmelCase ) __snake_case : str = value __snake_case : Any = current_time if self.average_time_per_item is None: __snake_case : int = 1 else: __snake_case : Union[str, Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=None ) -> int: '''simple docstring''' __snake_case : Tuple = " " * (len(str(self.total ) ) - len(str(UpperCAmelCase ) )) + str(UpperCAmelCase ) if self.elapsed_time is None: __snake_case : Tuple = F"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: __snake_case : List[str] = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: __snake_case : int = ( F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" F""" {format_time(self.predicted_remaining )}""" ) self.label += F""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else F""", {self.comment}]""" self.display() def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case : str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __snake_case : Optional[Any] = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self ) -> Any: '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML("" ) ) class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=None ) -> List[str]: '''simple docstring''' super().__init__(UpperCAmelCase ) __snake_case : Dict = None if column_names is None else [column_names] __snake_case : Optional[int] = None def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Dict = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __snake_case : List[str] = disp.display(disp.HTML(self.html_code ) , display_id=UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' if self.inner_table is None: __snake_case : Optional[int] = [list(values.keys() ), list(values.values() )] else: __snake_case : Tuple = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(UpperCAmelCase ) __snake_case : Union[str, Any] = columns self.inner_table.append([values[c] for c in columns] ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=300 ) -> List[Any]: '''simple docstring''' __snake_case : List[str] = NotebookProgressBar(UpperCAmelCase , prefix=UpperCAmelCase , parent=self , width=UpperCAmelCase ) return self.child_bar def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Any = None self.display() class _lowerCamelCase ( a ): """simple docstring""" def __init__( self ) -> Any: '''simple docstring''' __snake_case : Any = None __snake_case : Optional[int] = None __snake_case : List[Any] = False def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' __snake_case : Union[str, Any] = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step" __snake_case : str = 0 __snake_case : Optional[int] = 0 __snake_case : List[Any] = [self.first_column] + ["Training Loss"] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss" ) __snake_case : Dict = NotebookTrainingTracker(state.max_steps , UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : Union[str, Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=F"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) __snake_case : Optional[Any] = False def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if not has_length(UpperCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __snake_case : Optional[int] = self.training_tracker.add_child(len(UpperCAmelCase ) ) else: __snake_case : Tuple = NotebookProgressBar(len(UpperCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() __snake_case : Tuple = None def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ) -> Tuple: '''simple docstring''' if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __snake_case : Optional[Any] = {"Training Loss": logs["loss"]} # First column is necessarily Step sine we're not in epoch eval strategy __snake_case : Union[str, Any] = state.global_step self.training_tracker.write_line(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ) -> Dict: '''simple docstring''' if self.training_tracker is not None: __snake_case : Any = {"Training Loss": "No log", "Validation Loss": "No log"} for log in reversed(state.log_history ): if "loss" in log: __snake_case : List[Any] = log["loss"] break if self.first_column == "Epoch": __snake_case : Optional[Any] = int(state.epoch ) else: __snake_case : Dict = state.global_step __snake_case : Optional[int] = "eval" for k in metrics: if k.endswith("_loss" ): __snake_case : Optional[Any] = re.sub(r"\_loss$" , "" , UpperCAmelCase ) __snake_case : Tuple = metrics.pop("total_flos" , UpperCAmelCase ) __snake_case : List[str] = metrics.pop("epoch" , UpperCAmelCase ) __snake_case : Dict = metrics.pop(F"""{metric_key_prefix}_runtime""" , UpperCAmelCase ) __snake_case : str = metrics.pop(F"""{metric_key_prefix}_samples_per_second""" , UpperCAmelCase ) __snake_case : List[str] = metrics.pop(F"""{metric_key_prefix}_steps_per_second""" , UpperCAmelCase ) __snake_case : Any = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""" , UpperCAmelCase ) for k, v in metrics.items(): if k == F"""{metric_key_prefix}_loss""": __snake_case : Optional[Any] = v else: __snake_case : List[str] = k.split("_" ) __snake_case : Optional[Any] = " ".join([part.capitalize() for part in splits[1:]] ) __snake_case : List[str] = v self.training_tracker.write_line(UpperCAmelCase ) self.training_tracker.remove_child() __snake_case : str = None # Evaluation takes a long time so we should force the next update. __snake_case : Optional[int] = True def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' self.training_tracker.update( state.global_step , comment=F"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=UpperCAmelCase ) __snake_case : Dict = None
326
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : int = use_attention_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[str] = vocab_size __snake_case : int = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[Any] = num_choices __snake_case : Union[str, Any] = rescale_embeddings __snake_case : List[Any] = attention_type __snake_case : str = use_bias __snake_case : Dict = block_size __snake_case : Optional[Any] = num_random_blocks def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase_ : Dict =False UpperCAmelCase_ : str =False def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
326
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) _UpperCamelCase = logging.getLogger(__name__) def lowerCAmelCase__( lowercase : str ) -> List[str]: __snake_case : int = git.Repo(search_parent_directories=lowercase ) __snake_case : Union[str, Any] = { "repo_id": str(lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f: json.dump(lowercase , lowercase , indent=4 ) def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]: if params.n_gpu <= 0: __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = -1 __snake_case : Union[str, Any] = True __snake_case : Tuple = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : int = int(os.environ["N_GPU_NODE"] ) __snake_case : Union[str, Any] = int(os.environ["RANK"] ) # number of nodes / node ID __snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node __snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node __snake_case : Union[str, Any] = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 __snake_case : Any = 1 __snake_case : str = 0 __snake_case : Optional[Any] = 0 __snake_case : Dict = 0 __snake_case : int = 1 __snake_case : Optional[Any] = 1 __snake_case : Tuple = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0 __snake_case : List[Any] = params.n_nodes > 1 # summary __snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
326
import argparse import datetime def lowerCAmelCase__( lowercase : str ) -> str: __snake_case : int = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } __snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase ) < 11: raise ValueError("Must be 10 characters long" ) # Get month __snake_case : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12" ) __snake_case : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day __snake_case : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31" ) # Get second separator __snake_case : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year __snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation __snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) ) # Start math if m <= 2: __snake_case : Optional[Any] = y - 1 __snake_case : Tuple = m + 12 # maths var __snake_case : int = int(str(lowercase )[:2] ) __snake_case : int = int(str(lowercase )[2:] ) __snake_case : int = int(2.6 * m - 5.3_9 ) __snake_case : int = int(c / 4 ) __snake_case : int = int(k / 4 ) __snake_case : int = int(d + k ) __snake_case : int = int(t + u + v + x ) __snake_case : int = int(z - (2 * c) ) __snake_case : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response __snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) _UpperCamelCase = parser.parse_args() zeller(args.date_input)
326
1
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowerCAmelCase__( lowercase : Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: __snake_case : List[Any] = [] __snake_case : int = [] __snake_case : List[Any] = [] for rt in rc.restypes: __snake_case : Any = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) __snake_case : Union[str, Any] = {name: i for i, name in enumerate(lowercase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) __snake_case : Optional[Any] = torch.tensor( lowercase , dtype=torch.intaa , device=protein["aatype"].device , ) __snake_case : Tuple = torch.tensor( lowercase , dtype=torch.intaa , device=protein["aatype"].device , ) __snake_case : List[Any] = torch.tensor( lowercase , dtype=torch.floataa , device=protein["aatype"].device , ) __snake_case : Optional[int] = protein["aatype"].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein __snake_case : Any = restype_atomaa_to_atomaa[protein_aatype] __snake_case : Tuple = restype_atomaa_mask[protein_aatype] __snake_case : int = residx_atomaa_mask __snake_case : Union[str, Any] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back __snake_case : Any = restype_atomaa_to_atomaa[protein_aatype] __snake_case : Union[str, Any] = residx_atomaa_to_atomaa.long() # create the corresponding mask __snake_case : Union[str, Any] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["aatype"].device ) for restype, restype_letter in enumerate(rc.restypes ): __snake_case : Any = rc.restype_atoa[restype_letter] __snake_case : Any = rc.residue_atoms[restype_name] for atom_name in atom_names: __snake_case : str = rc.atom_order[atom_name] __snake_case : int = 1 __snake_case : Optional[Any] = restype_atomaa_mask[protein_aatype] __snake_case : Optional[Any] = residx_atomaa_mask return protein def lowerCAmelCase__( lowercase : Dict[str, torch.Tensor] ) -> Dict[str, np.ndarray]: __snake_case : str = tree_map(lambda lowercase : torch.tensor(lowercase , device=batch["aatype"].device ) , lowercase , np.ndarray ) __snake_case : int = tensor_tree_map(lambda lowercase : np.array(lowercase ) , make_atomaa_masks(lowercase ) ) return out
326
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int: if index == r: for j in range(lowercase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __snake_case : Union[str, Any] = arr[i] combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]: # A temporary array to store all combination one by one __snake_case : Tuple = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 ) if __name__ == "__main__": # Driver code to check the function above _UpperCamelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
326
1
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int: if index == r: for j in range(lowercase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __snake_case : Union[str, Any] = arr[i] combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]: # A temporary array to store all combination one by one __snake_case : Tuple = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 ) if __name__ == "__main__": # Driver code to check the function above _UpperCamelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
326
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] _UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def lowerCAmelCase__( lowercase : str ) -> Optional[Any]: __snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" ) return sd def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict: __snake_case : Tuple = OrderedDict() __snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __snake_case : Optional[Any] = key for name_pair in rename_keys_prefix: __snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] ) __snake_case : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __snake_case : List[Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]: assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: __snake_case : Any = "pretraining" if "vcr" in checkpoint_path: __snake_case : Optional[Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __snake_case : Tuple = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __snake_case : Any = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 512} __snake_case : Any = "multichoice" elif "vqa_advanced" in checkpoint_path: __snake_case : List[Any] = {"visual_embedding_dim": 2048} __snake_case : Optional[Any] = "vqa_advanced" elif "vqa" in checkpoint_path: __snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} __snake_case : Union[str, Any] = "vqa" elif "nlvr" in checkpoint_path: __snake_case : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } __snake_case : List[Any] = "nlvr" __snake_case : Union[str, Any] = VisualBertConfig(**lowercase ) # Load State Dict __snake_case : Any = load_state_dict(lowercase ) __snake_case : Dict = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": __snake_case : Optional[Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": __snake_case : Tuple = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": __snake_case : Tuple = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": __snake_case : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
326
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : int =["image_processor", "tokenizer"] UpperCAmelCase_ : Dict ="LayoutLMv3ImageProcessor" UpperCAmelCase_ : int =("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) __snake_case : Dict = kwargs.pop("feature_extractor" ) __snake_case : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor __snake_case : Optional[Any] = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): __snake_case : Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) __snake_case : str = features["words"] __snake_case : str = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values __snake_case : Union[str, Any] = features.pop("pixel_values" ) if return_overflowing_tokens is True: __snake_case : Any = self.get_overflowing_images(UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"] ) __snake_case : List[str] = images return encoded_inputs def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __snake_case : Union[str, Any] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F""" {len(UpperCAmelCase )} and {len(UpperCAmelCase )}""" ) return images_with_overflow def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Any: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
326
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple: # Load configuration defined in the metadata file with open(lowercase ) as metadata_file: __snake_case : int = json.load(lowercase ) __snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file __snake_case : Tuple = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] __snake_case : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) __snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: __snake_case : Tuple = json.load(lowercase ) __snake_case : List[Any] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) __snake_case : Any = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens __snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0] __snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0] __snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"] __snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __snake_case : List[Any] = state_dict[bias_name] __snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) __snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 ) __snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self.""" __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] __snake_case : str = state_dict[prefix + matrix_name] __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"] __snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __snake_case : List[Any] = state_dict["entity_predictions.bias"] __snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __snake_case : Any = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __snake_case : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __snake_case : str = state_dict[key] else: __snake_case : str = state_dict[key] __snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) __snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __snake_case : Union[str, Any] = (0, 9) __snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : Any = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : Optional[Any] = torch.Size((1, 33, 768) ) __snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : str = torch.Size((1, 1, 768) ) __snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __snake_case : str = MLukeTokenizer.from_pretrained(lowercase ) __snake_case : Dict = "Tokyo is the capital of <mask>." __snake_case : Union[str, Any] = (24, 30) __snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : int = model(**lowercase ) __snake_case : Dict = encoding["input_ids"][0].tolist() __snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) __snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item() __snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]: __snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"] __snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )] __snake_case : Any = {} for entry in data: __snake_case : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __snake_case : Optional[int] = entity_id break __snake_case : Union[str, Any] = f"""{language}:{entity_name}""" __snake_case : Any = entity_id return new_mapping if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
1
from collections.abc import Sequence def lowerCAmelCase__( lowercase : Sequence[int] | None = None ) -> int: if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) __snake_case : Optional[Any] = nums[0] for i in range(1 , len(lowercase ) ): __snake_case : int = nums[i] __snake_case : Any = max(lowercase , ans + num , lowercase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _UpperCamelCase = int(input('''Enter number of elements : ''').strip()) _UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
326
from maths.prime_factors import prime_factors def lowerCAmelCase__( lowercase : int ) -> int: if not isinstance(lowercase , lowercase ): __snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(lowercase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
326
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", } class lowercase_ ( lowercase , lowercase ): '''simple docstring''' __snake_case = '''convnextv2''' def __init__( self : Any , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : Optional[Any]=4 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Union[str, Any]="gelu" , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : List[str]=1e-1_2 , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : Any=224 , __UpperCAmelCase : Any=None , __UpperCAmelCase : List[Any]=None , **__UpperCAmelCase : str , ) ->Union[str, Any]: """simple docstring""" super().__init__(**__UpperCAmelCase ) a = num_channels a = patch_size a = num_stages a = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes a = [3, 3, 9, 3] if depths is None else depths a = hidden_act a = initializer_range a = layer_norm_eps a = drop_path_rate a = image_size a = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] a , a = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
0
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" ) __snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids __snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids __snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits __snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() __snake_case : Any = -(labels.shape[-1] * loss.item()) __snake_case : List[str] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
326
0
'''simple docstring''' # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path SCREAMING_SNAKE_CASE_: Any =Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) SCREAMING_SNAKE_CASE_: str ={'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} SCREAMING_SNAKE_CASE_: Union[str, Any] ='zero2' SCREAMING_SNAKE_CASE_: Dict ='zero3' SCREAMING_SNAKE_CASE_: Optional[Any] =[ZEROa, ZEROa] def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = parameterized.to_safe_name("_".join(str(snake_case_ ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test SCREAMING_SNAKE_CASE_: List[Any] =list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __A ( UpperCamelCase__ ): @parameterized.expand(__a , name_func=__a ) def _lowercase (self : Union[str, Any] , __a : Dict , __a : Any ): self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @require_torch_multi_gpu @parameterized.expand(__a , name_func=__a ) def _lowercase (self : Tuple , __a : Dict , __a : List[Any] ): self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @parameterized.expand(__a , name_func=__a ) def _lowercase (self : Tuple , __a : Any , __a : str ): self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @require_torch_multi_gpu @parameterized.expand(__a , name_func=__a ) def _lowercase (self : int , __a : Union[str, Any] , __a : Any ): self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) def _lowercase (self : str , __a : Optional[int] ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def _lowercase (self : List[str] , __a : str , __a : str , __a : int = 10 , __a : bool = True , __a : bool = True , __a : bool = True , ): UpperCAmelCase_ = models[model] UpperCAmelCase_ = self.run_trainer( stage=__a , model_name=__a , eval_steps=__a , num_train_epochs=1 , distributed=__a , fpaa=__a , ) self.do_checks(__a ) return output_dir def _lowercase (self : Any , __a : str , __a : str , __a : int = 10 , __a : int = 1 , __a : bool = True , __a : bool = True , ): UpperCAmelCase_ = self.get_auto_remove_tmp_dir("./xxx" , after=__a ) UpperCAmelCase_ = f""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(__a )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files UpperCAmelCase_ = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() UpperCAmelCase_ = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] UpperCAmelCase_ = self.get_launcher(__a ) UpperCAmelCase_ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__a , env=self.get_env() ) return output_dir def _lowercase (self : Any , __a : List[str]=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) UpperCAmelCase_ = min(2 , get_gpu_count() ) if distributed else 1 return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
1
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]: '''simple docstring''' super().__init__(UpperCAmelCase ) __snake_case : Optional[int] = proj_size __snake_case : str = CLIPVisionModel(UpperCAmelCase ) __snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase ) __snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size ) __snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' __snake_case : int = self.model(pixel_values=UpperCAmelCase ) __snake_case : Optional[int] = clip_output.pooler_output __snake_case : Any = self.mapper(latent_states[:, None] ) __snake_case : Any = self.final_layer_norm(UpperCAmelCase ) __snake_case : str = self.proj_out(UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__() __snake_case : List[Any] = (config.num_hidden_layers + 1) // 5 __snake_case : Dict = config.hidden_size __snake_case : str = 1 __snake_case : List[Any] = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase ) for _ in range(UpperCAmelCase ) ] ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' for block in self.blocks: __snake_case : int = block(UpperCAmelCase ) return hidden_states
326
0
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Tuple = GPTSanJapaneseTokenizer lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : Dict = {"""do_clean_text""": False, """add_prefix_space""": False} def UpperCamelCase__ (self : Any ): '''simple docstring''' super().setUp() # fmt: off lowercase__ = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on lowercase__ = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 lowercase__ = {'''unk_token''': '''<unk>'''} lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(UpperCamelCase ) ) def UpperCamelCase__ (self : Optional[Any] , **UpperCamelCase : Dict ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase__ (self : Any , UpperCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' lowercase__ = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def UpperCamelCase__ (self : Tuple , UpperCamelCase : Optional[int] ): '''simple docstring''' lowercase__ ,lowercase__ = self.get_input_output_texts(UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) lowercase__ = tokenizer.decode(UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase ) return text, ids def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = self.get_tokenizer() # Testing tokenization lowercase__ = '''こんにちは、世界。 こんばんは、㔺界。''' lowercase__ = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Testing conversion to ids without special tokens lowercase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase__ = tokenizer.convert_tokens_to_ids(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Testing conversion to ids with special tokens lowercase__ = tokens + [tokenizer.unk_token] lowercase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase__ = tokenizer.convert_tokens_to_ids(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = self.get_tokenizer() # Testing tokenization lowercase__ = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' lowercase__ = '''こんにちは、、、、世界。こんばんは、、、、世界。''' lowercase__ = tokenizer.encode(UpperCamelCase ) lowercase__ = tokenizer.decode(UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) @slow def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization lowercase__ = '''こんにちは、世界。''' lowercase__ = '''こんばんは、㔺界。😀''' lowercase__ = '''こんにちは、世界。こんばんは、世界。😀''' lowercase__ = tokenizer.encode(prefix_text + input_text ) lowercase__ = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) lowercase__ = tokenizer.encode(UpperCamelCase , prefix_text=UpperCamelCase ) lowercase__ = tokenizer.decode(UpperCamelCase ) lowercase__ = tokenizer.decode(UpperCamelCase ) lowercase__ = tokenizer.decode(UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) @slow def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization lowercase__ = '''こんにちは、世界。''' lowercase__ = '''こんばんは、㔺界。😀''' lowercase__ = len(tokenizer.encode(UpperCamelCase ) ) - 2 lowercase__ = len(tokenizer.encode(UpperCamelCase ) ) - 2 lowercase__ = [1] + [0] * (len_prefix + len_text + 1) lowercase__ = [1] * (len_prefix + len_text + 1) + [0] lowercase__ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase__ = tokenizer(prefix_text + input_text ).token_type_ids lowercase__ = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids lowercase__ = tokenizer(UpperCamelCase , prefix_text=UpperCamelCase ).token_type_ids self.assertListEqual(UpperCamelCase , UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @slow def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) lowercase__ = tokenizer.encode('''あンいワ''' ) lowercase__ = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) lowercase__ = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(UpperCamelCase ) , tokenizer.decode(UpperCamelCase ) ) self.assertEqual(tokenizer.decode(UpperCamelCase ) , tokenizer.decode(UpperCamelCase ) ) self.assertNotEqual(UpperCamelCase , UpperCamelCase ) self.assertNotEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) lowercase__ = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] lowercase__ = tokenizer(UpperCamelCase , padding=UpperCamelCase ) lowercase__ = tokenizer.batch_encode_plus(UpperCamelCase , padding=UpperCamelCase ) # fmt: off lowercase__ = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] lowercase__ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase__ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , UpperCamelCase ) self.assertListEqual(x_token.token_type_ids , UpperCamelCase ) self.assertListEqual(x_token.attention_mask , UpperCamelCase ) self.assertListEqual(x_token_a.input_ids , UpperCamelCase ) self.assertListEqual(x_token_a.token_type_ids , UpperCamelCase ) self.assertListEqual(x_token_a.attention_mask , UpperCamelCase ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass
2
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
326
0
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class A ( __snake_case , unittest.TestCase ): __magic_name__ = PegasusTokenizer __magic_name__ = PegasusTokenizerFast __magic_name__ = True __magic_name__ = True def __lowerCAmelCase ( self ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing A : List[Any] = PegasusTokenizer(SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self ) -> str: """simple docstring""" return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return ("This is a test", "This is a test") def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Any = '''</s>''' A : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 1103 ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Optional[int] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) A : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) A : List[Any] = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) A : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids[0] A : List[str] = py_tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Tuple = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word A : Any = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' A : str = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] A : Dict = tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 A : Optional[Any] = '''To ensure a smooth flow of bank resolutions.''' A : List[Any] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] A : Tuple = tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : List[str] = ['''This is going to be way too long.''' * 150, '''short example'''] A : Any = ['''not super long but more than 5 tokens''', '''tiny'''] A : Optional[int] = self._large_tokenizer(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) A : Tuple = self._large_tokenizer( text_target=SCREAMING_SNAKE_CASE , max_length=5 , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(SCREAMING_SNAKE_CASE ) == 2 # input_ids, attention_mask. @slow def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : str = {'''input_ids''': [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class A ( __snake_case , unittest.TestCase ): __magic_name__ = PegasusTokenizer __magic_name__ = PegasusTokenizerFast __magic_name__ = True __magic_name__ = True def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing A : List[Any] = PegasusTokenizer(SCREAMING_SNAKE_CASE , offset=0 , mask_token_sent=SCREAMING_SNAKE_CASE , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return ("This is a test", "This is a test") def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) A : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) A : int = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) A : Any = rust_tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids[0] A : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @require_torch def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : int = ['''This is going to be way too long.''' * 1000, '''short example'''] A : Dict = ['''not super long but more than 5 tokens''', '''tiny'''] A : List[str] = self._large_tokenizer(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) A : List[Any] = self._large_tokenizer( text_target=SCREAMING_SNAKE_CASE , max_length=5 , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(SCREAMING_SNAKE_CASE ) == 2 # input_ids, attention_mask. def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Tuple = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) A : List[Any] = self._large_tokenizer(SCREAMING_SNAKE_CASE ).input_ids self.assertListEqual( SCREAMING_SNAKE_CASE , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
3
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = torch.device('''cpu''') def lowerCAmelCase__( ) -> Any: __snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCAmelCase__( lowercase : Dict ) -> List[Any]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = dct.pop(lowercase ) __snake_case : List[Any] = val def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple: __snake_case : Optional[Any] = [] for k in state_dict.keys(): __snake_case : Union[str, Any] = k if ".pwconv" in k: __snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: __snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: __snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: __snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: __snake_case : int = k_new.split("." ) if ls[2].isdigit(): __snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: __snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]: __snake_case : List[str] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __snake_case : Tuple = 1000 __snake_case : Any = "huggingface/label-files" __snake_case : int = "imagenet-1k-id2label.json" __snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) __snake_case : str = {int(lowercase ): v for k, v in idalabel.items()} __snake_case : int = idalabel __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __snake_case : Optional[Any] = [3, 3, 6, 4] __snake_case : Optional[int] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __snake_case : List[str] = [3, 3, 9, 6] __snake_case : Optional[Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __snake_case : Optional[int] = [4, 3, 10, 5] __snake_case : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __snake_case : str = [4, 4, 12, 6] __snake_case : Optional[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): __snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase ) else: __snake_case : Tuple = torch.load(lowercase , map_location="cpu" ) __snake_case : Optional[int] = checkpoint __snake_case : Any = create_rename_keys(lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # load HuggingFace model __snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval() hf_model.load_state_dict(lowercase ) # prepare test inputs __snake_case : Optional[Any] = prepare_img() __snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" ) __snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" ) # compare outputs from both models __snake_case : str = get_expected_output(lowercase ) __snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _UpperCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
326
0
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : List[str] ) -> None: lowerCAmelCase = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase = Vector() def __UpperCAmelCase ( self : Union[str, Any] ) -> None: lowerCAmelCase = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase__ ) , '(0,0,0,0,0,1)' ) def __UpperCAmelCase ( self : List[str] ) -> None: lowerCAmelCase = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase__ ) , 4 ) def __UpperCAmelCase ( self : Optional[int] ) -> None: lowerCAmelCase = Vector([1, 2] ) lowerCAmelCase = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def __UpperCAmelCase ( self : int ) -> None: lowerCAmelCase = Vector([1, 2, 3] ) lowerCAmelCase = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def __UpperCAmelCase ( self : Optional[Any] ) -> None: lowerCAmelCase = Vector([1, 2, 3] ) lowerCAmelCase = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def __UpperCAmelCase ( self : str ) -> None: lowerCAmelCase = Vector([1, 2, 3] ) lowerCAmelCase = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def __UpperCAmelCase ( self : Union[str, Any] ) -> None: self.assertEqual(str(zero_vector(1_0 ) ).count('0' ) , 1_0 ) def __UpperCAmelCase ( self : Tuple ) -> None: self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> None: lowerCAmelCase = Vector([1, 2, 3] ) lowerCAmelCase = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase__ , UpperCAmelCase__ ) ) , '(3,4,7)' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> None: lowerCAmelCase = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase = x.copy() self.assertEqual(str(UpperCAmelCase__ ) , str(UpperCAmelCase__ ) ) def __UpperCAmelCase ( self : str ) -> None: lowerCAmelCase = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase__ ) , '(0,1,0)' ) def __UpperCAmelCase ( self : str ) -> None: lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(UpperCAmelCase__ ) ) def __UpperCAmelCase ( self : Tuple ) -> None: lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase = [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase__ , UpperCAmelCase__ ) ) def __UpperCAmelCase ( self : List[Any] ) -> None: lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase = [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase__ , UpperCAmelCase__ ) ) def __UpperCAmelCase ( self : List[str] ) -> None: lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def __UpperCAmelCase ( self : int ) -> None: lowerCAmelCase = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def __UpperCAmelCase ( self : Optional[int] ) -> None: lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(UpperCAmelCase__ ) ) def __UpperCAmelCase ( self : int ) -> None: lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def __UpperCAmelCase ( self : List[str] ) -> None: lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def __UpperCAmelCase ( self : str ) -> None: lowerCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def __UpperCAmelCase ( self : Tuple ) -> None: self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
4
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) _UpperCamelCase = logging.getLogger(__name__) def lowerCAmelCase__( lowercase : str ) -> List[str]: __snake_case : int = git.Repo(search_parent_directories=lowercase ) __snake_case : Union[str, Any] = { "repo_id": str(lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f: json.dump(lowercase , lowercase , indent=4 ) def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]: if params.n_gpu <= 0: __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = -1 __snake_case : Union[str, Any] = True __snake_case : Tuple = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : int = int(os.environ["N_GPU_NODE"] ) __snake_case : Union[str, Any] = int(os.environ["RANK"] ) # number of nodes / node ID __snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node __snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node __snake_case : Union[str, Any] = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 __snake_case : Any = 1 __snake_case : str = 0 __snake_case : Optional[Any] = 0 __snake_case : Dict = 0 __snake_case : int = 1 __snake_case : Optional[Any] = 1 __snake_case : Tuple = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0 __snake_case : List[Any] = params.n_nodes > 1 # summary __snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
326
0
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py UpperCAmelCase__ = '''src/transformers''' UpperCAmelCase__ = '''docs/source/en''' UpperCAmelCase__ = '''.''' def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> List[Any]: """simple docstring""" with open(__snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _lowercase =f.readlines() # Find the start prompt. _lowercase =0 while not lines[start_index].startswith(__snake_case ): start_index += 1 start_index += 1 _lowercase =start_index while not lines[end_index].startswith(__snake_case ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | UpperCAmelCase__ = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. UpperCAmelCase__ = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') UpperCAmelCase__ = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. UpperCAmelCase__ = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase__ = direct_transformers_import(TRANSFORMERS_PATH) def UpperCAmelCase_ ( __snake_case ) -> Tuple: """simple docstring""" _lowercase =re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , __snake_case ) return [m.group(0 ) for m in matches] def UpperCAmelCase_ ( __snake_case , __snake_case ) -> str: """simple docstring""" _lowercase =2 if text == '''✅''' or text == '''❌''' else len(__snake_case ) _lowercase =(width - text_length) // 2 _lowercase =width - text_length - left_indent return " " * left_indent + text + " " * right_indent def UpperCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" _lowercase =transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _lowercase ={ name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _lowercase ={name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _lowercase =collections.defaultdict(__snake_case ) _lowercase =collections.defaultdict(__snake_case ) _lowercase =collections.defaultdict(__snake_case ) _lowercase =collections.defaultdict(__snake_case ) _lowercase =collections.defaultdict(__snake_case ) # Let's lookup through all transformers object (once). for attr_name in dir(__snake_case ): _lowercase =None if attr_name.endswith('''Tokenizer''' ): _lowercase =slow_tokenizers _lowercase =attr_name[:-9] elif attr_name.endswith('''TokenizerFast''' ): _lowercase =fast_tokenizers _lowercase =attr_name[:-13] elif _re_tf_models.match(__snake_case ) is not None: _lowercase =tf_models _lowercase =_re_tf_models.match(__snake_case ).groups()[0] elif _re_flax_models.match(__snake_case ) is not None: _lowercase =flax_models _lowercase =_re_flax_models.match(__snake_case ).groups()[0] elif _re_pt_models.match(__snake_case ) is not None: _lowercase =pt_models _lowercase =_re_pt_models.match(__snake_case ).groups()[0] if lookup_dict is not None: while len(__snake_case ) > 0: if attr_name in model_name_to_prefix.values(): _lowercase =True break # Try again after removing the last word in the name _lowercase =''''''.join(camel_case_split(__snake_case )[:-1] ) # Let's build that table! _lowercase =list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _lowercase =['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _lowercase =[len(__snake_case ) + 2 for c in columns] _lowercase =max([len(__snake_case ) for name in model_names] ) + 2 # Build the table per se _lowercase ='''|''' + '''|'''.join([_center_text(__snake_case , __snake_case ) for c, w in zip(__snake_case , __snake_case )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n" _lowercase ={True: '''✅''', False: '''❌'''} for name in model_names: _lowercase =model_name_to_prefix[name] _lowercase =[ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(__snake_case , __snake_case ) for l, w in zip(__snake_case , __snake_case )] ) + "|\n" return table def UpperCAmelCase_ ( __snake_case=False ) -> List[str]: """simple docstring""" _lowercase , _lowercase , _lowercase , _lowercase =_find_text_in_file( filename=os.path.join(__snake_case , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , ) _lowercase =get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(__snake_case , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( '''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCAmelCase__ = parser.parse_args() check_model_table(args.fix_and_overwrite)
5
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str =JukeboxTokenizer UpperCAmelCase_ : Tuple ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : int = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
326
0
def __lowerCAmelCase ( a__ ) -> List[Any]: __a = 0 __a = len(a__ ) for i in range(n - 1 ): for j in range(i + 1 , a__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def __lowerCAmelCase ( a__ ) -> Dict: if len(a__ ) <= 1: return arr, 0 __a = len(a__ ) // 2 __a = arr[0:mid] __a = arr[mid:] __a , __a = count_inversions_recursive(a__ ) __a , __a = count_inversions_recursive(a__ ) __a , __a = _count_cross_inversions(a__ , a__ ) __a = inversion_p + inversions_q + cross_inversions return c, num_inversions def __lowerCAmelCase ( a__ , a__ ) -> Optional[Any]: __a = [] __a = __a = __a = 0 while i < len(a__ ) and j < len(a__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(a__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(a__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def __lowerCAmelCase ( ) -> Any: __a = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __a = count_inversions_bf(a__ ) __a , __a = count_inversions_recursive(a__ ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , a__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __a = count_inversions_bf(a__ ) __a , __a = count_inversions_recursive(a__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , a__ ) # an empty list should also have zero inversions __a = [] __a = count_inversions_bf(a__ ) __a , __a = count_inversions_recursive(a__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , a__ ) if __name__ == "__main__": main()
6
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : str UpperCAmelCase_ : str =None @staticmethod def UpperCAmelCase ( ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def UpperCAmelCase ( cls ) -> Tuple: '''simple docstring''' return F"""`pip install {cls.pip_package or cls.name}`""" class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[int] ="optuna" @staticmethod def UpperCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' return is_optuna_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' return default_hp_space_optuna(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : List[str] ="ray" UpperCAmelCase_ : Dict ="'ray[tune]'" @staticmethod def UpperCAmelCase ( ) -> str: '''simple docstring''' return is_ray_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' return default_hp_space_ray(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="sigopt" @staticmethod def UpperCAmelCase ( ) -> int: '''simple docstring''' return is_sigopt_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return default_hp_space_sigopt(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : str ="wandb" @staticmethod def UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' return is_wandb_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return default_hp_space_wandb(UpperCAmelCase ) _UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase__( ) -> str: __snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase ) > 0: __snake_case : Dict = available_backends[0].name if len(lowercase ) > 1: logger.info( f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
326
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class A ( unittest.TestCase , _UpperCAmelCase ): """simple docstring""" def snake_case__ ( self : str )-> Union[str, Any]: '''simple docstring''' A__ = load_tool('text-to-speech' ) self.tool.setup() def snake_case__ ( self : int )-> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) A__ = self.tool('hey' ) A__ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3],torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ),) ) def snake_case__ ( self : int )-> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A__ = self.tool('hey' ) A__ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3],torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ),) )
7
import math def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list: __snake_case : Any = end or len(lowercase ) for i in range(lowercase , lowercase ): __snake_case : List[str] = i __snake_case : Union[str, Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case : Optional[Any] = array[temp_index - 1] temp_index -= 1 __snake_case : Any = temp_index_value return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap __snake_case : Any = index __snake_case : Optional[Any] = 2 * index + 1 # Left Node __snake_case : str = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case : Tuple = right_index if largest != index: __snake_case , __snake_case : int = array[largest], array[index] heapify(lowercase , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list ) -> list: __snake_case : List[str] = len(lowercase ) for i in range(n // 2 , -1 , -1 ): heapify(lowercase , lowercase , lowercase ) for i in range(n - 1 , 0 , -1 ): __snake_case , __snake_case : Optional[Any] = array[0], array[i] heapify(lowercase , 0 , lowercase ) return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: __snake_case : Union[str, Any] = low __snake_case : Union[str, Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case , __snake_case : str = array[j], array[i] i += 1 def lowerCAmelCase__( lowercase : list ) -> list: if len(lowercase ) == 0: return array __snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) ) __snake_case : Dict = 16 return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 __snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase ) intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase ) __snake_case : List[str] = p return insertion_sort(lowercase , lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip() _UpperCamelCase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
326
0
from sklearn.metrics import fa_score import datasets lowerCAmelCase_ = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' lowerCAmelCase_ = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' lowerCAmelCase_ = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): '''simple docstring''' def snake_case__( self : Tuple ) ->Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def snake_case__( self : List[str] , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Optional[int]=1 , _UpperCamelCase : List[str]="binary" , _UpperCamelCase : Tuple=None ) ->Optional[Any]: snake_case_ = fa_score( _UpperCamelCase , _UpperCamelCase , labels=_UpperCamelCase , pos_label=_UpperCamelCase , average=_UpperCamelCase , sample_weight=_UpperCamelCase ) return {"f1": float(_UpperCamelCase ) if score.size == 1 else score}
8
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Any = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase__( lowercase : Dict ) -> Dict: __snake_case : Any = [1, 2] __snake_case : Dict = {"a": 1, "b": 2} __snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]} __snake_case : int = {"a": {"1": 1}, "b": 2} __snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case : Dict = [2, 3] __snake_case : Tuple = {"a": 2, "b": 3} __snake_case : int = {"a": [2, 3], "b": [4, 5]} __snake_case : Dict = {"a": {"1": 2}, "b": 3} __snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
326
0
__lowerCAmelCase : Optional[int] ='\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __lowerCAmelCase : Tuple =[{'type': 'code', 'content': INSTALL_CONTENT}] __lowerCAmelCase : int ={ '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
9
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any: __snake_case : Optional[Any] = False __snake_case : Optional[Any] = search_prob __snake_case : str = start_temperate __snake_case : List[Any] = [] __snake_case : str = 0 __snake_case : Dict = None while not search_end: __snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case : List[Any] = current_state scores.append(lowercase ) iterations += 1 __snake_case : Dict = None __snake_case : str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor __snake_case : int = neighbors.pop(lowercase ) __snake_case : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case : List[str] = picked_neighbor else: __snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case : str = picked_neighbor __snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case : Optional[Any] = True else: __snake_case : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase ) , lowercase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any: return (3 * x**2) - (6 * y) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' ) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' )
326
0
def lowerCAmelCase_ ( __a = 50 ) -> int: """simple docstring""" lowerCamelCase__: List[str] =[1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
10
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : Tuple ="FlavaImageProcessor" UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = self.image_processor def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if images is not None: __snake_case : Union[str, Any] = self.image_processor( UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if text is not None and images is not None: encoding.update(UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
326
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } _UpperCamelCase = { '''camembert-base''': 512, } _UpperCamelCase = '''▁''' class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : str =["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' __snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token __snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __snake_case : Dict = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __snake_case : Optional[int] = len(self.fairseq_tokens_to_ids ) __snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = [] __snake_case : Union[str, Any] = "" __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase ) + token __snake_case : List[Any] = True __snake_case : Union[str, Any] = [] else: current_sub_tokens.append(UpperCAmelCase ) __snake_case : int = False out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def __getstate__( self ) -> List[Any]: '''simple docstring''' __snake_case : str = self.__dict__.copy() __snake_case : Optional[Any] = None return state def __setstate__( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : List[str] = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Optional[Any] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: __snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
326
0
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 class lowerCamelCase__( __lowerCamelCase): pass def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' for shard in shards: for i in range(A__ ): yield {"i": i, "shard": shard} def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = int(os.environ["""RANK"""] ) __lowerCamelCase = int(os.environ["""WORLD_SIZE"""] ) __lowerCamelCase = ArgumentParser() parser.add_argument("""--streaming""" , type=A__ ) parser.add_argument("""--local_rank""" , type=A__ ) parser.add_argument("""--num_workers""" , type=A__ , default=0 ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = args.streaming __lowerCamelCase = args.num_workers __lowerCamelCase = {"""shards""": [f'shard_{shard_idx}' for shard_idx in range(A__ )]} __lowerCamelCase = IterableDataset.from_generator(A__ , gen_kwargs=A__ ) if not streaming: __lowerCamelCase = Dataset.from_list(list(A__ ) ) __lowerCamelCase = split_dataset_by_node(A__ , rank=A__ , world_size=A__ ) __lowerCamelCase = torch.utils.data.DataLoader(A__ , num_workers=A__ ) __lowerCamelCase = NUM_SHARDS * NUM_ITEMS_PER_SHARD __lowerCamelCase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __lowerCamelCase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
12
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool: __snake_case : List[str] = len(lowercase ) __snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __snake_case : Optional[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __snake_case : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __snake_case : List[str] = subset[i - 1][j] if arr[i - 1] <= j: __snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
326
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
13
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _UpperCamelCase = 4 _UpperCamelCase = 3 class _lowerCamelCase ( a ): """simple docstring""" pass def lowerCAmelCase__( lowercase : List[str] ) -> Any: for shard in shards: for i in range(lowercase ): yield {"i": i, "shard": shard} def lowerCAmelCase__( ) -> Optional[int]: __snake_case : List[Any] = int(os.environ["RANK"] ) __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : List[str] = ArgumentParser() parser.add_argument("--streaming" , type=lowercase ) parser.add_argument("--local_rank" , type=lowercase ) parser.add_argument("--num_workers" , type=lowercase , default=0 ) __snake_case : Any = parser.parse_args() __snake_case : Dict = args.streaming __snake_case : Union[str, Any] = args.num_workers __snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]} __snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase ) if not streaming: __snake_case : Any = Dataset.from_list(list(lowercase ) ) __snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase ) __snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase ) __snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __snake_case : Dict = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
326
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = (DDIMParallelScheduler,) UpperCAmelCase__ = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def SCREAMING_SNAKE_CASE ( self : str , **UpperCAmelCase__ : str) ->List[str]: '''simple docstring''' A__ = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**UpperCAmelCase__) return config def SCREAMING_SNAKE_CASE ( self : int , **UpperCAmelCase__ : List[Any]) ->Tuple: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**UpperCAmelCase__) A__ = scheduler_class(**UpperCAmelCase__) A__ , A__ = 10, 0.0 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase__) for t in scheduler.timesteps: A__ = model(UpperCAmelCase__ , UpperCAmelCase__) A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__).prev_sample return sample def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Tuple: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCAmelCase__) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(steps_offset=1) A__ = scheduler_class(**UpperCAmelCase__) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1])) def SCREAMING_SNAKE_CASE ( self : str) ->int: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase__ , beta_end=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->int: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]: '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase__) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase__ , prediction_type=UpperCAmelCase__ , sample_max_value=UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[str]: '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500]): self.check_over_forward(time_step=UpperCAmelCase__ , num_inference_steps=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]: '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=UpperCAmelCase__ , eta=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Dict: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400) - 0.14771)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960) - 0.32460)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486) - 0.00979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998) - 0.02)) < 1e-5 def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ , A__ = 10, 0.0 scheduler.set_timesteps(UpperCAmelCase__) A__ = self.dummy_model() A__ = self.dummy_sample_deter A__ = self.dummy_sample_deter + 0.1 A__ = self.dummy_sample_deter - 0.1 A__ = samplea.shape[0] A__ = torch.stack([samplea, samplea, samplea] , dim=0) A__ = torch.arange(UpperCAmelCase__)[0:3, None].repeat(1 , UpperCAmelCase__) A__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) A__ = scheduler.batch_step_no_noise(UpperCAmelCase__ , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , UpperCAmelCase__) A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 1147.7904) < 1e-2 assert abs(result_mean.item() - 0.4982) < 1e-3 def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' A__ = self.full_loop() A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 172.0067) < 1e-2 assert abs(result_mean.item() - 0.223967) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Any) ->List[Any]: '''simple docstring''' A__ = self.full_loop(prediction_type='''v_prediction''') A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 52.5302) < 1e-2 assert abs(result_mean.item() - 0.0684) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' A__ = self.full_loop(set_alpha_to_one=UpperCAmelCase__ , beta_start=0.01) A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 149.8295) < 1e-2 assert abs(result_mean.item() - 0.1951) < 1e-3 def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]: '''simple docstring''' A__ = self.full_loop(set_alpha_to_one=UpperCAmelCase__ , beta_start=0.01) A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 149.0784) < 1e-2 assert abs(result_mean.item() - 0.1941) < 1e-3
14
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int: __snake_case : List[Any] = limit + 1 __snake_case : List[str] = [0] * limit for first_term in range(1 , lowercase ): for n in range(lowercase , lowercase , lowercase ): __snake_case : Union[str, Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
326
0
def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" _enforce_args(a_ , a_ ) if n == 0: return 0 __A = float("-inf" ) for i in range(1 , n + 1 ): __A = max( a_ , prices[i - 1] + naive_cut_rod_recursive(n - i , a_ ) ) return max_revue def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]: """simple docstring""" _enforce_args(a_ , a_ ) __A = [float("-inf" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(a_ , a_ , a_ ) def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __A = float("-inf" ) for i in range(1 , n + 1 ): __A = max( a_ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , a_ , a_ ) , ) __A = max_revenue return max_rev[n] def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" _enforce_args(a_ , a_ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __A = [float("-inf" ) for _ in range(n + 1 )] __A = 0 for i in range(1 , n + 1 ): __A = max_rev[i] for j in range(1 , i + 1 ): __A = max(a_ , prices[j - 1] + max_rev[i - j] ) __A = max_revenue_i return max_rev[n] def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" if n < 0: __A = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(a_ ) if n > len(a_ ): __A = ( "Each integral piece of rod must have a corresponding price. " F'''Got n = {n} but length of prices = {len(a_ )}''' ) raise ValueError(a_ ) def UpperCAmelCase ( ) -> List[str]: """simple docstring""" __A = [6, 1_0, 1_2, 1_5, 2_0, 2_3] __A = len(a_ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __A = 3_6 __A = top_down_cut_rod(a_ , a_ ) __A = bottom_up_cut_rod(a_ , a_ ) __A = naive_cut_rod_recursive(a_ , a_ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
15
from __future__ import annotations def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]: __snake_case : List[str] = word_bank or [] # create a table __snake_case : int = len(lowercase ) + 1 __snake_case : list[list[list[str]]] = [] for _ in range(lowercase ): table.append([] ) # seed value __snake_case : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase )] == word: __snake_case : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase )]: combination.reverse() return table[len(lowercase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
326
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['MobileViTFeatureExtractor'] lowerCAmelCase_ = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : int = use_attention_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[str] = vocab_size __snake_case : int = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[Any] = num_choices __snake_case : Union[str, Any] = rescale_embeddings __snake_case : List[Any] = attention_type __snake_case : str = use_bias __snake_case : Dict = block_size __snake_case : Optional[Any] = num_random_blocks def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase_ : Dict =False UpperCAmelCase_ : str =False def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
326
0
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session") def _A ( ) -> Any: '''simple docstring''' __lowercase = 10 __lowercase = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"])), "answers": datasets.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), }), "id": datasets.Value("int64"), }) __lowercase = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(UpperCamelCase_)), }, features=UpperCamelCase_, ) return dataset @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Optional[int]) -> Any: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "file.arrow") dataset.map(cache_file_name=UpperCamelCase_) return filename # FILE_CONTENT + files _a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Optional[int]) -> List[Any]: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "file.txt" __lowercase = FILE_CONTENT with open(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_) return filename @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : int) -> Any: '''simple docstring''' import bza __lowercase = tmp_path_factory.mktemp("data") / "file.txt.bz2" __lowercase = bytes(UpperCamelCase_, "utf-8") with bza.open(UpperCamelCase_, "wb") as f: f.write(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Union[str, Any]) -> Optional[Any]: '''simple docstring''' import gzip __lowercase = str(tmp_path_factory.mktemp("data") / "file.txt.gz") __lowercase = bytes(UpperCamelCase_, "utf-8") with gzip.open(UpperCamelCase_, "wb") as f: f.write(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Tuple) -> Union[str, Any]: '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame __lowercase = tmp_path_factory.mktemp("data") / "file.txt.lz4" __lowercase = bytes(UpperCamelCase_, "utf-8") with lza.frame.open(UpperCamelCase_, "wb") as f: f.write(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : str, UpperCamelCase_ : Any) -> Optional[Any]: '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr __lowercase = tmp_path_factory.mktemp("data") / "file.txt.7z" with pyazr.SevenZipFile(UpperCamelCase_, "w") as archive: archive.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> Optional[Any]: '''simple docstring''' import tarfile __lowercase = tmp_path_factory.mktemp("data") / "file.txt.tar" with tarfile.TarFile(UpperCamelCase_, "w") as f: f.add(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' import lzma __lowercase = tmp_path_factory.mktemp("data") / "file.txt.xz" __lowercase = bytes(UpperCamelCase_, "utf-8") with lzma.open(UpperCamelCase_, "wb") as f: f.write(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Tuple) -> int: '''simple docstring''' import zipfile __lowercase = tmp_path_factory.mktemp("data") / "file.txt.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : str) -> Union[str, Any]: '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __lowercase = tmp_path_factory.mktemp("data") / "file.txt.zst" __lowercase = bytes(UpperCamelCase_, "utf-8") with zstd.open(UpperCamelCase_, "wb") as f: f.write(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : List[Any]) -> Optional[Any]: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "file.xml" __lowercase = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>") with open(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_) return filename _a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] _a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] _a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } _a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] _a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session") def _A ( ) -> Any: '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Union[str, Any]) -> Optional[Any]: '''simple docstring''' __lowercase = datasets.Dataset.from_dict(UpperCamelCase_) __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.arrow") dataset.map(cache_file_name=UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Optional[Any]) -> Union[str, Any]: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.sqlite") with contextlib.closing(sqlitea.connect(UpperCamelCase_)) as con: __lowercase = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)") for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values())) con.commit() return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Any) -> int: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.csv") with open(UpperCamelCase_, "w", newline="") as f: __lowercase = csv.DictWriter(UpperCamelCase_, fieldnames=["col_1", "col_2", "col_3"]) writer.writeheader() for item in DATA: writer.writerow(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Dict) -> Dict: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset2.csv") with open(UpperCamelCase_, "w", newline="") as f: __lowercase = csv.DictWriter(UpperCamelCase_, fieldnames=["col_1", "col_2", "col_3"]) writer.writeheader() for item in DATA: writer.writerow(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : int) -> Optional[Any]: '''simple docstring''' import bza __lowercase = tmp_path_factory.mktemp("data") / "dataset.csv.bz2" with open(UpperCamelCase_, "rb") as f: __lowercase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(UpperCamelCase_, "wb") as f: f.write(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : Dict, UpperCamelCase_ : List[str]) -> str: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset.csv.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : List[Any], UpperCamelCase_ : str, UpperCamelCase_ : Optional[Any]) -> Union[str, Any]: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset.csv.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV"))) f.write(UpperCamelCase_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV"))) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : int) -> int: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset_with_dir.csv.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.join("main_dir", os.path.basename(UpperCamelCase_))) f.write(UpperCamelCase_, arcname=os.path.join("main_dir", os.path.basename(UpperCamelCase_))) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : List[str]) -> Union[str, Any]: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.parquet") __lowercase = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), }) with open(UpperCamelCase_, "wb") as f: __lowercase = pq.ParquetWriter(UpperCamelCase_, schema=UpperCamelCase_) __lowercase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(UpperCamelCase_))] for k in DATA[0]}, schema=UpperCamelCase_) writer.write_table(UpperCamelCase_) writer.close() return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : str) -> Tuple: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.json") __lowercase = {"data": DATA} with open(UpperCamelCase_, "w") as f: json.dump(UpperCamelCase_, UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Optional[Any]) -> Any: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.json") __lowercase = {"data": DATA_DICT_OF_LISTS} with open(UpperCamelCase_, "w") as f: json.dump(UpperCamelCase_, UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : str) -> int: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.jsonl") with open(UpperCamelCase_, "w") as f: for item in DATA: f.write(json.dumps(UpperCamelCase_) + "\n") return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Optional[int]) -> Tuple: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset2.jsonl") with open(UpperCamelCase_, "w") as f: for item in DATA: f.write(json.dumps(UpperCamelCase_) + "\n") return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : str) -> Any: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset_312.jsonl") with open(UpperCamelCase_, "w") as f: for item in DATA_312: f.write(json.dumps(UpperCamelCase_) + "\n") return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Dict) -> Tuple: '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("data") / "dataset-str.jsonl") with open(UpperCamelCase_, "w") as f: for item in DATA_STR: f.write(json.dumps(UpperCamelCase_) + "\n") return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : int) -> Union[str, Any]: '''simple docstring''' import gzip __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.txt.gz") with open(UpperCamelCase_, "rb") as orig_file: with gzip.open(UpperCamelCase_, "wb") as zipped_file: zipped_file.writelines(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : List[str]) -> List[str]: '''simple docstring''' import gzip __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.jsonl.gz") with open(UpperCamelCase_, "rb") as orig_file: with gzip.open(UpperCamelCase_, "wb") as zipped_file: zipped_file.writelines(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : Any, UpperCamelCase_ : Union[str, Any]) -> Tuple: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset.jsonl.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : List[Any], UpperCamelCase_ : Dict, UpperCamelCase_ : List[Any], UpperCamelCase_ : List[str]) -> Union[str, Any]: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset_nested.jsonl.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.join("nested", os.path.basename(UpperCamelCase_))) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : List[Any], UpperCamelCase_ : Union[str, Any]) -> Dict: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.join("main_dir", os.path.basename(UpperCamelCase_))) f.write(UpperCamelCase_, arcname=os.path.join("main_dir", os.path.basename(UpperCamelCase_))) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : List[Any], UpperCamelCase_ : Dict) -> Tuple: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset.jsonl.tar" with tarfile.TarFile(UpperCamelCase_, "w") as f: f.add(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) f.add(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Optional[int]) -> Optional[Any]: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset_nested.jsonl.tar" with tarfile.TarFile(UpperCamelCase_, "w") as f: f.add(UpperCamelCase_, arcname=os.path.join("nested", os.path.basename(UpperCamelCase_))) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Any) -> Dict: '''simple docstring''' __lowercase = ["0", "1", "2", "3"] __lowercase = str(tmp_path_factory.mktemp("data") / "dataset.txt") with open(UpperCamelCase_, "w") as f: for item in data: f.write(item + "\n") return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = ["0", "1", "2", "3"] __lowercase = str(tmp_path_factory.mktemp("data") / "dataset2.txt") with open(UpperCamelCase_, "w") as f: for item in data: f.write(item + "\n") return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : str) -> Optional[Any]: '''simple docstring''' __lowercase = ["0", "1", "2", "3"] __lowercase = tmp_path_factory.mktemp("data") / "dataset.abc" with open(UpperCamelCase_, "w") as f: for item in data: f.write(item + "\n") return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : List[Any], UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Union[str, Any]) -> str: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset.text.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : str, UpperCamelCase_ : Dict, UpperCamelCase_ : int) -> Tuple: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset_with_dir.text.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.join("main_dir", os.path.basename(UpperCamelCase_))) f.write(UpperCamelCase_, arcname=os.path.join("main_dir", os.path.basename(UpperCamelCase_))) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : int, UpperCamelCase_ : str, UpperCamelCase_ : Optional[int]) -> Optional[int]: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset.ext.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.basename("unsupported.ext")) f.write(UpperCamelCase_, arcname=os.path.basename("unsupported_2.ext")) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Dict) -> Union[str, Any]: '''simple docstring''' __lowercase = "\n".join(["First", "Second\u2029with Unicode new line", "Third"]) __lowercase = str(tmp_path_factory.mktemp("data") / "dataset_with_unicode_new_lines.txt") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(UpperCamelCase_) return path @pytest.fixture(scope="session") def _A ( ) -> Any: '''simple docstring''' return os.path.join("tests", "features", "data", "test_image_rgb.jpg") @pytest.fixture(scope="session") def _A ( ) -> Union[str, Any]: '''simple docstring''' return os.path.join("tests", "features", "data", "test_audio_44100.wav") @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Tuple, UpperCamelCase_ : List[str]) -> Tuple: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data") / "dataset.img.zip" with zipfile.ZipFile(UpperCamelCase_, "w") as f: f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_)) f.write(UpperCamelCase_, arcname=os.path.basename(UpperCamelCase_).replace(".jpg", "2.jpg")) return path @pytest.fixture(scope="session") def _A ( UpperCamelCase_ : Union[str, Any]) -> Optional[Any]: '''simple docstring''' __lowercase = tmp_path_factory.mktemp("data_dir") (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w") as f: f.write("foo\n" * 10) with open(data_dir / "subdir" / "test.txt", "w") as f: f.write("bar\n" * 10) # hidden file with open(data_dir / "subdir" / ".test.txt", "w") as f: f.write("bar\n" * 10) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w") as f: f.write("foo\n" * 10) with open(data_dir / ".subdir" / "test.txt", "w") as f: f.write("bar\n" * 10) return data_dir
17
import argparse import datetime def lowerCAmelCase__( lowercase : str ) -> str: __snake_case : int = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } __snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase ) < 11: raise ValueError("Must be 10 characters long" ) # Get month __snake_case : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12" ) __snake_case : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day __snake_case : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31" ) # Get second separator __snake_case : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year __snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation __snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) ) # Start math if m <= 2: __snake_case : Optional[Any] = y - 1 __snake_case : Tuple = m + 12 # maths var __snake_case : int = int(str(lowercase )[:2] ) __snake_case : int = int(str(lowercase )[2:] ) __snake_case : int = int(2.6 * m - 5.3_9 ) __snake_case : int = int(c / 4 ) __snake_case : int = int(k / 4 ) __snake_case : int = int(d + k ) __snake_case : int = int(t + u + v + x ) __snake_case : int = int(z - (2 * c) ) __snake_case : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response __snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) _UpperCamelCase = parser.parse_args() zeller(args.date_input)
326
0
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _snake_case ( lowerCAmelCase : Dict ): """simple docstring""" if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def _snake_case ( lowerCAmelCase : str ): """simple docstring""" for char in word: SCREAMING_SNAKE_CASE_ : Any = ord(lowerCAmelCase ) if not _is_chinese_char(lowerCAmelCase ): return 0 return 1 def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = set() for token in tokens: SCREAMING_SNAKE_CASE_ : int = len(lowerCAmelCase ) > 1 and is_chinese(lowerCAmelCase ) if chinese_word: word_set.add(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(lowerCAmelCase ) return word_list def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE_ : str = max([len(lowerCAmelCase ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE_ : int = bert_tokens SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = 0, len(lowerCAmelCase ) while start < end: SCREAMING_SNAKE_CASE_ : Optional[int] = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE_ : List[str] = min(end - start , lowerCAmelCase ) for i in range(lowerCAmelCase , 1 , -1 ): SCREAMING_SNAKE_CASE_ : Tuple = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE_ : Optional[int] = "##" + bert_word[j] SCREAMING_SNAKE_CASE_ : int = start + i SCREAMING_SNAKE_CASE_ : Optional[Any] = False break if single_word: start += 1 return bert_word def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : LTP , lowerCAmelCase : BertTokenizer ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for i in range(0 , len(lowerCAmelCase ) , 1_0_0 ): SCREAMING_SNAKE_CASE_ : Optional[int] = ltp_tokenizer.seg(lines[i : i + 1_0_0] )[0] SCREAMING_SNAKE_CASE_ : List[Any] = [get_chinese_word(lowerCAmelCase ) for r in res] ltp_res.extend(lowerCAmelCase ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for i in range(0 , len(lowerCAmelCase ) , 1_0_0 ): SCREAMING_SNAKE_CASE_ : str = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=lowerCAmelCase , truncation=lowerCAmelCase , max_length=5_1_2 ) bert_res.extend(res["input_ids"] ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = [] for input_ids, chinese_word in zip(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : str = [] for id in input_ids: SCREAMING_SNAKE_CASE_ : Tuple = bert_tokenizer._convert_id_to_token(lowerCAmelCase ) input_tokens.append(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = add_sub_symbol(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase ): if token[:2] == "##": SCREAMING_SNAKE_CASE_ : List[Any] = token[2:] # save chinese tokens' pos if len(lowerCAmelCase ) == 1 and _is_chinese_char(ord(lowerCAmelCase ) ): ref_id.append(lowerCAmelCase ) ref_ids.append(lowerCAmelCase ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) return ref_ids def _snake_case ( lowerCAmelCase : Optional[int] ): """simple docstring""" with open(args.file_name , "r" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = f.readlines() SCREAMING_SNAKE_CASE_ : int = [line.strip() for line in data if len(lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE_ : Union[str, Any] = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE_ : Tuple = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE_ : List[str] = prepare_ref(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) with open(args.save_path , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = [json.dumps(lowerCAmelCase ) + "\n" for ref in ref_ids] f.writelines(lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') __lowerCamelCase : int = parser.parse_args() main(args)
18
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int: if index == r: for j in range(lowercase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __snake_case : Union[str, Any] = arr[i] combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]: # A temporary array to store all combination one by one __snake_case : Tuple = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 ) if __name__ == "__main__": # Driver code to check the function above _UpperCamelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
326
0
import numpy # List of input, output pairs __A =( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) __A =(((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) __A =[2, 4, 1, 5] __A =len(train_data) __A =0.009 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__="train" ): return calculate_hypothesis_value(lowerCamelCase__ , lowerCamelCase__ ) - output( lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = 0 for i in range(len(lowerCamelCase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__=m ): lowerCamelCase_ = 0 for i in range(lowerCamelCase__ ): if index == -1: summation_value += _error(lowerCamelCase__ ) else: summation_value += _error(lowerCamelCase__ ) * train_data[i][0][index] return summation_value def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = summation_of_cost_derivative(lowerCamelCase__ , lowerCamelCase__ ) / m return cost_derivative_value def lowerCamelCase_ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase_ = 0.00_00_02 lowerCamelCase_ = 0 lowerCamelCase_ = 0 while True: j += 1 lowerCamelCase_ = [0, 0, 0, 0] for i in range(0 , len(lowerCamelCase__ ) ): lowerCamelCase_ = get_cost_derivative(i - 1 ) lowerCamelCase_ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCamelCase__ , lowerCamelCase__ , atol=lowerCamelCase__ , rtol=lowerCamelCase__ , ): break lowerCamelCase_ = temp_parameter_vector print(("Number of iterations:", j) ) def lowerCamelCase_ ( ): for i in range(len(lowerCamelCase__ ) ): print(("Actual output value:", output(lowerCamelCase__ , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(lowerCamelCase__ , "test" )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
19
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] _UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def lowerCAmelCase__( lowercase : str ) -> Optional[Any]: __snake_case : Optional[int] = torch.load(lowercase , map_location="cpu" ) return sd def lowerCAmelCase__( lowercase : List[Any] , lowercase : List[Any] , lowercase : List[Any]=rename_keys_prefix ) -> Dict: __snake_case : Tuple = OrderedDict() __snake_case : str = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __snake_case : Optional[Any] = key for name_pair in rename_keys_prefix: __snake_case : List[str] = new_key.replace(name_pair[0] , name_pair[1] ) __snake_case : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __snake_case : List[Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Any ) -> List[Any]: assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: __snake_case : Any = "pretraining" if "vcr" in checkpoint_path: __snake_case : Optional[Any] = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: __snake_case : Tuple = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: __snake_case : Any = {"visual_embedding_dim": 1024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: __snake_case : Dict = {"visual_embedding_dim": 512} __snake_case : Any = "multichoice" elif "vqa_advanced" in checkpoint_path: __snake_case : List[Any] = {"visual_embedding_dim": 2048} __snake_case : Optional[Any] = "vqa_advanced" elif "vqa" in checkpoint_path: __snake_case : Union[str, Any] = {"visual_embedding_dim": 2048, "num_labels": 3129} __snake_case : Union[str, Any] = "vqa" elif "nlvr" in checkpoint_path: __snake_case : Tuple = { "visual_embedding_dim": 1024, "num_labels": 2, } __snake_case : List[Any] = "nlvr" __snake_case : Union[str, Any] = VisualBertConfig(**lowercase ) # Load State Dict __snake_case : Any = load_state_dict(lowercase ) __snake_case : Dict = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": __snake_case : Optional[Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": __snake_case : Tuple = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": __snake_case : Tuple = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": __snake_case : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
326
0
from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=lowerCAmelCase ): _a : Any= ["flax", "transformers"] def __init__( self ,*snake_case ,**snake_case ): '''simple docstring''' requires_backends(self ,["""flax""", """transformers"""] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ): '''simple docstring''' requires_backends(cls ,["""flax""", """transformers"""] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ): '''simple docstring''' requires_backends(cls ,["""flax""", """transformers"""] ) class __snake_case ( metaclass=lowerCAmelCase ): _a : str= ["flax", "transformers"] def __init__( self ,*snake_case ,**snake_case ): '''simple docstring''' requires_backends(self ,["""flax""", """transformers"""] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ): '''simple docstring''' requires_backends(cls ,["""flax""", """transformers"""] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ): '''simple docstring''' requires_backends(cls ,["""flax""", """transformers"""] ) class __snake_case ( metaclass=lowerCAmelCase ): _a : List[str]= ["flax", "transformers"] def __init__( self ,*snake_case ,**snake_case ): '''simple docstring''' requires_backends(self ,["""flax""", """transformers"""] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ): '''simple docstring''' requires_backends(cls ,["""flax""", """transformers"""] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ): '''simple docstring''' requires_backends(cls ,["""flax""", """transformers"""] ) class __snake_case ( metaclass=lowerCAmelCase ): _a : Any= ["flax", "transformers"] def __init__( self ,*snake_case ,**snake_case ): '''simple docstring''' requires_backends(self ,["""flax""", """transformers"""] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ): '''simple docstring''' requires_backends(cls ,["""flax""", """transformers"""] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ,*snake_case ,**snake_case ): '''simple docstring''' requires_backends(cls ,["""flax""", """transformers"""] )
20
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple: # Load configuration defined in the metadata file with open(lowercase ) as metadata_file: __snake_case : int = json.load(lowercase ) __snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file __snake_case : Tuple = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] __snake_case : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) __snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: __snake_case : Tuple = json.load(lowercase ) __snake_case : List[Any] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) __snake_case : Any = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens __snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0] __snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0] __snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"] __snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __snake_case : List[Any] = state_dict[bias_name] __snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) __snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 ) __snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self.""" __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] __snake_case : str = state_dict[prefix + matrix_name] __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"] __snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __snake_case : List[Any] = state_dict["entity_predictions.bias"] __snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __snake_case : Any = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __snake_case : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __snake_case : str = state_dict[key] else: __snake_case : str = state_dict[key] __snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) __snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __snake_case : Union[str, Any] = (0, 9) __snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : Any = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : Optional[Any] = torch.Size((1, 33, 768) ) __snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : str = torch.Size((1, 1, 768) ) __snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __snake_case : str = MLukeTokenizer.from_pretrained(lowercase ) __snake_case : Dict = "Tokyo is the capital of <mask>." __snake_case : Union[str, Any] = (24, 30) __snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : int = model(**lowercase ) __snake_case : Dict = encoding["input_ids"][0].tolist() __snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) __snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item() __snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]: __snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"] __snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )] __snake_case : Any = {} for entry in data: __snake_case : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __snake_case : Optional[int] = entity_id break __snake_case : Union[str, Any] = f"""{language}:{entity_name}""" __snake_case : Any = entity_id return new_mapping if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
0
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCamelCase( _a, unittest.TestCase ): # TODO: is there an appropriate internal test set? lowercase_ : int = """ssube/stable-diffusion-x4-upscaler-onnx""" def UpperCamelCase ( self, lowerCamelCase=0) -> Union[str, Any]: """simple docstring""" _lowercase : Dict = floats_tensor((1, 3, 1_28, 1_28), rng=random.Random(lowerCamelCase)) _lowercase : Union[str, Any] = torch.manual_seed(lowerCamelCase) _lowercase : Optional[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images _lowercase : Optional[int] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3]) assert np.abs(image_slice - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : str = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = self.get_dummy_inputs() _lowercase : List[Any] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : int = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = self.get_dummy_inputs() _lowercase : Union[str, Any] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Optional[int] = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Optional[Any] = pipe(**lowerCamelCase).images _lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = self.get_dummy_inputs() _lowercase : List[str] = pipe(**lowerCamelCase).images _lowercase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = ort.SessionOptions() _lowercase : str = False return options def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : int = init_image.resize((1_28, 1_28)) # using the PNDM scheduler by default _lowercase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : str = pipe( prompt=lowerCamelCase, image=lowerCamelCase, guidance_scale=7.5, num_inference_steps=10, generator=lowerCamelCase, output_type='np', ) _lowercase : List[Any] = output.images _lowercase : List[Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowercase : List[Any] = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : int = init_image.resize((1_28, 1_28)) _lowercase : str = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', subfolder='scheduler') _lowercase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', scheduler=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[int] = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : str = pipe( prompt=lowerCamelCase, image=lowerCamelCase, guidance_scale=7.5, num_inference_steps=20, generator=lowerCamelCase, output_type='np', ) _lowercase : str = output.images _lowercase : str = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2
21
from maths.prime_factors import prime_factors def lowerCAmelCase__( lowercase : int ) -> int: if not isinstance(lowercase , lowercase ): __snake_case : Optional[int] = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(lowercase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
326
0
'''simple docstring''' from __future__ import annotations def UpperCAmelCase_ ( __lowercase : list[float] , __lowercase : list[float] ) -> float: '''simple docstring''' _UpperCAmelCase = sorted(numsa + numsa ) _UpperCAmelCase , _UpperCAmelCase = divmod(len(__lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE :Tuple = [float(x) for x in input('''Enter the elements of first array: ''').split()] __SCREAMING_SNAKE_CASE :Any = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
22
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) __snake_case : str = AutoTokenizer.from_pretrained("google/mt5-small" ) __snake_case : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids __snake_case : int = tokenizer("Hi I am" , return_tensors="np" ).input_ids __snake_case : Tuple = shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case : Tuple = model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase ).logits __snake_case : str = optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1] ) ).mean() __snake_case : Any = -(labels.shape[-1] * loss.item()) __snake_case : List[str] = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
326
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = None def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any=0.9_9_9 , _lowerCAmelCase : Optional[Any]="cosine" , ) -> List[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCAmelCase : List[Any] ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCAmelCase : Any ): return math.exp(t * -1_2.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCAmelCase : Any = [] for i in range(_lowerCAmelCase ): UpperCAmelCase : Dict = i / num_diffusion_timesteps UpperCAmelCase : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCAmelCase ) / alpha_bar_fn(_lowerCAmelCase ) , _lowerCAmelCase ) ) return torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE( A__ , A__ ): """simple docstring""" @register_to_config def __init__( self : Union[str, Any] , __snake_case : int = 1000 , __snake_case : str = "fixed_small_log" , __snake_case : bool = True , __snake_case : Optional[float] = 1.0 , __snake_case : str = "epsilon" , __snake_case : str = "squaredcos_cap_v2" , ) -> str: if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) UpperCAmelCase : Union[str, Any] = betas_for_alpha_bar(__snake_case ) UpperCAmelCase : List[Any] = 1.0 - self.betas UpperCAmelCase : List[Any] = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase : List[Any] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase : int = 1.0 # setable values UpperCAmelCase : str = None UpperCAmelCase : Union[str, Any] = torch.from_numpy(np.arange(0 , __snake_case )[::-1].copy() ) UpperCAmelCase : Optional[Any] = variance_type def A ( self : Optional[Any] , __snake_case : torch.FloatTensor , __snake_case : Optional[int] = None ) -> torch.FloatTensor: return sample def A ( self : Dict , __snake_case : int , __snake_case : Union[str, torch.device] = None ) -> Optional[Any]: UpperCAmelCase : List[str] = num_inference_steps UpperCAmelCase : Optional[int] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase : str = (np.arange(0 , __snake_case ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase : Optional[int] = torch.from_numpy(__snake_case ).to(__snake_case ) def A ( self : Any , __snake_case : str , __snake_case : List[str]=None , __snake_case : str=None , __snake_case : List[str]=None ) -> int: if prev_timestep is None: UpperCAmelCase : Optional[int] = t - 1 UpperCAmelCase : Any = self.alphas_cumprod[t] UpperCAmelCase : Any = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase : Any = 1 - alpha_prod_t UpperCAmelCase : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase : Optional[int] = self.betas[t] else: UpperCAmelCase : List[str] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase : int = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase : Any = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase : Optional[Any] = torch.log(torch.clamp(__snake_case , min=1E-20 ) ) UpperCAmelCase : int = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase : Tuple = variance.log() UpperCAmelCase : List[Any] = beta.log() UpperCAmelCase : List[Any] = (predicted_variance + 1) / 2 UpperCAmelCase : List[Any] = frac * max_log + (1 - frac) * min_log return variance def A ( self : Union[str, Any] , __snake_case : torch.FloatTensor , __snake_case : int , __snake_case : torch.FloatTensor , __snake_case : Optional[int] = None , __snake_case : int=None , __snake_case : bool = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: UpperCAmelCase : Optional[int] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase , UpperCAmelCase : Tuple = torch.split(__snake_case , sample.shape[1] , dim=1 ) else: UpperCAmelCase : int = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase : Optional[Any] = t - 1 UpperCAmelCase : str = self.alphas_cumprod[t] UpperCAmelCase : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase : Union[str, Any] = 1 - alpha_prod_t UpperCAmelCase : Dict = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase : Tuple = self.betas[t] UpperCAmelCase : Optional[Any] = self.alphas[t] else: UpperCAmelCase : List[str] = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase : Union[str, Any] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase : Union[str, Any] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase : int = torch.clamp( __snake_case , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase : int = 0 if t > 0: UpperCAmelCase : Union[str, Any] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__snake_case , device=model_output.device ) UpperCAmelCase : Optional[Any] = self._get_variance( __snake_case , predicted_variance=__snake_case , prev_timestep=__snake_case , ) if self.variance_type == "fixed_small_log": UpperCAmelCase : Tuple = variance elif self.variance_type == "learned_range": UpperCAmelCase : List[Any] = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" ''' for the UnCLIPScheduler.''' ) UpperCAmelCase : Dict = variance * variance_noise UpperCAmelCase : Tuple = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__snake_case , pred_original_sample=__snake_case ) def A ( self : Optional[Any] , __snake_case : torch.FloatTensor , __snake_case : torch.FloatTensor , __snake_case : torch.IntTensor , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples UpperCAmelCase : Dict = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase : Tuple = timesteps.to(original_samples.device ) UpperCAmelCase : int = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase : Optional[int] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase : Optional[int] = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase : Any = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase : Any = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase : int = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
23
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> List[str]: '''simple docstring''' super().__init__(UpperCAmelCase ) __snake_case : Optional[int] = proj_size __snake_case : str = CLIPVisionModel(UpperCAmelCase ) __snake_case : Tuple = PaintByExampleMapper(UpperCAmelCase ) __snake_case : Union[str, Any] = nn.LayerNorm(config.hidden_size ) __snake_case : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __snake_case : Optional[int] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' __snake_case : int = self.model(pixel_values=UpperCAmelCase ) __snake_case : Optional[int] = clip_output.pooler_output __snake_case : Any = self.mapper(latent_states[:, None] ) __snake_case : Any = self.final_layer_norm(UpperCAmelCase ) __snake_case : str = self.proj_out(UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__() __snake_case : List[Any] = (config.num_hidden_layers + 1) // 5 __snake_case : Dict = config.hidden_size __snake_case : str = 1 __snake_case : List[Any] = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase ) for _ in range(UpperCAmelCase ) ] ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' for block in self.blocks: __snake_case : int = block(UpperCAmelCase ) return hidden_states
326
0
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__(self : List[Any] , a__ : Optional[int] , a__ : Optional[int]=13 , a__ : List[Any]=7 , a__ : Dict=True , a__ : Optional[Any]=True , a__ : List[Any]=True , a__ : Optional[Any]=True , a__ : Optional[int]=99 , a__ : Optional[Any]=32 , a__ : List[str]=5 , a__ : Any=4 , a__ : str=37 , a__ : Optional[int]="gelu" , a__ : Optional[Any]=0.1 , a__ : Dict=0.1 , a__ : Any=512 , a__ : Union[str, Any]=16 , a__ : Any=2 , a__ : Optional[int]=0.0_2 , a__ : Optional[int]=4 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_attention_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_choices def a (self : Union[str, Any] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_attention_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a (self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def a (self : Dict ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = True __snake_case = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : Any = True A_ : Optional[Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def a (self : Dict ): """simple docstring""" __snake_case = FlaxRobertaPreLayerNormModelTester(self ) @slow def a (self : List[Any] ): """simple docstring""" for model_class_name in self.all_model_classes: __snake_case = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ ) __snake_case = model(np.ones((1, 1) ) ) self.assertIsNotNone(a__ ) @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def a (self : str ): """simple docstring""" __snake_case = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ ) __snake_case = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __snake_case = model(a__ )[0] __snake_case = [1, 11, 5_0265] self.assertEqual(list(output.shape ) , a__ ) # compare the actual values for a slice. __snake_case = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , a__ , atol=1E-4 ) ) @slow def a (self : Any ): """simple docstring""" __snake_case = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=a__ ) __snake_case = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __snake_case = model(a__ )[0] # compare the actual values for a slice. __snake_case = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , a__ , atol=1E-4 ) )
24
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
326
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : int = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Optional[Any] = '''mctct''' def __init__(self , SCREAMING_SNAKE_CASE__=80_65 , SCREAMING_SNAKE_CASE__=15_36 , SCREAMING_SNAKE_CASE__=36 , SCREAMING_SNAKE_CASE__=61_44 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3_84 , SCREAMING_SNAKE_CASE__=9_20 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__="relu" , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=(7,) , SCREAMING_SNAKE_CASE__=(3,) , SCREAMING_SNAKE_CASE__=80 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="sum" , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ) -> str: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE__ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE__ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = attention_head_dim SCREAMING_SNAKE_CASE__ : str = max_position_embeddings SCREAMING_SNAKE_CASE__ : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE__ : List[str] = layerdrop SCREAMING_SNAKE_CASE__ : Any = hidden_act SCREAMING_SNAKE_CASE__ : str = initializer_range SCREAMING_SNAKE_CASE__ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = pad_token_id SCREAMING_SNAKE_CASE__ : Any = bos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = eos_token_id SCREAMING_SNAKE_CASE__ : Any = conv_glu_dim SCREAMING_SNAKE_CASE__ : Tuple = conv_dropout SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_conv_layers SCREAMING_SNAKE_CASE__ : Tuple = input_feat_per_channel SCREAMING_SNAKE_CASE__ : Dict = input_channels SCREAMING_SNAKE_CASE__ : Optional[int] = conv_channels SCREAMING_SNAKE_CASE__ : List[str] = ctc_loss_reduction SCREAMING_SNAKE_CASE__ : Any = ctc_zero_infinity # prevents config testing fail with exporting to json SCREAMING_SNAKE_CASE__ : int = list(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = list(SCREAMING_SNAKE_CASE__ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
25
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = torch.device('''cpu''') def lowerCAmelCase__( ) -> Any: __snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : Optional[int] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCAmelCase__( lowercase : Dict ) -> List[Any]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCAmelCase__( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> List[Any]: __snake_case : List[Any] = dct.pop(lowercase ) __snake_case : List[Any] = val def lowerCAmelCase__( lowercase : Union[str, Any] ) -> Tuple: __snake_case : Optional[Any] = [] for k in state_dict.keys(): __snake_case : Union[str, Any] = k if ".pwconv" in k: __snake_case : Any = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: __snake_case : List[Any] = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: __snake_case : Optional[int] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: __snake_case : int = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: __snake_case : int = k_new.split("." ) if ls[2].isdigit(): __snake_case : List[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: __snake_case : Optional[int] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[str] ) -> Union[str, Any]: __snake_case : List[str] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __snake_case : Tuple = 1000 __snake_case : Any = "huggingface/label-files" __snake_case : int = "imagenet-1k-id2label.json" __snake_case : Dict = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) __snake_case : str = {int(lowercase ): v for k, v in idalabel.items()} __snake_case : int = idalabel __snake_case : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __snake_case : Optional[Any] = [3, 3, 6, 4] __snake_case : Optional[int] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": __snake_case : List[str] = [3, 3, 9, 6] __snake_case : Optional[Any] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": __snake_case : Optional[int] = [4, 3, 10, 5] __snake_case : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": __snake_case : str = [4, 4, 12, 6] __snake_case : Optional[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): __snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase ) else: __snake_case : Tuple = torch.load(lowercase , map_location="cpu" ) __snake_case : Optional[int] = checkpoint __snake_case : Any = create_rename_keys(lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # load HuggingFace model __snake_case : Tuple = SwiftFormerForImageClassification(lowercase ).eval() hf_model.load_state_dict(lowercase ) # prepare test inputs __snake_case : Optional[Any] = prepare_img() __snake_case : str = ViTImageProcessor.from_pretrained("preprocessor_config" ) __snake_case : Optional[int] = processor(images=lowercase , return_tensors="pt" ) # compare outputs from both models __snake_case : str = get_expected_output(lowercase ) __snake_case : Optional[int] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowercase , atol=1E-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _UpperCamelCase = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
326
0
from __future__ import annotations import numpy as np def lowerCAmelCase_ ( snake_case_ ): return np.maximum(0,snake_case_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
26
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) _UpperCamelCase = logging.getLogger(__name__) def lowerCAmelCase__( lowercase : str ) -> List[str]: __snake_case : int = git.Repo(search_parent_directories=lowercase ) __snake_case : Union[str, Any] = { "repo_id": str(lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(lowercase , "git_log.json" ) , "w" ) as f: json.dump(lowercase , lowercase , indent=4 ) def lowerCAmelCase__( lowercase : Optional[Any] ) -> Optional[Any]: if params.n_gpu <= 0: __snake_case : Union[str, Any] = 0 __snake_case : Optional[int] = -1 __snake_case : Union[str, Any] = True __snake_case : Tuple = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : int = int(os.environ["N_GPU_NODE"] ) __snake_case : Union[str, Any] = int(os.environ["RANK"] ) # number of nodes / node ID __snake_case : Optional[Any] = params.world_size // params.n_gpu_per_node __snake_case : Optional[Any] = params.global_rank // params.n_gpu_per_node __snake_case : Union[str, Any] = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 __snake_case : Any = 1 __snake_case : str = 0 __snake_case : Optional[Any] = 0 __snake_case : Dict = 0 __snake_case : int = 1 __snake_case : Optional[Any] = 1 __snake_case : Tuple = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __snake_case : List[Any] = params.node_id == 0 and params.local_rank == 0 __snake_case : List[Any] = params.n_nodes > 1 # summary __snake_case : List[Any] = f"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def lowerCAmelCase__( lowercase : Dict ) -> Union[str, Any]: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
326
0
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __UpperCamelCase : def __init__( self , __a , __a=14 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ): '''simple docstring''' __a : Union[str, Any] = parent __a : str = batch_size __a : Optional[int] = seq_length __a : Any = is_training __a : Tuple = use_token_type_ids __a : Optional[int] = use_input_mask __a : Optional[int] = use_labels __a : Dict = use_mc_token_ids __a : Union[str, Any] = vocab_size __a : Optional[Any] = hidden_size __a : Optional[int] = num_hidden_layers __a : List[str] = num_attention_heads __a : List[Any] = intermediate_size __a : int = hidden_act __a : List[str] = hidden_dropout_prob __a : str = attention_probs_dropout_prob __a : Any = max_position_embeddings __a : Union[str, Any] = type_vocab_size __a : int = type_sequence_label_size __a : Union[str, Any] = initializer_range __a : Optional[Any] = num_labels __a : List[str] = num_choices __a : Any = scope __a : List[Any] = self.vocab_size - 1 def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Union[str, Any] = None if self.use_input_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : Tuple = None if self.use_token_type_ids: __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Optional[int] = None if self.use_mc_token_ids: __a : Optional[Any] = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __a : List[Any] = None __a : Dict = None __a : Tuple = None if self.use_labels: __a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : Any = ids_tensor([self.batch_size] , self.num_choices ) __a : Optional[int] = self.get_config() __a : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def __UpperCAmelCase ( self ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a ): '''simple docstring''' __a : Optional[int] = CTRLModel(config=__a ) model.to(__a ) model.eval() model(__a , token_type_ids=__a , head_mask=__a ) model(__a , token_type_ids=__a ) __a : Any = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def __UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a ): '''simple docstring''' __a : Dict = CTRLLMHeadModel(__a ) model.to(__a ) model.eval() __a : List[str] = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : Any = config_and_inputs __a : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def __UpperCAmelCase ( self , __a , __a , __a , __a , *__a ): '''simple docstring''' __a : Any = self.num_labels __a : Union[str, Any] = CTRLForSequenceClassification(__a ) model.to(__a ) model.eval() __a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : str = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () A_ = (CTRLLMHeadModel,) if is_torch_available() else () A_ = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) A_ = True A_ = False A_ = False def __UpperCAmelCase ( self , __a , __a , __a , __a , __a ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = CTRLModelTester(self ) __a : str = ConfigTester(self , config_class=__a , n_embd=37 ) def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCAmelCase ( self ): '''simple docstring''' pass @slow def __UpperCAmelCase ( self ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Dict = CTRLModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def __UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(__a ) __a : Union[str, Any] = torch.tensor( [[1_1859, 0, 1611, 8]] , dtype=torch.long , device=__a ) # Legal the president is __a : List[Any] = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __a : List[str] = model.generate(__a , do_sample=__a ) self.assertListEqual(output_ids[0].tolist() , __a )
27
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str =JukeboxTokenizer UpperCAmelCase_ : Tuple ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : int = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
326
0
'''simple docstring''' _lowerCamelCase : List[str] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __lowerCamelCase ( A__ , A__ , A__ , A__ ) -> List[str]: """simple docstring""" # Return True if there is node that has not iterated. UpperCamelCase = [False] * len(A__ ) UpperCamelCase = [s] UpperCamelCase = True while queue: UpperCamelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(A__ ) UpperCamelCase = True UpperCamelCase = u return visited[t] def __lowerCamelCase ( A__ , A__ , A__ ) -> List[Any]: """simple docstring""" UpperCamelCase = [-1] * (len(A__ )) UpperCamelCase = 0 UpperCamelCase = [] UpperCamelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(A__ , A__ , A__ , A__ ): UpperCamelCase = float('Inf' ) UpperCamelCase = sink while s != source: # Find the minimum value in select path UpperCamelCase = min(A__ , graph[parent[s]][s] ) UpperCamelCase = parent[s] max_flow += path_flow UpperCamelCase = sink while v != source: UpperCamelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCamelCase = parent[v] for i in range(len(A__ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
28
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase : """simple docstring""" UpperCAmelCase_ : str UpperCAmelCase_ : str =None @staticmethod def UpperCAmelCase ( ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' raise NotImplementedError def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def UpperCAmelCase ( cls ) -> Tuple: '''simple docstring''' return F"""`pip install {cls.pip_package or cls.name}`""" class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[int] ="optuna" @staticmethod def UpperCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' return is_optuna_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' return default_hp_space_optuna(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : List[str] ="ray" UpperCAmelCase_ : Dict ="'ray[tune]'" @staticmethod def UpperCAmelCase ( ) -> str: '''simple docstring''' return is_ray_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' return default_hp_space_ray(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="sigopt" @staticmethod def UpperCAmelCase ( ) -> int: '''simple docstring''' return is_sigopt_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return default_hp_space_sigopt(UpperCAmelCase ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : str ="wandb" @staticmethod def UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' return is_wandb_available() def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return default_hp_space_wandb(UpperCAmelCase ) _UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase__( ) -> str: __snake_case : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase ) > 0: __snake_case : Dict = available_backends[0].name if len(lowercase ) > 1: logger.info( f"""{len(lowercase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
326
0
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase=None , **_UpperCamelCase ) -> Dict: logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) UpperCAmelCase_ : Any = model UpperCAmelCase_ : int = kwargs.get('model_save_dir' , _UpperCamelCase ) UpperCAmelCase_ : List[Any] = kwargs.get('latest_model_name' , _UpperCamelCase ) def __call__( self , **_UpperCamelCase ) -> str: UpperCAmelCase_ : Optional[int] = {k: np.array(_UpperCamelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCamelCase , _UpperCamelCase ) @staticmethod def __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ) -> List[Any]: if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) UpperCAmelCase_ : List[str] = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCamelCase , providers=[provider] , sess_options=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> Dict: UpperCAmelCase_ : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name ) UpperCAmelCase_ : str = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCAmelCase_ : Optional[Any] = self.model_save_dir.joinpath(_UpperCamelCase ) if src_path.exists(): UpperCAmelCase_ : List[Any] = Path(_UpperCamelCase ).joinpath(_UpperCamelCase ) try: shutil.copyfile(_UpperCamelCase , _UpperCamelCase ) except shutil.SameFileError: pass def __UpperCAmelCase ( self , _UpperCamelCase , **_UpperCamelCase , ) -> List[str]: if os.path.isfile(_UpperCamelCase ): logger.error(f"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) # saving model weights/files self._save_pretrained(_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> List[str]: UpperCAmelCase_ : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(_UpperCamelCase , _UpperCamelCase ) , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) UpperCAmelCase_ : Tuple = Path(_UpperCamelCase ) # load model from hub else: # download model UpperCAmelCase_ : List[str] = hf_hub_download( repo_id=_UpperCamelCase , filename=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , ) UpperCAmelCase_ : Union[str, Any] = Path(_UpperCamelCase ).parent UpperCAmelCase_ : List[str] = Path(_UpperCamelCase ).name UpperCAmelCase_ : Union[str, Any] = OnnxRuntimeModel.load_model(_UpperCamelCase , provider=_UpperCamelCase , sess_options=_UpperCamelCase ) return cls(model=_UpperCamelCase , **_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> Optional[int]: UpperCAmelCase_ : List[str] = None if len(str(_UpperCamelCase ).split('@' ) ) == 2: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCamelCase , revision=_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , use_auth_token=_UpperCamelCase , **_UpperCamelCase , )
29
import math def lowerCAmelCase__( lowercase : list , lowercase : int = 0 , lowercase : int = 0 ) -> list: __snake_case : Any = end or len(lowercase ) for i in range(lowercase , lowercase ): __snake_case : List[str] = i __snake_case : Union[str, Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case : Optional[Any] = array[temp_index - 1] temp_index -= 1 __snake_case : Any = temp_index_value return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int ) -> None: # Max Heap __snake_case : Any = index __snake_case : Optional[Any] = 2 * index + 1 # Left Node __snake_case : str = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case : Optional[int] = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case : Tuple = right_index if largest != index: __snake_case , __snake_case : int = array[largest], array[index] heapify(lowercase , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list ) -> list: __snake_case : List[str] = len(lowercase ) for i in range(n // 2 , -1 , -1 ): heapify(lowercase , lowercase , lowercase ) for i in range(n - 1 , 0 , -1 ): __snake_case , __snake_case : Optional[Any] = array[0], array[i] heapify(lowercase , 0 , lowercase ) return array def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int ) -> int: __snake_case : Union[str, Any] = low __snake_case : Union[str, Any] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case , __snake_case : str = array[j], array[i] i += 1 def lowerCAmelCase__( lowercase : list ) -> list: if len(lowercase ) == 0: return array __snake_case : Union[str, Any] = 2 * math.ceil(math.loga(len(lowercase ) ) ) __snake_case : Dict = 16 return intro_sort(lowercase , 0 , len(lowercase ) , lowercase , lowercase ) def lowerCAmelCase__( lowercase : list , lowercase : int , lowercase : int , lowercase : int , lowercase : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 __snake_case : List[str] = median_of_a(lowercase , lowercase , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case : Optional[Any] = partition(lowercase , lowercase , lowercase , lowercase ) intro_sort(lowercase , lowercase , lowercase , lowercase , lowercase ) __snake_case : List[str] = p return insertion_sort(lowercase , lowercase , lowercase ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('''Enter numbers separated by a comma : ''').strip() _UpperCamelCase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
326
0
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__: """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple=3 , SCREAMING_SNAKE_CASE_ : int=3_2 , SCREAMING_SNAKE_CASE_ : List[Any]=3 , SCREAMING_SNAKE_CASE_ : List[str]=1_0 , SCREAMING_SNAKE_CASE_ : Tuple=[1_0, 2_0, 3_0, 4_0] , SCREAMING_SNAKE_CASE_ : Optional[Any]=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Optional[Any]="relu" , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : Any=None , ) -> Optional[int]: lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = num_channels lowercase_ = embeddings_size lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_act lowercase_ = num_labels lowercase_ = scope lowercase_ = len(SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> Tuple: lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ = self.get_config() return config, pixel_values, labels def _lowercase ( self : Dict ) -> Optional[int]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> str: lowercase_ = TFRegNetModel(config=SCREAMING_SNAKE_CASE_ ) lowercase_ = model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[str]: lowercase_ = self.num_labels lowercase_ = TFRegNetForImageClassification(SCREAMING_SNAKE_CASE_ ) lowercase_ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Any ) -> Optional[Any]: lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowercase__( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :str = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () a :str = ( {'feature-extraction': TFRegNetModel, 'image-classification': TFRegNetForImageClassification} if is_tf_available() else {} ) a :Tuple = False a :List[str] = False a :Union[str, Any] = False a :List[Any] = False a :List[Any] = False def _lowercase ( self : List[str] ) -> List[str]: lowercase_ = TFRegNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[int] ) -> Optional[Any]: return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _lowercase ( self : Optional[int] ) -> Any: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def _lowercase ( self : Union[str, Any] ) -> int: super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _lowercase ( self : List[Any] ) -> List[Any]: pass def _lowercase ( self : int ) -> int: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) lowercase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[Any] ) -> Optional[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> str: def check_hidden_states_output(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] ): lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) lowercase_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , training=SCREAMING_SNAKE_CASE_ ) lowercase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase_ = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase_ = layer_type lowercase_ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] ) -> int: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any={} ): lowercase_ = model(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = model(SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str ): if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' f''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) lowercase_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) lowercase_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'''output_hidden_states''': True} ) lowercase_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) lowercase_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'''output_hidden_states''': True} ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def _lowercase ( self : Dict ) -> Any: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = TFRegNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def a ( ): '''simple docstring''' lowercase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowercase__( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ) -> List[Any]: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowercase ( self : Any ) -> Any: lowercase_ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''tf''' ) # forward pass lowercase_ = model(**SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) # verify the logits lowercase_ = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowercase_ = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 )
30
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Any = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase__( lowercase : Dict ) -> Dict: __snake_case : Any = [1, 2] __snake_case : Dict = {"a": 1, "b": 2} __snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]} __snake_case : int = {"a": {"1": 1}, "b": 2} __snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case : Dict = [2, 3] __snake_case : Tuple = {"a": 2, "b": 3} __snake_case : int = {"a": [2, 3], "b": [4, 5]} __snake_case : Dict = {"a": {"1": 2}, "b": 3} __snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
326
0
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = TypeVar("""DatasetType""", Dataset, IterableDataset) def UpperCamelCase_ ( _UpperCAmelCase : List[DatasetType] , _UpperCAmelCase : Optional[List[float]] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[DatasetInfo] = None , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(_UpperCAmelCase ): if not isinstance(_UpperCAmelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ "is an empty dataset dictionary." ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(_UpperCAmelCase )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_UpperCAmelCase ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCAmelCase ).__name__}.""" ) if i == 0: _UpperCAmelCase , _UpperCAmelCase : Dict = ( (Dataset, IterableDataset) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , info=_UpperCAmelCase , split=_UpperCAmelCase , stopping_strategy=_UpperCAmelCase ) else: return _interleave_iterable_datasets( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , info=_UpperCAmelCase , split=_UpperCAmelCase , stopping_strategy=_UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : List[DatasetType] , _UpperCAmelCase : Optional[DatasetInfo] = None , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : int = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(_UpperCAmelCase ): if not isinstance(_UpperCAmelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ "is an empty dataset dictionary." ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(_UpperCAmelCase )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_UpperCAmelCase ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCAmelCase ).__name__}.""" ) if i == 0: _UpperCAmelCase , _UpperCAmelCase : Dict = ( (Dataset, IterableDataset) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_UpperCAmelCase , info=_UpperCAmelCase , split=_UpperCAmelCase , axis=_UpperCAmelCase ) else: return _concatenate_iterable_datasets(_UpperCAmelCase , info=_UpperCAmelCase , split=_UpperCAmelCase , axis=_UpperCAmelCase )
31
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCAmelCase__( lowercase : Dict , lowercase : bool = True , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : float = math.inf , lowercase : float = -math.inf , lowercase : bool = False , lowercase : float = 100 , lowercase : float = 0.0_1 , lowercase : float = 1 , ) -> Any: __snake_case : Optional[Any] = False __snake_case : Optional[Any] = search_prob __snake_case : str = start_temperate __snake_case : List[Any] = [] __snake_case : str = 0 __snake_case : Dict = None while not search_end: __snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case : List[Any] = current_state scores.append(lowercase ) iterations += 1 __snake_case : Dict = None __snake_case : str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case : Any = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor __snake_case : int = neighbors.pop(lowercase ) __snake_case : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case : List[str] = picked_neighbor else: __snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case : str = picked_neighbor __snake_case : Optional[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case : Optional[Any] = True else: __snake_case : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase ) , lowercase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCAmelCase__( lowercase : List[str] , lowercase : Tuple ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) _UpperCamelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowerCAmelCase__( lowercase : Any , lowercase : Union[str, Any] ) -> Any: return (3 * x**2) - (6 * y) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' ) _UpperCamelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCamelCase = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' )
326
0
import random def SCREAMING_SNAKE_CASE_ ( __A : int ) -> bool: """simple docstring""" a_ : Union[str, Any] = num - 1 a_ : List[Any] = 0 while s % 2 == 0: a_ : Optional[int] = s // 2 t += 1 for _ in range(5 ): a_ : Tuple = random.randrange(2 , num - 1 ) a_ : Tuple = pow(__A , __A , __A ) if v != 1: a_ : Optional[int] = 0 while v != (num - 1): if i == t - 1: return False else: a_ : Optional[int] = i + 1 a_ : Optional[int] = (v**2) % num return True def SCREAMING_SNAKE_CASE_ ( __A : int ) -> bool: """simple docstring""" if num < 2: return False a_ : Dict = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__A ) def SCREAMING_SNAKE_CASE_ ( __A : int = 10_24 ) -> int: """simple docstring""" while True: a_ : str = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(__A ): return num if __name__ == "__main__": UpperCAmelCase_ : List[Any] = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
32
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =["image_processor", "tokenizer"] UpperCAmelCase_ : Tuple ="FlavaImageProcessor" UpperCAmelCase_ : List[Any] =("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) __snake_case : List[Any] = kwargs.pop("feature_extractor" ) __snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = self.image_processor def __call__( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if images is not None: __snake_case : Union[str, Any] = self.image_processor( UpperCAmelCase , return_image_mask=UpperCAmelCase , return_codebook_pixels=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if text is not None and images is not None: encoding.update(UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
326
0
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowercase ( __snake_case : List[Any] , __snake_case : Any ): assert isinstance(__snake_case , __snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase ( __snake_case : Optional[Any] , __snake_case : int , __snake_case : str , __snake_case : Any ): lowercase_ : str = tmp_path / '''cache''' lowercase_ : str = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase_ : List[Any] = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__snake_case , keep_in_memory=__snake_case ).read() _check_sql_dataset(__snake_case , __snake_case ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase ( __snake_case : int , __snake_case : int , __snake_case : str , __snake_case : Union[str, Any] ): lowercase_ : List[str] = tmp_path / '''cache''' lowercase_ : Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase_ : Optional[Any] = features.copy() if features else default_expected_features lowercase_ : int = ( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase_ : Any = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=__snake_case , cache_dir=__snake_case ).read() _check_sql_dataset(__snake_case , __snake_case ) def lowercase ( __snake_case : List[str] ): with contextlib.closing(sqlitea.connect(__snake_case ) ) as con: lowercase_ : Tuple = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def lowercase ( __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : List[Any] ): lowercase_ : Optional[Any] = tmp_path / '''cache''' lowercase_ : Union[str, Any] = os.path.join(__snake_case , '''tmp.sql''' ) lowercase_ : Any = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__snake_case ).read() SqlDatasetWriter(__snake_case , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() lowercase_ : str = iter_sql_file(__snake_case ) lowercase_ : List[str] = iter_sql_file(__snake_case ) for rowa, rowa in zip(__snake_case , __snake_case ): assert rowa == rowa @require_sqlalchemy def lowercase ( __snake_case : int , __snake_case : Optional[int] , __snake_case : Tuple ): lowercase_ : Any = tmp_path / '''cache''' lowercase_ : List[str] = os.path.join(__snake_case , '''tmp.sql''' ) lowercase_ : Union[str, Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__snake_case ).read() SqlDatasetWriter(__snake_case , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() lowercase_ : Dict = iter_sql_file(__snake_case ) lowercase_ : Dict = iter_sql_file(__snake_case ) for rowa, rowa in zip(__snake_case , __snake_case ): assert rowa == rowa @require_sqlalchemy def lowercase ( __snake_case : int , __snake_case : List[str] , __snake_case : str ): lowercase_ : List[Any] = tmp_path / '''cache''' lowercase_ : Union[str, Any] = os.path.join(__snake_case , '''tmp.sql''' ) lowercase_ : Optional[Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__snake_case ).read() with pytest.raises(__snake_case ): SqlDatasetWriter(__snake_case , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
33
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } _UpperCamelCase = { '''camembert-base''': 512, } _UpperCamelCase = '''▁''' class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Optional[Any] =VOCAB_FILES_NAMES UpperCAmelCase_ : str =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : str =["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' __snake_case : Dict = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token __snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) __snake_case : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) __snake_case : Dict = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __snake_case : str = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} __snake_case : Optional[int] = len(self.fairseq_tokens_to_ids ) __snake_case : Any = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __snake_case : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __snake_case : Tuple = [] __snake_case : Union[str, Any] = "" __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase ) + token __snake_case : List[Any] = True __snake_case : Union[str, Any] = [] else: current_sub_tokens.append(UpperCAmelCase ) __snake_case : int = False out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def __getstate__( self ) -> List[Any]: '''simple docstring''' __snake_case : str = self.__dict__.copy() __snake_case : Optional[Any] = None return state def __setstate__( self , UpperCAmelCase ) -> str: '''simple docstring''' __snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : List[str] = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Optional[Any] = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: __snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
326
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _a ( __a ): __a : Optional[int] = """xlm-roberta-xl""" def __init__( self : Union[str, Any] , lowercase : str=250_880 , lowercase : Dict=2_560 , lowercase : str=36 , lowercase : Optional[Any]=32 , lowercase : List[str]=10_240 , lowercase : List[Any]="gelu" , lowercase : Optional[int]=0.1 , lowercase : Dict=0.1 , lowercase : List[str]=514 , lowercase : Dict=1 , lowercase : Optional[int]=0.02 , lowercase : Optional[int]=1E-05 , lowercase : Optional[Any]=1 , lowercase : str=0 , lowercase : int=2 , lowercase : int="absolute" , lowercase : Optional[int]=True , lowercase : List[str]=None , **lowercase : int , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache UpperCAmelCase = classifier_dropout class _a ( __a ): @property def A ( self : int ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
34
def lowerCAmelCase__( lowercase : list[int] , lowercase : int ) -> bool: __snake_case : List[str] = len(lowercase ) __snake_case : int = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __snake_case : Optional[Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __snake_case : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __snake_case : List[str] = subset[i - 1][j] if arr[i - 1] <= j: __snake_case : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
326
0
'''simple docstring''' import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __a = logging.get_logger(__name__) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Any: snake_case__ : Tuple = set() snake_case__ : int = [] def parse_line(_lowerCAmelCase ): for line in fp: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : Tuple = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(_lowerCAmelCase ) > 0: snake_case__ : List[Any] = """\n""".join(_lowerCAmelCase ) # Only keep the warnings specified in `targets` if any(f": {x}: " in warning for x in targets ): selected_warnings.add(_lowerCAmelCase ) buffer.clear() continue else: snake_case__ : int = line.strip() buffer.append(_lowerCAmelCase ) if from_gh: for filename in os.listdir(_lowerCAmelCase ): snake_case__ : int = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if not os.path.isdir(_lowerCAmelCase ): # read the file if filename != "warnings.txt": continue with open(_lowerCAmelCase ) as fp: parse_line(_lowerCAmelCase ) else: try: with zipfile.ZipFile(_lowerCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(_lowerCAmelCase ) as fp: parse_line(_lowerCAmelCase ) except Exception: logger.warning( f"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." ) return selected_warnings def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: snake_case__ : int = set() snake_case__ : Dict = [os.path.join(_lowerCAmelCase , _lowerCAmelCase ) for p in os.listdir(_lowerCAmelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_lowerCAmelCase , _lowerCAmelCase ) ) return selected_warnings if __name__ == "__main__": def __snake_case( _lowerCAmelCase ) -> Tuple: return values.split(""",""" ) __a = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") # optional parameters parser.add_argument( "--targets", default="DeprecationWarning,UserWarning,FutureWarning", type=list_str, help="Comma-separated list of target warning(s) which we want to extract.", ) parser.add_argument( "--from_gh", action="store_true", help="If running from a GitHub action workflow and collecting warnings from its artifacts.", ) __a = parser.parse_args() __a = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __a = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("=" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __a = extract_warnings(args.output_dir, args.targets) __a = sorted(selected_warnings) with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
35
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _UpperCamelCase = 4 _UpperCamelCase = 3 class _lowerCamelCase ( a ): """simple docstring""" pass def lowerCAmelCase__( lowercase : List[str] ) -> Any: for shard in shards: for i in range(lowercase ): yield {"i": i, "shard": shard} def lowerCAmelCase__( ) -> Optional[int]: __snake_case : List[Any] = int(os.environ["RANK"] ) __snake_case : Optional[int] = int(os.environ["WORLD_SIZE"] ) __snake_case : List[str] = ArgumentParser() parser.add_argument("--streaming" , type=lowercase ) parser.add_argument("--local_rank" , type=lowercase ) parser.add_argument("--num_workers" , type=lowercase , default=0 ) __snake_case : Any = parser.parse_args() __snake_case : Dict = args.streaming __snake_case : Union[str, Any] = args.num_workers __snake_case : Any = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowercase )]} __snake_case : Optional[int] = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase ) if not streaming: __snake_case : Any = Dataset.from_list(list(lowercase ) ) __snake_case : Dict = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase ) __snake_case : Union[str, Any] = torch.utils.data.DataLoader(lowercase , num_workers=lowercase ) __snake_case : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __snake_case : Dict = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
326
0
from typing import TYPE_CHECKING from ...utils import _LazyModule _snake_case = {"tokenization_bertweet": ["BertweetTokenizer"]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
36
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int: __snake_case : List[Any] = limit + 1 __snake_case : List[str] = [0] * limit for first_term in range(1 , lowercase ): for n in range(lowercase , lowercase , lowercase ): __snake_case : Union[str, Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
326
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _lowerCAmelCase = R''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : str = '''rag''' __lowercase : Any = True def __init__( self ,__UpperCAmelCase=None ,__UpperCAmelCase=True ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=" / " ,__UpperCAmelCase=" // " ,__UpperCAmelCase=5 ,__UpperCAmelCase=300 ,__UpperCAmelCase=768 ,__UpperCAmelCase=8 ,__UpperCAmelCase="wiki_dpr" ,__UpperCAmelCase="train" ,__UpperCAmelCase="compressed" ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=True ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Optional[int]: super().__init__( bos_token_id=__UpperCAmelCase ,pad_token_id=__UpperCAmelCase ,eos_token_id=__UpperCAmelCase ,decoder_start_token_id=__UpperCAmelCase ,forced_eos_token_id=__UpperCAmelCase ,is_encoder_decoder=__UpperCAmelCase ,prefix=__UpperCAmelCase ,vocab_size=__UpperCAmelCase ,**__UpperCAmelCase ,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowerCAmelCase__ : List[str] = kwargs.pop("""question_encoder""" ) lowerCAmelCase__ : Dict = question_encoder_config.pop("""model_type""" ) lowerCAmelCase__ : Optional[Any] = kwargs.pop("""generator""" ) lowerCAmelCase__ : Any = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig lowerCAmelCase__ : Optional[int] = AutoConfig.for_model(__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = AutoConfig.for_model(__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = reduce_loss lowerCAmelCase__ : Dict = label_smoothing lowerCAmelCase__ : List[Any] = exclude_bos_score lowerCAmelCase__ : Union[str, Any] = do_marginalize lowerCAmelCase__ : Tuple = title_sep lowerCAmelCase__ : Union[str, Any] = doc_sep lowerCAmelCase__ : Union[str, Any] = n_docs lowerCAmelCase__ : Union[str, Any] = max_combined_length lowerCAmelCase__ : str = dataset lowerCAmelCase__ : List[Any] = dataset_split lowerCAmelCase__ : Optional[Any] = index_name lowerCAmelCase__ : Dict = retrieval_vector_size lowerCAmelCase__ : Tuple = retrieval_batch_size lowerCAmelCase__ : Optional[Any] = passages_path lowerCAmelCase__ : Union[str, Any] = index_path lowerCAmelCase__ : Dict = use_dummy_dataset lowerCAmelCase__ : Optional[int] = output_retrieved lowerCAmelCase__ : int = do_deduplication lowerCAmelCase__ : Optional[Any] = use_cache if self.forced_eos_token_id is None: lowerCAmelCase__ : Tuple = getattr(self.generator ,"""forced_eos_token_id""" ,__UpperCAmelCase ) @classmethod def UpperCAmelCase_ ( cls ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() ,generator=generator_config.to_dict() ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Optional[int] = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ : Optional[Any] = self.question_encoder.to_dict() lowerCAmelCase__ : List[Any] = self.generator.to_dict() lowerCAmelCase__ : Tuple = self.__class__.model_type return output
37
from __future__ import annotations def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]: __snake_case : List[str] = word_bank or [] # create a table __snake_case : int = len(lowercase ) + 1 __snake_case : list[list[list[str]]] = [] for _ in range(lowercase ): table.append([] ) # seed value __snake_case : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase )] == word: __snake_case : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase )]: combination.reverse() return table[len(lowercase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
326
0
from __future__ import annotations class _SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowerCamelCase : int ): UpperCamelCase :Tuple = order # a_{0} ... a_{k} UpperCamelCase :Dict = [1.0] + [0.0] * order # b_{0} ... b_{k} UpperCamelCase :str = [1.0] + [0.0] * order # x[n-1] ... x[n-k] UpperCamelCase :List[str] = [0.0] * self.order # y[n-1] ... y[n-k] UpperCamelCase :List[Any] = [0.0] * self.order def _A ( self : Optional[Any] , __lowerCamelCase : list[float] , __lowerCamelCase : list[float] ): if len(__lowerCamelCase ) < self.order: UpperCamelCase :List[Any] = [1.0, *a_coeffs] if len(__lowerCamelCase ) != self.order + 1: UpperCamelCase :int = ( F"""Expected a_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) if len(__lowerCamelCase ) != self.order + 1: UpperCamelCase :int = ( F"""Expected b_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) UpperCamelCase :Optional[Any] = a_coeffs UpperCamelCase :Dict = b_coeffs def _A ( self : List[str] , __lowerCamelCase : float ): UpperCamelCase :Tuple = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) UpperCamelCase :Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] UpperCamelCase :int = self.input_history[:-1] UpperCamelCase :str = self.output_history[:-1] UpperCamelCase :Optional[int] = sample UpperCamelCase :List[Any] = result return result
38
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : int = use_attention_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[str] = vocab_size __snake_case : int = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[Any] = num_choices __snake_case : Union[str, Any] = rescale_embeddings __snake_case : List[Any] = attention_type __snake_case : str = use_bias __snake_case : Dict = block_size __snake_case : Optional[Any] = num_random_blocks def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase_ : Dict =False UpperCAmelCase_ : str =False def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
326
0
def __A ( __lowerCAmelCase )-> float: """simple docstring""" if not nums: # Makes sure that the list is not empty raise ValueError('List is empty' ) _UpperCAmelCase = sum(__lowerCAmelCase ) / len(__lowerCAmelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
39
import argparse import datetime def lowerCAmelCase__( lowercase : str ) -> str: __snake_case : int = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } __snake_case : int = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(lowercase ) < 11: raise ValueError("Must be 10 characters long" ) # Get month __snake_case : int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12" ) __snake_case : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day __snake_case : int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31" ) # Get second separator __snake_case : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year __snake_case : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation __snake_case : str = datetime.date(int(lowercase ) , int(lowercase ) , int(lowercase ) ) # Start math if m <= 2: __snake_case : Optional[Any] = y - 1 __snake_case : Tuple = m + 12 # maths var __snake_case : int = int(str(lowercase )[:2] ) __snake_case : int = int(str(lowercase )[2:] ) __snake_case : int = int(2.6 * m - 5.3_9 ) __snake_case : int = int(c / 4 ) __snake_case : int = int(k / 4 ) __snake_case : int = int(d + k ) __snake_case : int = int(t + u + v + x ) __snake_case : int = int(z - (2 * c) ) __snake_case : int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response __snake_case : str = f"""Your date {date_input}, is a {days[str(lowercase )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) _UpperCamelCase = parser.parse_args() zeller(args.date_input)
326
0
"""simple docstring""" def lowercase ( A_ )-> str: '''simple docstring''' if isinstance(A_ , A_ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(A_ , A_ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" a : Optional[Any] = False if num < 0: a : Tuple = True a : str = -num a : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(A_ ) for e in binary ) return "0b" + "".join(str(A_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
40
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : str , lowercase : List[Any] , lowercase : List[str] ) -> int: if index == r: for j in range(lowercase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __snake_case : Union[str, Any] = arr[i] combination_util(lowercase , lowercase , lowercase , index + 1 , lowercase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase , lowercase , lowercase , lowercase , lowercase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase__( lowercase : Any , lowercase : Tuple , lowercase : Union[str, Any] ) -> Optional[Any]: # A temporary array to store all combination one by one __snake_case : Tuple = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase , lowercase , lowercase , 0 , lowercase , 0 ) if __name__ == "__main__": # Driver code to check the function above _UpperCamelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
326
0