code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _A ( lowercase ): """simple docstring""" a =np.inf def set_batch_size(lowercase ) -> None: nonlocal batch_size if isinstance(lowercase , lowercase ): a =min(lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(lowercase , lowercase ): a =min(lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(lowercase , lowercase ) and feature.dtype == "binary": a =min(lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(lowercase , lowercase ) return None if batch_size is np.inf else batch_size class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , __A , __A = None , __A = None , __A = None , __A = False , __A = False , __A = None , **__A , ) -> Optional[Any]: super().__init__( __A , split=__A , features=__A , cache_dir=__A , keep_in_memory=__A , streaming=__A , num_proc=__A , **__A , ) a =path_or_paths if isinstance(__A , __A ) else {self.split: path_or_paths} a =_PACKAGED_DATASETS_MODULES['''parquet'''][1] a =Parquet( cache_dir=__A , data_files=__A , features=__A , hash=__A , **__A , ) def SCREAMING_SNAKE_CASE ( self ) -> int: # Build iterable dataset if self.streaming: a =self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: a =None a =None a =None a =None self.builder.download_and_prepare( download_config=__A , download_mode=__A , verification_mode=__A , base_path=__A , num_proc=self.num_proc , ) a =self.builder.as_dataset( split=self.split , verification_mode=__A , in_memory=self.keep_in_memory ) return dataset class __A : """simple docstring""" def __init__( self , __A , __A , __A = None , **__A , ) -> Optional[int]: a =dataset a =path_or_buf a =batch_size or get_writer_batch_size(dataset.features ) a =parquet_writer_kwargs def SCREAMING_SNAKE_CASE ( self ) -> int: a =self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: a =self._write(file_obj=__A , batch_size=__A , **self.parquet_writer_kwargs ) else: a =self._write(file_obj=self.path_or_buf , batch_size=__A , **self.parquet_writer_kwargs ) return written def SCREAMING_SNAKE_CASE ( self , __A , __A , **__A ) -> int: a =0 a =parquet_writer_kwargs.pop('''path_or_buf''' , __A ) a =self.dataset.features.arrow_schema a =pq.ParquetWriter(__A , schema=__A , **__A ) for offset in logging.tqdm( range(0 , len(self.dataset ) , __A ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): a =query_table( table=self.dataset._data , key=slice(__A , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(__A ) written += batch.nbytes writer.close() return written
81
def a__ ( _UpperCamelCase : int ): if not isinstance(_UpperCamelCase ,_UpperCamelCase ): __lowerCamelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(_UpperCamelCase ) if number < 0: return False __lowerCamelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
330
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer A__ = logging.get_logger(__name__) A__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } A__ = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } A__ = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } A__ = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_12, """facebook/dpr-ctx_encoder-multiset-base""": 5_12, } A__ = { """facebook/dpr-question_encoder-single-nq-base""": 5_12, """facebook/dpr-question_encoder-multiset-base""": 5_12, } A__ = { """facebook/dpr-reader-single-nq-base""": 5_12, """facebook/dpr-reader-multiset-base""": 5_12, } A__ = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } A__ = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } A__ = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) A__ = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) A__ = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(lowerCamelCase__ ) class __lowerCAmelCase : def __call__( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = False , _snake_case = False , _snake_case = None , _snake_case = None , _snake_case = None , **_snake_case , ): """simple docstring""" if titles is None and texts is None: return super().__call__( _snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , return_tensors=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) elif titles is None or texts is None: _lowerCAmelCase = titles if texts is None else texts return super().__call__( _snake_case , _snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , return_tensors=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) _lowerCAmelCase = titles if not isinstance(_snake_case , _snake_case ) else [titles] _lowerCAmelCase = texts if not isinstance(_snake_case , _snake_case ) else [texts] _lowerCAmelCase = len(_snake_case ) _lowerCAmelCase = questions if not isinstance(_snake_case , _snake_case ) else [questions] * n_passages if len(_snake_case ) != len(_snake_case ): raise ValueError( F'There should be as many titles than texts but got {len(_snake_case )} titles and {len(_snake_case )} texts.' ) _lowerCAmelCase = super().__call__(_snake_case , _snake_case , padding=_snake_case , truncation=_snake_case )["""input_ids"""] _lowerCAmelCase = super().__call__(_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case )["""input_ids"""] _lowerCAmelCase = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_snake_case , _snake_case ) ] } if return_attention_mask is not False: _lowerCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase = attention_mask return self.pad(_snake_case , padding=_snake_case , max_length=_snake_case , return_tensors=_snake_case ) def snake_case ( self , _snake_case , _snake_case , _snake_case = 16 , _snake_case = 64 , _snake_case = 4 , ): """simple docstring""" _lowerCAmelCase = reader_input["""input_ids"""] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = reader_output[:3] _lowerCAmelCase = len(_snake_case ) _lowerCAmelCase = sorted(range(_snake_case ) , reverse=_snake_case , key=relevance_logits.__getitem__ ) _lowerCAmelCase = [] for doc_id in sorted_docs: _lowerCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase = len(_snake_case ) _lowerCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_snake_case , top_spans=_snake_case , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_snake_case , start_index=_snake_case , end_index=_snake_case , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_snake_case ) >= num_spans: break return nbest_spans_predictions[:num_spans] def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" _lowerCAmelCase = [] for start_index, start_score in enumerate(_snake_case ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase = sorted(_snake_case , key=lambda _snake_case : x[1] , reverse=_snake_case ) _lowerCAmelCase = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'Wrong span indices: [{start_index}:{end_index}]' ) _lowerCAmelCase = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'Span is too long: {length} > {max_answer_length}' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_snake_case ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCamelCase__ ) class __lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = READER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = ['''input_ids''', '''attention_mask''']
82
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={"_".join([str(__UpperCAmelCase ) for s in shape] )}.npy""" def lowerCamelCase ( self ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCamelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase=(4, 4, 64, 64) , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase ) ) , dtype=__UpperCAmelCase ) return image def lowerCamelCase ( self , __UpperCAmelCase=False , __UpperCAmelCase="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = '''bf16''' if fpaa else None __lowerCamelCase ,__lowerCamelCase = FlaxUNetaDConditionModel.from_pretrained( __UpperCAmelCase , subfolder='''unet''' , dtype=__UpperCAmelCase , revision=__UpperCAmelCase ) return model, params def lowerCamelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase=(4, 77, 768) , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase ) ) , dtype=__UpperCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_latents(__UpperCAmelCase , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_encoder_hidden_states(__UpperCAmelCase , fpaa=__UpperCAmelCase ) __lowerCamelCase = model.apply( {'''params''': params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape __lowerCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCamelCase = jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_latents(__UpperCAmelCase , shape=(4, 4, 96, 96) , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_encoder_hidden_states(__UpperCAmelCase , shape=(4, 77, 1024) , fpaa=__UpperCAmelCase ) __lowerCamelCase = model.apply( {'''params''': params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape __lowerCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCamelCase = jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 )
330
0
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins snake_case_ : str = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def A__ ( UpperCAmelCase_ ): config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? _UpperCamelCase : str = tmp_path_factory.getbasetemp() / 'cache' _UpperCamelCase : List[str] = test_hf_cache_home / 'datasets' _UpperCamelCase : List[Any] = test_hf_cache_home / 'metrics' _UpperCamelCase : List[str] = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(UpperCAmelCase_ ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(UpperCAmelCase_ ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(UpperCAmelCase_ ) ) _UpperCamelCase : Optional[Any] = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(UpperCAmelCase_ ) ) _UpperCamelCase : Optional[int] = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(UpperCAmelCase_ ) ) @pytest.fixture(autouse=UpperCAmelCase_ , scope='session' ) def A__ ( ): datasets.disable_progress_bar() @pytest.fixture(autouse=UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ ): # don't take tests into account when counting downloads monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , UpperCAmelCase_ ) @pytest.fixture def A__ ( UpperCAmelCase_ ): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , UpperCAmelCase_ )
83
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self , __A , __A=7 , __A=3 , __A=18 , __A=30 , __A=400 , __A=True , __A=None , __A=True , ) -> Optional[Any]: lowerCAmelCase_ :int = size if size is not None else {"""height""": 18, """width""": 18} lowerCAmelCase_ :int = parent lowerCAmelCase_ :List[Any] = batch_size lowerCAmelCase_ :Optional[Any] = num_channels lowerCAmelCase_ :Optional[Any] = image_size lowerCAmelCase_ :int = min_resolution lowerCAmelCase_ :List[Any] = max_resolution lowerCAmelCase_ :List[Any] = do_resize lowerCAmelCase_ :Tuple = size lowerCAmelCase_ :Dict = apply_ocr def __lowerCAmelCase ( self ) -> List[str]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :str = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Tuple = LayoutLMvaImageProcessingTester(self ) @property def __lowerCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) self.assertTrue(hasattr(__A , """apply_ocr""" ) ) def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowerCAmelCase_ :Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __lowerCAmelCase ( self ) -> Tuple: pass def __lowerCAmelCase ( self ) -> Dict: # Initialize image_processing lowerCAmelCase_ :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input lowerCAmelCase_ :Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __A ) self.assertIsInstance(encoding.boxes , __A ) # Test batched lowerCAmelCase_ :str = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __lowerCAmelCase ( self ) -> str: # Initialize image_processing lowerCAmelCase_ :Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ :Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input lowerCAmelCase_ :Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase_ :Dict = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: # Initialize image_processing lowerCAmelCase_ :str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ :Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input lowerCAmelCase_ :str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase_ :int = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __lowerCAmelCase ( self ) -> List[Any]: # with apply_OCR = True lowerCAmelCase_ :str = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCAmelCase_ :int = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) lowerCAmelCase_ :Optional[Any] = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) lowerCAmelCase_ :Optional[Any] = image_processing(__A , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCAmelCase_ :List[Any] = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 lowerCAmelCase_ :Optional[Any] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __A ) self.assertListEqual(encoding.boxes , __A ) # with apply_OCR = False lowerCAmelCase_ :int = LayoutLMvaImageProcessor(apply_ocr=__A ) lowerCAmelCase_ :int = image_processing(__A , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
84
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def a__ ( _UpperCamelCase : Optional[int] ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __lowerCamelCase = module __lowerCamelCase = nn.Sequential( nn.Linear(module.in_features , __UpperCAmelCase , bias=__UpperCAmelCase ) , nn.Linear(__UpperCAmelCase , module.out_features , bias=__UpperCAmelCase ) , ) __lowerCamelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowerCamelCase ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.module(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) + self.adapter(__UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCAmelCase__ = """bigscience/bloom-1b7""" # Constant values lowerCAmelCase__ = 2.1_09_65_95_52_69_25_74 lowerCAmelCase__ = """Hello my name is""" lowerCAmelCase__ = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) lowerCAmelCase__ = 1_0 def lowerCamelCase ( self ): '''simple docstring''' # Models and tokenizer __lowerCamelCase = AutoTokenizer.from_pretrained(self.model_name ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() # Models and tokenizer __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) def lowerCamelCase ( self ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_abit.config self.assertTrue(hasattr(__UpperCAmelCase , '''quantization_config''' ) ) __lowerCamelCase = config.to_dict() __lowerCamelCase = config.to_diff_dict() __lowerCamelCase = config.to_json_string() def lowerCamelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit __lowerCamelCase = self.model_fpaa.get_memory_footprint() __lowerCamelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowerCamelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowerCamelCase ( self ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitsAndBytesConfig() __lowerCamelCase = True __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitsAndBytesConfig() with self.assertRaises(__UpperCAmelCase ): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , load_in_abit=__UpperCAmelCase , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = self.model_fpaa.to(torch.floataa ) __lowerCamelCase = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowerCamelCase = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error __lowerCamelCase = self.model_fpaa.half() # Check this does not throw an error __lowerCamelCase = self.model_fpaa.float() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls ): '''simple docstring''' __lowerCamelCase = '''t5-small''' __lowerCamelCase = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense __lowerCamelCase = AutoTokenizer.from_pretrained(cls.model_name ) __lowerCamelCase = '''Translate in German: Hello, my dog is cute''' def lowerCamelCase ( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' from transformers import TaForConditionalGeneration __lowerCamelCase = TaForConditionalGeneration._keep_in_fpaa_modules __lowerCamelCase = None # test with `t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) __lowerCamelCase = modules def lowerCamelCase ( self ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() # model_name __lowerCamelCase = '''bigscience/bloom-560m''' __lowerCamelCase = '''t5-small''' # Different types of model __lowerCamelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # Sequence classification model __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # CausalLM model __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # Seq2seq model __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) def lowerCamelCase ( self ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowerCamelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch __lowerCamelCase = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''facebook/opt-350m''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowerCamelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowerCamelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__UpperCAmelCase ) ): __lowerCamelCase = LoRALayer(module.q_proj , rank=16 ) __lowerCamelCase = LoRALayer(module.k_proj , rank=16 ) __lowerCamelCase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowerCamelCase = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowerCamelCase = model.forward(**__UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = """gpt2-xl""" lowerCAmelCase__ = 3.31_91_85_48_54_15_21_87
330
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE : Tuple = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : str = ["BeitFeatureExtractor"] _SCREAMING_SNAKE_CASE : Dict = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = 42 class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = True @register_to_config def __init__( self , __UpperCAmelCase = 3 , __UpperCAmelCase = 3 , __UpperCAmelCase = ("DownEncoderBlock2D",) , __UpperCAmelCase = ("UpDecoderBlock2D",) , __UpperCAmelCase = (64,) , __UpperCAmelCase = 1 , __UpperCAmelCase = "silu" , __UpperCAmelCase = 4 , __UpperCAmelCase = 32 , __UpperCAmelCase = 32 , __UpperCAmelCase = 0.18_215 , ): '''simple docstring''' super().__init__() # pass init params to Encoder __lowerCamelCase = Encoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , down_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , act_fn=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , double_z=__UpperCAmelCase , ) # pass init params to Decoder __lowerCamelCase = Decoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , up_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , act_fn=__UpperCAmelCase , ) __lowerCamelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowerCamelCase = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) __lowerCamelCase = False __lowerCamelCase = False # only relevant if vae tiling is enabled __lowerCamelCase = self.config.sample_size __lowerCamelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowerCamelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowerCamelCase = 0.25 def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' if isinstance(__UpperCAmelCase , (Encoder, Decoder) ): __lowerCamelCase = value def lowerCamelCase ( self , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = use_tiling def lowerCamelCase ( self ): '''simple docstring''' self.enable_tiling(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = True def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''set_processor''' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return processors def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(__UpperCAmelCase )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''set_processor''' ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): module.set_processor(__UpperCAmelCase ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) if self.use_slicing and x.shape[0] > 1: __lowerCamelCase = [self.encoder(__UpperCAmelCase ) for x_slice in x.split(1 )] __lowerCamelCase = torch.cat(__UpperCAmelCase ) else: __lowerCamelCase = self.encoder(__UpperCAmelCase ) __lowerCamelCase = self.quant_conv(__UpperCAmelCase ) __lowerCamelCase = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) __lowerCamelCase = self.post_quant_conv(__UpperCAmelCase ) __lowerCamelCase = self.decoder(__UpperCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) @apply_forward_hook def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: __lowerCamelCase = [self._decode(__UpperCAmelCase ).sample for z_slice in z.split(1 )] __lowerCamelCase = torch.cat(__UpperCAmelCase ) else: __lowerCamelCase = self._decode(__UpperCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = min(a.shape[2] , b.shape[2] , __UpperCAmelCase ) for y in range(__UpperCAmelCase ): __lowerCamelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = min(a.shape[3] , b.shape[3] , __UpperCAmelCase ) for x in range(__UpperCAmelCase ): __lowerCamelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowerCamelCase = [] for i in range(0 , x.shape[2] , __UpperCAmelCase ): __lowerCamelCase = [] for j in range(0 , x.shape[3] , __UpperCAmelCase ): __lowerCamelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowerCamelCase = self.encoder(__UpperCAmelCase ) __lowerCamelCase = self.quant_conv(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) __lowerCamelCase = [] for i, row in enumerate(__UpperCAmelCase ): __lowerCamelCase = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=2 ) __lowerCamelCase = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowerCamelCase = [] for i in range(0 , z.shape[2] , __UpperCAmelCase ): __lowerCamelCase = [] for j in range(0 , z.shape[3] , __UpperCAmelCase ): __lowerCamelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowerCamelCase = self.post_quant_conv(__UpperCAmelCase ) __lowerCamelCase = self.decoder(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) __lowerCamelCase = [] for i, row in enumerate(__UpperCAmelCase ): __lowerCamelCase = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , ): '''simple docstring''' __lowerCamelCase = sample __lowerCamelCase = self.encode(__UpperCAmelCase ).latent_dist if sample_posterior: __lowerCamelCase = posterior.sample(generator=__UpperCAmelCase ) else: __lowerCamelCase = posterior.mode() __lowerCamelCase = self.decode(__UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase )
330
0
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """vocab.txt"""} lowerCamelCase__ = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } lowerCamelCase__ = { """openbmb/cpm-ant-10b""": 1_024, } def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = collections.OrderedDict() with open(_UpperCamelCase , 'r' , encoding='utf-8' ) as reader: __lowerCAmelCase : Dict = reader.readlines() for index, token in enumerate(_UpperCamelCase ): __lowerCAmelCase : int = token.rstrip('\n' ) __lowerCAmelCase : str = index return vocab class A__ ( _lowerCamelCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE=2_00 ): __lowerCAmelCase : Optional[Any] = vocab __lowerCAmelCase : Optional[int] = unk_token __lowerCAmelCase : List[Any] = max_input_chars_per_word def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = list(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > self.max_input_chars_per_word: return [self.unk_token] __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : List[str] = [] while start < len(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = len(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = None while start < end: __lowerCAmelCase : List[str] = ''.join(chars[start:end] ) if substr in self.vocab: __lowerCAmelCase : str = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = end return sub_tokens class A__ ( _lowerCamelCase): A_ : Any = VOCAB_FILES_NAMES A_ : Any = PRETRAINED_VOCAB_FILES_MAP A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Optional[int] = ['input_ids', 'attention_mask'] A_ : int = False def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<d>" , _SCREAMING_SNAKE_CASE="</d>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="</n>" , _SCREAMING_SNAKE_CASE="</_>" , _SCREAMING_SNAKE_CASE="left" , **_SCREAMING_SNAKE_CASE , ): requires_backends(self , ['jieba'] ) super().__init__( bod_token=_SCREAMING_SNAKE_CASE , eod_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , line_token=_SCREAMING_SNAKE_CASE , space_token=_SCREAMING_SNAKE_CASE , padding_side=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Optional[Any] = bod_token __lowerCAmelCase : List[Any] = eod_token __lowerCAmelCase : Dict = load_vocab(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = self.encoder[space_token] __lowerCAmelCase : Union[str, Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __lowerCAmelCase : int = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _SCREAMING_SNAKE_CASE : x[1] ) ) __lowerCAmelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()} __lowerCAmelCase : List[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __lowerCamelCase ( self ): return self.encoder[self.bod_token] @property def __lowerCamelCase ( self ): return self.encoder[self.eod_token] @property def __lowerCamelCase ( self ): return self.encoder["\n"] @property def __lowerCamelCase ( self ): return len(self.encoder ) def __lowerCamelCase ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = [] for x in jieba.cut(_SCREAMING_SNAKE_CASE , cut_all=_SCREAMING_SNAKE_CASE ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) ) return output_tokens def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = [i for i in token_ids if i >= 0] __lowerCAmelCase : Tuple = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): return token in self.encoder def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): return "".join(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): return self.encoder.get(_SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): return self.decoder.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): if os.path.isdir(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: __lowerCAmelCase : int = (filename_prefix + '-' if filename_prefix else '') + save_directory __lowerCAmelCase : int = 0 if " " in self.encoder: __lowerCAmelCase : Optional[int] = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: __lowerCAmelCase : Optional[int] = self.encoder['\n'] del self.encoder["\n"] __lowerCAmelCase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _SCREAMING_SNAKE_CASE : x[1] ) ) with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." ' Please check that the vocabulary is not corrupted!' ) __lowerCAmelCase : Optional[int] = token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) return [1] + ([0] * len(_SCREAMING_SNAKE_CASE ))
86
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration a_ = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] a_ = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] a_ = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) a_ = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) a_ = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : Optional[Any] ): for tf_name, hf_name in patterns: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = BigBirdPegasusConfig(**_UpperCamelCase ) __lowerCamelCase = BigBirdPegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() __lowerCamelCase = {} # separating decoder weights __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = DECODER_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = REMAINING_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" __lowerCamelCase = mapping['''model.embed_positions.weight'''] __lowerCamelCase = mapping.pop('''model.embed_positions.weight''' ) __lowerCamelCase ,__lowerCamelCase = torch_model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : int ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ,_UpperCamelCase : dict ): __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = convert_bigbird_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() a_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
330
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCamelCase = logging.get_logger(__name__) class snake_case_ ( __A ): __A : Dict = "upernet" def __init__( self : List[str] , lowercase_ : List[Any]=None , lowercase_ : Optional[int]=5_12 , lowercase_ : str=0.02 , lowercase_ : Optional[int]=[1, 2, 3, 6] , lowercase_ : List[str]=True , lowercase_ : Dict=0.4 , lowercase_ : Optional[Any]=3_84 , lowercase_ : Optional[int]=2_56 , lowercase_ : int=1 , lowercase_ : str=False , lowercase_ : Optional[int]=2_55 , **lowercase_ : Union[str, Any] , ) -> List[Any]: super().__init__(**lowercase_ ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowercase__ : str = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(lowercase_ , lowercase_ ): lowercase__ : List[Any] = backbone_config.get("model_type" ) lowercase__ : List[str] = CONFIG_MAPPING[backbone_model_type] lowercase__ : Tuple = config_class.from_dict(lowercase_ ) lowercase__ : int = backbone_config lowercase__ : str = hidden_size lowercase__ : Dict = initializer_range lowercase__ : int = pool_scales lowercase__ : int = use_auxiliary_head lowercase__ : List[str] = auxiliary_loss_weight lowercase__ : Union[str, Any] = auxiliary_in_channels lowercase__ : Tuple = auxiliary_channels lowercase__ : List[Any] = auxiliary_num_convs lowercase__ : Tuple = auxiliary_concat_input lowercase__ : Optional[Any] = loss_ignore_index def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: lowercase__ : Union[str, Any] = copy.deepcopy(self.__dict__ ) lowercase__ : Dict = self.backbone_config.to_dict() lowercase__ : List[Any] = self.__class__.model_type return output
87
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase=None ): '''simple docstring''' if not conversation_id: __lowerCamelCase = uuid.uuida() if past_user_inputs is None: __lowerCamelCase = [] if generated_responses is None: __lowerCamelCase = [] __lowerCamelCase = conversation_id __lowerCamelCase = past_user_inputs __lowerCamelCase = generated_responses __lowerCamelCase = text def __eq__( self , __UpperCAmelCase ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) __lowerCamelCase = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: __lowerCamelCase = text def lowerCamelCase ( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowerCamelCase = None def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' self.generated_responses.append(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' __lowerCamelCase = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): __lowerCamelCase = '''user''' if is_user else '''bot''' output += F"""{name} >> {text} \n""" return output @add_end_docstrings( lowerCAmelCase__ , r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) if self.tokenizer.pad_token_id is None: __lowerCamelCase = self.tokenizer.eos_token def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = {} __lowerCamelCase = {} if min_length_for_response is not None: __lowerCamelCase = min_length_for_response if minimum_tokens is not None: __lowerCamelCase = minimum_tokens if "max_length" in generate_kwargs: __lowerCamelCase = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowerCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , __UpperCAmelCase , __UpperCAmelCase=0 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = super().__call__(__UpperCAmelCase , num_workers=__UpperCAmelCase , **__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) == 1: return outputs[0] return outputs def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=32 ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): __lowerCamelCase = self.tokenizer._build_conversation_input_ids(__UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowerCamelCase = self._legacy_parse_and_tokenize(__UpperCAmelCase ) if self.framework == "pt": __lowerCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowerCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=10 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) __lowerCamelCase = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) __lowerCamelCase = max_length - minimum_tokens __lowerCamelCase = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: __lowerCamelCase = model_inputs['''attention_mask'''][:, -trim:] __lowerCamelCase = model_inputs.pop('''conversation''' ) __lowerCamelCase = max_length __lowerCamelCase = self.model.generate(**__UpperCAmelCase , **__UpperCAmelCase ) if self.model.config.is_encoder_decoder: __lowerCamelCase = 1 else: __lowerCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = model_outputs['''output_ids'''] __lowerCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , ) __lowerCamelCase = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(__UpperCAmelCase ) return conversation def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.tokenizer.eos_token_id __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > self.tokenizer.model_max_length: __lowerCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
330
0
def a__ ( A_, A_ ): '''simple docstring''' return x if y == 0 else greatest_common_divisor(A_, x % y ) def a__ ( A_, A_ ): '''simple docstring''' return (x * y) // greatest_common_divisor(A_, A_ ) def a__ ( A_ = 20 ): '''simple docstring''' __magic_name__ = 1 for i in range(1, n + 1 ): __magic_name__ = lcm(A_, A_ ) return g if __name__ == "__main__": print(F'''{solution() = }''')
88
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def a__ ( _UpperCamelCase : int ): for pegasus_name, hf_name in PATTERNS: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) __lowerCamelCase = PegasusConfig(**_UpperCamelCase ) __lowerCamelCase = PegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.model.state_dict() __lowerCamelCase = {} for k, v in tf_weights.items(): __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCamelCase = v.T __lowerCamelCase = torch.tensor(_UpperCamelCase ,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCamelCase = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = torch_model.model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : str="./ckpt/aeslc/model.ckpt-32000" ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # save tokenizer first __lowerCamelCase = Path(_UpperCamelCase ).parent.name __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] __lowerCamelCase = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' ,model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": __lowerCamelCase = task_specific_params __lowerCamelCase = convert_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(_UpperCamelCase ,Path(_UpperCamelCase ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() if args.save_dir is None: a_ = Path(args.tf_ckpt_path).parent.name a_ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
330
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'''vocab_file''': '''spiece.model'''} __lowerCAmelCase = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } __lowerCAmelCase = {'''bert_for_seq_generation''': 512} class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : List[int] = [] lowerCAmelCase : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Optional[int]="<s>" ,_UpperCAmelCase : Optional[Any]="</s>" ,_UpperCAmelCase : Optional[Any]="<unk>" ,_UpperCAmelCase : Dict="<pad>" ,_UpperCAmelCase : str="<::::>" ,_UpperCAmelCase : Optional[Dict[str, Any]] = None ,**_UpperCAmelCase : Any ,): _a : int = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_UpperCAmelCase ,eos_token=_UpperCAmelCase ,unk_token=_UpperCAmelCase ,pad_token=_UpperCAmelCase ,sep_token=_UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**_UpperCAmelCase ,) _a : Dict = vocab_file _a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) @property def __lowercase ( self : Tuple ): return self.sp_model.get_piece_size() def __lowercase ( self : str ): _a : List[Any] = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): _a : Tuple = self.__dict__.copy() _a : str = None return state def __setstate__( self : Optional[Any] ,_UpperCAmelCase : Optional[int] ): _a : Optional[int] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _a : Dict = {} _a : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowercase ( self : Any ,_UpperCAmelCase : str ): return self.sp_model.encode(_UpperCAmelCase ,out_type=_UpperCAmelCase ) def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Tuple ): return self.sp_model.piece_to_id(_UpperCAmelCase ) def __lowercase ( self : Optional[int] ,_UpperCAmelCase : str ): _a : Union[str, Any] = self.sp_model.IdToPiece(_UpperCAmelCase ) return token def __lowercase ( self : str ,_UpperCAmelCase : Tuple ): _a : Any = [] _a : Any = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_UpperCAmelCase ) + token _a : Any = [] else: current_sub_tokens.append(_UpperCAmelCase ) out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string.strip() def __lowercase ( self : Any ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[Any] = os.path.join( _UpperCAmelCase ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase ,'wb' ) as fi: _a : Tuple = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,)
89
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } a_ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def a__ ( _UpperCamelCase : str ,_UpperCamelCase : Tuple ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Dict ): for attribute in key.split('''.''' ): __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ) if weight_type is not None: __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( _UpperCamelCase : Any ,_UpperCamelCase : Any ): __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hf_model.config.feat_extract_norm == '''group''' ,) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCamelCase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(_UpperCamelCase )[0].split('''.''' )[-2] __lowerCamelCase = mapped_key.replace('''*''' ,_UpperCamelCase ) if "weight_g" in name: __lowerCamelCase = '''weight_g''' elif "weight_v" in name: __lowerCamelCase = '''weight_v''' elif "bias" in name: __lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase = '''weight''' else: __lowerCamelCase = None set_recursively(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( _UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Dict ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ): __lowerCamelCase = full_name.split('''conv_layers.''' )[-1] __lowerCamelCase = name.split('''.''' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : List[str] ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : List[Any]=True ): if config_path is not None: __lowerCamelCase = UniSpeechSatConfig.from_pretrained(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatConfig() __lowerCamelCase = '''''' if is_finetuned: __lowerCamelCase = UniSpeechSatForCTC(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatForPreTraining(_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __lowerCamelCase = model[0].eval() recursively_load_weights(_UpperCamelCase ,_UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) a_ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
0
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = '''ssube/stable-diffusion-x4-upscaler-onnx''' def lowercase_ ( self , lowerCamelCase__=0 ) -> List[Any]: '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) ) __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) __lowerCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) __lowerCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ) -> Any: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = ort.SessionOptions() __lowerCamelCase = False return options def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((128, 128) ) # using the PNDM scheduler by default __lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) __lowerCamelCase = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase = init_image.resize((128, 128) ) __lowerCamelCase = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler' ) __lowerCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = 'A fantasy landscape, trending on artstation' __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type='np' , ) __lowerCamelCase = output.images __lowerCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) __lowerCamelCase = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
90
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING a_ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return {}, {}, {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = load_image(__UpperCAmelCase ) __lowerCamelCase = image.size __lowerCamelCase = self.image_processor(images=__UpperCAmelCase , return_tensors=self.framework ) return model_inputs def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.model(**__UpperCAmelCase ) return model_outputs def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = model_outputs.predicted_depth __lowerCamelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=__UpperCAmelCase ) __lowerCamelCase = prediction.squeeze().cpu().numpy() __lowerCamelCase = (output * 255 / np.max(__UpperCAmelCase )).astype('''uint8''' ) __lowerCamelCase = Image.fromarray(__UpperCAmelCase ) __lowerCamelCase = {} __lowerCamelCase = predicted_depth __lowerCamelCase = depth return output_dict
330
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Any = logging.get_logger(__name__) def _A (__a , __a=False , __a=False ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = '''backbone.''' if is_semantic else '''''' SCREAMING_SNAKE_CASE_ : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'{prefix}blocks.{i}.norm1.weight', f'beit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm1.bias', f'beit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.weight', f'beit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.bias', f'beit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.weight', f'beit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.bias', f'beit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.weight', f'beit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.bias', f'beit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.weight', f'beit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.bias', f'beit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ (f'{prefix}cls_token', '''beit.embeddings.cls_token'''), (f'{prefix}patch_embed.proj.weight', '''beit.embeddings.patch_embeddings.projection.weight'''), (f'{prefix}patch_embed.proj.bias', '''beit.embeddings.patch_embeddings.projection.bias'''), (f'{prefix}pos_embed', '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _A (__a , __a , __a=False , __a=False ) -> Union[str, Any]: """simple docstring""" for i in range(config.num_hidden_layers ): SCREAMING_SNAKE_CASE_ : Dict = '''backbone.''' if is_semantic else '''''' # queries, keys and values SCREAMING_SNAKE_CASE_ : List[str] = state_dict.pop(f'{prefix}blocks.{i}.attn.qkv.weight' ) SCREAMING_SNAKE_CASE_ : Optional[int] = state_dict.pop(f'{prefix}blocks.{i}.attn.q_bias' ) SCREAMING_SNAKE_CASE_ : Any = state_dict.pop(f'{prefix}blocks.{i}.attn.v_bias' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE_ : Dict = q_bias SCREAMING_SNAKE_CASE_ : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_ : List[str] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE_ : Tuple = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained SCREAMING_SNAKE_CASE_ : Optional[int] = state_dict.pop(f'{prefix}blocks.{i}.gamma_1' ) SCREAMING_SNAKE_CASE_ : Dict = state_dict.pop(f'{prefix}blocks.{i}.gamma_2' ) SCREAMING_SNAKE_CASE_ : int = gamma_a SCREAMING_SNAKE_CASE_ : Union[str, Any] = gamma_a def _A (__a , __a , __a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = dct.pop(__a ) SCREAMING_SNAKE_CASE_ : int = val def _A () -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE_ : Any = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def _A (__a , __a , __a=False ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = False if '''rvlcdip''' in checkpoint_url else True SCREAMING_SNAKE_CASE_ : Union[str, Any] = BeitConfig(use_absolute_position_embeddings=__a , use_mask_token=__a ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: SCREAMING_SNAKE_CASE_ : List[str] = 10_24 SCREAMING_SNAKE_CASE_ : Tuple = 40_96 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 24 SCREAMING_SNAKE_CASE_ : Tuple = 16 # labels if "rvlcdip" in checkpoint_url: SCREAMING_SNAKE_CASE_ : Optional[int] = 16 SCREAMING_SNAKE_CASE_ : Optional[int] = '''huggingface/label-files''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''rvlcdip-id2label.json''' SCREAMING_SNAKE_CASE_ : Optional[int] = json.load(open(hf_hub_download(__a , __a , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE_ : Any = {int(__a ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : str = idalabel SCREAMING_SNAKE_CASE_ : Tuple = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.hub.load_state_dict_from_url(__a , map_location='''cpu''' )['''model'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = create_rename_keys(__a , has_lm_head=__a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_q_k_v(__a , __a , has_lm_head=__a ) # load HuggingFace model SCREAMING_SNAKE_CASE_ : Dict = BeitForMaskedImageModeling(__a ) if has_lm_head else BeitForImageClassification(__a ) model.eval() model.load_state_dict(__a ) # Check outputs on an image SCREAMING_SNAKE_CASE_ : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__a ) SCREAMING_SNAKE_CASE_ : int = prepare_img() SCREAMING_SNAKE_CASE_ : List[str] = image_processor(images=__a , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE_ : List[Any] = encoding['''pixel_values'''] SCREAMING_SNAKE_CASE_ : Any = model(__a ) SCREAMING_SNAKE_CASE_ : Any = outputs.logits # verify logits SCREAMING_SNAKE_CASE_ : Optional[int] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(__a ), "Shape of logits not as expected" Path(__a ).mkdir(exist_ok=__a ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__a ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__a ) if push_to_hub: if has_lm_head: SCREAMING_SNAKE_CASE_ : Optional[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: SCREAMING_SNAKE_CASE_ : Dict = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(__a , __a ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=__a , ) model.push_to_hub( repo_path_or_name=Path(__a , __a ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=__a , ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) UpperCAmelCase_ : List[Any] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
91
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = ["""pixel_values"""] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = size if size is not None else {'''shortest_edge''': 224} __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __lowerCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowerCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD __lowerCamelCase = do_convert_rgb def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowerCamelCase = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowerCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowerCamelCase = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] __lowerCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
330
0
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""", datefmt="""%Y-%m-%d %H:%M:%S""", level=os.environ.get("""LOGLEVEL""", """INFO""").upper(), stream=sys.stdout, ) UpperCamelCase__ = logging.getLogger(__name__) UpperCamelCase__ = {"""facebook/bart-base""": BartForConditionalGeneration} UpperCamelCase__ = {"""facebook/bart-base""": BartTokenizer} def _a ( ): __lowerCAmelCase = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=SCREAMING_SNAKE_CASE_ , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=SCREAMING_SNAKE_CASE_ , help="Path to pretrained model or model identifier from huggingface.co/models." , required=SCREAMING_SNAKE_CASE_ , ) parser.add_argument( "--config_name" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=SCREAMING_SNAKE_CASE_ , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="Where to store the final ONNX file." ) __lowerCAmelCase = parser.parse_args() return args def _a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int]="cpu" ): __lowerCAmelCase = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE_ ) if model_name in ["facebook/bart-base"]: __lowerCAmelCase = 0 __lowerCAmelCase = None __lowerCAmelCase = 0 return huggingface_model, tokenizer def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] ): model.eval() __lowerCAmelCase = None __lowerCAmelCase = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE_ ) ) with torch.no_grad(): __lowerCAmelCase = "My friends are cool but they eat too many carbs." __lowerCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors="pt" ).to(model.device ) __lowerCAmelCase = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , early_stopping=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE_ , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE_ , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=SCREAMING_SNAKE_CASE_ , ) logger.info("Model exported to {}".format(SCREAMING_SNAKE_CASE_ ) ) __lowerCAmelCase = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE_ ) ) logger.info("Deduplicated and optimized model written to {}".format(SCREAMING_SNAKE_CASE_ ) ) __lowerCAmelCase = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = ort_sess.run( SCREAMING_SNAKE_CASE_ , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(SCREAMING_SNAKE_CASE_ ), "max_length": np.array(SCREAMING_SNAKE_CASE_ ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def _a ( ): __lowerCAmelCase = parse_args() __lowerCAmelCase = 5 __lowerCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() __lowerCAmelCase = torch.device(args.device ) __lowerCAmelCase , __lowerCAmelCase = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE_ ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(SCREAMING_SNAKE_CASE_ ) if args.max_length: __lowerCAmelCase = args.max_length if args.num_beams: __lowerCAmelCase = args.num_beams if args.output_file_path: __lowerCAmelCase = args.output_file_path else: __lowerCAmelCase = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
92
from __future__ import annotations from typing import Generic, TypeVar a_ = TypeVar("""T""") class __lowerCAmelCase ( Generic[T] ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = data __lowerCamelCase = self __lowerCamelCase = 0 class __lowerCAmelCase ( Generic[T] ): def __init__( self ): '''simple docstring''' # map from node name to the node object __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # create a new set with x as its member __lowerCamelCase = DisjointSetTreeNode(__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # find the set x belongs to (with path-compression) __lowerCamelCase = self.map[data] if elem_ref != elem_ref.parent: __lowerCamelCase = self.find_set(elem_ref.parent.data ) return elem_ref.parent def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # helper function for union operation if nodea.rank > nodea.rank: __lowerCamelCase = nodea else: __lowerCamelCase = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # merge 2 disjoint sets self.link(self.find_set(__UpperCAmelCase ) , self.find_set(__UpperCAmelCase ) ) class __lowerCAmelCase ( Generic[T] ): def __init__( self ): '''simple docstring''' # connections: map from the node to the neighbouring nodes (with weights) __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # add a node ONLY if its not present in the graph if node not in self.connections: __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # add an edge with the given weight self.add_node(__UpperCAmelCase ) self.add_node(__UpperCAmelCase ) __lowerCamelCase = weight __lowerCamelCase = weight def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __UpperCAmelCase : x[2] ) # creating the disjoint set __lowerCamelCase = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__UpperCAmelCase ) # MST generation __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = edges[index] index += 1 __lowerCamelCase = disjoint_set.find_set(__UpperCAmelCase ) __lowerCamelCase = disjoint_set.find_set(__UpperCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) disjoint_set.union(__UpperCAmelCase , __UpperCAmelCase ) return graph
330
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int | None = None , __SCREAMING_SNAKE_CASE : int | None = None ): """simple docstring""" if start is None: lowercase_ : Dict = 0 if end is None: lowercase_ : List[Any] = len(__SCREAMING_SNAKE_CASE ) - 1 if start >= end: return lowercase_ : Tuple = (start + end) // 2 slowsort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) slowsort(__SCREAMING_SNAKE_CASE , mid + 1 , __SCREAMING_SNAKE_CASE ) if sequence[end] < sequence[mid]: lowercase_ , lowercase_ : List[str] = sequence[mid], sequence[end] slowsort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
93
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_config() __lowerCamelCase = 300 return config def lowerCamelCase ( self ): '''simple docstring''' ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = self.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = True __lowerCamelCase = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_choices __lowerCamelCase = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = () def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCamelCase = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def lowerCamelCase ( self ): '''simple docstring''' return @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) __lowerCamelCase = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case : Dict = logging.get_logger(__name__) snake_case : Tuple = '''▁''' snake_case : Any = {'''vocab_file''': '''sentencepiece.bpe.model'''} snake_case : Tuple = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } snake_case : int = { '''xlm-roberta-base''': 5_12, '''xlm-roberta-large''': 5_12, '''xlm-roberta-large-finetuned-conll02-dutch''': 5_12, '''xlm-roberta-large-finetuned-conll02-spanish''': 5_12, '''xlm-roberta-large-finetuned-conll03-english''': 5_12, '''xlm-roberta-large-finetuned-conll03-german''': 5_12, } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase = None , **_lowerCamelCase , ): # Mask token behave like a normal word, i.e. include the space before it a :Optional[int] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token a :int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) a :Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCamelCase ) ) a :str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token a :Tuple = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a :List[str] = 1 a :Dict = len(self.sp_model ) + self.fairseq_offset a :List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): a :List[str] = self.__dict__.copy() a :Optional[int] = None a :int = self.sp_model.serialized_model_proto() return state def __setstate__( self , _lowerCamelCase ): a :Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a :Union[str, Any] = {} a :Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a :List[Any] = [self.cls_token_id] a :Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): a :int = [self.sep_token_id] a :int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def SCREAMING_SNAKE_CASE__ ( self ): a :Any = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a :Optional[Any] = self.sp_model.PieceToId(_lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Tuple = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): if not os.path.isdir(_lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a :int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: a :List[Any] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
94
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
UpperCAmelCase : Tuple = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} UpperCAmelCase : Optional[int] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _A ( SCREAMING_SNAKE_CASE : dict[int, list[int]] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[bool] ): """simple docstring""" a__ : Union[str, Any] =True a__ : Any =[] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) order.append(SCREAMING_SNAKE_CASE ) return order def _A ( SCREAMING_SNAKE_CASE : dict[int, list[int]] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[bool] ): """simple docstring""" a__ : List[str] =True a__ : Tuple =[vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return component def _A ( SCREAMING_SNAKE_CASE : dict[int, list[int]] ): """simple docstring""" a__ : str =len(SCREAMING_SNAKE_CASE ) * [False] a__ : dict[int, list[int]] ={vert: [] for vert in range(len(SCREAMING_SNAKE_CASE ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(SCREAMING_SNAKE_CASE ) a__ : Optional[Any] =[] for i, was_visited in enumerate(SCREAMING_SNAKE_CASE ): if not was_visited: order += topology_sort(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : List[str] =[] a__ : Optional[Any] =len(SCREAMING_SNAKE_CASE ) * [False] for i in range(len(SCREAMING_SNAKE_CASE ) ): a__ : Any =order[len(SCREAMING_SNAKE_CASE ) - i - 1] if not visited[vert]: a__ : List[str] =find_components(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) components_list.append(SCREAMING_SNAKE_CASE ) return components_list
95
from string import ascii_lowercase, ascii_uppercase def a__ ( _UpperCamelCase : str ): if not sentence: return "" __lowerCamelCase = dict(zip(_UpperCamelCase ,_UpperCamelCase ) ) return lower_to_upper.get(sentence[0] ,sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
330
0
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , lowercase=768 ): super().__init__(lowercase ) _lowerCamelCase : Any = proj_size _lowerCamelCase : Dict = CLIPVisionModel(lowercase ) _lowerCamelCase : List[str] = PaintByExampleMapper(lowercase ) _lowerCamelCase : Optional[Any] = nn.LayerNorm(config.hidden_size ) _lowerCamelCase : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling _lowerCamelCase : str = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def A_ ( self , lowercase , lowercase=False ): _lowerCamelCase : Union[str, Any] = self.model(pixel_values=lowercase ) _lowerCamelCase : int = clip_output.pooler_output _lowerCamelCase : str = self.mapper(latent_states[:, None] ) _lowerCamelCase : List[Any] = self.final_layer_norm(lowercase ) _lowerCamelCase : Dict = self.proj_out(lowercase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase ): super().__init__() _lowerCamelCase : Tuple = (config.num_hidden_layers + 1) // 5 _lowerCamelCase : int = config.hidden_size _lowerCamelCase : Optional[Any] = 1 _lowerCamelCase : str = nn.ModuleList( [ BasicTransformerBlock(lowercase , lowercase , lowercase , activation_fn='gelu' , attention_bias=lowercase ) for _ in range(lowercase ) ] ) def A_ ( self , lowercase ): for block in self.blocks: _lowerCamelCase : Tuple = block(lowercase ) return hidden_states
96
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCAmelCase ( lowerCAmelCase__ ): @slow @require_torch def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __lowerCamelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __lowerCamelCase = bertabert.config.encoder.vocab_size __lowerCamelCase = tokenizer.sep_token_id __lowerCamelCase = tokenizer.cls_token_id __lowerCamelCase = 128 __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __lowerCamelCase = train_dataset.select(range(32 ) ) __lowerCamelCase = val_dataset.select(range(16 ) ) __lowerCamelCase = 4 def _map_to_encoder_decoder_inputs(__UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __lowerCamelCase = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=512 ) __lowerCamelCase = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=128 ) __lowerCamelCase = inputs.input_ids __lowerCamelCase = inputs.attention_mask __lowerCamelCase = outputs.input_ids __lowerCamelCase = outputs.input_ids.copy() __lowerCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __lowerCamelCase = outputs.attention_mask assert all(len(__UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__UpperCAmelCase ): __lowerCamelCase = pred.label_ids __lowerCamelCase = pred.predictions # all unnecessary tokens are removed __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__UpperCAmelCase ) )] ) / len(__UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset __lowerCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __lowerCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __lowerCamelCase = self.get_auto_remove_tmp_dir() __lowerCamelCase = SeqaSeqTrainingArguments( output_dir=__UpperCAmelCase , per_device_train_batch_size=__UpperCAmelCase , per_device_eval_batch_size=__UpperCAmelCase , predict_with_generate=__UpperCAmelCase , evaluation_strategy='''steps''' , do_train=__UpperCAmelCase , do_eval=__UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __lowerCamelCase = SeqaSeqTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , tokenizer=__UpperCAmelCase , ) # start training trainer.train()
330
0
'''simple docstring''' from __future__ import annotations def a ( __a ) -> list[int]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = 2 UpperCamelCase__ :Optional[Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__a ) if n > 1: factors.append(__a ) return factors if __name__ == "__main__": import doctest doctest.testmod()
97
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class snake_case ( __UpperCAmelCase ): """simple docstring""" def __init__( self : Dict ): UpperCAmelCase__ = [] def __lowerCAmelCase ( self : int ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : List[Any] ,**lowerCamelCase__ : int ): self.events.append('on_init_end' ) def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Any ,**lowerCamelCase__ : Optional[Any] ): self.events.append('on_train_begin' ) def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : int ,**lowerCamelCase__ : int ): self.events.append('on_train_end' ) def __lowerCAmelCase ( self : str ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Any ,**lowerCamelCase__ : Optional[Any] ): self.events.append('on_epoch_begin' ) def __lowerCAmelCase ( self : str ,lowerCamelCase__ : Dict ,lowerCamelCase__ : str ,lowerCamelCase__ : Dict ,**lowerCamelCase__ : List[Any] ): self.events.append('on_epoch_end' ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : str ,lowerCamelCase__ : Union[str, Any] ,**lowerCamelCase__ : Union[str, Any] ): self.events.append('on_step_begin' ) def __lowerCAmelCase ( self : str ,lowerCamelCase__ : Any ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[str] ,**lowerCamelCase__ : Optional[Any] ): self.events.append('on_step_end' ) def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : List[str] ,**lowerCamelCase__ : List[str] ): self.events.append('on_evaluate' ) def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : int ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Union[str, Any] ,**lowerCamelCase__ : Union[str, Any] ): self.events.append('on_predict' ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Any ,**lowerCamelCase__ : Optional[Any] ): self.events.append('on_save' ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Optional[int] ,**lowerCamelCase__ : Union[str, Any] ): self.events.append('on_log' ) def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[Any] ,**lowerCamelCase__ : Optional[int] ): self.events.append('on_prediction_step' ) @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Union[str, Any] ): UpperCAmelCase__ = tempfile.mkdtemp() def __lowerCAmelCase ( self : int ): shutil.rmtree(self.output_dir ) def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Optional[Any]=0 ,lowerCamelCase__ : str=0 ,lowerCamelCase__ : List[str]=64 ,lowerCamelCase__ : Tuple=64 ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : Any=False ,**lowerCamelCase__ : List[Any] ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. UpperCAmelCase__ = RegressionDataset(length=lowerCamelCase__ ) UpperCAmelCase__ = RegressionDataset(length=lowerCamelCase__ ) UpperCAmelCase__ = RegressionModelConfig(a=lowerCamelCase__ ,b=lowerCamelCase__ ) UpperCAmelCase__ = RegressionPreTrainedModel(lowerCamelCase__ ) UpperCAmelCase__ = TrainingArguments(self.output_dir ,disable_tqdm=lowerCamelCase__ ,report_to=[] ,**lowerCamelCase__ ) return Trainer( lowerCamelCase__ ,lowerCamelCase__ ,train_dataset=lowerCamelCase__ ,eval_dataset=lowerCamelCase__ ,callbacks=lowerCamelCase__ ,) def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[str] ): self.assertEqual(len(lowerCamelCase__ ) ,len(lowerCamelCase__ ) ) # Order doesn't matter UpperCAmelCase__ = sorted(lowerCamelCase__ ,key=lambda lowerCamelCase__ : cb.__name__ if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else cb.__class__.__name__ ) UpperCAmelCase__ = sorted(lowerCamelCase__ ,key=lambda lowerCamelCase__ : cb.__name__ if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowerCamelCase__ ,lowerCamelCase__ ): if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) and isinstance(lowerCamelCase__ ,lowerCamelCase__ ): self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) elif isinstance(lowerCamelCase__ ,lowerCamelCase__ ) and not isinstance(lowerCamelCase__ ,lowerCamelCase__ ): self.assertEqual(lowerCamelCase__ ,cba.__class__ ) elif not isinstance(lowerCamelCase__ ,lowerCamelCase__ ) and isinstance(lowerCamelCase__ ,lowerCamelCase__ ): self.assertEqual(cba.__class__ ,lowerCamelCase__ ) else: self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : Optional[int] ): UpperCAmelCase__ = ['on_init_end', 'on_train_begin'] UpperCAmelCase__ = 0 UpperCAmelCase__ = len(trainer.get_eval_dataloader() ) UpperCAmelCase__ = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(lowerCamelCase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __lowerCAmelCase ( self : Union[str, Any] ): UpperCAmelCase__ = self.get_trainer() UpperCAmelCase__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowerCamelCase__ ) # Callbacks passed at init are added to the default callbacks UpperCAmelCase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowerCamelCase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback UpperCAmelCase__ = self.get_trainer(disable_tqdm=lowerCamelCase__ ) UpperCAmelCase__ = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[int] ): UpperCAmelCase__ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] UpperCAmelCase__ = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowerCamelCase__ ) expected_callbacks.remove(lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowerCamelCase__ ) UpperCAmelCase__ = self.get_trainer() UpperCAmelCase__ = trainer.pop_callback(lowerCamelCase__ ) self.assertEqual(cb.__class__ ,lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowerCamelCase__ ) trainer.add_callback(lowerCamelCase__ ) expected_callbacks.insert(0 ,lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowerCamelCase__ ) # We can also add, pop, or remove by instance UpperCAmelCase__ = self.get_trainer() UpperCAmelCase__ = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowerCamelCase__ ) expected_callbacks.remove(lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowerCamelCase__ ) UpperCAmelCase__ = self.get_trainer() UpperCAmelCase__ = trainer.callback_handler.callbacks[0] UpperCAmelCase__ = trainer.pop_callback(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowerCamelCase__ ) trainer.add_callback(lowerCamelCase__ ) expected_callbacks.insert(0 ,lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Tuple ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' ,category=lowerCamelCase__ ) UpperCAmelCase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() UpperCAmelCase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ ,self.get_expected_events(lowerCamelCase__ ) ) # Independent log/save/eval UpperCAmelCase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() UpperCAmelCase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ ,self.get_expected_events(lowerCamelCase__ ) ) UpperCAmelCase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() UpperCAmelCase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ ,self.get_expected_events(lowerCamelCase__ ) ) UpperCAmelCase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='steps' ) trainer.train() UpperCAmelCase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ ,self.get_expected_events(lowerCamelCase__ ) ) UpperCAmelCase__ = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='epoch' ) trainer.train() UpperCAmelCase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ ,self.get_expected_events(lowerCamelCase__ ) ) # A bit of everything UpperCAmelCase__ = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=10 ,eval_steps=5 ,evaluation_strategy='steps' ,) trainer.train() UpperCAmelCase__ = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ ,self.get_expected_events(lowerCamelCase__ ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: UpperCAmelCase__ = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowerCamelCase__ ) in warn_mock.call_args[0][0]
98
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase=0.01 , __UpperCAmelCase=1000 ): '''simple docstring''' __lowerCamelCase = p_stop __lowerCamelCase = max_length def __iter__( self ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = False while not stop and count < self.max_length: yield count count += 1 __lowerCamelCase = random.random() < self.p_stop class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = [ BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 ) ] __lowerCamelCase = [list(__UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__UpperCAmelCase ) for shard in batch_sampler_shards] , [len(__UpperCAmelCase ) for e in expected] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __lowerCamelCase = [BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=False ): '''simple docstring''' random.seed(__UpperCAmelCase ) __lowerCamelCase = list(__UpperCAmelCase ) __lowerCamelCase = [ IterableDatasetShard( __UpperCAmelCase , batch_size=__UpperCAmelCase , drop_last=__UpperCAmelCase , num_processes=__UpperCAmelCase , process_index=__UpperCAmelCase , split_batches=__UpperCAmelCase , ) for i in range(__UpperCAmelCase ) ] __lowerCamelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__UpperCAmelCase ) iterable_dataset_lists.append(list(__UpperCAmelCase ) ) __lowerCamelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __lowerCamelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) self.assertTrue(len(__UpperCAmelCase ) % shard_batch_size == 0 ) __lowerCamelCase = [] for idx in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__UpperCAmelCase ) < len(__UpperCAmelCase ): reference += reference self.assertListEqual(__UpperCAmelCase , reference[: len(__UpperCAmelCase )] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = 42 __lowerCamelCase = RandomIterableDataset() self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) # Edge case with a very small dataset __lowerCamelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = SkipBatchSampler(__UpperCAmelCase , 2 ) self.assertListEqual(list(__UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) __lowerCamelCase = skip_first_batches(__UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowerCamelCase ( self ): '''simple docstring''' Accelerator() __lowerCamelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
330
0
def A_ ( A__ , A__ ) -> str: if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) a__ : List[str] = str(bin(A__ ) )[2:] # remove the leading "0b" a__ : Optional[int] = str(bin(A__ ) )[2:] # remove the leading "0b" a__ : List[str] = max(len(A__ ) , len(A__ ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(A__ ) , b_binary.zfill(A__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
99
def a__ ( _UpperCamelCase : int ): __lowerCamelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
330
0
"""simple docstring""" import math from collections.abc import Callable def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = xa __SCREAMING_SNAKE_CASE = xa while True: if x_n == x_na or function(UpperCamelCase_ ) == function(UpperCamelCase_ ): raise ZeroDivisionError("""float division by zero, could not find root""" ) __SCREAMING_SNAKE_CASE = x_na - ( function(UpperCamelCase_ ) / ((function(UpperCamelCase_ ) - function(UpperCamelCase_ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na __SCREAMING_SNAKE_CASE = x_na __SCREAMING_SNAKE_CASE = x_na def _lowerCAmelCase ( UpperCamelCase_ ): return math.pow(UpperCamelCase_ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
100
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ = 16 a_ = 32 def a__ ( _UpperCamelCase : Accelerator ,_UpperCamelCase : int = 16 ): __lowerCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __lowerCamelCase = load_dataset('''glue''' ,'''mrpc''' ) def tokenize_function(_UpperCamelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=_UpperCamelCase ,max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCamelCase = datasets.map( _UpperCamelCase ,batched=_UpperCamelCase ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column('''label''' ,'''labels''' ) def collate_fn(_UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCamelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCamelCase = 16 elif accelerator.mixed_precision != "no": __lowerCamelCase = 8 else: __lowerCamelCase = None return tokenizer.pad( _UpperCamelCase ,padding='''longest''' ,max_length=_UpperCamelCase ,pad_to_multiple_of=_UpperCamelCase ,return_tensors='''pt''' ,) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets['''train'''] ,shuffle=_UpperCamelCase ,collate_fn=_UpperCamelCase ,batch_size=_UpperCamelCase ) __lowerCamelCase = DataLoader( tokenized_datasets['''validation'''] ,shuffle=_UpperCamelCase ,collate_fn=_UpperCamelCase ,batch_size=_UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ = mocked_dataloaders # noqa: F811 def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' ,_UpperCamelCase ) == "1": __lowerCamelCase = 2 # Initialize accelerator __lowerCamelCase = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config['''lr'''] __lowerCamelCase = int(config['''num_epochs'''] ) __lowerCamelCase = int(config['''seed'''] ) __lowerCamelCase = int(config['''batch_size'''] ) __lowerCamelCase = evaluate.load('''glue''' ,'''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_UpperCamelCase ) def inner_training_loop(_UpperCamelCase : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' ,return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCamelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCamelCase = AdamW(params=model.parameters() ,lr=_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = get_dataloaders(_UpperCamelCase ,_UpperCamelCase ) # Instantiate scheduler __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase ,num_warmup_steps=1_00 ,num_training_steps=(len(_UpperCamelCase ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = accelerator.prepare( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCamelCase = model(**_UpperCamelCase ) __lowerCamelCase = outputs.loss accelerator.backward(_UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**_UpperCamelCase ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) __lowerCamelCase ,__lowerCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_UpperCamelCase ,references=_UpperCamelCase ,) __lowerCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,_UpperCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a__ ( ): __lowerCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' ,type=_UpperCamelCase ,default=_UpperCamelCase ,choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] ,help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' ,) parser.add_argument('''--cpu''' ,action='''store_true''' ,help='''If passed, will train on the CPU.''' ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCamelCase ,_UpperCamelCase ) if __name__ == "__main__": main()
330
0
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = [False] * len(lowerCAmelCase__ ) lowercase = [-1] * len(lowerCAmelCase__ ) def dfs(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase = True lowercase = c for u in graph[v]: if not visited[u]: dfs(lowerCAmelCase__ , 1 - c ) for i in range(len(lowerCAmelCase__ ) ): if not visited[i]: dfs(lowerCAmelCase__ , 0 ) for i in range(len(lowerCAmelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph lowercase__ :Union[str, Any] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
101
import logging import os import threading import time try: import warnings except ImportError: a_ = None try: import msvcrt except ImportError: a_ = None try: import fcntl except ImportError: a_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: a_ = OSError # Data # ------------------------------------------------ a_ = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] a_ = """3.0.12""" a_ = None def a__ ( ): global _logger __lowerCamelCase = _logger or logging.getLogger(__name__ ) return _logger class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock_file return None def __str__( self ): '''simple docstring''' __lowerCamelCase = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock return None def __enter__( self ): '''simple docstring''' return self.lock def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.lock.release() return None class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowerCamelCase = self.hash_filename_if_too_long(__UpperCAmelCase , __UpperCAmelCase ) # The path to the lock file. __lowerCamelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowerCamelCase = None # The default timeout value. __lowerCamelCase = timeout # We use this lock primarily for the lock counter. __lowerCamelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowerCamelCase = 0 return None @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file @property def lowerCamelCase ( self ): '''simple docstring''' return self._timeout @timeout.setter def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = float(__UpperCAmelCase ) return None def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file_fd is not None def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=0.05 ): '''simple docstring''' # Use the default timeout, if no timeout is provided. if timeout is None: __lowerCamelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file __lowerCamelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(__UpperCAmelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowerCamelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCamelCase ( self , __UpperCAmelCase=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __lowerCamelCase = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self ): '''simple docstring''' self.acquire() return self def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.release() return None def __del__( self ): '''simple docstring''' self.release(force=__UpperCAmelCase ) return None def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = os.path.basename(__UpperCAmelCase ) if len(__UpperCAmelCase ) > max_length and max_length > 0: __lowerCamelCase = os.path.dirname(__UpperCAmelCase ) __lowerCamelCase = str(hash(__UpperCAmelCase ) ) __lowerCamelCase = filename[: max_length - len(__UpperCAmelCase ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(__UpperCAmelCase , __UpperCAmelCase ) else: return path class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) __lowerCamelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: try: msvcrt.locking(__UpperCAmelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None msvcrt.locking(__UpperCAmelCase , msvcrt.LK_UNLCK , 1 ) os.close(__UpperCAmelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = os.statvfs(os.path.dirname(__UpperCAmelCase ) ).f_namemax super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) try: fcntl.flock(__UpperCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None fcntl.flock(__UpperCAmelCase , fcntl.LOCK_UN ) os.close(__UpperCAmelCase ) return None class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' os.close(self._lock_file_fd ) __lowerCamelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None a_ = None if msvcrt: a_ = WindowsFileLock elif fcntl: a_ = UnixFileLock else: a_ = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
330
0
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='data2vec-audio' def __init__(self , a_=32 , a_=7_68 , a_=12 , a_=12 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=0.1 , a_=0.0 , a_=0.1 , a_=0.1 , a_=0.02 , a_=1E-5 , a_="gelu" , a_=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , a_=(5, 2, 2, 2, 2, 2, 2) , a_=(10, 3, 3, 3, 3, 2, 2) , a_=False , a_=16 , a_=19 , a_=5 , a_=0.05 , a_=10 , a_=2 , a_=0.0 , a_=10 , a_=0 , a_="sum" , a_=False , a_=False , a_=2_56 , a_=(5_12, 5_12, 5_12, 5_12, 15_00) , a_=(5, 3, 3, 1, 1) , a_=(1, 2, 3, 1, 1) , a_=5_12 , a_=0 , a_=1 , a_=2 , a_=False , a_=3 , a_=2 , a_=3 , a_=None , **a_ , ): '''simple docstring''' super().__init__(**a_ , pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ ) __snake_case : Dict = hidden_size __snake_case : Union[str, Any] = feat_extract_activation __snake_case : List[Any] = list(a_ ) __snake_case : str = list(a_ ) __snake_case : int = list(a_ ) __snake_case : Tuple = conv_bias __snake_case : Union[str, Any] = num_conv_pos_embeddings __snake_case : Union[str, Any] = num_conv_pos_embedding_groups __snake_case : str = conv_pos_kernel_size __snake_case : Optional[Any] = len(self.conv_dim ) __snake_case : Optional[int] = num_hidden_layers __snake_case : List[Any] = intermediate_size __snake_case : Tuple = hidden_act __snake_case : Optional[int] = num_attention_heads __snake_case : Optional[Any] = hidden_dropout __snake_case : List[Any] = attention_dropout __snake_case : str = activation_dropout __snake_case : List[str] = feat_proj_dropout __snake_case : int = final_dropout __snake_case : Union[str, Any] = layerdrop __snake_case : Dict = layer_norm_eps __snake_case : Union[str, Any] = initializer_range __snake_case : List[str] = vocab_size __snake_case : List[Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case : List[str] = mask_time_prob __snake_case : Optional[int] = mask_time_length __snake_case : List[Any] = mask_time_min_masks __snake_case : Optional[int] = mask_feature_prob __snake_case : Optional[Any] = mask_feature_length __snake_case : Union[str, Any] = mask_feature_min_masks # ctc loss __snake_case : int = ctc_loss_reduction __snake_case : Dict = ctc_zero_infinity # adapter __snake_case : int = add_adapter __snake_case : Union[str, Any] = adapter_kernel_size __snake_case : List[str] = adapter_stride __snake_case : List[Any] = num_adapter_layers __snake_case : List[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __snake_case : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __snake_case : Dict = list(a_ ) __snake_case : int = list(a_ ) __snake_case : Any = list(a_ ) __snake_case : Any = xvector_output_dim @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return math.prod(self.conv_stride )
102
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=10 , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase="divided_space_time" , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = patch_size __lowerCamelCase = num_frames __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = attention_type __lowerCamelCase = initializer_range __lowerCamelCase = scope __lowerCamelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __lowerCamelCase = (image_size // patch_size) ** 2 __lowerCamelCase = (num_frames) * self.num_patches_per_frame + 1 def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __lowerCamelCase = self.num_labels return config def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TimesformerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) # verify the logits shape __lowerCamelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = config_and_inputs __lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowerCAmelCase__ = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerModelTester(self ) __lowerCamelCase = ConfigTester( self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = copy.deepcopy(__UpperCAmelCase ) if return_labels: if model_class in get_values(__UpperCAmelCase ): __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = TimesformerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' if not self.has_attentions: pass else: __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = True for model_class in self.all_model_classes: __lowerCamelCase = self.model_tester.seq_length __lowerCamelCase = self.model_tester.num_frames __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __lowerCamelCase = len(__UpperCAmelCase ) # Check attention is always last and order is fine __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(out_len + 1 , len(__UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __lowerCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def a__ ( ): __lowerCamelCase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' ,filename='''eating_spaghetti.npy''' ,repo_type='''dataset''' ) __lowerCamelCase = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ): '''simple docstring''' # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( __UpperCAmelCase ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_video() __lowerCamelCase = image_processor(video[:8] , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**__UpperCAmelCase ) # verify the logits __lowerCamelCase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
0
from datetime import datetime as dt import os from github import Github A__ : List[str] = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def UpperCamelCase( ): lowerCAmelCase_ : Union[str, Any] = Github(os.environ['''GITHUB_TOKEN'''] ) lowerCAmelCase_ : Tuple = g.get_repo('''huggingface/transformers''' ) lowerCAmelCase_ : int = repo.get_issues(state='''open''' ) for issue in open_issues: lowerCAmelCase_ : Optional[Any] = sorted([comment for comment in issue.get_comments()] ,key=lambda __UpperCamelCase : i.created_at ,reverse=__UpperCamelCase ) lowerCAmelCase_ : Tuple = comments[0] if len(__UpperCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
103
def a__ ( _UpperCamelCase : int ): if not isinstance(_UpperCamelCase ,_UpperCamelCase ): __lowerCamelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(_UpperCamelCase ) if number < 0: return False __lowerCamelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
330
0
'''simple docstring''' import colorsys from PIL import Image # type: ignore def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = x __lowercase = y for step in range(A__ ): # noqa: B007 __lowercase = a * a - b * b + x __lowercase = 2 * a * b + y __lowercase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _A ( A__ ): """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _A ( A__ ): """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(A__ , 1 , 1 ) ) def _A ( A__ = 800 , A__ = 600 , A__ = -0.6 , A__ = 0 , A__ = 3.2 , A__ = 50 , A__ = True , ): """simple docstring""" __lowercase = Image.new('''RGB''' , (image_width, image_height) ) __lowercase = img.load() # loop through the image-coordinates for image_x in range(A__ ): for image_y in range(A__ ): # determine the figure-coordinates based on the image-coordinates __lowercase = figure_width / image_width * image_height __lowercase = figure_center_x + (image_x / image_width - 0.5) * figure_width __lowercase = figure_center_y + (image_y / image_height - 0.5) * figure_height __lowercase = get_distance(A__ , A__ , A__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __lowercase = get_color_coded_rgb(A__ ) else: __lowercase = get_black_and_white_rgb(A__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCAmelCase__ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
104
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={"_".join([str(__UpperCAmelCase ) for s in shape] )}.npy""" def lowerCamelCase ( self ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCamelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase=(4, 4, 64, 64) , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase ) ) , dtype=__UpperCAmelCase ) return image def lowerCamelCase ( self , __UpperCAmelCase=False , __UpperCAmelCase="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = '''bf16''' if fpaa else None __lowerCamelCase ,__lowerCamelCase = FlaxUNetaDConditionModel.from_pretrained( __UpperCAmelCase , subfolder='''unet''' , dtype=__UpperCAmelCase , revision=__UpperCAmelCase ) return model, params def lowerCamelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase=(4, 77, 768) , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase ) ) , dtype=__UpperCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_latents(__UpperCAmelCase , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_encoder_hidden_states(__UpperCAmelCase , fpaa=__UpperCAmelCase ) __lowerCamelCase = model.apply( {'''params''': params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape __lowerCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCamelCase = jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_latents(__UpperCAmelCase , shape=(4, 4, 96, 96) , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_encoder_hidden_states(__UpperCAmelCase , shape=(4, 77, 1024) , fpaa=__UpperCAmelCase ) __lowerCamelCase = model.apply( {'''params''': params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape __lowerCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCamelCase = jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 )
330
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __UpperCamelCase ( unittest.TestCase ): def __a ( self ) -> int: a : Tuple = inspect.getfile(accelerate.test_utils ) a : List[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps", "test_metrics.py"] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 a : Any = test_metrics @require_cpu def __a ( self ) -> Tuple: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __a ( self ) -> List[Any]: debug_launcher(self.test_metrics.main ) @require_single_gpu def __a ( self ) -> Optional[int]: self.test_metrics.main() @require_multi_gpu def __a ( self ) -> Optional[int]: print(f"""Found {torch.cuda.device_count()} devices.""" ) a : Optional[int] = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() )
105
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
"""simple docstring""" import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCamelCase : List[str] = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCamelCase : Dict = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCamelCase : Optional[int] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) __UpperCamelCase : str = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) __UpperCamelCase : Any = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __UpperCamelCase : str = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) __UpperCamelCase : int = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCamelCase : List[Any] = np.expand_dims(test_image, axis=0) __UpperCamelCase : Any = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCamelCase : List[str] = '''Normal''' if result[0][0] == 1: __UpperCamelCase : Tuple = '''Abnormality detected'''
106
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def a__ ( _UpperCamelCase : Optional[int] ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __lowerCamelCase = module __lowerCamelCase = nn.Sequential( nn.Linear(module.in_features , __UpperCAmelCase , bias=__UpperCAmelCase ) , nn.Linear(__UpperCAmelCase , module.out_features , bias=__UpperCAmelCase ) , ) __lowerCamelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowerCamelCase ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.module(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) + self.adapter(__UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCAmelCase__ = """bigscience/bloom-1b7""" # Constant values lowerCAmelCase__ = 2.1_09_65_95_52_69_25_74 lowerCAmelCase__ = """Hello my name is""" lowerCAmelCase__ = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) lowerCAmelCase__ = 1_0 def lowerCamelCase ( self ): '''simple docstring''' # Models and tokenizer __lowerCamelCase = AutoTokenizer.from_pretrained(self.model_name ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() # Models and tokenizer __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) def lowerCamelCase ( self ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_abit.config self.assertTrue(hasattr(__UpperCAmelCase , '''quantization_config''' ) ) __lowerCamelCase = config.to_dict() __lowerCamelCase = config.to_diff_dict() __lowerCamelCase = config.to_json_string() def lowerCamelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit __lowerCamelCase = self.model_fpaa.get_memory_footprint() __lowerCamelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowerCamelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowerCamelCase ( self ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitsAndBytesConfig() __lowerCamelCase = True __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitsAndBytesConfig() with self.assertRaises(__UpperCAmelCase ): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , load_in_abit=__UpperCAmelCase , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = self.model_fpaa.to(torch.floataa ) __lowerCamelCase = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowerCamelCase = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error __lowerCamelCase = self.model_fpaa.half() # Check this does not throw an error __lowerCamelCase = self.model_fpaa.float() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls ): '''simple docstring''' __lowerCamelCase = '''t5-small''' __lowerCamelCase = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense __lowerCamelCase = AutoTokenizer.from_pretrained(cls.model_name ) __lowerCamelCase = '''Translate in German: Hello, my dog is cute''' def lowerCamelCase ( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' from transformers import TaForConditionalGeneration __lowerCamelCase = TaForConditionalGeneration._keep_in_fpaa_modules __lowerCamelCase = None # test with `t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) __lowerCamelCase = modules def lowerCamelCase ( self ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() # model_name __lowerCamelCase = '''bigscience/bloom-560m''' __lowerCamelCase = '''t5-small''' # Different types of model __lowerCamelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # Sequence classification model __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # CausalLM model __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # Seq2seq model __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) def lowerCamelCase ( self ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowerCamelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch __lowerCamelCase = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''facebook/opt-350m''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowerCamelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowerCamelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__UpperCAmelCase ) ): __lowerCamelCase = LoRALayer(module.q_proj , rank=16 ) __lowerCamelCase = LoRALayer(module.k_proj , rank=16 ) __lowerCamelCase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowerCamelCase = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowerCamelCase = model.forward(**__UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = """gpt2-xl""" lowerCAmelCase__ = 3.31_91_85_48_54_15_21_87
330
0
from __future__ import annotations def __magic_name__ ( A : list ): '''simple docstring''' if len(A ) == 0: return [] a , a = min(A ), max(A ) a = int(max_value - min_value ) + 1 a = [[] for _ in range(A )] for i in my_list: buckets[int(i - min_value )].append(A ) return [v for bucket in buckets for v in sorted(A )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
107
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = 42 class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = True @register_to_config def __init__( self , __UpperCAmelCase = 3 , __UpperCAmelCase = 3 , __UpperCAmelCase = ("DownEncoderBlock2D",) , __UpperCAmelCase = ("UpDecoderBlock2D",) , __UpperCAmelCase = (64,) , __UpperCAmelCase = 1 , __UpperCAmelCase = "silu" , __UpperCAmelCase = 4 , __UpperCAmelCase = 32 , __UpperCAmelCase = 32 , __UpperCAmelCase = 0.18_215 , ): '''simple docstring''' super().__init__() # pass init params to Encoder __lowerCamelCase = Encoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , down_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , act_fn=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , double_z=__UpperCAmelCase , ) # pass init params to Decoder __lowerCamelCase = Decoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , up_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , act_fn=__UpperCAmelCase , ) __lowerCamelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowerCamelCase = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) __lowerCamelCase = False __lowerCamelCase = False # only relevant if vae tiling is enabled __lowerCamelCase = self.config.sample_size __lowerCamelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowerCamelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowerCamelCase = 0.25 def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' if isinstance(__UpperCAmelCase , (Encoder, Decoder) ): __lowerCamelCase = value def lowerCamelCase ( self , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = use_tiling def lowerCamelCase ( self ): '''simple docstring''' self.enable_tiling(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = True def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''set_processor''' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return processors def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(__UpperCAmelCase )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''set_processor''' ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): module.set_processor(__UpperCAmelCase ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) if self.use_slicing and x.shape[0] > 1: __lowerCamelCase = [self.encoder(__UpperCAmelCase ) for x_slice in x.split(1 )] __lowerCamelCase = torch.cat(__UpperCAmelCase ) else: __lowerCamelCase = self.encoder(__UpperCAmelCase ) __lowerCamelCase = self.quant_conv(__UpperCAmelCase ) __lowerCamelCase = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) __lowerCamelCase = self.post_quant_conv(__UpperCAmelCase ) __lowerCamelCase = self.decoder(__UpperCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) @apply_forward_hook def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: __lowerCamelCase = [self._decode(__UpperCAmelCase ).sample for z_slice in z.split(1 )] __lowerCamelCase = torch.cat(__UpperCAmelCase ) else: __lowerCamelCase = self._decode(__UpperCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = min(a.shape[2] , b.shape[2] , __UpperCAmelCase ) for y in range(__UpperCAmelCase ): __lowerCamelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = min(a.shape[3] , b.shape[3] , __UpperCAmelCase ) for x in range(__UpperCAmelCase ): __lowerCamelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowerCamelCase = [] for i in range(0 , x.shape[2] , __UpperCAmelCase ): __lowerCamelCase = [] for j in range(0 , x.shape[3] , __UpperCAmelCase ): __lowerCamelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowerCamelCase = self.encoder(__UpperCAmelCase ) __lowerCamelCase = self.quant_conv(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) __lowerCamelCase = [] for i, row in enumerate(__UpperCAmelCase ): __lowerCamelCase = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=2 ) __lowerCamelCase = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowerCamelCase = [] for i in range(0 , z.shape[2] , __UpperCAmelCase ): __lowerCamelCase = [] for j in range(0 , z.shape[3] , __UpperCAmelCase ): __lowerCamelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowerCamelCase = self.post_quant_conv(__UpperCAmelCase ) __lowerCamelCase = self.decoder(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) __lowerCamelCase = [] for i, row in enumerate(__UpperCAmelCase ): __lowerCamelCase = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , ): '''simple docstring''' __lowerCamelCase = sample __lowerCamelCase = self.encode(__UpperCAmelCase ).latent_dist if sample_posterior: __lowerCamelCase = posterior.sample(generator=__UpperCAmelCase ) else: __lowerCamelCase = posterior.mode() __lowerCamelCase = self.decode(__UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase )
330
0
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=[30, 30] , snake_case__=2 , snake_case__=3 , snake_case__=True , snake_case__=True , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=10 , snake_case__=0.02 , snake_case__=3 , snake_case__=None , snake_case__=8 , snake_case__=10 , ): """simple docstring""" lowerCAmelCase : Tuple = parent lowerCAmelCase : List[str] = batch_size lowerCAmelCase : Any = image_size lowerCAmelCase : Dict = patch_size lowerCAmelCase : Union[str, Any] = num_channels lowerCAmelCase : List[str] = is_training lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Tuple = hidden_act lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : List[str] = type_sequence_label_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : List[str] = num_labels lowerCAmelCase : Optional[int] = scope lowerCAmelCase : Tuple = n_targets lowerCAmelCase : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCAmelCase : Optional[int] = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCAmelCase : int = num_patches + 1 + self.num_detection_tokens def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCAmelCase : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCAmelCase : Dict = [] for i in range(self.batch_size ): lowerCAmelCase : Optional[int] = {} lowerCAmelCase : Optional[Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=snake_case__ ) lowerCAmelCase : Any = torch.rand(self.n_targets , 4 , device=snake_case__ ) labels.append(snake_case__ ) lowerCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : str = YolosModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = YolosForObjectDetection(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[Any] = model(pixel_values=snake_case__ ) lowerCAmelCase : Dict = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCAmelCase : Optional[int] = model(pixel_values=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = config_and_inputs lowerCAmelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =(YolosModel, YolosForObjectDetection) if is_torch_available() else () a : Dict =( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) a : Dict =False a : Optional[Any] =False a : str =False a : List[str] =False def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=False ): """simple docstring""" lowerCAmelCase : List[Any] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCAmelCase : Optional[int] = [] for i in range(self.model_tester.batch_size ): lowerCAmelCase : Union[str, Any] = {} lowerCAmelCase : List[Any] = torch.ones( size=(self.model_tester.n_targets,) , device=snake_case__ , dtype=torch.long ) lowerCAmelCase : List[str] = torch.ones( self.model_tester.n_targets , 4 , device=snake_case__ , dtype=torch.float ) labels.append(snake_case__ ) lowerCAmelCase : Optional[int] = labels return inputs_dict def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = YolosModelTester(self ) lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : int = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[Any] = model_class(snake_case__ ) lowerCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Tuple = [*signature.parameters.keys()] lowerCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Union[str, Any] = True # in YOLOS, the seq_len is different lowerCAmelCase : str = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCAmelCase : int = True lowerCAmelCase : List[str] = False lowerCAmelCase : Optional[Any] = True lowerCAmelCase : List[str] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : List[str] = outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase : int = True lowerCAmelCase : Optional[int] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Optional[Any] = outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCAmelCase : Tuple = len(snake_case__ ) # Check attention is always last and order is fine lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : List[Any] = True lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Optional[int] = 1 self.assertEqual(out_len + added_hidden_states , len(snake_case__ ) ) lowerCAmelCase : Any = outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Tuple = outputs.hidden_states lowerCAmelCase : Dict = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) # YOLOS has a different seq_length lowerCAmelCase : List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : str = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : str = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : str = YolosModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained("hustvl/yolos-small" ) if is_vision_available() else None @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = YolosForObjectDetection.from_pretrained("hustvl/yolos-small" ).to(snake_case__ ) lowerCAmelCase : Dict = self.default_image_processor lowerCAmelCase : Any = prepare_img() lowerCAmelCase : Optional[Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): lowerCAmelCase : Dict = model(inputs.pixel_values ) # verify outputs lowerCAmelCase : Dict = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : Optional[int] = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=snake_case__ , ) lowerCAmelCase : Dict = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , snake_case__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , snake_case__ , atol=1e-4 ) ) # verify postprocessing lowerCAmelCase : List[str] = image_processor.post_process_object_detection( snake_case__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCAmelCase : Optional[Any] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(snake_case__ ) lowerCAmelCase : Dict = [75, 75, 17, 63, 17] lowerCAmelCase : str = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(snake_case__ ) self.assertEqual(len(results["scores"] ) , 5 ) self.assertTrue(torch.allclose(results["scores"] , snake_case__ , atol=1e-4 ) ) self.assertSequenceEqual(results["labels"].tolist() , snake_case__ ) self.assertTrue(torch.allclose(results["boxes"][0, :] , snake_case__ ) )
108
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration a_ = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] a_ = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] a_ = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) a_ = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) a_ = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : Optional[Any] ): for tf_name, hf_name in patterns: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = BigBirdPegasusConfig(**_UpperCamelCase ) __lowerCamelCase = BigBirdPegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() __lowerCamelCase = {} # separating decoder weights __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = DECODER_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = REMAINING_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" __lowerCamelCase = mapping['''model.embed_positions.weight'''] __lowerCamelCase = mapping.pop('''model.embed_positions.weight''' ) __lowerCamelCase ,__lowerCamelCase = torch_model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : int ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ,_UpperCamelCase : dict ): __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = convert_bigbird_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() a_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
330
0
"""simple docstring""" import functools def _snake_case ( UpperCamelCase : str , UpperCamelCase : str ): UpperCAmelCase : str = len(UpperCamelCase ) UpperCAmelCase : int = len(UpperCamelCase ) @functools.cache def min_distance(UpperCamelCase : int , UpperCamelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase : List[str] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , UpperCamelCase ) , 1 + min_distance(UpperCamelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
109
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase=None ): '''simple docstring''' if not conversation_id: __lowerCamelCase = uuid.uuida() if past_user_inputs is None: __lowerCamelCase = [] if generated_responses is None: __lowerCamelCase = [] __lowerCamelCase = conversation_id __lowerCamelCase = past_user_inputs __lowerCamelCase = generated_responses __lowerCamelCase = text def __eq__( self , __UpperCAmelCase ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) __lowerCamelCase = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: __lowerCamelCase = text def lowerCamelCase ( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowerCamelCase = None def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' self.generated_responses.append(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' __lowerCamelCase = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): __lowerCamelCase = '''user''' if is_user else '''bot''' output += F"""{name} >> {text} \n""" return output @add_end_docstrings( lowerCAmelCase__ , r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) if self.tokenizer.pad_token_id is None: __lowerCamelCase = self.tokenizer.eos_token def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = {} __lowerCamelCase = {} if min_length_for_response is not None: __lowerCamelCase = min_length_for_response if minimum_tokens is not None: __lowerCamelCase = minimum_tokens if "max_length" in generate_kwargs: __lowerCamelCase = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowerCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , __UpperCAmelCase , __UpperCAmelCase=0 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = super().__call__(__UpperCAmelCase , num_workers=__UpperCAmelCase , **__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) == 1: return outputs[0] return outputs def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=32 ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): __lowerCamelCase = self.tokenizer._build_conversation_input_ids(__UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowerCamelCase = self._legacy_parse_and_tokenize(__UpperCAmelCase ) if self.framework == "pt": __lowerCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowerCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=10 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) __lowerCamelCase = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) __lowerCamelCase = max_length - minimum_tokens __lowerCamelCase = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: __lowerCamelCase = model_inputs['''attention_mask'''][:, -trim:] __lowerCamelCase = model_inputs.pop('''conversation''' ) __lowerCamelCase = max_length __lowerCamelCase = self.model.generate(**__UpperCAmelCase , **__UpperCAmelCase ) if self.model.config.is_encoder_decoder: __lowerCamelCase = 1 else: __lowerCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = model_outputs['''output_ids'''] __lowerCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , ) __lowerCamelCase = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(__UpperCAmelCase ) return conversation def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.tokenizer.eos_token_id __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > self.tokenizer.model_max_length: __lowerCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
330
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _a : def __init__( self: Union[str, Any] , UpperCamelCase_: Tuple , UpperCamelCase_: List[Any]=2 , UpperCamelCase_: Optional[Any]=8 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Dict=True , UpperCamelCase_: Any=99 , UpperCamelCase_: int=16 , UpperCamelCase_: Optional[int]=5 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Any=36 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: List[str]=0.0 , UpperCamelCase_: Tuple=0.0 , UpperCamelCase_: Any=512 , UpperCamelCase_: int=16 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: str=0.02 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: str=None , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope def lowerCamelCase_ ( self: int ) -> List[str]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]: """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = self.get_config() lowercase__ = 300 return config def lowerCamelCase_ ( self: Union[str, Any] ) -> Tuple: """simple docstring""" ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = self.prepare_config_and_inputs() lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: Tuple ) -> Any: """simple docstring""" lowercase__ = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) lowercase__ = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) lowercase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Dict , UpperCamelCase_: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Tuple , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: Optional[int] , UpperCamelCase_: Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" lowercase__ = True lowercase__ = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase__ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) lowercase__ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) lowercase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: Dict , UpperCamelCase_: str , UpperCamelCase_: Any , UpperCamelCase_: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase__ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[str] , UpperCamelCase_: Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ = self.num_labels lowercase__ = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Dict , UpperCamelCase_: List[str] , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = self.num_labels lowercase__ = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: Dict , UpperCamelCase_: str , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple ) -> List[Any]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( lowerCAmelCase__ , unittest.TestCase ): _lowercase : Dict = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _lowercase : List[str] = False _lowercase : Dict = False _lowercase : Optional[int] = False _lowercase : Any = False _lowercase : int = () def lowerCamelCase_ ( self: List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = MraModelTester(self ) lowercase__ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase_ ( self: int ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase_ ( self: Any ) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def lowerCamelCase_ ( self: Optional[Any] ) -> str: """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" return @require_torch class _a ( unittest.TestCase ): @slow def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) lowercase__ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowercase__ = model(__UpperCAmelCase )[0] lowercase__ = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) lowercase__ = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self: Any ) -> Optional[int]: """simple docstring""" lowercase__ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) lowercase__ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowercase__ = model(__UpperCAmelCase )[0] lowercase__ = 50_265 lowercase__ = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) lowercase__ = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self: int ) -> int: """simple docstring""" lowercase__ = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) lowercase__ = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): lowercase__ = model(__UpperCAmelCase )[0] lowercase__ = 50_265 lowercase__ = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) lowercase__ = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
110
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def a__ ( _UpperCamelCase : int ): for pegasus_name, hf_name in PATTERNS: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) __lowerCamelCase = PegasusConfig(**_UpperCamelCase ) __lowerCamelCase = PegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.model.state_dict() __lowerCamelCase = {} for k, v in tf_weights.items(): __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCamelCase = v.T __lowerCamelCase = torch.tensor(_UpperCamelCase ,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCamelCase = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = torch_model.model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : str="./ckpt/aeslc/model.ckpt-32000" ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # save tokenizer first __lowerCamelCase = Path(_UpperCamelCase ).parent.name __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] __lowerCamelCase = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' ,model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": __lowerCamelCase = task_specific_params __lowerCamelCase = convert_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(_UpperCamelCase ,Path(_UpperCamelCase ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() if args.save_dir is None: a_ = Path(args.tf_ckpt_path).parent.name a_ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
330
0
import os from datetime import datetime as dt from github import Github SCREAMING_SNAKE_CASE__ = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def __SCREAMING_SNAKE_CASE ( ) -> Any: __lowercase = Github(os.environ['GITHUB_TOKEN'] ) __lowercase = g.get_repo('huggingface/diffusers' ) __lowercase = repo.get_issues(state='open' ) for issue in open_issues: __lowercase = sorted(issue.get_comments() , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=_UpperCamelCase ) __lowercase = comments[0] if len(_UpperCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
325
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } a_ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def a__ ( _UpperCamelCase : str ,_UpperCamelCase : Tuple ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Dict ): for attribute in key.split('''.''' ): __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ) if weight_type is not None: __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( _UpperCamelCase : Any ,_UpperCamelCase : Any ): __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hf_model.config.feat_extract_norm == '''group''' ,) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCamelCase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(_UpperCamelCase )[0].split('''.''' )[-2] __lowerCamelCase = mapped_key.replace('''*''' ,_UpperCamelCase ) if "weight_g" in name: __lowerCamelCase = '''weight_g''' elif "weight_v" in name: __lowerCamelCase = '''weight_v''' elif "bias" in name: __lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase = '''weight''' else: __lowerCamelCase = None set_recursively(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( _UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Dict ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ): __lowerCamelCase = full_name.split('''conv_layers.''' )[-1] __lowerCamelCase = name.split('''.''' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : List[str] ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : List[Any]=True ): if config_path is not None: __lowerCamelCase = UniSpeechSatConfig.from_pretrained(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatConfig() __lowerCamelCase = '''''' if is_finetuned: __lowerCamelCase = UniSpeechSatForCTC(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatForPreTraining(_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __lowerCamelCase = model[0].eval() recursively_load_weights(_UpperCamelCase ,_UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) a_ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
0
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __UpperCamelCase ( ): lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''-m''' , '''--pretrained_model_name_or_path''' , type=_UpperCamelCase , default=_UpperCamelCase , required=_UpperCamelCase , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , ) parser.add_argument( '''-c''' , '''--caption''' , type=_UpperCamelCase , default='''robotic cat with wings''' , help='''Text used to generate images.''' , ) parser.add_argument( '''-n''' , '''--images_num''' , type=_UpperCamelCase , default=4 , help='''How much images to generate.''' , ) parser.add_argument( '''-s''' , '''--seed''' , type=_UpperCamelCase , default=42 , help='''Seed for random process.''' , ) parser.add_argument( '''-ci''' , '''--cuda_id''' , type=_UpperCamelCase , default=0 , help='''cuda_id.''' , ) lowercase__ : Optional[int] = parser.parse_args() return args def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if not len(_UpperCamelCase ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) lowercase__ , lowercase__ : Any = imgs[0].size lowercase__ : List[str] = Image.new('''RGB''' , size=(cols * w, rows * h) ) lowercase__ , lowercase__ : int = grid.size for i, img in enumerate(_UpperCamelCase ): grid.paste(_UpperCamelCase , box=(i % cols * w, i // cols * h) ) return grid def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase="robotic cat with wings" , UpperCAmelCase=7.5 , UpperCAmelCase=50 , UpperCAmelCase=1 , UpperCAmelCase=42 , ): lowercase__ : str = torch.Generator(pipeline.device ).manual_seed(_UpperCamelCase ) lowercase__ : Union[str, Any] = pipeline( _UpperCamelCase , guidance_scale=_UpperCamelCase , num_inference_steps=_UpperCamelCase , generator=_UpperCamelCase , num_images_per_prompt=_UpperCamelCase , ).images lowercase__ : Union[str, Any] = int(math.sqrt(_UpperCamelCase ) ) lowercase__ : str = image_grid(_UpperCamelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __a: Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion __a: List[str] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="""tokenizer""") __a: Any = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""text_encoder""") __a: List[str] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="""vae""") __a: Optional[int] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""unet""") __a: int = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __a: Optional[int] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, """best_model.pt""")): __a: Dict = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, """unet""", unet) else: __a: Any = unet.to(torch.device("""cuda""", args.cuda_id)) __a: Any = pipeline.to(unet.device) __a , __a: Optional[int] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, """{}.png""".format("""_""".join(args.caption.split())))) __a: List[Any] = os.path.join(args.pretrained_model_name_or_path, """_""".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, """{}.png""".format(idx + 1)))
198
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING a_ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return {}, {}, {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = load_image(__UpperCAmelCase ) __lowerCamelCase = image.size __lowerCamelCase = self.image_processor(images=__UpperCAmelCase , return_tensors=self.framework ) return model_inputs def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.model(**__UpperCAmelCase ) return model_outputs def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = model_outputs.predicted_depth __lowerCamelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=__UpperCAmelCase ) __lowerCamelCase = prediction.squeeze().cpu().numpy() __lowerCamelCase = (output * 255 / np.max(__UpperCAmelCase )).astype('''uint8''' ) __lowerCamelCase = Image.fromarray(__UpperCAmelCase ) __lowerCamelCase = {} __lowerCamelCase = predicted_depth __lowerCamelCase = depth return output_dict
330
0
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) __a = logging.getLogger(__name__) def a ( ): '''simple docstring''' lowercase_ = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=_UpperCamelCase , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=_UpperCamelCase , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=_UpperCamelCase , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=_UpperCamelCase , default='''data/dump''' , help='''The dump file prefix.''' ) lowercase_ = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": lowercase_ = BertTokenizer.from_pretrained(args.tokenizer_name ) lowercase_ = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` lowercase_ = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": lowercase_ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowercase_ = tokenizer.special_tokens_map['''cls_token'''] # `<s>` lowercase_ = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": lowercase_ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowercase_ = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` lowercase_ = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: lowercase_ = fp.readlines() logger.info('''Start encoding''' ) logger.info(F'''{len(_UpperCamelCase )} examples to process.''' ) lowercase_ = [] lowercase_ = 0 lowercase_ = 10_000 lowercase_ = time.time() for text in data: lowercase_ = F'''{bos} {text.strip()} {sep}''' lowercase_ = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) rslt.append(_UpperCamelCase ) iter += 1 if iter % interval == 0: lowercase_ = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) lowercase_ = time.time() logger.info('''Finished binarization''' ) logger.info(F'''{len(_UpperCamelCase )} examples processed.''' ) lowercase_ = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' lowercase_ = tokenizer.vocab_size if vocab_size < (1 << 16): lowercase_ = [np.uintaa(_UpperCamelCase ) for d in rslt] else: lowercase_ = [np.intaa(_UpperCamelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(_UpperCamelCase , '''wb''' ) as handle: pickle.dump(rslt_ , _UpperCamelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
30
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = ["""pixel_values"""] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = size if size is not None else {'''shortest_edge''': 224} __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __lowerCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowerCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD __lowerCamelCase = do_convert_rgb def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowerCamelCase = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowerCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowerCamelCase = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] __lowerCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
330
0
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging lowerCamelCase_ = logging.get_logger(__name__) def __lowerCamelCase ( a_ : Optional[int]=None , a_ : str=None ) -> Dict: return field(default_factory=lambda: default , metadata=_UpperCamelCase ) @dataclass class _SCREAMING_SNAKE_CASE: SCREAMING_SNAKE_CASE_ : int = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) SCREAMING_SNAKE_CASE_ : List[str] = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) SCREAMING_SNAKE_CASE_ : List[str] = list_field( default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=lowerCAmelCase__ , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = field( default=lowerCAmelCase__ , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = field( default=lowerCAmelCase__ , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) SCREAMING_SNAKE_CASE_ : Optional[Any] = field(default=lowerCAmelCase__ , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) SCREAMING_SNAKE_CASE_ : str = field(default=lowerCAmelCase__ , metadata={'''help''': '''Benchmark training of model'''} ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = field(default=lowerCAmelCase__ , metadata={'''help''': '''Verbose memory tracing'''} ) SCREAMING_SNAKE_CASE_ : str = field( default=lowerCAmelCase__ , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) SCREAMING_SNAKE_CASE_ : Any = field( default=lowerCAmelCase__ , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) SCREAMING_SNAKE_CASE_ : Dict = field(default=lowerCAmelCase__ , metadata={'''help''': '''Trace memory line by line'''} ) SCREAMING_SNAKE_CASE_ : Dict = field(default=lowerCAmelCase__ , metadata={'''help''': '''Save result to a CSV file'''} ) SCREAMING_SNAKE_CASE_ : List[str] = field(default=lowerCAmelCase__ , metadata={'''help''': '''Save all print statements in a log file'''} ) SCREAMING_SNAKE_CASE_ : Tuple = field(default=lowerCAmelCase__ , metadata={'''help''': '''Whether to print environment information'''} ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=lowerCAmelCase__ , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = field( default=f"""inference_time_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) SCREAMING_SNAKE_CASE_ : List[str] = field( default=f"""inference_memory_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) SCREAMING_SNAKE_CASE_ : List[Any] = field( default=f"""train_time_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = field( default=f"""train_memory_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=f"""env_info_{round(time() )}.csv""" , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = field( default=f"""log_{round(time() )}.csv""" , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) SCREAMING_SNAKE_CASE_ : str = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = field( default=lowerCAmelCase__ , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def _UpperCamelCase ( self ) -> str: """simple docstring""" warnings.warn( f'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' ,__UpperCAmelCase ,) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" return json.dumps(dataclasses.asdict(self ) ,indent=2 ) @property def _UpperCamelCase ( self ) -> str: """simple docstring""" if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
191
from __future__ import annotations from typing import Generic, TypeVar a_ = TypeVar("""T""") class __lowerCAmelCase ( Generic[T] ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = data __lowerCamelCase = self __lowerCamelCase = 0 class __lowerCAmelCase ( Generic[T] ): def __init__( self ): '''simple docstring''' # map from node name to the node object __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # create a new set with x as its member __lowerCamelCase = DisjointSetTreeNode(__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # find the set x belongs to (with path-compression) __lowerCamelCase = self.map[data] if elem_ref != elem_ref.parent: __lowerCamelCase = self.find_set(elem_ref.parent.data ) return elem_ref.parent def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # helper function for union operation if nodea.rank > nodea.rank: __lowerCamelCase = nodea else: __lowerCamelCase = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # merge 2 disjoint sets self.link(self.find_set(__UpperCAmelCase ) , self.find_set(__UpperCAmelCase ) ) class __lowerCAmelCase ( Generic[T] ): def __init__( self ): '''simple docstring''' # connections: map from the node to the neighbouring nodes (with weights) __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # add a node ONLY if its not present in the graph if node not in self.connections: __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # add an edge with the given weight self.add_node(__UpperCAmelCase ) self.add_node(__UpperCAmelCase ) __lowerCamelCase = weight __lowerCamelCase = weight def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __UpperCAmelCase : x[2] ) # creating the disjoint set __lowerCamelCase = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__UpperCAmelCase ) # MST generation __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = edges[index] index += 1 __lowerCamelCase = disjoint_set.find_set(__UpperCAmelCase ) __lowerCamelCase = disjoint_set.find_set(__UpperCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) disjoint_set.union(__UpperCAmelCase , __UpperCAmelCase ) return graph
330
0
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a : def __init__( self :Any ,__lowercase :Tuple ,__lowercase :Optional[int]=2 ,__lowercase :Union[str, Any]=3 ,__lowercase :int=4 ,__lowercase :int=2 ,__lowercase :List[Any]=7 ,__lowercase :Tuple=True ,__lowercase :int=True ,__lowercase :List[str]=True ,__lowercase :Tuple=True ,__lowercase :List[str]=9_9 ,__lowercase :Tuple=3_6 ,__lowercase :Optional[int]=2 ,__lowercase :List[str]=4 ,__lowercase :Optional[int]=3_7 ,__lowercase :Union[str, Any]="gelu" ,__lowercase :str=0.1 ,__lowercase :Union[str, Any]=0.1 ,__lowercase :Optional[int]=5_1_2 ,__lowercase :int=1_6 ,__lowercase :Tuple=2 ,__lowercase :Union[str, Any]=0.02 ,__lowercase :int=6 ,__lowercase :Optional[Any]=6 ,__lowercase :List[Any]=3 ,__lowercase :Tuple=4 ,__lowercase :Tuple=None ,__lowercase :Tuple=1_0_0_0 ,): snake_case__ : str = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : str = num_channels snake_case__ : Union[str, Any] = image_size snake_case__ : List[str] = patch_size snake_case__ : int = is_training snake_case__ : str = use_input_mask snake_case__ : Union[str, Any] = use_token_type_ids snake_case__ : Dict = use_labels snake_case__ : Union[str, Any] = vocab_size snake_case__ : Dict = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : str = intermediate_size snake_case__ : Union[str, Any] = hidden_act snake_case__ : List[Any] = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : int = max_position_embeddings snake_case__ : int = type_vocab_size snake_case__ : Tuple = type_sequence_label_size snake_case__ : int = initializer_range snake_case__ : str = coordinate_size snake_case__ : Any = shape_size snake_case__ : Tuple = num_labels snake_case__ : Optional[int] = num_choices snake_case__ : List[Any] = scope snake_case__ : Tuple = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) snake_case__ : str = text_seq_length snake_case__ : List[str] = (image_size // patch_size) ** 2 + 1 snake_case__ : List[str] = self.text_seq_length + self.image_seq_length def __lowerCamelCase ( self :List[Any] ): snake_case__ : Tuple = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) snake_case__ : Any = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case__ : Optional[Any] = bbox[i, j, 3] snake_case__ : Optional[int] = bbox[i, j, 1] snake_case__ : List[str] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: snake_case__ : Optional[Any] = bbox[i, j, 2] snake_case__ : Tuple = bbox[i, j, 0] snake_case__ : Any = tmp_coordinate snake_case__ : Any = tf.constant(__UpperCAmelCase ) snake_case__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Any = None if self.use_input_mask: snake_case__ : Dict = random_attention_mask([self.batch_size, self.text_seq_length] ) snake_case__ : List[str] = None if self.use_token_type_ids: snake_case__ : List[str] = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) snake_case__ : Union[str, Any] = None snake_case__ : List[str] = None if self.use_labels: snake_case__ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ : Tuple = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) snake_case__ : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __lowerCamelCase ( self :Any ,__lowercase :List[str] ,__lowercase :Tuple ,__lowercase :Optional[int] ,__lowercase :List[Any] ,__lowercase :Tuple ,__lowercase :Any ): snake_case__ : Tuple = TFLayoutLMvaModel(config=__UpperCAmelCase ) # text + image snake_case__ : List[str] = model(__UpperCAmelCase ,pixel_values=__UpperCAmelCase ,training=__UpperCAmelCase ) snake_case__ : List[str] = model( __UpperCAmelCase ,bbox=__UpperCAmelCase ,pixel_values=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ,training=__UpperCAmelCase ,) snake_case__ : List[str] = model(__UpperCAmelCase ,bbox=__UpperCAmelCase ,pixel_values=__UpperCAmelCase ,training=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only snake_case__ : Dict = model(__UpperCAmelCase ,training=__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only snake_case__ : Any = model({'''pixel_values''': pixel_values} ,training=__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :List[Any] ,__lowercase :Optional[int] ,__lowercase :List[str] ,__lowercase :Dict ,__lowercase :List[str] ,__lowercase :List[Any] ,__lowercase :Optional[Any] ): snake_case__ : Dict = self.num_labels snake_case__ : Union[str, Any] = TFLayoutLMvaForSequenceClassification(config=__UpperCAmelCase ) snake_case__ : int = model( __UpperCAmelCase ,bbox=__UpperCAmelCase ,pixel_values=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ,labels=__UpperCAmelCase ,training=__UpperCAmelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self :List[str] ,__lowercase :List[str] ,__lowercase :str ,__lowercase :List[Any] ,__lowercase :List[Any] ,__lowercase :Tuple ,__lowercase :Optional[Any] ,__lowercase :Any ): snake_case__ : str = self.num_labels snake_case__ : Dict = TFLayoutLMvaForTokenClassification(config=__UpperCAmelCase ) snake_case__ : Any = model( __UpperCAmelCase ,bbox=__UpperCAmelCase ,pixel_values=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ,labels=__UpperCAmelCase ,training=__UpperCAmelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def __lowerCamelCase ( self :List[str] ,__lowercase :int ,__lowercase :str ,__lowercase :List[Any] ,__lowercase :Tuple ,__lowercase :Optional[Any] ,__lowercase :Optional[int] ,__lowercase :Any ): snake_case__ : str = 2 snake_case__ : Optional[Any] = TFLayoutLMvaForQuestionAnswering(config=__UpperCAmelCase ) snake_case__ : Optional[Any] = model( __UpperCAmelCase ,bbox=__UpperCAmelCase ,pixel_values=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ,start_positions=__UpperCAmelCase ,end_positions=__UpperCAmelCase ,training=__UpperCAmelCase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowerCamelCase ( self :Any ): snake_case__ : Union[str, Any] = self.prepare_config_and_inputs() ((snake_case__) , (snake_case__) , (snake_case__) , (snake_case__) , (snake_case__) , (snake_case__) , (snake_case__) , (snake_case__)) : Optional[int] = config_and_inputs snake_case__ : List[str] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class a ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : int = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) __lowerCAmelCase : List[Any] = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Tuple = False __lowerCAmelCase : Optional[int] = False def __lowerCamelCase ( self :Tuple ,__lowercase :Optional[Any] ,__lowercase :Dict ,__lowercase :Tuple ,__lowercase :Dict ,__lowercase :Tuple ): return True def __lowerCamelCase ( self :str ,__lowercase :str ,__lowercase :Optional[Any] ,__lowercase :Dict=False ): snake_case__ : Union[str, Any] = copy.deepcopy(__UpperCAmelCase ) if model_class in get_values(__UpperCAmelCase ): snake_case__ : Any = { k: tf.tile(tf.expand_dims(__UpperCAmelCase ,1 ) ,(1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__UpperCAmelCase ,tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__UpperCAmelCase ): snake_case__ : Union[str, Any] = tf.ones(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(__UpperCAmelCase ): snake_case__ : Tuple = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) snake_case__ : Optional[Any] = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(__UpperCAmelCase ): snake_case__ : str = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(__UpperCAmelCase ): snake_case__ : Any = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=tf.intaa ) return inputs_dict def __lowerCamelCase ( self :int ): snake_case__ : Optional[int] = TFLayoutLMvaModelTester(self ) snake_case__ : Optional[Any] = ConfigTester(self ,config_class=__UpperCAmelCase ,hidden_size=3_7 ) def __lowerCamelCase ( self :List[str] ): self.config_tester.run_common_tests() def __lowerCamelCase ( self :Dict ): snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[int] = model_class(__UpperCAmelCase ) if getattr(__UpperCAmelCase ,'''hf_compute_loss''' ,__UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label snake_case__ : Any = self._prepare_for_class(inputs_dict.copy() ,__UpperCAmelCase ,return_labels=__UpperCAmelCase ) snake_case__ : Any = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() ,reverse=__UpperCAmelCase )[0] ] snake_case__ : Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs snake_case__ : Dict = self._prepare_for_class(inputs_dict.copy() ,__UpperCAmelCase ,return_labels=__UpperCAmelCase ) snake_case__ : Union[str, Any] = prepared_for_class.pop('''input_ids''' ) snake_case__ : Optional[Any] = model(__UpperCAmelCase ,**__UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions snake_case__ : Optional[int] = self._prepare_for_class(inputs_dict.copy() ,__UpperCAmelCase ,return_labels=__UpperCAmelCase ) snake_case__ : str = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: snake_case__ : Dict = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: snake_case__ : Optional[Any] = -1_0_0 snake_case__ : List[str] = tf.convert_to_tensor(__UpperCAmelCase ) snake_case__ : str = model(__UpperCAmelCase ,**__UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict snake_case__ : Tuple = self._prepare_for_class(inputs_dict.copy() ,__UpperCAmelCase ,return_labels=__UpperCAmelCase ) snake_case__ : int = model(__UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple snake_case__ : Dict = self._prepare_for_class(inputs_dict.copy() ,__UpperCAmelCase ,return_labels=__UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function snake_case__ : Any = prepared_for_class.keys() - inputs_dict.keys() snake_case__ : Dict = inspect.signature(model.call ).parameters snake_case__ : str = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple snake_case__ : Union[str, Any] = {0: '''input_ids'''} for label_key in label_keys: snake_case__ : Dict = signature_names.index(__UpperCAmelCase ) snake_case__ : int = label_key snake_case__ : Dict = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple snake_case__ : Dict = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: snake_case__ : int = prepared_for_class[value] snake_case__ : List[Any] = tuple(__UpperCAmelCase ) # Send to model snake_case__ : Dict = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def __lowerCamelCase ( self :List[Any] ): ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) def __lowerCamelCase ( self :Tuple ): ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ : Dict = type self.model_tester.create_and_check_model(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) def __lowerCamelCase ( self :Any ): ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) def __lowerCamelCase ( self :List[Any] ): ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) def __lowerCamelCase ( self :List[Any] ): ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) @slow def __lowerCamelCase ( self :str ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[Any] = TFLayoutLMvaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def _lowerCAmelCase ( ) -> Tuple: """simple docstring""" snake_case__ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class a ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self :Union[str, Any] ): return LayoutLMvaImageProcessor(apply_ocr=__UpperCAmelCase ) if is_vision_available() else None @slow def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : List[Any] = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) snake_case__ : str = self.default_image_processor snake_case__ : List[str] = prepare_img() snake_case__ : List[str] = image_processor(images=__UpperCAmelCase ,return_tensors='''tf''' ).pixel_values snake_case__ : Dict = tf.constant([[1, 2]] ) snake_case__ : List[str] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) ,axis=0 ) # forward pass snake_case__ : Any = model(input_ids=__UpperCAmelCase ,bbox=__UpperCAmelCase ,pixel_values=__UpperCAmelCase ,training=__UpperCAmelCase ) # verify the logits snake_case__ : Any = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape ,__UpperCAmelCase ) snake_case__ : List[str] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] ,__UpperCAmelCase ,atol=1e-4 ) )
230
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_config() __lowerCamelCase = 300 return config def lowerCamelCase ( self ): '''simple docstring''' ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = self.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = True __lowerCamelCase = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_choices __lowerCamelCase = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = () def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCamelCase = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def lowerCamelCase ( self ): '''simple docstring''' return @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) __lowerCamelCase = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
0
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( a_: Dict, a_: str, a_: Optional[int] ): # Initialise PyTorch model _UpperCAmelCase : Union[str, Any] = BertConfig.from_json_file(_UpperCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) _UpperCAmelCase : List[str] = BertForPreTraining(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict(), _UpperCamelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
145
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def SCREAMING_SNAKE_CASE__ ( __A ) -> Tuple: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" super().__init__() _snake_case = module _snake_case = nn.Sequential( nn.Linear(module.in_features , __UpperCAmelCase , bias=__UpperCAmelCase ) , nn.Linear(__UpperCAmelCase , module.out_features , bias=__UpperCAmelCase ) , ) _snake_case = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowerCamelCase ( self , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" return self.module(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) + self.adapter(__UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module __lowercase = """bigscience/bloom-1b7""" # Constant values __lowercase = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 __lowercase = """Hello my name is""" __lowercase = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) __lowercase = 10 def lowerCamelCase ( self ): """simple docstring""" _snake_case = AutoTokenizer.from_pretrained(self.model_name ) class __UpperCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): """simple docstring""" super().setUp() # Models and tokenizer _snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) _snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='auto' ) def lowerCamelCase ( self ): """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_abit.config self.assertTrue(hasattr(__UpperCAmelCase , 'quantization_config' ) ) _snake_case = config.to_dict() _snake_case = config.to_diff_dict() _snake_case = config.to_json_string() def lowerCamelCase ( self ): """simple docstring""" from bitsandbytes.nn import Paramsabit _snake_case = self.model_fpaa.get_memory_footprint() _snake_case = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) _snake_case = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowerCamelCase ( self ): """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) _snake_case = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = BitsAndBytesConfig() _snake_case = True _snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , device_map='auto' ) _snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) _snake_case = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase ( self ): """simple docstring""" with self.assertRaises(__UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__UpperCAmelCase ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = BitsAndBytesConfig() with self.assertRaises(__UpperCAmelCase ): _snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , load_in_abit=__UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def lowerCamelCase ( self ): """simple docstring""" with self.assertRaises(__UpperCAmelCase ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything _snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) _snake_case = self.model_fpaa.to(torch.floataa ) _snake_case = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error _snake_case = self.model_fpaa.to('cpu' ) # Check this does not throw an error _snake_case = self.model_fpaa.half() # Check this does not throw an error _snake_case = self.model_fpaa.float() def lowerCamelCase ( self ): """simple docstring""" _snake_case = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=__UpperCAmelCase , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls ): """simple docstring""" _snake_case = 't5-small' _snake_case = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense _snake_case = AutoTokenizer.from_pretrained(cls.model_name ) _snake_case = 'Translate in German: Hello, my dog is cute' def lowerCamelCase ( self ): """simple docstring""" gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): """simple docstring""" from transformers import TaForConditionalGeneration _snake_case = TaForConditionalGeneration._keep_in_fpaa_modules _snake_case = None # test with `t5-small` _snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='auto' ) _snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) _snake_case = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` _snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='auto' ) _snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) _snake_case = model.generate(**__UpperCAmelCase ) _snake_case = modules def lowerCamelCase ( self ): """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` _snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) _snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) _snake_case = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` _snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='auto' ) _snake_case = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) _snake_case = model.generate(**__UpperCAmelCase ) class __UpperCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): """simple docstring""" super().setUp() # model_name _snake_case = 'bigscience/bloom-560m' _snake_case = 't5-small' # Different types of model _snake_case = AutoModel.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='auto' ) # Sequence classification model _snake_case = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='auto' ) # CausalLM model _snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='auto' ) # Seq2seq model _snake_case = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__UpperCAmelCase , device_map='auto' ) def lowerCamelCase ( self ): """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __UpperCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): """simple docstring""" super().setUp() def lowerCamelCase ( self ): """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): """simple docstring""" _snake_case = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass _snake_case = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __UpperCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): """simple docstring""" super().setUp() def lowerCamelCase ( self ): """simple docstring""" _snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model _snake_case = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch _snake_case = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class __UpperCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'facebook/opt-350m' super().setUp() def lowerCamelCase ( self ): """simple docstring""" if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters _snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): _snake_case = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability _snake_case = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__UpperCAmelCase ) ): _snake_case = LoRALayer(module.q_proj , rank=16 ) _snake_case = LoRALayer(module.k_proj , rank=16 ) _snake_case = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch _snake_case = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): _snake_case = model.forward(**__UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __UpperCAmelCase ( lowerCAmelCase__ ): __lowercase = """gpt2-xl""" __lowercase = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
42
from string import ascii_lowercase, ascii_uppercase def a__ ( _UpperCamelCase : str ): if not sentence: return "" __lowerCamelCase = dict(zip(_UpperCamelCase ,_UpperCamelCase ) ) return lower_to_upper.get(sentence[0] ,sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
330
0
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Tuple = args.pruning_method __magic_name__ : str = args.threshold __magic_name__ : Any = args.model_name_or_path.rstrip("""/""" ) __magic_name__ : Optional[int] = args.target_model_path print(f'Load fine-pruned model from {model_name_or_path}' ) __magic_name__ : List[str] = torch.load(os.path.join(_UpperCamelCase, """pytorch_model.bin""" ) ) __magic_name__ : List[str] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: __magic_name__ : int = tensor print(f'Copied layer {name}' ) elif "classifier" in name or "qa_output" in name: __magic_name__ : Optional[int] = tensor print(f'Copied layer {name}' ) elif "bias" in name: __magic_name__ : Optional[int] = tensor print(f'Copied layer {name}' ) else: if pruning_method == "magnitude": __magic_name__ : str = MagnitudeBinarizer.apply(inputs=_UpperCamelCase, threshold=_UpperCamelCase ) __magic_name__ : List[Any] = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "topK": if "mask_scores" in name: continue __magic_name__ : List[Any] = name[:-6] __magic_name__ : Dict = model[f'{prefix_}mask_scores'] __magic_name__ : Optional[Any] = TopKBinarizer.apply(_UpperCamelCase, _UpperCamelCase ) __magic_name__ : Optional[Any] = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue __magic_name__ : int = name[:-6] __magic_name__ : Optional[int] = model[f'{prefix_}mask_scores'] __magic_name__ : Optional[Any] = ThresholdBinarizer.apply(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) __magic_name__ : List[Any] = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "l0": if "mask_scores" in name: continue __magic_name__ : List[Any] = name[:-6] __magic_name__ : Dict = model[f'{prefix_}mask_scores'] __magic_name__ ,__magic_name__ : Any = -0.1, 1.1 __magic_name__ : Dict = torch.sigmoid(_UpperCamelCase ) __magic_name__ : List[str] = s * (r - l) + l __magic_name__ : Dict = s_bar.clamp(min=0.0, max=1.0 ) __magic_name__ : List[Any] = tensor * mask print(f'Pruned layer {name}' ) else: raise ValueError("""Unknown pruning method""" ) if target_model_path is None: __magic_name__ : Union[str, Any] = os.path.join( os.path.dirname(_UpperCamelCase ), f'bertarized_{os.path.basename(_UpperCamelCase )}' ) if not os.path.isdir(_UpperCamelCase ): shutil.copytree(_UpperCamelCase, _UpperCamelCase ) print(f'\nCreated folder {target_model_path}' ) torch.save(_UpperCamelCase, os.path.join(_UpperCamelCase, """pytorch_model.bin""" ) ) print("""\nPruned model saved! See you later!""" ) if __name__ == "__main__": __magic_name__: str = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) __magic_name__: List[Any] = parser.parse_args() main(args)
342
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCAmelCase ( lowerCAmelCase__ ): @slow @require_torch def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __lowerCamelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __lowerCamelCase = bertabert.config.encoder.vocab_size __lowerCamelCase = tokenizer.sep_token_id __lowerCamelCase = tokenizer.cls_token_id __lowerCamelCase = 128 __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __lowerCamelCase = train_dataset.select(range(32 ) ) __lowerCamelCase = val_dataset.select(range(16 ) ) __lowerCamelCase = 4 def _map_to_encoder_decoder_inputs(__UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __lowerCamelCase = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=512 ) __lowerCamelCase = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=128 ) __lowerCamelCase = inputs.input_ids __lowerCamelCase = inputs.attention_mask __lowerCamelCase = outputs.input_ids __lowerCamelCase = outputs.input_ids.copy() __lowerCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __lowerCamelCase = outputs.attention_mask assert all(len(__UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__UpperCAmelCase ): __lowerCamelCase = pred.label_ids __lowerCamelCase = pred.predictions # all unnecessary tokens are removed __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__UpperCAmelCase ) )] ) / len(__UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset __lowerCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __lowerCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __lowerCamelCase = self.get_auto_remove_tmp_dir() __lowerCamelCase = SeqaSeqTrainingArguments( output_dir=__UpperCAmelCase , per_device_train_batch_size=__UpperCAmelCase , per_device_eval_batch_size=__UpperCAmelCase , predict_with_generate=__UpperCAmelCase , evaluation_strategy='''steps''' , do_train=__UpperCAmelCase , do_eval=__UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __lowerCamelCase = SeqaSeqTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , tokenizer=__UpperCAmelCase , ) # start training trainer.train()
330
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class _a ( unittest.TestCase ): @slow def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) UpperCAmelCase = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) UpperCAmelCase = '''The dog is cute and lives in the garden house''' UpperCAmelCase = jnp.array([tokenizer.encode(__UpperCAmelCase )] ) UpperCAmelCase = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) UpperCAmelCase = model(__UpperCAmelCase )['''last_hidden_state'''] self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , __UpperCAmelCase , atol=1E-3 ) )
34
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor A : Any = logging.get_logger(__name__) class A ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self : Optional[int] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : str ) -> int: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
305
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase=0.01 , __UpperCAmelCase=1000 ): '''simple docstring''' __lowerCamelCase = p_stop __lowerCamelCase = max_length def __iter__( self ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = False while not stop and count < self.max_length: yield count count += 1 __lowerCamelCase = random.random() < self.p_stop class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = [ BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 ) ] __lowerCamelCase = [list(__UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__UpperCAmelCase ) for shard in batch_sampler_shards] , [len(__UpperCAmelCase ) for e in expected] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __lowerCamelCase = [BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=False ): '''simple docstring''' random.seed(__UpperCAmelCase ) __lowerCamelCase = list(__UpperCAmelCase ) __lowerCamelCase = [ IterableDatasetShard( __UpperCAmelCase , batch_size=__UpperCAmelCase , drop_last=__UpperCAmelCase , num_processes=__UpperCAmelCase , process_index=__UpperCAmelCase , split_batches=__UpperCAmelCase , ) for i in range(__UpperCAmelCase ) ] __lowerCamelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__UpperCAmelCase ) iterable_dataset_lists.append(list(__UpperCAmelCase ) ) __lowerCamelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __lowerCamelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) self.assertTrue(len(__UpperCAmelCase ) % shard_batch_size == 0 ) __lowerCamelCase = [] for idx in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__UpperCAmelCase ) < len(__UpperCAmelCase ): reference += reference self.assertListEqual(__UpperCAmelCase , reference[: len(__UpperCAmelCase )] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = 42 __lowerCamelCase = RandomIterableDataset() self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) # Edge case with a very small dataset __lowerCamelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = SkipBatchSampler(__UpperCAmelCase , 2 ) self.assertListEqual(list(__UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) __lowerCamelCase = skip_first_batches(__UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowerCamelCase ( self ): '''simple docstring''' Accelerator() __lowerCamelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
330
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES lowerCAmelCase = 'tiny-wmt19-en-ru' # Build # borrowed from a test lowerCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] lowerCAmelCase = dict(zip(vocab, range(len(vocab)))) lowerCAmelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = Path(tmpdirname) lowerCAmelCase = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] lowerCAmelCase = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] lowerCAmelCase = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, 'w') as fp: fp.write('\n'.join(merges)) lowerCAmelCase = FSMTTokenizer( langs=['en', 'ru'], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) lowerCAmelCase = FSMTConfig( langs=['ru', 'en'], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) lowerCAmelCase = FSMTForConditionalGeneration(config) print(f"""num of params {tiny_model.num_parameters()}""") # Test lowerCAmelCase = tokenizer(['Making tiny model'], return_tensors='pt') lowerCAmelCase = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-ru
110
def a__ ( _UpperCamelCase : int ): __lowerCamelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
330
0
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : List[str] = BloomTokenizerFast lowerCAmelCase__ : Any = BloomTokenizerFast lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : Dict = False lowerCAmelCase__ : List[str] = "tokenizer_file" lowerCAmelCase__ : Optional[int] = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def a__ ( self : str ) -> Any: """simple docstring""" super().setUp() __lowercase = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self : int , **_UpperCAmelCase : Dict ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def a__ ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase = self.get_rust_tokenizer() __lowercase = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] __lowercase = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] __lowercase = tokenizer.batch_encode_plus(__UpperCAmelCase )['input_ids'] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def a__ ( self : Tuple , _UpperCAmelCase : int=6 ) -> Optional[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowercase = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __lowercase = 'This is a simple input' __lowercase = ['This is a simple input 1', 'This is a simple input 2'] __lowercase = ('This is a simple input', 'This is a pair') __lowercase = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(__UpperCAmelCase , max_length=__UpperCAmelCase ) tokenizer_r.encode_plus(__UpperCAmelCase , max_length=__UpperCAmelCase ) tokenizer_r.batch_encode_plus(__UpperCAmelCase , max_length=__UpperCAmelCase ) tokenizer_r.encode(__UpperCAmelCase , max_length=__UpperCAmelCase ) tokenizer_r.batch_encode_plus(__UpperCAmelCase , max_length=__UpperCAmelCase ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) __lowercase = None # Hotfixing padding = None self.assertRaises(__UpperCAmelCase , tokenizer_r.encode , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) # Simple input self.assertRaises(__UpperCAmelCase , tokenizer_r.encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) # Simple input self.assertRaises( __UpperCAmelCase , tokenizer_r.batch_encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' , ) # Pair input self.assertRaises(__UpperCAmelCase , tokenizer_r.encode , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) # Pair input self.assertRaises(__UpperCAmelCase , tokenizer_r.encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' ) # Pair input self.assertRaises( __UpperCAmelCase , tokenizer_r.batch_encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' , ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = self.get_rust_tokenizer() __lowercase = load_dataset('xnli' , 'all_languages' , split='test' , streaming=__UpperCAmelCase ) __lowercase = next(iter(__UpperCAmelCase ) )['premise'] # pick up one data __lowercase = list(sample_data.values() ) __lowercase = list(map(tokenizer.encode , __UpperCAmelCase ) ) __lowercase = [tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) for x in output_tokens] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def a__ ( self : int ) -> Dict: """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
325
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ = 16 a_ = 32 def a__ ( _UpperCamelCase : Accelerator ,_UpperCamelCase : int = 16 ): __lowerCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __lowerCamelCase = load_dataset('''glue''' ,'''mrpc''' ) def tokenize_function(_UpperCamelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=_UpperCamelCase ,max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCamelCase = datasets.map( _UpperCamelCase ,batched=_UpperCamelCase ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column('''label''' ,'''labels''' ) def collate_fn(_UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCamelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCamelCase = 16 elif accelerator.mixed_precision != "no": __lowerCamelCase = 8 else: __lowerCamelCase = None return tokenizer.pad( _UpperCamelCase ,padding='''longest''' ,max_length=_UpperCamelCase ,pad_to_multiple_of=_UpperCamelCase ,return_tensors='''pt''' ,) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets['''train'''] ,shuffle=_UpperCamelCase ,collate_fn=_UpperCamelCase ,batch_size=_UpperCamelCase ) __lowerCamelCase = DataLoader( tokenized_datasets['''validation'''] ,shuffle=_UpperCamelCase ,collate_fn=_UpperCamelCase ,batch_size=_UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ = mocked_dataloaders # noqa: F811 def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' ,_UpperCamelCase ) == "1": __lowerCamelCase = 2 # Initialize accelerator __lowerCamelCase = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config['''lr'''] __lowerCamelCase = int(config['''num_epochs'''] ) __lowerCamelCase = int(config['''seed'''] ) __lowerCamelCase = int(config['''batch_size'''] ) __lowerCamelCase = evaluate.load('''glue''' ,'''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_UpperCamelCase ) def inner_training_loop(_UpperCamelCase : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' ,return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCamelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCamelCase = AdamW(params=model.parameters() ,lr=_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = get_dataloaders(_UpperCamelCase ,_UpperCamelCase ) # Instantiate scheduler __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase ,num_warmup_steps=1_00 ,num_training_steps=(len(_UpperCamelCase ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = accelerator.prepare( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCamelCase = model(**_UpperCamelCase ) __lowerCamelCase = outputs.loss accelerator.backward(_UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**_UpperCamelCase ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) __lowerCamelCase ,__lowerCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_UpperCamelCase ,references=_UpperCamelCase ,) __lowerCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,_UpperCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a__ ( ): __lowerCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' ,type=_UpperCamelCase ,default=_UpperCamelCase ,choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] ,help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' ,) parser.add_argument('''--cpu''' ,action='''store_true''' ,help='''If passed, will train on the CPU.''' ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCamelCase ,_UpperCamelCase ) if __name__ == "__main__": main()
330
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __a: List[Any] = logging.get_logger(__name__) __a: Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} __a: List[str] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } __a: int = { """allenai/longformer-base-4096""": 40_96, """allenai/longformer-large-4096""": 40_96, """allenai/longformer-large-4096-finetuned-triviaqa""": 40_96, """allenai/longformer-base-4096-extra.pos.embd.only""": 40_96, """allenai/longformer-large-4096-extra.pos.embd.only""": 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCamelCase ( ): lowercase__ : Any = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase__ : Optional[Any] = bs[:] lowercase__ : List[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCamelCase ) cs.append(2**8 + n ) n += 1 lowercase__ : Union[str, Any] = [chr(_UpperCamelCase ) for n in cs] return dict(zip(_UpperCamelCase , _UpperCamelCase ) ) def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Any = set() lowercase__ : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ : Optional[int] = char return pairs class UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="replace" , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=False , **__lowerCAmelCase , ) -> Optional[int]: lowercase__ : Union[str, Any] = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token lowercase__ : Dict = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token lowercase__ : Any = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token lowercase__ : Union[str, Any] = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token lowercase__ : Optional[Any] = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token lowercase__ : int = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__ : Optional[int] = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) with open(__UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase__ : Optional[int] = json.load(__UpperCAmelCase ) lowercase__ : List[str] = {v: k for k, v in self.encoder.items()} lowercase__ : int = errors # how to handle errors in decoding lowercase__ : Dict = bytes_to_unicode() lowercase__ : List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase__ : List[str] = merges_handle.read().split('''\n''' )[1:-1] lowercase__ : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] lowercase__ : Union[str, Any] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowercase__ : Optional[Any] = {} lowercase__ : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__ : str = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def _lowerCAmelCase( self ) -> Any: return len(self.encoder ) def _lowerCAmelCase( self ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> int: if token in self.cache: return self.cache[token] lowercase__ : Union[str, Any] = tuple(__UpperCAmelCase ) lowercase__ : Optional[Any] = get_pairs(__UpperCAmelCase ) if not pairs: return token while True: lowercase__ : Tuple = min(__UpperCAmelCase , key=lambda __lowerCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ : List[Any] = bigram lowercase__ : List[Any] = [] lowercase__ : Optional[Any] = 0 while i < len(__UpperCAmelCase ): try: lowercase__ : List[Any] = word.index(__UpperCAmelCase , __UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ : Dict = j if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ : Optional[Any] = tuple(__UpperCAmelCase ) lowercase__ : str = new_word if len(__UpperCAmelCase ) == 1: break else: lowercase__ : Optional[int] = get_pairs(__UpperCAmelCase ) lowercase__ : Any = ''' '''.join(__UpperCAmelCase ) lowercase__ : List[str] = word return word def _lowerCAmelCase( self , __lowerCAmelCase ) -> int: lowercase__ : Optional[Any] = [] for token in re.findall(self.pat , __UpperCAmelCase ): lowercase__ : Tuple = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def _lowerCAmelCase( self , __lowerCAmelCase ) -> str: return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> str: return self.decoder.get(__UpperCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> str: lowercase__ : Any = ''''''.join(__UpperCAmelCase ) lowercase__ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> List[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Tuple = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : Optional[Any] = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + '''\n''' ) lowercase__ : int = 0 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowercase__ : Union[str, Any] = token_index writer.write(''' '''.join(__UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Any: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ : str = [self.cls_token_id] lowercase__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ) -> str: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> str: lowercase__ : List[str] = [self.sep_token_id] lowercase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=False , **__lowerCAmelCase ) -> List[Any]: lowercase__ : Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase__ : List[str] = ''' ''' + text return (text, kwargs)
198
import logging import os import threading import time try: import warnings except ImportError: a_ = None try: import msvcrt except ImportError: a_ = None try: import fcntl except ImportError: a_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: a_ = OSError # Data # ------------------------------------------------ a_ = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] a_ = """3.0.12""" a_ = None def a__ ( ): global _logger __lowerCamelCase = _logger or logging.getLogger(__name__ ) return _logger class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock_file return None def __str__( self ): '''simple docstring''' __lowerCamelCase = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock return None def __enter__( self ): '''simple docstring''' return self.lock def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.lock.release() return None class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowerCamelCase = self.hash_filename_if_too_long(__UpperCAmelCase , __UpperCAmelCase ) # The path to the lock file. __lowerCamelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowerCamelCase = None # The default timeout value. __lowerCamelCase = timeout # We use this lock primarily for the lock counter. __lowerCamelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowerCamelCase = 0 return None @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file @property def lowerCamelCase ( self ): '''simple docstring''' return self._timeout @timeout.setter def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = float(__UpperCAmelCase ) return None def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file_fd is not None def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=0.05 ): '''simple docstring''' # Use the default timeout, if no timeout is provided. if timeout is None: __lowerCamelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file __lowerCamelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(__UpperCAmelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowerCamelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCamelCase ( self , __UpperCAmelCase=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __lowerCamelCase = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self ): '''simple docstring''' self.acquire() return self def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.release() return None def __del__( self ): '''simple docstring''' self.release(force=__UpperCAmelCase ) return None def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = os.path.basename(__UpperCAmelCase ) if len(__UpperCAmelCase ) > max_length and max_length > 0: __lowerCamelCase = os.path.dirname(__UpperCAmelCase ) __lowerCamelCase = str(hash(__UpperCAmelCase ) ) __lowerCamelCase = filename[: max_length - len(__UpperCAmelCase ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(__UpperCAmelCase , __UpperCAmelCase ) else: return path class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) __lowerCamelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: try: msvcrt.locking(__UpperCAmelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None msvcrt.locking(__UpperCAmelCase , msvcrt.LK_UNLCK , 1 ) os.close(__UpperCAmelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = os.statvfs(os.path.dirname(__UpperCAmelCase ) ).f_namemax super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) try: fcntl.flock(__UpperCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None fcntl.flock(__UpperCAmelCase , fcntl.LOCK_UN ) os.close(__UpperCAmelCase ) return None class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' os.close(self._lock_file_fd ) __lowerCamelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None a_ = None if msvcrt: a_ = WindowsFileLock elif fcntl: a_ = UnixFileLock else: a_ = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
330
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger __a = get_logger(__name__) __a = r'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class lowercase__: """simple docstring""" @add_start_docstrings(__UpperCAmelCase ) def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Optional[Any]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase__: """simple docstring""" @add_start_docstrings(__UpperCAmelCase ) def __call__( self : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase__( lowerCAmelCase__ ): """simple docstring""" @add_start_docstrings(__UpperCAmelCase ) def __call__( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str: for processor in self: lowercase_ = inspect.signature(processor.__call__ ).parameters if len(__UpperCAmelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) lowercase_ = processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) else: lowercase_ = processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return scores class lowercase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[Any]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) lowercase_ = temperature def __call__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Any: lowercase_ = scores / self.temperature return scores class lowercase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str = -float('''Inf''' ) , SCREAMING_SNAKE_CASE_ : str = 1 ) -> Union[str, Any]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) lowercase_ = top_p lowercase_ = filter_value lowercase_ = min_tokens_to_keep def __call__( self : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Any: lowercase_ , lowercase_ = lax.top_k(__UpperCAmelCase , scores.shape[-1] ) lowercase_ = jnp.full_like(__UpperCAmelCase , self.filter_value ) lowercase_ = jax.nn.softmax(__UpperCAmelCase , axis=-1 ).cumsum(axis=-1 ) lowercase_ = cumulative_probs < self.top_p # include the token that is higher than top_p as well lowercase_ = jnp.roll(__UpperCAmelCase , 1 ) score_mask |= score_mask.at[:, 0].set(__UpperCAmelCase ) # min tokens to keep lowercase_ = score_mask.at[:, : self.min_tokens_to_keep].set(__UpperCAmelCase ) lowercase_ = jnp.where(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowercase_ = jax.lax.sort_key_val(__UpperCAmelCase , __UpperCAmelCase )[-1] return next_scores class lowercase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] = -float('''Inf''' ) , SCREAMING_SNAKE_CASE_ : List[str] = 1 ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) lowercase_ = max(__UpperCAmelCase , __UpperCAmelCase ) lowercase_ = filter_value def __call__( self : Any , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: lowercase_ , lowercase_ = scores.shape lowercase_ = jnp.full(batch_size * vocab_size , self.filter_value ) lowercase_ = min(self.top_k , scores.shape[-1] ) # Safety check lowercase_ , lowercase_ = lax.top_k(__UpperCAmelCase , __UpperCAmelCase ) lowercase_ = jnp.broadcast_to((jnp.arange(__UpperCAmelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() lowercase_ = topk_scores.flatten() lowercase_ = topk_indices.flatten() + shift lowercase_ = next_scores_flat.at[topk_indices_flat].set(__UpperCAmelCase ) lowercase_ = next_scores_flat.reshape(__UpperCAmelCase , __UpperCAmelCase ) return next_scores class lowercase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[int]: lowercase_ = bos_token_id def __call__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[str]: lowercase_ = jnp.full(scores.shape , -float('''inf''' ) ) lowercase_ = 1 - jnp.bool_(cur_len - 1 ) lowercase_ = jnp.where(__UpperCAmelCase , new_scores.at[:, self.bos_token_id].set(0 ) , __UpperCAmelCase ) return scores class lowercase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple ) -> Union[str, Any]: lowercase_ = max_length lowercase_ = eos_token_id def __call__( self : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]: lowercase_ = jnp.full(scores.shape , -float('''inf''' ) ) lowercase_ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) lowercase_ = jnp.where(__UpperCAmelCase , new_scores.at[:, self.eos_token_id].set(0 ) , __UpperCAmelCase ) return scores class lowercase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int ) -> Any: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) lowercase_ = min_length lowercase_ = eos_token_id def __call__( self : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Any: lowercase_ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) lowercase_ = jnp.where(__UpperCAmelCase , scores.at[:, self.eos_token_id].set(-float('''inf''' ) ) , __UpperCAmelCase ) return scores class lowercase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> Any: lowercase_ = list(__UpperCAmelCase ) lowercase_ = begin_index def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple ) -> str: lowercase_ = 1 - jnp.bool_(cur_len - self.begin_index ) lowercase_ = jnp.where(__UpperCAmelCase , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''' ) ) , __UpperCAmelCase ) return scores class lowercase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : Dict ) -> Any: lowercase_ = list(__UpperCAmelCase ) def __call__( self : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: lowercase_ = scores.at[..., self.suppress_tokens].set(-float('''inf''' ) ) return scores class lowercase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple ) -> str: lowercase_ = dict(__UpperCAmelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. lowercase_ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: lowercase_ = force_token_array.at[index].set(__UpperCAmelCase ) lowercase_ = jnp.intaa(__UpperCAmelCase ) def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Dict: def _force_token(SCREAMING_SNAKE_CASE_ : Any ): lowercase_ = scores.shape[0] lowercase_ = self.force_token_array[generation_idx] lowercase_ = jnp.ones_like(__UpperCAmelCase , dtype=scores.dtype ) * -float('''inf''' ) lowercase_ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) lowercase_ = lax.dynamic_update_slice(__UpperCAmelCase , __UpperCAmelCase , (0, current_token) ) return new_scores lowercase_ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(__UpperCAmelCase ) , lambda: scores , ) , ) return scores class lowercase__( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]: lowercase_ = generate_config.eos_token_id lowercase_ = generate_config.no_timestamps_token_id lowercase_ = generate_config.no_timestamps_token_id + 1 lowercase_ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__UpperCAmelCase , '''max_initial_timestamp_index''' ): lowercase_ = generate_config.max_initial_timestamp_index else: lowercase_ = model_config.vocab_size if self.max_initial_timestamp_index is None: lowercase_ = model_config.vocab_size def __call__( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple ) -> List[str]: lowercase_ = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''' ) ) def handle_pairs(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowercase_ = jnp.where((cur_len - self.begin_index) >= 1 , __UpperCAmelCase , __UpperCAmelCase ) lowercase_ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __UpperCAmelCase , ) lowercase_ = jnp.where((cur_len - self.begin_index) < 2 , __UpperCAmelCase , __UpperCAmelCase ) lowercase_ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , __UpperCAmelCase , __UpperCAmelCase , ) return jnp.where( __UpperCAmelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''' ) ) , scores_k.at[: self.eos_token_id].set(-float('''inf''' ) ) , ) , __UpperCAmelCase , ) lowercase_ = jax.vmap(__UpperCAmelCase )(__UpperCAmelCase , __UpperCAmelCase ) lowercase_ = jnp.where(cur_len == self.begin_index , __UpperCAmelCase , __UpperCAmelCase ) lowercase_ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __UpperCAmelCase , ) lowercase_ = self.timestamp_begin + self.max_initial_timestamp_index lowercase_ = jnp.where( __UpperCAmelCase , scores.at[:, last_allowed + 1 :].set(-float('''inf''' ) ) , __UpperCAmelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp lowercase_ = jax.nn.log_softmax(__UpperCAmelCase , axis=-1 ) def handle_cumulative_probs(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] ): lowercase_ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) lowercase_ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''' ) ) , __UpperCAmelCase , ) lowercase_ = jax.vmap(__UpperCAmelCase )(__UpperCAmelCase , __UpperCAmelCase ) return scores
30
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=10 , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase="divided_space_time" , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = patch_size __lowerCamelCase = num_frames __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = attention_type __lowerCamelCase = initializer_range __lowerCamelCase = scope __lowerCamelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __lowerCamelCase = (image_size // patch_size) ** 2 __lowerCamelCase = (num_frames) * self.num_patches_per_frame + 1 def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __lowerCamelCase = self.num_labels return config def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TimesformerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) # verify the logits shape __lowerCamelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = config_and_inputs __lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowerCAmelCase__ = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerModelTester(self ) __lowerCamelCase = ConfigTester( self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = copy.deepcopy(__UpperCAmelCase ) if return_labels: if model_class in get_values(__UpperCAmelCase ): __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = TimesformerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' if not self.has_attentions: pass else: __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = True for model_class in self.all_model_classes: __lowerCamelCase = self.model_tester.seq_length __lowerCamelCase = self.model_tester.num_frames __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __lowerCamelCase = len(__UpperCAmelCase ) # Check attention is always last and order is fine __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(out_len + 1 , len(__UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __lowerCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def a__ ( ): __lowerCamelCase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' ,filename='''eating_spaghetti.npy''' ,repo_type='''dataset''' ) __lowerCamelCase = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ): '''simple docstring''' # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( __UpperCAmelCase ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_video() __lowerCamelCase = image_processor(video[:8] , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**__UpperCAmelCase ) # verify the logits __lowerCamelCase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _SCREAMING_SNAKE_CASE( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[Any] = RobertaTokenizer SCREAMING_SNAKE_CASE_ : Any = RobertaTokenizerFast SCREAMING_SNAKE_CASE_ : Any = True SCREAMING_SNAKE_CASE_ : Dict = {'''cls_token''': '''<s>'''} def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __SCREAMING_SNAKE_CASE :List[str] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __SCREAMING_SNAKE_CASE :Dict = dict(zip(__UpperCAmelCase ,range(len(__UpperCAmelCase ) ) ) ) __SCREAMING_SNAKE_CASE :List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __SCREAMING_SNAKE_CASE :Dict = {'''unk_token''': '''<unk>'''} __SCREAMING_SNAKE_CASE :str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE :Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' ) with open(self.merges_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCAmelCase ) ) def _UpperCamelCase ( self ,**SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ) def _UpperCamelCase ( self ,**SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = '''lower newer''' __SCREAMING_SNAKE_CASE :Tuple = '''lower newer''' return input_text, output_text def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = self.tokenizer_class(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) __SCREAMING_SNAKE_CASE :Union[str, Any] = '''lower newer''' __SCREAMING_SNAKE_CASE :Optional[int] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __SCREAMING_SNAKE_CASE :int = tokenizer.tokenize(__UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Any = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE :Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) ,__UpperCAmelCase ) def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' ,add_special_tokens=__UpperCAmelCase ) ,[0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' ,add_special_tokens=__UpperCAmelCase ) ,[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] ,) @slow def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = self.tokenizer_class.from_pretrained('''roberta-base''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = tokenizer.encode('''sequence builders''' ,add_special_tokens=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :str = tokenizer.encode('''multi-sequence build''' ,add_special_tokens=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[Any] = tokenizer.encode( '''sequence builders''' ,add_special_tokens=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :str = tokenizer.encode( '''sequence builders''' ,'''multi-sequence build''' ,add_special_tokens=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :List[str] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Tuple = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ,__UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.get_tokenizer() __SCREAMING_SNAKE_CASE :Union[str, Any] = '''Encode this sequence.''' __SCREAMING_SNAKE_CASE :Dict = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments __SCREAMING_SNAKE_CASE :List[Any] = tokenizer.encode(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__UpperCAmelCase ,__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Tuple = tokenizer.encode(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) __SCREAMING_SNAKE_CASE :Union[str, Any] = tokenizer.encode(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :str = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__UpperCAmelCase ,__UpperCAmelCase ) # Testing spaces after special tokens __SCREAMING_SNAKE_CASE :str = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase )} ) # mask token has a left space __SCREAMING_SNAKE_CASE :Dict = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Dict = '''Encode <mask> sequence''' __SCREAMING_SNAKE_CASE :Union[str, Any] = '''Encode <mask>sequence''' __SCREAMING_SNAKE_CASE :Dict = tokenizer.encode(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :List[Any] = encoded.index(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :List[str] = tokenizer.encode(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :List[str] = encoded.index(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__UpperCAmelCase ,__UpperCAmelCase ) def _UpperCamelCase ( self ) -> str: """simple docstring""" pass def _UpperCamelCase ( self ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE :Optional[int] = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase ,**__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Tuple = self.tokenizer_class.from_pretrained(__UpperCAmelCase ,**__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :int = '''A, <mask> AllenNLP sentence.''' __SCREAMING_SNAKE_CASE :str = tokenizer_r.encode_plus(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_token_type_ids=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :int = tokenizer_p.encode_plus(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_token_type_ids=__UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) ,sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) ,sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) ,) __SCREAMING_SNAKE_CASE :Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) __SCREAMING_SNAKE_CASE :Dict = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __UpperCAmelCase ,['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __UpperCAmelCase ,['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def _UpperCamelCase ( self ) -> str: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] ,repeat=2 ): __SCREAMING_SNAKE_CASE :int = self.rust_tokenizer_class.from_pretrained( self.tmpdirname ,use_fast=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,trim_offsets=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Any = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __SCREAMING_SNAKE_CASE :List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] ,__UpperCAmelCase ) self.assertEqual(post_processor_state['''add_prefix_space'''] ,__UpperCAmelCase ) self.assertEqual(post_processor_state['''trim_offsets'''] ,__UpperCAmelCase ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE :Tuple = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __SCREAMING_SNAKE_CASE :int = f'''{text_of_1_token} {text_of_1_token}''' __SCREAMING_SNAKE_CASE :Any = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase ,use_fast=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,trim_offsets=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :str = tokenizer_r(__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) ,) __SCREAMING_SNAKE_CASE :Any = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase ,use_fast=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,trim_offsets=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :int = tokenizer_r(__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) ,) __SCREAMING_SNAKE_CASE :Optional[int] = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase ,use_fast=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,trim_offsets=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :List[Any] = tokenizer_r(__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__UpperCAmelCase ), len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) ,) __SCREAMING_SNAKE_CASE :List[str] = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase ,use_fast=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,trim_offsets=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :int = tokenizer_r(__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(__UpperCAmelCase ), len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) ,) __SCREAMING_SNAKE_CASE :Any = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __SCREAMING_SNAKE_CASE :Any = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase ,use_fast=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,trim_offsets=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Union[str, Any] = tokenizer_r(__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(__UpperCAmelCase ) + 1, 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) ,) __SCREAMING_SNAKE_CASE :List[Any] = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase ,use_fast=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,trim_offsets=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Any = tokenizer_r(__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(__UpperCAmelCase ), 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) ,) __SCREAMING_SNAKE_CASE :Optional[int] = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase ,use_fast=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,trim_offsets=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :List[Any] = tokenizer_r(__UpperCAmelCase ,return_offsets_mapping=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(__UpperCAmelCase ), 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) ,)
191
def a__ ( _UpperCamelCase : int ): if not isinstance(_UpperCamelCase ,_UpperCamelCase ): __lowerCamelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(_UpperCamelCase ) if number < 0: return False __lowerCamelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
330
0
import numpy as np A__ = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class a : def __init__( self :Tuple ): snake_case__ : Optional[int] = np.array(__UpperCAmelCase ) def __lowerCamelCase ( self :List[Any] ,__lowercase :List[str] ): snake_case__ , snake_case__ : str = np.where(letter == self.SQUARE ) snake_case__ : Optional[Any] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __lowerCamelCase ( self :int ,__lowercase :Optional[Any] ,__lowercase :int ): snake_case__ : List[str] = self.SQUARE[indexa - 1, indexa - 1] return letter def __lowerCamelCase ( self :List[Any] ,__lowercase :str ): snake_case__ : Optional[Any] = message.lower() snake_case__ : Any = message.replace(''' ''' ,'''''' ) snake_case__ : Optional[int] = message.replace('''j''' ,'''i''' ) snake_case__ : int = np.empty((2, len(__UpperCAmelCase )) ) for letter_index in range(len(__UpperCAmelCase ) ): snake_case__ : Tuple = self.letter_to_numbers(message[letter_index] ) snake_case__ : List[Any] = numbers[0] snake_case__ : Union[str, Any] = numbers[1] snake_case__ : str = first_step.reshape(2 * len(__UpperCAmelCase ) ) snake_case__ : int = '''''' for numbers_index in range(len(__UpperCAmelCase ) ): snake_case__ : Optional[Any] = int(second_step[numbers_index * 2] ) snake_case__ : List[Any] = int(second_step[(numbers_index * 2) + 1] ) snake_case__ : int = self.numbers_to_letter(__UpperCAmelCase ,__UpperCAmelCase ) snake_case__ : Any = encoded_message + letter return encoded_message def __lowerCamelCase ( self :Tuple ,__lowercase :List[str] ): snake_case__ : Dict = message.lower() message.replace(''' ''' ,'''''' ) snake_case__ : int = np.empty(2 * len(__UpperCAmelCase ) ) for letter_index in range(len(__UpperCAmelCase ) ): snake_case__ : Any = self.letter_to_numbers(message[letter_index] ) snake_case__ : Any = numbers[0] snake_case__ : Dict = numbers[1] snake_case__ : int = first_step.reshape((2, len(__UpperCAmelCase )) ) snake_case__ : List[str] = '''''' for numbers_index in range(len(__UpperCAmelCase ) ): snake_case__ : int = int(second_step[0, numbers_index] ) snake_case__ : Union[str, Any] = int(second_step[1, numbers_index] ) snake_case__ : Union[str, Any] = self.numbers_to_letter(__UpperCAmelCase ,__UpperCAmelCase ) snake_case__ : Optional[Any] = decoded_message + letter return decoded_message
230
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={"_".join([str(__UpperCAmelCase ) for s in shape] )}.npy""" def lowerCamelCase ( self ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCamelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase=(4, 4, 64, 64) , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase ) ) , dtype=__UpperCAmelCase ) return image def lowerCamelCase ( self , __UpperCAmelCase=False , __UpperCAmelCase="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = '''bf16''' if fpaa else None __lowerCamelCase ,__lowerCamelCase = FlaxUNetaDConditionModel.from_pretrained( __UpperCAmelCase , subfolder='''unet''' , dtype=__UpperCAmelCase , revision=__UpperCAmelCase ) return model, params def lowerCamelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase=(4, 77, 768) , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase ) ) , dtype=__UpperCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_latents(__UpperCAmelCase , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_encoder_hidden_states(__UpperCAmelCase , fpaa=__UpperCAmelCase ) __lowerCamelCase = model.apply( {'''params''': params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape __lowerCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCamelCase = jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_latents(__UpperCAmelCase , shape=(4, 4, 96, 96) , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_encoder_hidden_states(__UpperCAmelCase , shape=(4, 77, 1024) , fpaa=__UpperCAmelCase ) __lowerCamelCase = model.apply( {'''params''': params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape __lowerCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCamelCase = jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 )
330
0
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def __UpperCAmelCase ( a_: List[str] ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings", set() ) @pytest.fixture def __UpperCAmelCase ( a_: Tuple ): class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : str ) -> Any: """simple docstring""" _UpperCAmelCase : Union[str, Any] = metric_id class A__ : """simple docstring""" UpperCamelCase_ : Optional[Any] = [MetricMock(lowerCAmelCase__ ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']] def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub", HfhMock() ) @pytest.mark.parametrize( "func, args", [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def __UpperCAmelCase ( a_: int, a_: Optional[Any], a_: List[str], a_: str, a_: List[str] ): if "tmp_path" in args: _UpperCAmelCase : str = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(_UpperCamelCase, match="https://huggingface.co/docs/evaluate" ): func(*_UpperCamelCase )
145
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class __UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): __lowercase = ProphetNetTokenizer __lowercase = False def lowerCamelCase ( self ): """simple docstring""" super().setUp() _snake_case = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = 'UNwant\u00E9d,running' _snake_case = 'unwanted, running' return input_text, output_text def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.tokenizer_class(self.vocab_file ) _snake_case = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(__UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = BasicTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = BasicTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = BasicTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = BasicTokenizer(do_lower_case=__UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _snake_case = {} for i, token in enumerate(__UpperCAmelCase ): _snake_case = i _snake_case = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] _snake_case = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _snake_case = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def lowerCamelCase ( self ): """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def lowerCamelCase ( self ): """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def lowerCamelCase ( self ): """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) _snake_case = tokenizer.encode('sequence builders' , add_special_tokens=__UpperCAmelCase ) _snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=__UpperCAmelCase ) _snake_case = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) _snake_case = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
42
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def a__ ( _UpperCamelCase : Optional[int] ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __lowerCamelCase = module __lowerCamelCase = nn.Sequential( nn.Linear(module.in_features , __UpperCAmelCase , bias=__UpperCAmelCase ) , nn.Linear(__UpperCAmelCase , module.out_features , bias=__UpperCAmelCase ) , ) __lowerCamelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowerCamelCase ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.module(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) + self.adapter(__UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCAmelCase__ = """bigscience/bloom-1b7""" # Constant values lowerCAmelCase__ = 2.1_09_65_95_52_69_25_74 lowerCAmelCase__ = """Hello my name is""" lowerCAmelCase__ = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) lowerCAmelCase__ = 1_0 def lowerCamelCase ( self ): '''simple docstring''' # Models and tokenizer __lowerCamelCase = AutoTokenizer.from_pretrained(self.model_name ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() # Models and tokenizer __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) def lowerCamelCase ( self ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_abit.config self.assertTrue(hasattr(__UpperCAmelCase , '''quantization_config''' ) ) __lowerCamelCase = config.to_dict() __lowerCamelCase = config.to_diff_dict() __lowerCamelCase = config.to_json_string() def lowerCamelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit __lowerCamelCase = self.model_fpaa.get_memory_footprint() __lowerCamelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowerCamelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowerCamelCase ( self ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitsAndBytesConfig() __lowerCamelCase = True __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitsAndBytesConfig() with self.assertRaises(__UpperCAmelCase ): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , load_in_abit=__UpperCAmelCase , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = self.model_fpaa.to(torch.floataa ) __lowerCamelCase = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowerCamelCase = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error __lowerCamelCase = self.model_fpaa.half() # Check this does not throw an error __lowerCamelCase = self.model_fpaa.float() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls ): '''simple docstring''' __lowerCamelCase = '''t5-small''' __lowerCamelCase = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense __lowerCamelCase = AutoTokenizer.from_pretrained(cls.model_name ) __lowerCamelCase = '''Translate in German: Hello, my dog is cute''' def lowerCamelCase ( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' from transformers import TaForConditionalGeneration __lowerCamelCase = TaForConditionalGeneration._keep_in_fpaa_modules __lowerCamelCase = None # test with `t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) __lowerCamelCase = modules def lowerCamelCase ( self ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() # model_name __lowerCamelCase = '''bigscience/bloom-560m''' __lowerCamelCase = '''t5-small''' # Different types of model __lowerCamelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # Sequence classification model __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # CausalLM model __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # Seq2seq model __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) def lowerCamelCase ( self ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowerCamelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch __lowerCamelCase = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''facebook/opt-350m''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowerCamelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowerCamelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__UpperCAmelCase ) ): __lowerCamelCase = LoRALayer(module.q_proj , rank=16 ) __lowerCamelCase = LoRALayer(module.k_proj , rank=16 ) __lowerCamelCase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowerCamelCase = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowerCamelCase = model.forward(**__UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = """gpt2-xl""" lowerCAmelCase__ = 3.31_91_85_48_54_15_21_87
330
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=3 , lowerCAmelCase__=32 , lowerCAmelCase__=3 , lowerCAmelCase__=10 , lowerCAmelCase__=[8, 16, 32, 64] , lowerCAmelCase__=[1, 1, 2, 1] , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="relu" , lowerCAmelCase__=3 , lowerCAmelCase__=None , lowerCAmelCase__=["stage2", "stage3", "stage4"] , lowerCAmelCase__=[2, 3, 4] , lowerCAmelCase__=1 , ) -> Union[str, Any]: __magic_name__ : Dict = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : Optional[int] = num_channels __magic_name__ : List[str] = embeddings_size __magic_name__ : Optional[int] = hidden_sizes __magic_name__ : List[Any] = depths __magic_name__ : Any = is_training __magic_name__ : Any = use_labels __magic_name__ : Optional[int] = hidden_act __magic_name__ : int = num_labels __magic_name__ : str = scope __magic_name__ : str = len(__UpperCAmelCase ) __magic_name__ : int = out_features __magic_name__ : Optional[int] = out_indices __magic_name__ : str = num_groups def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Union[str, Any] = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> Optional[int]: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Tuple = BitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __magic_name__ : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Any = self.num_labels __magic_name__ : Any = BitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __magic_name__ : List[str] = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Any = BitBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __magic_name__ : Optional[int] = model(__UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __magic_name__ : Dict = None __magic_name__ : Union[str, Any] = BitBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __magic_name__ : List[Any] = model(__UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Union[str, Any] = config_and_inputs __magic_name__ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowercase__ : Optional[Any] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowercase__ : int = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) lowercase__ : Union[str, Any] = False lowercase__ : List[str] = False lowercase__ : Tuple = False lowercase__ : List[Any] = False lowercase__ : Dict = False def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : str = BitModelTester(self ) __magic_name__ : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def __magic_name__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> List[Any]: return @unittest.skip(reason="""Bit does not output attentions""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def __magic_name__ ( self ) -> Optional[Any]: pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def __magic_name__ ( self ) -> Optional[Any]: pass def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : str = model_class(__UpperCAmelCase ) __magic_name__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Any = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __magic_name__ ( self ) -> int: __magic_name__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__UpperCAmelCase ) def __magic_name__ ( self ) -> Any: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(config=__UpperCAmelCase ) for name, module in model.named_modules(): if isinstance(__UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) def __magic_name__ ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : int = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __magic_name__ : Any = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __magic_name__ : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __magic_name__ : Dict = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __magic_name__ ,__magic_name__ : str = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __magic_name__ : Dict = layer_type __magic_name__ : Union[str, Any] = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : int = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def __magic_name__ ( self ) -> Optional[int]: pass def __magic_name__ ( self ) -> int: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __magic_name__ ( self ) -> str: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[Any] = BitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Tuple: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__UpperCAmelCase ) __magic_name__ : List[Any] = self.default_image_processor __magic_name__ : List[Any] = prepare_img() __magic_name__ : Dict = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __magic_name__ : str = model(**__UpperCAmelCase ) # verify the logits __magic_name__ : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __magic_name__ : Dict = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) ) @require_torch class snake_case__ ( lowerCAmelCase__ , unittest.TestCase ): lowercase__ : List[str] = (BitBackbone,) if is_torch_available() else () lowercase__ : Tuple = BitConfig lowercase__ : List[str] = False def __magic_name__ ( self ) -> List[str]: __magic_name__ : str = BitModelTester(self )
342
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = 42 class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = True @register_to_config def __init__( self , __UpperCAmelCase = 3 , __UpperCAmelCase = 3 , __UpperCAmelCase = ("DownEncoderBlock2D",) , __UpperCAmelCase = ("UpDecoderBlock2D",) , __UpperCAmelCase = (64,) , __UpperCAmelCase = 1 , __UpperCAmelCase = "silu" , __UpperCAmelCase = 4 , __UpperCAmelCase = 32 , __UpperCAmelCase = 32 , __UpperCAmelCase = 0.18_215 , ): '''simple docstring''' super().__init__() # pass init params to Encoder __lowerCamelCase = Encoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , down_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , act_fn=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , double_z=__UpperCAmelCase , ) # pass init params to Decoder __lowerCamelCase = Decoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , up_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , act_fn=__UpperCAmelCase , ) __lowerCamelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowerCamelCase = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) __lowerCamelCase = False __lowerCamelCase = False # only relevant if vae tiling is enabled __lowerCamelCase = self.config.sample_size __lowerCamelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowerCamelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowerCamelCase = 0.25 def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' if isinstance(__UpperCAmelCase , (Encoder, Decoder) ): __lowerCamelCase = value def lowerCamelCase ( self , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = use_tiling def lowerCamelCase ( self ): '''simple docstring''' self.enable_tiling(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = True def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''set_processor''' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return processors def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(__UpperCAmelCase )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''set_processor''' ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): module.set_processor(__UpperCAmelCase ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) if self.use_slicing and x.shape[0] > 1: __lowerCamelCase = [self.encoder(__UpperCAmelCase ) for x_slice in x.split(1 )] __lowerCamelCase = torch.cat(__UpperCAmelCase ) else: __lowerCamelCase = self.encoder(__UpperCAmelCase ) __lowerCamelCase = self.quant_conv(__UpperCAmelCase ) __lowerCamelCase = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) __lowerCamelCase = self.post_quant_conv(__UpperCAmelCase ) __lowerCamelCase = self.decoder(__UpperCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) @apply_forward_hook def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: __lowerCamelCase = [self._decode(__UpperCAmelCase ).sample for z_slice in z.split(1 )] __lowerCamelCase = torch.cat(__UpperCAmelCase ) else: __lowerCamelCase = self._decode(__UpperCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = min(a.shape[2] , b.shape[2] , __UpperCAmelCase ) for y in range(__UpperCAmelCase ): __lowerCamelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = min(a.shape[3] , b.shape[3] , __UpperCAmelCase ) for x in range(__UpperCAmelCase ): __lowerCamelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowerCamelCase = [] for i in range(0 , x.shape[2] , __UpperCAmelCase ): __lowerCamelCase = [] for j in range(0 , x.shape[3] , __UpperCAmelCase ): __lowerCamelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowerCamelCase = self.encoder(__UpperCAmelCase ) __lowerCamelCase = self.quant_conv(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) __lowerCamelCase = [] for i, row in enumerate(__UpperCAmelCase ): __lowerCamelCase = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=2 ) __lowerCamelCase = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowerCamelCase = [] for i in range(0 , z.shape[2] , __UpperCAmelCase ): __lowerCamelCase = [] for j in range(0 , z.shape[3] , __UpperCAmelCase ): __lowerCamelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowerCamelCase = self.post_quant_conv(__UpperCAmelCase ) __lowerCamelCase = self.decoder(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) __lowerCamelCase = [] for i, row in enumerate(__UpperCAmelCase ): __lowerCamelCase = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , ): '''simple docstring''' __lowerCamelCase = sample __lowerCamelCase = self.encode(__UpperCAmelCase ).latent_dist if sample_posterior: __lowerCamelCase = posterior.sample(generator=__UpperCAmelCase ) else: __lowerCamelCase = posterior.mode() __lowerCamelCase = self.decode(__UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase )
330
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _a ( lowerCAmelCase__ ): __a : str = """vit_mae""" def __init__( self : List[str] , lowercase : Optional[Any]=768 , lowercase : int=12 , lowercase : str=12 , lowercase : str=3_072 , lowercase : List[Any]="gelu" , lowercase : Tuple=0.0 , lowercase : Optional[Any]=0.0 , lowercase : str=0.02 , lowercase : Dict=1E-12 , lowercase : Optional[Any]=224 , lowercase : int=16 , lowercase : Dict=3 , lowercase : Tuple=True , lowercase : Tuple=16 , lowercase : Optional[int]=512 , lowercase : Tuple=8 , lowercase : Dict=2_048 , lowercase : List[Any]=0.75 , lowercase : int=False , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = qkv_bias UpperCAmelCase = decoder_num_attention_heads UpperCAmelCase = decoder_hidden_size UpperCAmelCase = decoder_num_hidden_layers UpperCAmelCase = decoder_intermediate_size UpperCAmelCase = mask_ratio UpperCAmelCase = norm_pix_loss
34
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration a_ = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] a_ = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] a_ = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) a_ = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) a_ = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : Optional[Any] ): for tf_name, hf_name in patterns: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = BigBirdPegasusConfig(**_UpperCamelCase ) __lowerCamelCase = BigBirdPegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() __lowerCamelCase = {} # separating decoder weights __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = DECODER_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = REMAINING_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" __lowerCamelCase = mapping['''model.embed_positions.weight'''] __lowerCamelCase = mapping.pop('''model.embed_positions.weight''' ) __lowerCamelCase ,__lowerCamelCase = torch_model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : int ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ,_UpperCamelCase : dict ): __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = convert_bigbird_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() a_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
330
0
from ....configuration_utils import PretrainedConfig from ....utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : Optional[int] = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class A ( lowerCAmelCase__ ): '''simple docstring''' A__ = '''mctct''' def __init__(self : Optional[Any] , _UpperCAmelCase : List[str]=8065 , _UpperCAmelCase : str=1536 , _UpperCAmelCase : Dict=36 , _UpperCAmelCase : str=6144 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Any=384 , _UpperCAmelCase : List[Any]=920 , _UpperCAmelCase : Optional[Any]=1E-5 , _UpperCAmelCase : Optional[int]=0.3 , _UpperCAmelCase : Any="relu" , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=0.3 , _UpperCAmelCase : Dict=0.3 , _UpperCAmelCase : int=1 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : Tuple=0.3 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : Dict=(7,) , _UpperCAmelCase : Dict=(3,) , _UpperCAmelCase : Dict=80 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[Any]="sum" , _UpperCAmelCase : Union[str, Any]=False , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = intermediate_size lowercase__ = num_attention_heads lowercase__ = attention_head_dim lowercase__ = max_position_embeddings lowercase__ = layer_norm_eps lowercase__ = layerdrop lowercase__ = hidden_act lowercase__ = initializer_range lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = pad_token_id lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = conv_glu_dim lowercase__ = conv_dropout lowercase__ = num_conv_layers lowercase__ = input_feat_per_channel lowercase__ = input_channels lowercase__ = conv_channels lowercase__ = ctc_loss_reduction lowercase__ = ctc_zero_infinity # prevents config testing fail with exporting to json lowercase__ = list(__UpperCAmelCase ) lowercase__ = list(__UpperCAmelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ f'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
305
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase=None ): '''simple docstring''' if not conversation_id: __lowerCamelCase = uuid.uuida() if past_user_inputs is None: __lowerCamelCase = [] if generated_responses is None: __lowerCamelCase = [] __lowerCamelCase = conversation_id __lowerCamelCase = past_user_inputs __lowerCamelCase = generated_responses __lowerCamelCase = text def __eq__( self , __UpperCAmelCase ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) __lowerCamelCase = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: __lowerCamelCase = text def lowerCamelCase ( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowerCamelCase = None def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' self.generated_responses.append(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' __lowerCamelCase = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): __lowerCamelCase = '''user''' if is_user else '''bot''' output += F"""{name} >> {text} \n""" return output @add_end_docstrings( lowerCAmelCase__ , r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) if self.tokenizer.pad_token_id is None: __lowerCamelCase = self.tokenizer.eos_token def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = {} __lowerCamelCase = {} if min_length_for_response is not None: __lowerCamelCase = min_length_for_response if minimum_tokens is not None: __lowerCamelCase = minimum_tokens if "max_length" in generate_kwargs: __lowerCamelCase = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowerCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , __UpperCAmelCase , __UpperCAmelCase=0 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = super().__call__(__UpperCAmelCase , num_workers=__UpperCAmelCase , **__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) == 1: return outputs[0] return outputs def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=32 ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): __lowerCamelCase = self.tokenizer._build_conversation_input_ids(__UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowerCamelCase = self._legacy_parse_and_tokenize(__UpperCAmelCase ) if self.framework == "pt": __lowerCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowerCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=10 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) __lowerCamelCase = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) __lowerCamelCase = max_length - minimum_tokens __lowerCamelCase = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: __lowerCamelCase = model_inputs['''attention_mask'''][:, -trim:] __lowerCamelCase = model_inputs.pop('''conversation''' ) __lowerCamelCase = max_length __lowerCamelCase = self.model.generate(**__UpperCAmelCase , **__UpperCAmelCase ) if self.model.config.is_encoder_decoder: __lowerCamelCase = 1 else: __lowerCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = model_outputs['''output_ids'''] __lowerCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , ) __lowerCamelCase = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(__UpperCAmelCase ) return conversation def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.tokenizer.eos_token_id __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > self.tokenizer.model_max_length: __lowerCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
330
0
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput lowerCAmelCase = 'scheduler_config.json' class _a ( lowerCAmelCase__ ): _lowercase : int = 1 _lowercase : Dict = 2 _lowercase : Optional[int] = 3 _lowercase : Dict = 4 _lowercase : List[Any] = 5 _lowercase : Tuple = 6 _lowercase : Optional[int] = 7 _lowercase : Tuple = 8 _lowercase : Optional[int] = 9 _lowercase : Dict = 10 _lowercase : int = 11 _lowercase : Union[str, Any] = 12 _lowercase : Optional[int] = 13 _lowercase : Any = 14 @dataclass class _a ( lowerCAmelCase__ ): _lowercase : Tuple = 42 class _a : _lowercase : Union[str, Any] = SCHEDULER_CONFIG_NAME _lowercase : Optional[int] = [] _lowercase : Dict = True @classmethod def lowerCamelCase_ ( cls: Dict , UpperCamelCase_: Any = None , UpperCamelCase_: int = None , UpperCamelCase_: List[Any]=False , **UpperCamelCase_: Tuple , ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ , lowercase__ = cls.load_config( pretrained_model_name_or_path=__UpperCAmelCase , subfolder=__UpperCAmelCase , return_unused_kwargs=__UpperCAmelCase , return_commit_hash=__UpperCAmelCase , **__UpperCAmelCase , ) return cls.from_config(__UpperCAmelCase , return_unused_kwargs=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] = False , **UpperCamelCase_: Union[str, Any] ) -> Any: """simple docstring""" self.save_config(save_directory=__UpperCAmelCase , push_to_hub=__UpperCAmelCase , **__UpperCAmelCase ) @property def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" return self._get_compatibles() @classmethod def lowerCamelCase_ ( cls: List[Any] ) -> int: """simple docstring""" lowercase__ = list(set([cls.__name__] + cls._compatibles ) ) lowercase__ = importlib.import_module(__name__.split('''.''' )[0] ) lowercase__ = [ getattr(__UpperCAmelCase , __UpperCAmelCase ) for c in compatible_classes_str if hasattr(__UpperCAmelCase , __UpperCAmelCase ) ] return compatible_classes
110
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def a__ ( _UpperCamelCase : int ): for pegasus_name, hf_name in PATTERNS: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) __lowerCamelCase = PegasusConfig(**_UpperCamelCase ) __lowerCamelCase = PegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.model.state_dict() __lowerCamelCase = {} for k, v in tf_weights.items(): __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCamelCase = v.T __lowerCamelCase = torch.tensor(_UpperCamelCase ,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCamelCase = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = torch_model.model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : str="./ckpt/aeslc/model.ckpt-32000" ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # save tokenizer first __lowerCamelCase = Path(_UpperCamelCase ).parent.name __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] __lowerCamelCase = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' ,model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": __lowerCamelCase = task_specific_params __lowerCamelCase = convert_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(_UpperCamelCase ,Path(_UpperCamelCase ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() if args.save_dir is None: a_ = Path(args.tf_ckpt_path).parent.name a_ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
330
0
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class A__ ( lowerCAmelCase__ ): def __init__( self : Optional[int] , _UpperCAmelCase : Optional[int]=0.01 , _UpperCAmelCase : Tuple=10_00 ) -> List[Any]: """simple docstring""" __lowercase = p_stop __lowercase = max_length def __iter__( self : Optional[Any] ) -> int: """simple docstring""" __lowercase = 0 __lowercase = False while not stop and count < self.max_length: yield count count += 1 __lowercase = random.random() < self.p_stop class A__ ( unittest.TestCase ): def a__ ( self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Union[str, Any]=True ) -> Any: """simple docstring""" __lowercase = [ BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 ) ] __lowercase = [list(__UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__UpperCAmelCase ) for shard in batch_sampler_shards] , [len(__UpperCAmelCase ) for e in expected] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" __lowercase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowercase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowercase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowercase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowercase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowercase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) def a__ ( self : Any ) -> str: """simple docstring""" __lowercase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowercase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowercase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowercase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowercase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowercase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowercase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowercase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowercase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) def a__ ( self : Tuple ) -> Dict: """simple docstring""" __lowercase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowercase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowercase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowercase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowercase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowercase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowercase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowercase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowercase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowercase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowercase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowercase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowercase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowercase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowercase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowercase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowercase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowercase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowercase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) def a__ ( self : List[str] ) -> Any: """simple docstring""" __lowercase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __lowercase = [BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : str=False ) -> Tuple: """simple docstring""" random.seed(__UpperCAmelCase ) __lowercase = list(__UpperCAmelCase ) __lowercase = [ IterableDatasetShard( __UpperCAmelCase , batch_size=__UpperCAmelCase , drop_last=__UpperCAmelCase , num_processes=__UpperCAmelCase , process_index=__UpperCAmelCase , split_batches=__UpperCAmelCase , ) for i in range(__UpperCAmelCase ) ] __lowercase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__UpperCAmelCase ) iterable_dataset_lists.append(list(__UpperCAmelCase ) ) __lowercase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __lowercase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) self.assertTrue(len(__UpperCAmelCase ) % shard_batch_size == 0 ) __lowercase = [] for idx in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__UpperCAmelCase ) < len(__UpperCAmelCase ): reference += reference self.assertListEqual(__UpperCAmelCase , reference[: len(__UpperCAmelCase )] ) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = 42 __lowercase = RandomIterableDataset() self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) # Edge case with a very small dataset __lowercase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = BatchSampler(range(16 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowercase = SkipBatchSampler(__UpperCAmelCase , 2 ) self.assertListEqual(list(__UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a__ ( self : Tuple ) -> int: """simple docstring""" __lowercase = DataLoader(list(range(16 ) ) , batch_size=4 ) __lowercase = skip_first_batches(__UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a__ ( self : int ) -> Dict: """simple docstring""" __lowercase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a__ ( self : Dict ) -> str: """simple docstring""" Accelerator() __lowercase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
325
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } a_ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def a__ ( _UpperCamelCase : str ,_UpperCamelCase : Tuple ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Dict ): for attribute in key.split('''.''' ): __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ) if weight_type is not None: __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( _UpperCamelCase : Any ,_UpperCamelCase : Any ): __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hf_model.config.feat_extract_norm == '''group''' ,) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCamelCase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(_UpperCamelCase )[0].split('''.''' )[-2] __lowerCamelCase = mapped_key.replace('''*''' ,_UpperCamelCase ) if "weight_g" in name: __lowerCamelCase = '''weight_g''' elif "weight_v" in name: __lowerCamelCase = '''weight_v''' elif "bias" in name: __lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase = '''weight''' else: __lowerCamelCase = None set_recursively(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( _UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Dict ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ): __lowerCamelCase = full_name.split('''conv_layers.''' )[-1] __lowerCamelCase = name.split('''.''' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : List[str] ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : List[Any]=True ): if config_path is not None: __lowerCamelCase = UniSpeechSatConfig.from_pretrained(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatConfig() __lowerCamelCase = '''''' if is_finetuned: __lowerCamelCase = UniSpeechSatForCTC(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatForPreTraining(_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __lowerCamelCase = model[0].eval() recursively_load_weights(_UpperCamelCase ,_UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) a_ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
0
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping __a: Tuple = tuple[int, int] class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: lowercase__ : str = vertices lowercase__ : Optional[int] = { (min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items() } def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase ) -> int: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowercase__ : Tuple = weight def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : List[str] = Graph({min(self.vertices )} , {} ) lowercase__ : str = 42 lowercase__ : Optional[int] = 42 lowercase__ : Optional[int] = 42 lowercase__ : Optional[int] = 42 while len(subgraph.vertices ) < len(self.vertices ): lowercase__ : List[str] = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowercase__ : Union[str, Any] = edge lowercase__ : List[str] = weight subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase ) return subgraph def __UpperCamelCase ( UpperCAmelCase = "p107_network.txt" ): lowercase__ : Tuple = os.path.abspath(os.path.dirname(_UpperCamelCase ) ) lowercase__ : Dict = os.path.join(_UpperCamelCase , _UpperCamelCase ) lowercase__ : Dict = {} lowercase__ : Any = 42 lowercase__ : int = 42 lowercase__ : List[Any] = 42 with open(_UpperCamelCase ) as f: lowercase__ : str = f.read().strip().split('''\n''' ) lowercase__ : Dict = [line.split(''',''' ) for line in data] for edgea in range(1 , len(_UpperCamelCase ) ): for edgea in range(_UpperCamelCase ): if adjaceny_matrix[edgea][edgea] != "-": lowercase__ : Union[str, Any] = int(adjaceny_matrix[edgea][edgea] ) lowercase__ : Dict = Graph(set(range(len(_UpperCamelCase ) ) ) , _UpperCamelCase ) lowercase__ : Optional[Any] = graph.prims_algorithm() lowercase__ : Union[str, Any] = sum(graph.edges.values() ) lowercase__ : Tuple = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'{solution() = }')
198
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING a_ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return {}, {}, {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = load_image(__UpperCAmelCase ) __lowerCamelCase = image.size __lowerCamelCase = self.image_processor(images=__UpperCAmelCase , return_tensors=self.framework ) return model_inputs def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.model(**__UpperCAmelCase ) return model_outputs def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = model_outputs.predicted_depth __lowerCamelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=__UpperCAmelCase ) __lowerCamelCase = prediction.squeeze().cpu().numpy() __lowerCamelCase = (output * 255 / np.max(__UpperCAmelCase )).astype('''uint8''' ) __lowerCamelCase = Image.fromarray(__UpperCAmelCase ) __lowerCamelCase = {} __lowerCamelCase = predicted_depth __lowerCamelCase = depth return output_dict
330
0
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys __a = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
30
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = ["""pixel_values"""] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = size if size is not None else {'''shortest_edge''': 224} __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __lowerCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowerCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD __lowerCamelCase = do_convert_rgb def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowerCamelCase = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowerCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowerCamelCase = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] __lowerCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
330
0
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : List[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self ,SCREAMING_SNAKE_CASE__="</s>" ,SCREAMING_SNAKE_CASE__="<unk>" ,SCREAMING_SNAKE_CASE__="<pad>" ,SCREAMING_SNAKE_CASE__=1_25 ,SCREAMING_SNAKE_CASE__=None ,**SCREAMING_SNAKE_CASE__ ,) -> Optional[int]: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: __SCREAMING_SNAKE_CASE :List[str] = [f'''<extra_id_{i}>''' for i in range(__UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __SCREAMING_SNAKE_CASE :Tuple = len(set(filter(lambda SCREAMING_SNAKE_CASE__ : bool('''extra_id''' in str(__UpperCAmelCase ) ) ,__UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the''' ''' extra_ids tokens''' ) __SCREAMING_SNAKE_CASE :Optional[int] = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else pad_token __SCREAMING_SNAKE_CASE :List[str] = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else eos_token __SCREAMING_SNAKE_CASE :str = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else unk_token super().__init__( eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,extra_ids=__UpperCAmelCase ,additional_special_tokens=__UpperCAmelCase ,**__UpperCAmelCase ,) __SCREAMING_SNAKE_CASE :str = extra_ids __SCREAMING_SNAKE_CASE :Union[str, Any] = 2**8 # utf is 8 bits # define special tokens dict __SCREAMING_SNAKE_CASE :str = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __SCREAMING_SNAKE_CASE :Tuple = len(self.special_tokens_encoder ) __SCREAMING_SNAKE_CASE :int = len(__UpperCAmelCase ) for i, token in enumerate(__UpperCAmelCase ): __SCREAMING_SNAKE_CASE :Optional[int] = self.vocab_size + i - n __SCREAMING_SNAKE_CASE :Union[str, Any] = {v: k for k, v in self.special_tokens_encoder.items()} @property def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = False ) -> int: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase ,token_ids_a=__UpperCAmelCase ,already_has_special_tokens=__UpperCAmelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__UpperCAmelCase )) + [1] return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" if len(__UpperCAmelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = self._add_eos_if_not_present(__UpperCAmelCase ) if token_ids_a is None: return token_ids_a else: __SCREAMING_SNAKE_CASE :Optional[Any] = self._add_eos_if_not_present(__UpperCAmelCase ) return token_ids_a + token_ids_a def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = [chr(__UpperCAmelCase ) for i in text.encode('''utf-8''' )] return tokens def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" if token in self.special_tokens_encoder: __SCREAMING_SNAKE_CASE :Any = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __SCREAMING_SNAKE_CASE :Dict = self.added_tokens_encoder[token] elif len(__UpperCAmelCase ) != 1: __SCREAMING_SNAKE_CASE :Optional[Any] = self.unk_token_id else: __SCREAMING_SNAKE_CASE :str = ord(__UpperCAmelCase ) + self._num_special_tokens return token_id def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" if index in self.special_tokens_decoder: __SCREAMING_SNAKE_CASE :Dict = self.special_tokens_decoder[index] else: __SCREAMING_SNAKE_CASE :List[str] = chr(index - self._num_special_tokens ) return token def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = b'''''' for token in tokens: if token in self.special_tokens_decoder: __SCREAMING_SNAKE_CASE :Dict = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.added_tokens_decoder: __SCREAMING_SNAKE_CASE :Dict = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.special_tokens_encoder: __SCREAMING_SNAKE_CASE :Optional[int] = token.encode('''utf-8''' ) elif token in self.added_tokens_encoder: __SCREAMING_SNAKE_CASE :Dict = token.encode('''utf-8''' ) else: __SCREAMING_SNAKE_CASE :int = bytes([ord(__UpperCAmelCase )] ) bstring += tok_string __SCREAMING_SNAKE_CASE :Union[str, Any] = bstring.decode('''utf-8''' ,errors='''ignore''' ) return string def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> Tuple: """simple docstring""" return ()
191
from __future__ import annotations from typing import Generic, TypeVar a_ = TypeVar("""T""") class __lowerCAmelCase ( Generic[T] ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = data __lowerCamelCase = self __lowerCamelCase = 0 class __lowerCAmelCase ( Generic[T] ): def __init__( self ): '''simple docstring''' # map from node name to the node object __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # create a new set with x as its member __lowerCamelCase = DisjointSetTreeNode(__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # find the set x belongs to (with path-compression) __lowerCamelCase = self.map[data] if elem_ref != elem_ref.parent: __lowerCamelCase = self.find_set(elem_ref.parent.data ) return elem_ref.parent def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # helper function for union operation if nodea.rank > nodea.rank: __lowerCamelCase = nodea else: __lowerCamelCase = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # merge 2 disjoint sets self.link(self.find_set(__UpperCAmelCase ) , self.find_set(__UpperCAmelCase ) ) class __lowerCAmelCase ( Generic[T] ): def __init__( self ): '''simple docstring''' # connections: map from the node to the neighbouring nodes (with weights) __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # add a node ONLY if its not present in the graph if node not in self.connections: __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # add an edge with the given weight self.add_node(__UpperCAmelCase ) self.add_node(__UpperCAmelCase ) __lowerCamelCase = weight __lowerCamelCase = weight def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __UpperCAmelCase : x[2] ) # creating the disjoint set __lowerCamelCase = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__UpperCAmelCase ) # MST generation __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = edges[index] index += 1 __lowerCamelCase = disjoint_set.find_set(__UpperCAmelCase ) __lowerCamelCase = disjoint_set.find_set(__UpperCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) disjoint_set.union(__UpperCAmelCase , __UpperCAmelCase ) return graph
330
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
230
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_config() __lowerCamelCase = 300 return config def lowerCamelCase ( self ): '''simple docstring''' ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = self.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = True __lowerCamelCase = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_choices __lowerCamelCase = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = () def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCamelCase = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def lowerCamelCase ( self ): '''simple docstring''' return @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) __lowerCamelCase = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
0
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
145
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A ) -> str: if not isinstance(_UpperCamelCase , _UpperCamelCase ): _snake_case = F'Input value of [number={number}] must be an integer' raise TypeError(_UpperCamelCase ) if number < 0: return False _snake_case = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
42
from string import ascii_lowercase, ascii_uppercase def a__ ( _UpperCamelCase : str ): if not sentence: return "" __lowerCamelCase = dict(zip(_UpperCamelCase ,_UpperCamelCase ) ) return lower_to_upper.get(sentence[0] ,sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
330
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class snake_case__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Tuple = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __magic_name__ : str = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __magic_name__ : List[str] = model(__UpperCAmelCase )["""last_hidden_state"""] __magic_name__ : List[Any] = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice. __magic_name__ : Dict = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
342
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCAmelCase ( lowerCAmelCase__ ): @slow @require_torch def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __lowerCamelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __lowerCamelCase = bertabert.config.encoder.vocab_size __lowerCamelCase = tokenizer.sep_token_id __lowerCamelCase = tokenizer.cls_token_id __lowerCamelCase = 128 __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __lowerCamelCase = train_dataset.select(range(32 ) ) __lowerCamelCase = val_dataset.select(range(16 ) ) __lowerCamelCase = 4 def _map_to_encoder_decoder_inputs(__UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __lowerCamelCase = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=512 ) __lowerCamelCase = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=128 ) __lowerCamelCase = inputs.input_ids __lowerCamelCase = inputs.attention_mask __lowerCamelCase = outputs.input_ids __lowerCamelCase = outputs.input_ids.copy() __lowerCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __lowerCamelCase = outputs.attention_mask assert all(len(__UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__UpperCAmelCase ): __lowerCamelCase = pred.label_ids __lowerCamelCase = pred.predictions # all unnecessary tokens are removed __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__UpperCAmelCase ) )] ) / len(__UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset __lowerCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __lowerCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __lowerCamelCase = self.get_auto_remove_tmp_dir() __lowerCamelCase = SeqaSeqTrainingArguments( output_dir=__UpperCAmelCase , per_device_train_batch_size=__UpperCAmelCase , per_device_eval_batch_size=__UpperCAmelCase , predict_with_generate=__UpperCAmelCase , evaluation_strategy='''steps''' , do_train=__UpperCAmelCase , do_eval=__UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __lowerCamelCase = SeqaSeqTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , tokenizer=__UpperCAmelCase , ) # start training trainer.train()
330
0
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A =logging.get_logger(__name__) class _a ( lowerCAmelCase__ ): __a : List[str] = ["""input_features""", """is_longer"""] def __init__( self : Dict , lowercase : int=64 , lowercase : Dict=48_000 , lowercase : Optional[int]=480 , lowercase : Any=10 , lowercase : List[str]=1_024 , lowercase : Tuple=0.0 , lowercase : List[str]=False , lowercase : str = 0 , lowercase : Any = 14_000 , lowercase : Tuple = None , lowercase : str = "fusion" , lowercase : Tuple = "repeatpad" , **lowercase : List[str] , ): '''simple docstring''' super().__init__( feature_size=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , padding_value=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase = top_db UpperCAmelCase = truncation UpperCAmelCase = padding UpperCAmelCase = fft_window_size UpperCAmelCase = (fft_window_size >> 1) + 1 UpperCAmelCase = hop_length UpperCAmelCase = max_length_s UpperCAmelCase = max_length_s * sampling_rate UpperCAmelCase = sampling_rate UpperCAmelCase = frequency_min UpperCAmelCase = frequency_max UpperCAmelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__UpperCAmelCase , min_frequency=__UpperCAmelCase , max_frequency=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , norm=__UpperCAmelCase , mel_scale='''htk''' , ) UpperCAmelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__UpperCAmelCase , min_frequency=__UpperCAmelCase , max_frequency=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , norm='''slaney''' , mel_scale='''slaney''' , ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def A ( self : Union[str, Any] , lowercase : Union[str, Any] , lowercase : Any = None ): '''simple docstring''' UpperCAmelCase = spectrogram( __UpperCAmelCase , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=__UpperCAmelCase , log_mel='''dB''' , ) return log_mel_spectrogram.T def A ( self : str , lowercase : str , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk UpperCAmelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk UpperCAmelCase = [0] # randomly choose index for each part UpperCAmelCase = np.random.choice(ranges[0] ) UpperCAmelCase = np.random.choice(ranges[1] ) UpperCAmelCase = np.random.choice(ranges[2] ) UpperCAmelCase = mel[idx_front : idx_front + chunk_frames, :] UpperCAmelCase = mel[idx_middle : idx_middle + chunk_frames, :] UpperCAmelCase = mel[idx_back : idx_back + chunk_frames, :] UpperCAmelCase = torch.tensor(mel[None, None, :] ) UpperCAmelCase = torch.nn.functional.interpolate( __UpperCAmelCase , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=__UpperCAmelCase ) UpperCAmelCase = mel_shrink[0][0].numpy() UpperCAmelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def A ( self : Any , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Tuple , lowercase : Optional[int] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": UpperCAmelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad UpperCAmelCase = len(__UpperCAmelCase ) - max_length UpperCAmelCase = np.random.randint(0 , overflow + 1 ) UpperCAmelCase = waveform[idx : idx + max_length] UpperCAmelCase = self._np_extract_fbank_features(__UpperCAmelCase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": UpperCAmelCase = self._np_extract_fbank_features(__UpperCAmelCase , self.mel_filters ) UpperCAmelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed UpperCAmelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. UpperCAmelCase = np.stack([mel, mel, mel, mel] , axis=0 ) UpperCAmelCase = False else: UpperCAmelCase = self._random_mel_fusion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase = True else: raise NotImplementedError(f"data_truncating {truncation} not implemented" ) else: UpperCAmelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": UpperCAmelCase = int(max_length / len(__UpperCAmelCase ) ) UpperCAmelCase = np.stack(np.tile(__UpperCAmelCase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": UpperCAmelCase = int(max_length / len(__UpperCAmelCase ) ) UpperCAmelCase = np.stack(np.tile(__UpperCAmelCase , __UpperCAmelCase ) ) UpperCAmelCase = np.pad(__UpperCAmelCase , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": UpperCAmelCase = self._np_extract_fbank_features(__UpperCAmelCase , self.mel_filters ) UpperCAmelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: UpperCAmelCase = self._np_extract_fbank_features(__UpperCAmelCase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int , lowercase : Tuple , lowercase : List[Any] = None , lowercase : Tuple = None , lowercase : List[str] = None , lowercase : Tuple = None , lowercase : Optional[int] = None , **lowercase : int , ): '''simple docstring''' UpperCAmelCase = truncation if truncation is not None else self.truncation UpperCAmelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCAmelCase = isinstance(__UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) UpperCAmelCase = is_batched_numpy or ( isinstance(__UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__UpperCAmelCase , np.ndarray ): UpperCAmelCase = np.asarray(__UpperCAmelCase , dtype=np.floataa ) elif isinstance(__UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase = [np.asarray(__UpperCAmelCase )] # convert to mel spectrogram, truncate and pad if needed. UpperCAmelCase = [ self._get_input_mel(__UpperCAmelCase , max_length if max_length else self.nb_max_samples , __UpperCAmelCase , __UpperCAmelCase ) for waveform in raw_speech ] UpperCAmelCase = [] UpperCAmelCase = [] for mel, longer in padded_inputs: input_mel.append(__UpperCAmelCase ) is_longer.append(__UpperCAmelCase ) if truncation == "fusion" and sum(__UpperCAmelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer UpperCAmelCase = np.random.randint(0 , len(__UpperCAmelCase ) ) UpperCAmelCase = True if isinstance(input_mel[0] , __UpperCAmelCase ): UpperCAmelCase = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool UpperCAmelCase = [[longer] for longer in is_longer] UpperCAmelCase = {'''input_features''': input_mel, '''is_longer''': is_longer} UpperCAmelCase = BatchFeature(__UpperCAmelCase ) if return_tensors is not None: UpperCAmelCase = input_features.convert_to_tensors(__UpperCAmelCase ) return input_features
34
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
from cva import destroyAllWindows, imread, imshow, waitKey def UpperCamelCase ( __magic_name__ : Dict ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): lowercase__ = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image A : Dict = imread('image_data/lena.jpg', 1) # convert to its negative A : str = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
305
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase=0.01 , __UpperCAmelCase=1000 ): '''simple docstring''' __lowerCamelCase = p_stop __lowerCamelCase = max_length def __iter__( self ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = False while not stop and count < self.max_length: yield count count += 1 __lowerCamelCase = random.random() < self.p_stop class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = [ BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 ) ] __lowerCamelCase = [list(__UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__UpperCAmelCase ) for shard in batch_sampler_shards] , [len(__UpperCAmelCase ) for e in expected] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __lowerCamelCase = [BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=False ): '''simple docstring''' random.seed(__UpperCAmelCase ) __lowerCamelCase = list(__UpperCAmelCase ) __lowerCamelCase = [ IterableDatasetShard( __UpperCAmelCase , batch_size=__UpperCAmelCase , drop_last=__UpperCAmelCase , num_processes=__UpperCAmelCase , process_index=__UpperCAmelCase , split_batches=__UpperCAmelCase , ) for i in range(__UpperCAmelCase ) ] __lowerCamelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__UpperCAmelCase ) iterable_dataset_lists.append(list(__UpperCAmelCase ) ) __lowerCamelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __lowerCamelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) self.assertTrue(len(__UpperCAmelCase ) % shard_batch_size == 0 ) __lowerCamelCase = [] for idx in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__UpperCAmelCase ) < len(__UpperCAmelCase ): reference += reference self.assertListEqual(__UpperCAmelCase , reference[: len(__UpperCAmelCase )] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = 42 __lowerCamelCase = RandomIterableDataset() self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) # Edge case with a very small dataset __lowerCamelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = SkipBatchSampler(__UpperCAmelCase , 2 ) self.assertListEqual(list(__UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) __lowerCamelCase = skip_first_batches(__UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowerCamelCase ( self ): '''simple docstring''' Accelerator() __lowerCamelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
330
0
import unittest from knapsack import greedy_knapsack as kp class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Tuple ) -> str: """simple docstring""" lowercase__ = [10, 20, 30, 40, 50, 60] lowercase__ = [2, 4, 6, 8, 10, 12] lowercase__ = 100 self.assertEqual(kp.calc_profit(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , 210 ) def lowerCamelCase_ ( self: int ) -> Dict: """simple docstring""" self.assertRaisesRegex(__UpperCAmelCase , '''max_weight must greater than zero.''' ) def lowerCamelCase_ ( self: int ) -> Tuple: """simple docstring""" self.assertRaisesRegex(__UpperCAmelCase , '''Weight can not be negative.''' ) def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" self.assertRaisesRegex(__UpperCAmelCase , '''Profit can not be negative.''' ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" self.assertRaisesRegex(__UpperCAmelCase , '''max_weight must greater than zero.''' ) def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" self.assertRaisesRegex( __UpperCAmelCase , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
110
def a__ ( _UpperCamelCase : int ): __lowerCamelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
330
0
import numpy # List of input, output pairs SCREAMING_SNAKE_CASE__ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) SCREAMING_SNAKE_CASE__ = (((515, 22, 13), 555), ((61, 35, 49), 150)) SCREAMING_SNAKE_CASE__ = [2, 4, 1, 5] SCREAMING_SNAKE_CASE__ = len(train_data) SCREAMING_SNAKE_CASE__ = 0.009 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int="train" ) -> Any: return calculate_hypothesis_value(_UpperCamelCase , _UpperCamelCase ) - output( _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: __lowercase = 0 for i in range(len(_UpperCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any]=m ) -> List[str]: __lowercase = 0 for i in range(_UpperCamelCase ): if index == -1: summation_value += _error(_UpperCamelCase ) else: summation_value += _error(_UpperCamelCase ) * train_data[i][0][index] return summation_value def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: __lowercase = summation_of_cost_derivative(_UpperCamelCase , _UpperCamelCase ) / m return cost_derivative_value def __SCREAMING_SNAKE_CASE ( ) -> int: global parameter_vector # Tune these values to set a tolerance value for predicted output __lowercase = 0.000_002 __lowercase = 0 __lowercase = 0 while True: j += 1 __lowercase = [0, 0, 0, 0] for i in range(0 , len(_UpperCamelCase ) ): __lowercase = get_cost_derivative(i - 1 ) __lowercase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _UpperCamelCase , _UpperCamelCase , atol=_UpperCamelCase , rtol=_UpperCamelCase , ): break __lowercase = temp_parameter_vector print(('Number of iterations:', j) ) def __SCREAMING_SNAKE_CASE ( ) -> Any: for i in range(len(_UpperCamelCase ) ): print(('Actual output value:', output(_UpperCamelCase , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(_UpperCamelCase , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
325
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ = 16 a_ = 32 def a__ ( _UpperCamelCase : Accelerator ,_UpperCamelCase : int = 16 ): __lowerCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __lowerCamelCase = load_dataset('''glue''' ,'''mrpc''' ) def tokenize_function(_UpperCamelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=_UpperCamelCase ,max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCamelCase = datasets.map( _UpperCamelCase ,batched=_UpperCamelCase ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column('''label''' ,'''labels''' ) def collate_fn(_UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCamelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCamelCase = 16 elif accelerator.mixed_precision != "no": __lowerCamelCase = 8 else: __lowerCamelCase = None return tokenizer.pad( _UpperCamelCase ,padding='''longest''' ,max_length=_UpperCamelCase ,pad_to_multiple_of=_UpperCamelCase ,return_tensors='''pt''' ,) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets['''train'''] ,shuffle=_UpperCamelCase ,collate_fn=_UpperCamelCase ,batch_size=_UpperCamelCase ) __lowerCamelCase = DataLoader( tokenized_datasets['''validation'''] ,shuffle=_UpperCamelCase ,collate_fn=_UpperCamelCase ,batch_size=_UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ = mocked_dataloaders # noqa: F811 def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' ,_UpperCamelCase ) == "1": __lowerCamelCase = 2 # Initialize accelerator __lowerCamelCase = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config['''lr'''] __lowerCamelCase = int(config['''num_epochs'''] ) __lowerCamelCase = int(config['''seed'''] ) __lowerCamelCase = int(config['''batch_size'''] ) __lowerCamelCase = evaluate.load('''glue''' ,'''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_UpperCamelCase ) def inner_training_loop(_UpperCamelCase : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' ,return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCamelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCamelCase = AdamW(params=model.parameters() ,lr=_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = get_dataloaders(_UpperCamelCase ,_UpperCamelCase ) # Instantiate scheduler __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase ,num_warmup_steps=1_00 ,num_training_steps=(len(_UpperCamelCase ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = accelerator.prepare( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCamelCase = model(**_UpperCamelCase ) __lowerCamelCase = outputs.loss accelerator.backward(_UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**_UpperCamelCase ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) __lowerCamelCase ,__lowerCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_UpperCamelCase ,references=_UpperCamelCase ,) __lowerCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,_UpperCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a__ ( ): __lowerCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' ,type=_UpperCamelCase ,default=_UpperCamelCase ,choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] ,help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' ,) parser.add_argument('''--cpu''' ,action='''store_true''' ,help='''If passed, will train on the CPU.''' ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCamelCase ,_UpperCamelCase ) if __name__ == "__main__": main()
330
0
'''simple docstring''' class UpperCAmelCase : # Public class to implement a graph '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: lowercase__ : Dict = row lowercase__ : str = col lowercase__ : Any = graph def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: lowercase__ : int = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ : List[Any] = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ : str = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __UpperCAmelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __UpperCAmelCase ) def _lowerCAmelCase( self ) -> Optional[int]: # And finally, count all islands. lowercase__ : str = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ : List[str] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) count += 1 return count
198
import logging import os import threading import time try: import warnings except ImportError: a_ = None try: import msvcrt except ImportError: a_ = None try: import fcntl except ImportError: a_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: a_ = OSError # Data # ------------------------------------------------ a_ = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] a_ = """3.0.12""" a_ = None def a__ ( ): global _logger __lowerCamelCase = _logger or logging.getLogger(__name__ ) return _logger class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock_file return None def __str__( self ): '''simple docstring''' __lowerCamelCase = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock return None def __enter__( self ): '''simple docstring''' return self.lock def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.lock.release() return None class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowerCamelCase = self.hash_filename_if_too_long(__UpperCAmelCase , __UpperCAmelCase ) # The path to the lock file. __lowerCamelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowerCamelCase = None # The default timeout value. __lowerCamelCase = timeout # We use this lock primarily for the lock counter. __lowerCamelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowerCamelCase = 0 return None @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file @property def lowerCamelCase ( self ): '''simple docstring''' return self._timeout @timeout.setter def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = float(__UpperCAmelCase ) return None def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file_fd is not None def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=0.05 ): '''simple docstring''' # Use the default timeout, if no timeout is provided. if timeout is None: __lowerCamelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file __lowerCamelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(__UpperCAmelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowerCamelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCamelCase ( self , __UpperCAmelCase=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __lowerCamelCase = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self ): '''simple docstring''' self.acquire() return self def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.release() return None def __del__( self ): '''simple docstring''' self.release(force=__UpperCAmelCase ) return None def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = os.path.basename(__UpperCAmelCase ) if len(__UpperCAmelCase ) > max_length and max_length > 0: __lowerCamelCase = os.path.dirname(__UpperCAmelCase ) __lowerCamelCase = str(hash(__UpperCAmelCase ) ) __lowerCamelCase = filename[: max_length - len(__UpperCAmelCase ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(__UpperCAmelCase , __UpperCAmelCase ) else: return path class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) __lowerCamelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: try: msvcrt.locking(__UpperCAmelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None msvcrt.locking(__UpperCAmelCase , msvcrt.LK_UNLCK , 1 ) os.close(__UpperCAmelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = os.statvfs(os.path.dirname(__UpperCAmelCase ) ).f_namemax super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) try: fcntl.flock(__UpperCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None fcntl.flock(__UpperCAmelCase , fcntl.LOCK_UN ) os.close(__UpperCAmelCase ) return None class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' os.close(self._lock_file_fd ) __lowerCamelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None a_ = None if msvcrt: a_ = WindowsFileLock elif fcntl: a_ = UnixFileLock else: a_ = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
330
0
from __future__ import annotations from math import pow, sqrt def a ( snake_case__: float , snake_case__: float , snake_case__: float ): '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(_UpperCamelCase , 2 ) - pow(_UpperCamelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(_UpperCamelCase , 2 ) - pow(_UpperCamelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(_UpperCamelCase , 2 ) + pow(_UpperCamelCase , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
30
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=10 , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase="divided_space_time" , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = patch_size __lowerCamelCase = num_frames __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = attention_type __lowerCamelCase = initializer_range __lowerCamelCase = scope __lowerCamelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __lowerCamelCase = (image_size // patch_size) ** 2 __lowerCamelCase = (num_frames) * self.num_patches_per_frame + 1 def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __lowerCamelCase = self.num_labels return config def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TimesformerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) # verify the logits shape __lowerCamelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = config_and_inputs __lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowerCAmelCase__ = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerModelTester(self ) __lowerCamelCase = ConfigTester( self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = copy.deepcopy(__UpperCAmelCase ) if return_labels: if model_class in get_values(__UpperCAmelCase ): __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = TimesformerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' if not self.has_attentions: pass else: __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = True for model_class in self.all_model_classes: __lowerCamelCase = self.model_tester.seq_length __lowerCamelCase = self.model_tester.num_frames __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __lowerCamelCase = len(__UpperCAmelCase ) # Check attention is always last and order is fine __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(out_len + 1 , len(__UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __lowerCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def a__ ( ): __lowerCamelCase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' ,filename='''eating_spaghetti.npy''' ,repo_type='''dataset''' ) __lowerCamelCase = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ): '''simple docstring''' # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( __UpperCAmelCase ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_video() __lowerCamelCase = image_processor(video[:8] , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**__UpperCAmelCase ) # verify the logits __lowerCamelCase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
0
"""simple docstring""" def __lowerCamelCase ( a_ : int = 4_00_00_00 ) -> List[Any]: __SCREAMING_SNAKE_CASE :Optional[int] = [] __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Union[str, Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_UpperCamelCase ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Union[str, Any] = b, a + b return sum(_UpperCamelCase ) if __name__ == "__main__": print(f'{solution() = }')
191
def a__ ( _UpperCamelCase : int ): if not isinstance(_UpperCamelCase ,_UpperCamelCase ): __lowerCamelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(_UpperCamelCase ) if number < 0: return False __lowerCamelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
330
0
from collections import defaultdict class a : def __init__( self :List[Any] ,__lowercase :Union[str, Any] ,__lowercase :int ): snake_case__ : str = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 snake_case__ : Optional[int] = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(__UpperCAmelCase ) ) ] snake_case__ : Union[str, Any] = defaultdict(__UpperCAmelCase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 snake_case__ : Optional[Any] = (1 << len(__UpperCAmelCase )) - 1 def __lowerCamelCase ( self :Optional[Any] ,__lowercase :List[Any] ,__lowercase :Tuple ): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement snake_case__ : List[str] = self.count_ways_until(__UpperCAmelCase ,task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) ,task_no + 1 ) # save the value. snake_case__ : Dict = total_ways_util return self.dp[mask][task_no] def __lowerCamelCase ( self :Any ,__lowercase :Optional[int] ): # Store the list of persons for each task for i in range(len(__UpperCAmelCase ) ): for j in task_performed[i]: self.task[j].append(__UpperCAmelCase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 ,1 ) if __name__ == "__main__": A__ = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. A__ = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
230
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={"_".join([str(__UpperCAmelCase ) for s in shape] )}.npy""" def lowerCamelCase ( self ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCamelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase=(4, 4, 64, 64) , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase ) ) , dtype=__UpperCAmelCase ) return image def lowerCamelCase ( self , __UpperCAmelCase=False , __UpperCAmelCase="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = '''bf16''' if fpaa else None __lowerCamelCase ,__lowerCamelCase = FlaxUNetaDConditionModel.from_pretrained( __UpperCAmelCase , subfolder='''unet''' , dtype=__UpperCAmelCase , revision=__UpperCAmelCase ) return model, params def lowerCamelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase=(4, 77, 768) , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase ) ) , dtype=__UpperCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_latents(__UpperCAmelCase , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_encoder_hidden_states(__UpperCAmelCase , fpaa=__UpperCAmelCase ) __lowerCamelCase = model.apply( {'''params''': params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape __lowerCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCamelCase = jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_latents(__UpperCAmelCase , shape=(4, 4, 96, 96) , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_encoder_hidden_states(__UpperCAmelCase , shape=(4, 77, 1024) , fpaa=__UpperCAmelCase ) __lowerCamelCase = model.apply( {'''params''': params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape __lowerCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCamelCase = jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 )
330
0
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __UpperCAmelCase ( a_: str, a_: str ): _UpperCAmelCase : Optional[int] = list(_UpperCamelCase ) _UpperCAmelCase : Dict = list(_UpperCamelCase ) _UpperCAmelCase : str = 0 for i in range(len(_UpperCamelCase ) ): if lista[i] != lista[i]: count += 1 _UpperCAmelCase : str = "_" if count > 1: return False else: return "".join(_UpperCamelCase ) def __UpperCAmelCase ( a_: list[str] ): _UpperCAmelCase : str = [] while True: _UpperCAmelCase : Dict = ["$"] * len(_UpperCamelCase ) _UpperCAmelCase : Optional[Any] = [] for i in range(len(_UpperCamelCase ) ): for j in range(i + 1, len(_UpperCamelCase ) ): _UpperCAmelCase : List[Any] = compare_string(binary[i], binary[j] ) if k is False: _UpperCAmelCase : Dict = "*" _UpperCAmelCase : Optional[int] = "*" temp.append("X" ) for i in range(len(_UpperCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_UpperCamelCase ) == 0: return pi _UpperCAmelCase : int = list(set(_UpperCamelCase ) ) def __UpperCAmelCase ( a_: int, a_: Sequence[float] ): _UpperCAmelCase : List[str] = [] for minterm in minterms: _UpperCAmelCase : Optional[int] = "" for _ in range(_UpperCamelCase ): _UpperCAmelCase : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(_UpperCamelCase ) return temp def __UpperCAmelCase ( a_: str, a_: str, a_: int ): _UpperCAmelCase : List[str] = list(_UpperCamelCase ) _UpperCAmelCase : List[Any] = list(_UpperCamelCase ) _UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_UpperCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __UpperCAmelCase ( a_: list[list[int]], a_: list[str] ): _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : List[Any] = [0] * len(_UpperCamelCase ) for i in range(len(chart[0] ) ): _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : Any = -1 for j in range(len(_UpperCamelCase ) ): if chart[j][i] == 1: count += 1 _UpperCAmelCase : Optional[Any] = j if count == 1: _UpperCAmelCase : List[str] = 1 for i in range(len(_UpperCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_UpperCamelCase ) ): _UpperCAmelCase : Dict = 0 temp.append(prime_implicants[i] ) while True: _UpperCAmelCase : int = 0 _UpperCAmelCase : int = -1 _UpperCAmelCase : Optional[int] = 0 for i in range(len(_UpperCamelCase ) ): _UpperCAmelCase : Optional[int] = chart[i].count(1 ) if count_n > max_n: _UpperCAmelCase : Optional[Any] = count_n _UpperCAmelCase : int = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_UpperCamelCase ) ): _UpperCAmelCase : int = 0 def __UpperCAmelCase ( a_: list[str], a_: list[str] ): _UpperCAmelCase : Dict = [[0 for x in range(len(_UpperCamelCase ) )] for x in range(len(_UpperCamelCase ) )] for i in range(len(_UpperCamelCase ) ): _UpperCAmelCase : Union[str, Any] = prime_implicants[i].count("_" ) for j in range(len(_UpperCamelCase ) ): if is_for_table(prime_implicants[i], binary[j], _UpperCamelCase ): _UpperCAmelCase : Tuple = 1 return chart def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = int(input("Enter the no. of variables\n" ) ) _UpperCAmelCase : int = [ float(_UpperCamelCase ) for x in input( "Enter the decimal representation of Minterms \'Spaces Separated\'\n" ).split() ] _UpperCAmelCase : Any = decimal_to_binary(_UpperCamelCase, _UpperCamelCase ) _UpperCAmelCase : Optional[Any] = check(_UpperCamelCase ) print("Prime Implicants are:" ) print(_UpperCamelCase ) _UpperCAmelCase : Optional[int] = prime_implicant_chart(_UpperCamelCase, _UpperCamelCase ) _UpperCAmelCase : Union[str, Any] = selection(_UpperCamelCase, _UpperCamelCase ) print("Essential Prime Implicants are:" ) print(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
145
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
'''simple docstring''' from __future__ import annotations from typing import Generic, TypeVar lowercase : Dict = TypeVar("T") class __UpperCAmelCase ( Generic[T] ): def __init__( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = data _snake_case = self _snake_case = 0 class __UpperCAmelCase ( Generic[T] ): def __init__( self ): """simple docstring""" _snake_case = {} def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = DisjointSetTreeNode(__UpperCAmelCase ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.map[data] if elem_ref != elem_ref.parent: _snake_case = self.find_set(elem_ref.parent.data ) return elem_ref.parent def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if nodea.rank > nodea.rank: _snake_case = nodea else: _snake_case = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" self.link(self.find_set(__UpperCAmelCase ) , self.find_set(__UpperCAmelCase ) ) class __UpperCAmelCase ( Generic[T] ): def __init__( self ): """simple docstring""" _snake_case = {} def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if node not in self.connections: _snake_case = {} def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" self.add_node(__UpperCAmelCase ) self.add_node(__UpperCAmelCase ) _snake_case = weight _snake_case = weight def lowerCamelCase ( self ): """simple docstring""" _snake_case = [] _snake_case = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda lowerCAmelCase_ : x[2] ) # creating the disjoint set _snake_case = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__UpperCAmelCase ) # MST generation _snake_case = 0 _snake_case = 0 _snake_case = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: _snake_case , _snake_case , _snake_case = edges[index] index += 1 _snake_case = disjoint_set.find_set(__UpperCAmelCase ) _snake_case = disjoint_set.find_set(__UpperCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) disjoint_set.union(__UpperCAmelCase , __UpperCAmelCase ) return graph
42
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def a__ ( _UpperCamelCase : Optional[int] ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __lowerCamelCase = module __lowerCamelCase = nn.Sequential( nn.Linear(module.in_features , __UpperCAmelCase , bias=__UpperCAmelCase ) , nn.Linear(__UpperCAmelCase , module.out_features , bias=__UpperCAmelCase ) , ) __lowerCamelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowerCamelCase ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.module(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) + self.adapter(__UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCAmelCase__ = """bigscience/bloom-1b7""" # Constant values lowerCAmelCase__ = 2.1_09_65_95_52_69_25_74 lowerCAmelCase__ = """Hello my name is""" lowerCAmelCase__ = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) lowerCAmelCase__ = 1_0 def lowerCamelCase ( self ): '''simple docstring''' # Models and tokenizer __lowerCamelCase = AutoTokenizer.from_pretrained(self.model_name ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() # Models and tokenizer __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) def lowerCamelCase ( self ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_abit.config self.assertTrue(hasattr(__UpperCAmelCase , '''quantization_config''' ) ) __lowerCamelCase = config.to_dict() __lowerCamelCase = config.to_diff_dict() __lowerCamelCase = config.to_json_string() def lowerCamelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit __lowerCamelCase = self.model_fpaa.get_memory_footprint() __lowerCamelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowerCamelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowerCamelCase ( self ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitsAndBytesConfig() __lowerCamelCase = True __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitsAndBytesConfig() with self.assertRaises(__UpperCAmelCase ): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , load_in_abit=__UpperCAmelCase , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = self.model_fpaa.to(torch.floataa ) __lowerCamelCase = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowerCamelCase = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error __lowerCamelCase = self.model_fpaa.half() # Check this does not throw an error __lowerCamelCase = self.model_fpaa.float() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls ): '''simple docstring''' __lowerCamelCase = '''t5-small''' __lowerCamelCase = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense __lowerCamelCase = AutoTokenizer.from_pretrained(cls.model_name ) __lowerCamelCase = '''Translate in German: Hello, my dog is cute''' def lowerCamelCase ( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' from transformers import TaForConditionalGeneration __lowerCamelCase = TaForConditionalGeneration._keep_in_fpaa_modules __lowerCamelCase = None # test with `t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) __lowerCamelCase = modules def lowerCamelCase ( self ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() # model_name __lowerCamelCase = '''bigscience/bloom-560m''' __lowerCamelCase = '''t5-small''' # Different types of model __lowerCamelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # Sequence classification model __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # CausalLM model __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # Seq2seq model __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) def lowerCamelCase ( self ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowerCamelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch __lowerCamelCase = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''facebook/opt-350m''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowerCamelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowerCamelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__UpperCAmelCase ) ): __lowerCamelCase = LoRALayer(module.q_proj , rank=16 ) __lowerCamelCase = LoRALayer(module.k_proj , rank=16 ) __lowerCamelCase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowerCamelCase = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowerCamelCase = model.forward(**__UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = """gpt2-xl""" lowerCAmelCase__ = 3.31_91_85_48_54_15_21_87
330
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Any = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""") __magic_name__ : Union[str, Any] = ( ("""layer.""", """layer_"""), ("""word_embeddings.weight""", """word_embeddings"""), ("""position_embeddings.weight""", """position_embeddings"""), ("""token_type_embeddings.weight""", """token_type_embeddings"""), (""".""", """/"""), ("""LayerNorm/weight""", """LayerNorm/gamma"""), ("""LayerNorm/bias""", """LayerNorm/beta"""), ("""weight""", """kernel"""), ) if not os.path.isdir(_UpperCamelCase ): os.makedirs(_UpperCamelCase ) __magic_name__ : List[str] = model.state_dict() def to_tf_var_name(_A ): for patt, repl in iter(_UpperCamelCase ): __magic_name__ : int = name.replace(_UpperCamelCase, _UpperCamelCase ) return f'bert/{name}' def create_tf_var(_A, _A, _A ): __magic_name__ : Any = tf.dtypes.as_dtype(tensor.dtype ) __magic_name__ : List[Any] = tf.get_variable(dtype=_UpperCamelCase, shape=tensor.shape, name=_UpperCamelCase, initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_UpperCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __magic_name__ : List[str] = to_tf_var_name(_UpperCamelCase ) __magic_name__ : str = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __magic_name__ : Optional[int] = torch_tensor.T __magic_name__ : Dict = create_tf_var(tensor=_UpperCamelCase, name=_UpperCamelCase, session=_UpperCamelCase ) tf.keras.backend.set_value(_UpperCamelCase, _UpperCamelCase ) __magic_name__ : Dict = session.run(_UpperCamelCase ) print(f'Successfully created {tf_name}: {np.allclose(_UpperCamelCase, _UpperCamelCase )}' ) __magic_name__ : Dict = tf.train.Saver(tf.trainable_variables() ) saver.save(_UpperCamelCase, os.path.join(_UpperCamelCase, model_name.replace("""-""", """_""" ) + """.ckpt""" ) ) def UpperCamelCase ( _A=None ): """simple docstring""" __magic_name__ : Any = argparse.ArgumentParser() parser.add_argument("""--model_name""", type=_UpperCamelCase, required=_UpperCamelCase, help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""", type=_UpperCamelCase, default=_UpperCamelCase, required=_UpperCamelCase, help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""", type=_UpperCamelCase, required=_UpperCamelCase, help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""", type=_UpperCamelCase, required=_UpperCamelCase, help="""Directory in which to save tensorflow model""" ) __magic_name__ : Tuple = parser.parse_args(_UpperCamelCase ) __magic_name__ : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name, state_dict=torch.load(args.pytorch_model_path ), cache_dir=args.cache_dir, ) convert_pytorch_checkpoint_to_tf(model=_UpperCamelCase, ckpt_dir=args.tf_cache_dir, model_name=args.model_name ) if __name__ == "__main__": main()
342
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = 42 class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = True @register_to_config def __init__( self , __UpperCAmelCase = 3 , __UpperCAmelCase = 3 , __UpperCAmelCase = ("DownEncoderBlock2D",) , __UpperCAmelCase = ("UpDecoderBlock2D",) , __UpperCAmelCase = (64,) , __UpperCAmelCase = 1 , __UpperCAmelCase = "silu" , __UpperCAmelCase = 4 , __UpperCAmelCase = 32 , __UpperCAmelCase = 32 , __UpperCAmelCase = 0.18_215 , ): '''simple docstring''' super().__init__() # pass init params to Encoder __lowerCamelCase = Encoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , down_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , act_fn=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , double_z=__UpperCAmelCase , ) # pass init params to Decoder __lowerCamelCase = Decoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , up_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , act_fn=__UpperCAmelCase , ) __lowerCamelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowerCamelCase = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) __lowerCamelCase = False __lowerCamelCase = False # only relevant if vae tiling is enabled __lowerCamelCase = self.config.sample_size __lowerCamelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowerCamelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowerCamelCase = 0.25 def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' if isinstance(__UpperCAmelCase , (Encoder, Decoder) ): __lowerCamelCase = value def lowerCamelCase ( self , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = use_tiling def lowerCamelCase ( self ): '''simple docstring''' self.enable_tiling(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = True def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''set_processor''' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return processors def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(__UpperCAmelCase )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''set_processor''' ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): module.set_processor(__UpperCAmelCase ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) if self.use_slicing and x.shape[0] > 1: __lowerCamelCase = [self.encoder(__UpperCAmelCase ) for x_slice in x.split(1 )] __lowerCamelCase = torch.cat(__UpperCAmelCase ) else: __lowerCamelCase = self.encoder(__UpperCAmelCase ) __lowerCamelCase = self.quant_conv(__UpperCAmelCase ) __lowerCamelCase = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) __lowerCamelCase = self.post_quant_conv(__UpperCAmelCase ) __lowerCamelCase = self.decoder(__UpperCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) @apply_forward_hook def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: __lowerCamelCase = [self._decode(__UpperCAmelCase ).sample for z_slice in z.split(1 )] __lowerCamelCase = torch.cat(__UpperCAmelCase ) else: __lowerCamelCase = self._decode(__UpperCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = min(a.shape[2] , b.shape[2] , __UpperCAmelCase ) for y in range(__UpperCAmelCase ): __lowerCamelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = min(a.shape[3] , b.shape[3] , __UpperCAmelCase ) for x in range(__UpperCAmelCase ): __lowerCamelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowerCamelCase = [] for i in range(0 , x.shape[2] , __UpperCAmelCase ): __lowerCamelCase = [] for j in range(0 , x.shape[3] , __UpperCAmelCase ): __lowerCamelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowerCamelCase = self.encoder(__UpperCAmelCase ) __lowerCamelCase = self.quant_conv(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) __lowerCamelCase = [] for i, row in enumerate(__UpperCAmelCase ): __lowerCamelCase = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=2 ) __lowerCamelCase = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowerCamelCase = [] for i in range(0 , z.shape[2] , __UpperCAmelCase ): __lowerCamelCase = [] for j in range(0 , z.shape[3] , __UpperCAmelCase ): __lowerCamelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowerCamelCase = self.post_quant_conv(__UpperCAmelCase ) __lowerCamelCase = self.decoder(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) __lowerCamelCase = [] for i, row in enumerate(__UpperCAmelCase ): __lowerCamelCase = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , ): '''simple docstring''' __lowerCamelCase = sample __lowerCamelCase = self.encode(__UpperCAmelCase ).latent_dist if sample_posterior: __lowerCamelCase = posterior.sample(generator=__UpperCAmelCase ) else: __lowerCamelCase = posterior.mode() __lowerCamelCase = self.decode(__UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase )
330
0
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) A =logging.getLogger(__name__) @dataclass(frozen=lowerCAmelCase__ ) class _a : __a : int = 42 __a : str = 42 __a : Dict = None __a : Dict = None __a : List[Any] = None @dataclass(frozen=lowerCAmelCase__ ) class _a : __a : int = 42 __a : str = None __a : Optional[Any] = None __a : List[Any] = None __a : Optional[Any] = None if is_torch_available(): import torch from torch.utils.data import Dataset class _a ( lowerCAmelCase__ ): __a : Union[str, Any] = 42 def __init__( self : Tuple , lowercase : Union[str, Any] , lowercase : Dict , lowercase : List[str] , lowercase : str = None , lowercase : List[str]=False , lowercase : Union[str, Any] = False , ): '''simple docstring''' UpperCAmelCase = hans_processors[task]() UpperCAmelCase = os.path.join( __UpperCAmelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(__UpperCAmelCase ) , __UpperCAmelCase , ) , ) UpperCAmelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase = label_list[2], label_list[1] UpperCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase = cached_features_file + '''.lock''' with FileLock(__UpperCAmelCase ): if os.path.exists(__UpperCAmelCase ) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}" ) UpperCAmelCase = torch.load(__UpperCAmelCase ) else: logger.info(f"Creating features from dataset file at {data_dir}" ) UpperCAmelCase = ( processor.get_dev_examples(__UpperCAmelCase ) if evaluate else processor.get_train_examples(__UpperCAmelCase ) ) logger.info('''Training examples: %s''' , len(__UpperCAmelCase ) ) UpperCAmelCase = hans_convert_examples_to_features(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) logger.info('''Saving features into cached file %s''' , __UpperCAmelCase ) torch.save(self.features , __UpperCAmelCase ) def __len__( self : Tuple ): '''simple docstring''' return len(self.features ) def __getitem__( self : List[Any] , lowercase : Optional[Any] ): '''simple docstring''' return self.features[i] def A ( self : Dict ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class _a : __a : List[str] = 42 def __init__( self : Optional[int] , lowercase : Dict , lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] = 128 , lowercase : List[Any]=False , lowercase : Optional[Any] = False , ): '''simple docstring''' UpperCAmelCase = hans_processors[task]() UpperCAmelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase = label_list[2], label_list[1] UpperCAmelCase = label_list UpperCAmelCase = processor.get_dev_examples(__UpperCAmelCase ) if evaluate else processor.get_train_examples(__UpperCAmelCase ) UpperCAmelCase = hans_convert_examples_to_features(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(__UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCAmelCase = tf.data.Dataset.from_generator( __UpperCAmelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A ( self : Tuple ): '''simple docstring''' return self.dataset def __len__( self : str ): '''simple docstring''' return len(self.features ) def __getitem__( self : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' return self.features[i] def A ( self : List[Any] ): '''simple docstring''' return self.label_list class _a ( lowerCAmelCase__ ): def A ( self : Tuple , lowercase : Dict ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(__UpperCAmelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(__UpperCAmelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def A ( self : Dict ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def A ( self : int , lowercase : Any , lowercase : str ): '''simple docstring''' UpperCAmelCase = [] for i, line in enumerate(__UpperCAmelCase ): if i == 0: continue UpperCAmelCase = '''%s-%s''' % (set_type, line[0]) UpperCAmelCase = line[5] UpperCAmelCase = line[6] UpperCAmelCase = line[7][2:] if line[7].startswith('''ex''' ) else line[7] UpperCAmelCase = line[0] examples.append(InputExample(guid=__UpperCAmelCase , text_a=__UpperCAmelCase , text_b=__UpperCAmelCase , label=__UpperCAmelCase , pairID=__UpperCAmelCase ) ) return examples def snake_case_ (_a : List[InputExample] , _a : List[str] , _a : int , _a : PreTrainedTokenizer , ): UpperCAmelCase = {label: i for i, label in enumerate(_UpperCamelCase )} UpperCAmelCase = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCamelCase ) , desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) UpperCAmelCase = tokenizer( example.text_a , example.text_b , add_special_tokens=_UpperCamelCase , max_length=_UpperCamelCase , padding='''max_length''' , truncation=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , ) UpperCAmelCase = label_map[example.label] if example.label in label_map else 0 UpperCAmelCase = int(example.pairID ) features.append(InputFeatures(**_UpperCamelCase , label=_UpperCamelCase , pairID=_UpperCamelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(F"guid: {example}" ) logger.info(F"features: {features[i]}" ) return features A ={ 'hans': 3, } A ={ 'hans': HansProcessor, }
34
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration a_ = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] a_ = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] a_ = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) a_ = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) a_ = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : Optional[Any] ): for tf_name, hf_name in patterns: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = BigBirdPegasusConfig(**_UpperCamelCase ) __lowerCamelCase = BigBirdPegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() __lowerCamelCase = {} # separating decoder weights __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = DECODER_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = REMAINING_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" __lowerCamelCase = mapping['''model.embed_positions.weight'''] __lowerCamelCase = mapping.pop('''model.embed_positions.weight''' ) __lowerCamelCase ,__lowerCamelCase = torch_model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : int ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ,_UpperCamelCase : dict ): __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = convert_bigbird_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() a_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
330
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A : str = logging.get_logger(__name__) A : Dict = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} A : int = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } A : Union[str, Any] = { 'abeja/gpt-neox-japanese-2.7b': 2_0_4_8, } def UpperCamelCase ( __magic_name__ : int , __magic_name__ : List[Any] ) -> List[str]: """simple docstring""" with open(_UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: lowercase__ = json.loads(f.read() ) lowercase__ = collections.OrderedDict() lowercase__ = collections.OrderedDict() lowercase__ = collections.OrderedDict() with open(_UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: lowercase__ = f.readlines() lowercase__ = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(_UpperCamelCase ): lowercase__ = b lowercase__ = idx for wd in b: lowercase__ = idx return vocab, raw_vocab, ids_to_tokens, emoji class A ( lowerCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ['''input_ids''', '''attention_mask'''] def __init__(self : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple="<|endoftext|>" , _UpperCAmelCase : Optional[Any]="<|endoftext|>" , _UpperCAmelCase : Optional[Any]="<|startoftext|>" , _UpperCAmelCase : List[Any]="<|endoftext|>" , _UpperCAmelCase : str=False , **_UpperCAmelCase : str , ) -> Tuple: """simple docstring""" super().__init__( unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , do_clean_text=__UpperCAmelCase , **__UpperCAmelCase , ) if not os.path.isfile(__UpperCAmelCase ): raise ValueError( f'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(__UpperCAmelCase ): raise ValueError( f'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) lowercase__ = do_clean_text lowercase__ , lowercase__ , lowercase__ , lowercase__ = load_vocab_and_emoji(__UpperCAmelCase , __UpperCAmelCase ) lowercase__ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" return len(self.raw_vocab ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[str] ) -> int: """simple docstring""" return self.subword_tokenizer.tokenize(__UpperCAmelCase , clean=self.do_clean_text ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Tuple ) -> str: """simple docstring""" return self.vocab.get(__UpperCAmelCase , self.vocab.get(self.unk_token ) ) def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(__UpperCAmelCase ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ = """""".join(__UpperCAmelCase ).strip() return out_string def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" lowercase__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: lowercase__ = input_ids[-self.model_max_length :] return input_ids def lowerCamelCase__ (self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple = None ) -> Optional[Any]: """simple docstring""" lowercase__ = 0 if os.path.isdir(__UpperCAmelCase ): lowercase__ = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: lowercase__ = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase__ = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""] ) with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) lowercase__ = token_index writer.write(""",""".join(__UpperCAmelCase ) + """\n""" ) index += 1 with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer: json.dump(self.emoji , __UpperCAmelCase ) return vocab_file, emoji_file class A ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = vocab # same as swe lowercase__ = ids_to_tokens # same as bpe lowercase__ = emoji lowercase__ = np.max([len(__UpperCAmelCase ) for w in self.vocab.keys()] ) lowercase__ = re.compile(r"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) lowercase__ = re.compile(r"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) lowercase__ = re.compile(r"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) lowercase__ = re.compile( r"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) lowercase__ = re.compile( r"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) lowercase__ = re.compile( r"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) lowercase__ = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿""" lowercase__ = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟""" lowercase__ = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__(self : Dict ) -> Union[str, Any]: """simple docstring""" return len(self.ids_to_tokens ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : int ) -> Dict: """simple docstring""" lowercase__ = self.content_repattera.sub("""<URL>""" , __UpperCAmelCase ) lowercase__ = self.content_repattera.sub("""<EMAIL>""" , __UpperCAmelCase ) lowercase__ = self.content_repattera.sub("""<TEL>""" , __UpperCAmelCase ) lowercase__ = self.content_repattera.sub("""<DATE>""" , __UpperCAmelCase ) lowercase__ = self.content_repattera.sub("""<DATE>""" , __UpperCAmelCase ) lowercase__ = self.content_repattera.sub("""<PRICE>""" , __UpperCAmelCase ) lowercase__ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowercase__ = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" ) return content def lowerCamelCase__ (self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str=False ) -> int: """simple docstring""" lowercase__ = text.replace(""" """ , """<SP>""" ) lowercase__ = text.replace(""" """ , """<SP>""" ) lowercase__ = text.replace("""\r\n""" , """<BR>""" ) lowercase__ = text.replace("""\n""" , """<BR>""" ) lowercase__ = text.replace("""\r""" , """<BR>""" ) lowercase__ = text.replace("""\t""" , """<TAB>""" ) lowercase__ = text.replace("""—""" , """ー""" ) lowercase__ = text.replace("""−""" , """ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: lowercase__ = text.replace(__UpperCAmelCase , __UpperCAmelCase ) if clean: lowercase__ = self.clean_text(__UpperCAmelCase ) def check_simbol(_UpperCAmelCase : List[Any] ): lowercase__ = x.encode() if len(__UpperCAmelCase ) == 1 and len(__UpperCAmelCase ) == 2: lowercase__ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or (c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2) ): return True return False def checkuae(_UpperCAmelCase : str ): lowercase__ = x.encode() if len(__UpperCAmelCase ) == 1 and len(__UpperCAmelCase ) == 3: lowercase__ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe28080 and c <= 0xe2b07f: return True return False lowercase__ = 0 lowercase__ = [] while pos < len(__UpperCAmelCase ): lowercase__ = min(len(__UpperCAmelCase ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3 lowercase__ = [] # (token_id, token, pos) for e in range(__UpperCAmelCase , __UpperCAmelCase , -1 ): lowercase__ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__UpperCAmelCase ) > 2: lowercase__ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__UpperCAmelCase ) > 0: # the smallest token_id is adopted lowercase__ , lowercase__ , lowercase__ = sorted(__UpperCAmelCase , key=lambda _UpperCAmelCase : x[0] )[0] result.append(__UpperCAmelCase ) lowercase__ = e else: lowercase__ = pos + 1 lowercase__ = text[pos:end] if check_simbol(__UpperCAmelCase ): result.append("""<KIGOU>""" ) elif checkuae(__UpperCAmelCase ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) lowercase__ = end return result def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int="\n" ) -> Union[str, Any]: """simple docstring""" lowercase__ = [] lowercase__ = [] lowercase__ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__UpperCAmelCase ) > 0: words.append(bytearray(__UpperCAmelCase ).decode("""utf-8""" , errors="""replace""" ) ) lowercase__ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(__UpperCAmelCase ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: words.append(bytearray(__UpperCAmelCase ).decode("""utf-8""" , errors="""replace""" ) ) lowercase__ = """""".join(__UpperCAmelCase ) return text
305
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase=None ): '''simple docstring''' if not conversation_id: __lowerCamelCase = uuid.uuida() if past_user_inputs is None: __lowerCamelCase = [] if generated_responses is None: __lowerCamelCase = [] __lowerCamelCase = conversation_id __lowerCamelCase = past_user_inputs __lowerCamelCase = generated_responses __lowerCamelCase = text def __eq__( self , __UpperCAmelCase ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) __lowerCamelCase = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: __lowerCamelCase = text def lowerCamelCase ( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowerCamelCase = None def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' self.generated_responses.append(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' __lowerCamelCase = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): __lowerCamelCase = '''user''' if is_user else '''bot''' output += F"""{name} >> {text} \n""" return output @add_end_docstrings( lowerCAmelCase__ , r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) if self.tokenizer.pad_token_id is None: __lowerCamelCase = self.tokenizer.eos_token def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = {} __lowerCamelCase = {} if min_length_for_response is not None: __lowerCamelCase = min_length_for_response if minimum_tokens is not None: __lowerCamelCase = minimum_tokens if "max_length" in generate_kwargs: __lowerCamelCase = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowerCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , __UpperCAmelCase , __UpperCAmelCase=0 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = super().__call__(__UpperCAmelCase , num_workers=__UpperCAmelCase , **__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) == 1: return outputs[0] return outputs def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=32 ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): __lowerCamelCase = self.tokenizer._build_conversation_input_ids(__UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowerCamelCase = self._legacy_parse_and_tokenize(__UpperCAmelCase ) if self.framework == "pt": __lowerCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowerCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=10 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) __lowerCamelCase = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) __lowerCamelCase = max_length - minimum_tokens __lowerCamelCase = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: __lowerCamelCase = model_inputs['''attention_mask'''][:, -trim:] __lowerCamelCase = model_inputs.pop('''conversation''' ) __lowerCamelCase = max_length __lowerCamelCase = self.model.generate(**__UpperCAmelCase , **__UpperCAmelCase ) if self.model.config.is_encoder_decoder: __lowerCamelCase = 1 else: __lowerCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = model_outputs['''output_ids'''] __lowerCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , ) __lowerCamelCase = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(__UpperCAmelCase ) return conversation def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.tokenizer.eos_token_id __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > self.tokenizer.model_max_length: __lowerCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
330
0
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class _a ( lowerCAmelCase__ ): _lowercase : List[Any] = '''efficientformer''' def __init__( self: Union[str, Any] , UpperCamelCase_: List[str] = [3, 2, 6, 4] , UpperCamelCase_: Optional[Any] = [48, 96, 224, 448] , UpperCamelCase_: Any = [True, True, True, True] , UpperCamelCase_: Dict = 448 , UpperCamelCase_: List[str] = 32 , UpperCamelCase_: List[str] = 4 , UpperCamelCase_: Dict = 7 , UpperCamelCase_: str = 5 , UpperCamelCase_: List[Any] = 8 , UpperCamelCase_: Any = 4 , UpperCamelCase_: Tuple = 0.0 , UpperCamelCase_: Dict = 16 , UpperCamelCase_: List[Any] = 3 , UpperCamelCase_: Dict = 3 , UpperCamelCase_: Optional[int] = 3 , UpperCamelCase_: List[Any] = 2 , UpperCamelCase_: Optional[Any] = 1 , UpperCamelCase_: Optional[Any] = 0.0 , UpperCamelCase_: List[str] = 1 , UpperCamelCase_: int = True , UpperCamelCase_: List[Any] = True , UpperCamelCase_: Union[str, Any] = 1E-5 , UpperCamelCase_: Tuple = "gelu" , UpperCamelCase_: Optional[Any] = 0.02 , UpperCamelCase_: Any = 1E-1_2 , UpperCamelCase_: Union[str, Any] = 224 , UpperCamelCase_: int = 1E-0_5 , **UpperCamelCase_: List[str] , ) -> Optional[Any]: """simple docstring""" super().__init__(**__UpperCAmelCase ) lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = hidden_sizes lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = patch_size lowercase__ = num_channels lowercase__ = depths lowercase__ = mlp_expansion_ratio lowercase__ = downsamples lowercase__ = dim lowercase__ = key_dim lowercase__ = attention_ratio lowercase__ = resolution lowercase__ = pool_size lowercase__ = downsample_patch_size lowercase__ = downsample_stride lowercase__ = downsample_pad lowercase__ = drop_path_rate lowercase__ = num_metaad_blocks lowercase__ = distillation lowercase__ = use_layer_scale lowercase__ = layer_scale_init_value lowercase__ = image_size lowercase__ = batch_norm_eps
110
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def a__ ( _UpperCamelCase : int ): for pegasus_name, hf_name in PATTERNS: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) __lowerCamelCase = PegasusConfig(**_UpperCamelCase ) __lowerCamelCase = PegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.model.state_dict() __lowerCamelCase = {} for k, v in tf_weights.items(): __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCamelCase = v.T __lowerCamelCase = torch.tensor(_UpperCamelCase ,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCamelCase = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = torch_model.model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : str="./ckpt/aeslc/model.ckpt-32000" ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # save tokenizer first __lowerCamelCase = Path(_UpperCamelCase ).parent.name __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] __lowerCamelCase = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' ,model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": __lowerCamelCase = task_specific_params __lowerCamelCase = convert_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(_UpperCamelCase ,Path(_UpperCamelCase ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() if args.save_dir is None: a_ = Path(args.tf_ckpt_path).parent.name a_ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
330
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") SCREAMING_SNAKE_CASE__ = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) SCREAMING_SNAKE_CASE__ = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(1_0000): out_file.write(data) SCREAMING_SNAKE_CASE__ = BeautifulSoup(res.text, """html.parser""") SCREAMING_SNAKE_CASE__ = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F'''https://google.com{link.get("href")}''')
325
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } a_ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def a__ ( _UpperCamelCase : str ,_UpperCamelCase : Tuple ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Dict ): for attribute in key.split('''.''' ): __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ) if weight_type is not None: __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( _UpperCamelCase : Any ,_UpperCamelCase : Any ): __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hf_model.config.feat_extract_norm == '''group''' ,) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCamelCase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(_UpperCamelCase )[0].split('''.''' )[-2] __lowerCamelCase = mapped_key.replace('''*''' ,_UpperCamelCase ) if "weight_g" in name: __lowerCamelCase = '''weight_g''' elif "weight_v" in name: __lowerCamelCase = '''weight_v''' elif "bias" in name: __lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase = '''weight''' else: __lowerCamelCase = None set_recursively(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( _UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Dict ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ): __lowerCamelCase = full_name.split('''conv_layers.''' )[-1] __lowerCamelCase = name.split('''.''' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : List[str] ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : List[Any]=True ): if config_path is not None: __lowerCamelCase = UniSpeechSatConfig.from_pretrained(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatConfig() __lowerCamelCase = '''''' if is_finetuned: __lowerCamelCase = UniSpeechSatForCTC(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatForPreTraining(_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __lowerCamelCase = model[0].eval() recursively_load_weights(_UpperCamelCase ,_UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) a_ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __a: Optional[int] = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ["pixel_values"] def __init__( self , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = 1 / 255 , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , **__lowerCAmelCase , ) -> Any: super().__init__(**__UpperCAmelCase ) lowercase__ : Optional[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase__ : List[str] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) lowercase__ : Optional[int] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase__ : Union[str, Any] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) lowercase__ : str = do_resize lowercase__ : List[Any] = size lowercase__ : Dict = resample lowercase__ : Any = do_center_crop lowercase__ : Optional[int] = crop_size lowercase__ : List[str] = do_rescale lowercase__ : Optional[Any] = rescale_factor lowercase__ : Dict = do_normalize lowercase__ : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase__ : Dict = image_std if image_std is not None else OPENAI_CLIP_STD lowercase__ : Union[str, Any] = do_convert_rgb def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> Tuple: lowercase__ : Union[str, Any] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowercase__ : Tuple = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> Optional[Any]: lowercase__ : int = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> int: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> int: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ) -> Any: lowercase__ : Tuple = do_resize if do_resize is not None else self.do_resize lowercase__ : Optional[int] = size if size is not None else self.size lowercase__ : Union[str, Any] = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) lowercase__ : Any = resample if resample is not None else self.resample lowercase__ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase__ : Tuple = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) lowercase__ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize lowercase__ : Any = image_mean if image_mean is not None else self.image_mean lowercase__ : Any = image_std if image_std is not None else self.image_std lowercase__ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ : List[str] = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ : List[str] = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. lowercase__ : Optional[int] = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: lowercase__ : Optional[int] = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: lowercase__ : int = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: lowercase__ : str = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: lowercase__ : str = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] lowercase__ : int = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] lowercase__ : Any = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
198
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING a_ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return {}, {}, {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = load_image(__UpperCAmelCase ) __lowerCamelCase = image.size __lowerCamelCase = self.image_processor(images=__UpperCAmelCase , return_tensors=self.framework ) return model_inputs def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.model(**__UpperCAmelCase ) return model_outputs def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = model_outputs.predicted_depth __lowerCamelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=__UpperCAmelCase ) __lowerCamelCase = prediction.squeeze().cpu().numpy() __lowerCamelCase = (output * 255 / np.max(__UpperCAmelCase )).astype('''uint8''' ) __lowerCamelCase = Image.fromarray(__UpperCAmelCase ) __lowerCamelCase = {} __lowerCamelCase = predicted_depth __lowerCamelCase = depth return output_dict
330
0
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def a ( snake_case__: bool = True , *snake_case__: Optional[Any] , **snake_case__: Tuple ): '''simple docstring''' if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) lowercase_ = False if main_process_only: lowercase_ = PartialState().local_process_index == 0 return _tqdm(*_UpperCamelCase , **_UpperCamelCase , disable=_UpperCamelCase )
30
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = ["""pixel_values"""] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = size if size is not None else {'''shortest_edge''': 224} __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __lowerCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowerCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD __lowerCamelCase = do_convert_rgb def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowerCamelCase = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowerCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowerCamelCase = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] __lowerCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
330
0
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCamelCase_ = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] lowerCamelCase_ = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] lowerCamelCase_ = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) lowerCamelCase_ = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) lowerCamelCase_ = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def __lowerCamelCase ( a_ : Optional[int] , a_ : Optional[Any] ) -> Optional[int]: for tf_name, hf_name in patterns: __SCREAMING_SNAKE_CASE :Any = k.replace(_UpperCamelCase , _UpperCamelCase ) return k def __lowerCamelCase ( a_ : dict , a_ : dict ) -> Optional[int]: __SCREAMING_SNAKE_CASE :Optional[Any] = BigBirdPegasusConfig(**_UpperCamelCase ) __SCREAMING_SNAKE_CASE :List[str] = BigBirdPegasusForConditionalGeneration(_UpperCamelCase ) __SCREAMING_SNAKE_CASE :Union[str, Any] = torch_model.state_dict() __SCREAMING_SNAKE_CASE :Optional[Any] = {} # separating decoder weights __SCREAMING_SNAKE_CASE :Tuple = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} __SCREAMING_SNAKE_CASE :List[str] = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): __SCREAMING_SNAKE_CASE :Optional[int] = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __SCREAMING_SNAKE_CASE :int = DECODER_PATTERNS __SCREAMING_SNAKE_CASE :Optional[Any] = rename_state_dict_key(_UpperCamelCase , _UpperCamelCase ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __SCREAMING_SNAKE_CASE :Any = v.T __SCREAMING_SNAKE_CASE :int = torch.from_numpy(_UpperCamelCase ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): __SCREAMING_SNAKE_CASE :Tuple = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __SCREAMING_SNAKE_CASE :Union[str, Any] = REMAINING_PATTERNS __SCREAMING_SNAKE_CASE :List[Any] = rename_state_dict_key(_UpperCamelCase , _UpperCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __SCREAMING_SNAKE_CASE :str = v.T __SCREAMING_SNAKE_CASE :List[str] = torch.from_numpy(_UpperCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' __SCREAMING_SNAKE_CASE :Tuple = mapping['''model.embed_positions.weight'''] __SCREAMING_SNAKE_CASE :Tuple = mapping.pop('''model.embed_positions.weight''' ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[Any] = torch_model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) __SCREAMING_SNAKE_CASE :str = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def __lowerCamelCase ( a_ : int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE :Any = tf.train.list_variables(_UpperCamelCase ) __SCREAMING_SNAKE_CASE :Optional[Any] = {} __SCREAMING_SNAKE_CASE :List[str] = ['''global_step'''] for name, shape in tqdm(_UpperCamelCase , desc='''converting tf checkpoint to dict''' ): __SCREAMING_SNAKE_CASE :Optional[int] = any(pat in name for pat in ignore_name ) if skip_key: continue __SCREAMING_SNAKE_CASE :List[Any] = tf.train.load_variable(_UpperCamelCase , _UpperCamelCase ) __SCREAMING_SNAKE_CASE :Optional[Any] = array return tf_weights def __lowerCamelCase ( a_ : str , a_ : str , a_ : dict ) -> List[Any]: __SCREAMING_SNAKE_CASE :Dict = get_tf_weights_as_numpy(_UpperCamelCase ) __SCREAMING_SNAKE_CASE :Optional[int] = convert_bigbird_pegasus(_UpperCamelCase , _UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
191
from __future__ import annotations from typing import Generic, TypeVar a_ = TypeVar("""T""") class __lowerCAmelCase ( Generic[T] ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = data __lowerCamelCase = self __lowerCamelCase = 0 class __lowerCAmelCase ( Generic[T] ): def __init__( self ): '''simple docstring''' # map from node name to the node object __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # create a new set with x as its member __lowerCamelCase = DisjointSetTreeNode(__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # find the set x belongs to (with path-compression) __lowerCamelCase = self.map[data] if elem_ref != elem_ref.parent: __lowerCamelCase = self.find_set(elem_ref.parent.data ) return elem_ref.parent def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # helper function for union operation if nodea.rank > nodea.rank: __lowerCamelCase = nodea else: __lowerCamelCase = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # merge 2 disjoint sets self.link(self.find_set(__UpperCAmelCase ) , self.find_set(__UpperCAmelCase ) ) class __lowerCAmelCase ( Generic[T] ): def __init__( self ): '''simple docstring''' # connections: map from the node to the neighbouring nodes (with weights) __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # add a node ONLY if its not present in the graph if node not in self.connections: __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # add an edge with the given weight self.add_node(__UpperCAmelCase ) self.add_node(__UpperCAmelCase ) __lowerCamelCase = weight __lowerCamelCase = weight def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __UpperCAmelCase : x[2] ) # creating the disjoint set __lowerCamelCase = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__UpperCAmelCase ) # MST generation __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = edges[index] index += 1 __lowerCamelCase = disjoint_set.find_set(__UpperCAmelCase ) __lowerCamelCase = disjoint_set.find_set(__UpperCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) disjoint_set.union(__UpperCAmelCase , __UpperCAmelCase ) return graph
330
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: """simple docstring""" snake_case__ : int = args.log_outputs snake_case__ : Tuple = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric snake_case__ : Optional[Any] = load_metric('''wer''' ) snake_case__ : List[str] = load_metric('''cer''' ) # compute metrics snake_case__ : List[Any] = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) snake_case__ : str = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results snake_case__ : str = f"""WER: {wer_result}\nCER: {cer_result}""" print(_UpperCamelCase ) with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(_UpperCamelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: snake_case__ : str = f"""log_{dataset_id}_predictions.txt""" snake_case__ : str = f"""log_{dataset_id}_targets.txt""" with open(_UpperCamelCase , '''w''' ) as p, open(_UpperCamelCase , '''w''' ) as t: # mapping function to write output def write_to_file(__lowerCAmelCase , __lowerCAmelCase ): p.write(f"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(_UpperCamelCase , with_indices=_UpperCamelCase ) def _lowerCAmelCase ( __lowerCAmelCase ) -> Tuple: """simple docstring""" snake_case__ : str = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training snake_case__ : Tuple = re.sub(_UpperCamelCase , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! snake_case__ : Optional[Any] = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: snake_case__ : List[Any] = ''' '''.join(text.split(_UpperCamelCase ) ) return text def _lowerCAmelCase ( __lowerCAmelCase ) -> Optional[int]: """simple docstring""" snake_case__ : Union[str, Any] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_UpperCamelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor snake_case__ : Any = AutoFeatureExtractor.from_pretrained(args.model_id ) snake_case__ : List[str] = feature_extractor.sampling_rate # resample audio snake_case__ : List[str] = dataset.cast_column('''audio''' , Audio(sampling_rate=_UpperCamelCase ) ) # load eval pipeline if args.device is None: snake_case__ : Dict = 0 if torch.cuda.is_available() else -1 snake_case__ : Any = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(__lowerCAmelCase ): snake_case__ : List[str] = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) snake_case__ : Optional[int] = prediction['''text'''] snake_case__ : int = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples snake_case__ : Union[str, Any] = dataset.map(_UpperCamelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) A__ = parser.parse_args() main(args)
230
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_config() __lowerCamelCase = 300 return config def lowerCamelCase ( self ): '''simple docstring''' ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = self.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = True __lowerCamelCase = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_choices __lowerCamelCase = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = () def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCamelCase = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def lowerCamelCase ( self ): '''simple docstring''' return @require_torch class __lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) __lowerCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) __lowerCamelCase = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): __lowerCamelCase = model(__UpperCAmelCase )[0] __lowerCamelCase = 50265 __lowerCamelCase = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[Any] = 384 _UpperCAmelCase : Optional[int] = 7 if "tiny" in model_name: _UpperCAmelCase : int = 96 _UpperCAmelCase : int = (2, 2, 6, 2) _UpperCAmelCase : Tuple = (3, 6, 12, 24) elif "small" in model_name: _UpperCAmelCase : int = 96 _UpperCAmelCase : Tuple = (2, 2, 18, 2) _UpperCAmelCase : Any = (3, 6, 12, 24) elif "base" in model_name: _UpperCAmelCase : List[Any] = 128 _UpperCAmelCase : List[str] = (2, 2, 18, 2) _UpperCAmelCase : Any = (4, 8, 16, 32) _UpperCAmelCase : Any = 12 _UpperCAmelCase : Optional[Any] = 512 elif "large" in model_name: _UpperCAmelCase : List[str] = 192 _UpperCAmelCase : List[str] = (2, 2, 18, 2) _UpperCAmelCase : Dict = (6, 12, 24, 48) _UpperCAmelCase : Union[str, Any] = 12 _UpperCAmelCase : Optional[int] = 768 # set label information _UpperCAmelCase : Union[str, Any] = 150 _UpperCAmelCase : List[Any] = "huggingface/label-files" _UpperCAmelCase : Optional[int] = "ade20k-id2label.json" _UpperCAmelCase : str = json.load(open(hf_hub_download(_UpperCamelCase, _UpperCamelCase, repo_type="dataset" ), "r" ) ) _UpperCAmelCase : str = {int(_UpperCamelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : int = SwinConfig( embed_dim=_UpperCamelCase, depths=_UpperCamelCase, num_heads=_UpperCamelCase, window_size=_UpperCamelCase, out_features=["stage1", "stage2", "stage3", "stage4"], ) _UpperCAmelCase : List[Any] = UperNetConfig( backbone_config=_UpperCamelCase, auxiliary_in_channels=_UpperCamelCase, num_labels=_UpperCamelCase, idalabel=_UpperCamelCase, labelaid=_UpperCamelCase, ) return config def __UpperCAmelCase ( a_: List[Any] ): _UpperCAmelCase : int = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.stages.{i}.downsample.reduction.weight""", f"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.weight""", f"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.bias""", f"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def __UpperCAmelCase ( a_: int, a_: List[str], a_: Optional[Any] ): _UpperCAmelCase : List[str] = dct.pop(_UpperCamelCase ) _UpperCAmelCase : int = val def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _UpperCAmelCase : Union[str, Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _UpperCAmelCase : List[Any] = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) _UpperCAmelCase : int = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = in_proj_weight[:dim, :] _UpperCAmelCase : Dict = in_proj_bias[: dim] _UpperCAmelCase : Optional[int] = in_proj_weight[ dim : dim * 2, : ] _UpperCAmelCase : int = in_proj_bias[ dim : dim * 2 ] _UpperCAmelCase : Any = in_proj_weight[ -dim :, : ] _UpperCAmelCase : int = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase : List[str] = x.shape _UpperCAmelCase : Union[str, Any] = x.reshape(_UpperCamelCase, 4, in_channel // 4 ) _UpperCAmelCase : int = x[:, [0, 2, 1, 3], :].transpose(1, 2 ).reshape(_UpperCamelCase, _UpperCamelCase ) return x def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = x.shape _UpperCAmelCase : Any = x.reshape(_UpperCamelCase, in_channel // 4, 4 ) _UpperCAmelCase : List[Any] = x[:, :, [0, 2, 1, 3]].transpose(1, 2 ).reshape(_UpperCamelCase, _UpperCamelCase ) return x def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = x.shape[0] _UpperCAmelCase : Any = x.reshape(4, in_channel // 4 ) _UpperCAmelCase : Optional[int] = x[[0, 2, 1, 3], :].transpose(0, 1 ).reshape(_UpperCamelCase ) return x def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : List[str] = x.shape[0] _UpperCAmelCase : Union[str, Any] = x.reshape(in_channel // 4, 4 ) _UpperCAmelCase : str = x[:, [0, 2, 1, 3]].transpose(0, 1 ).reshape(_UpperCamelCase ) return x def __UpperCAmelCase ( a_: List[Any], a_: Dict, a_: str ): _UpperCAmelCase : Union[str, Any] = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } _UpperCAmelCase : Tuple = model_name_to_url[model_name] _UpperCAmelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(_UpperCamelCase, map_location="cpu", file_name=_UpperCamelCase )[ "state_dict" ] for name, param in state_dict.items(): print(_UpperCamelCase, param.shape ) _UpperCAmelCase : Any = get_upernet_config(_UpperCamelCase ) _UpperCAmelCase : Tuple = UperNetForSemanticSegmentation(_UpperCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _UpperCAmelCase : Any = state_dict.pop(_UpperCamelCase ) if "bn" in key: _UpperCAmelCase : int = key.replace("bn", "batch_norm" ) _UpperCAmelCase : List[Any] = val # rename keys _UpperCAmelCase : int = create_rename_keys(_UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) read_in_q_k_v(_UpperCamelCase, config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: _UpperCAmelCase : List[str] = reverse_correct_unfold_reduction_order(_UpperCamelCase ) if "norm" in key: _UpperCAmelCase : Optional[Any] = reverse_correct_unfold_norm_order(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) # verify on image _UpperCAmelCase : List[str] = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" _UpperCAmelCase : Dict = Image.open(requests.get(_UpperCamelCase, stream=_UpperCamelCase ).raw ).convert("RGB" ) _UpperCAmelCase : Optional[Any] = SegformerImageProcessor() _UpperCAmelCase : str = processor(_UpperCamelCase, return_tensors="pt" ).pixel_values with torch.no_grad(): _UpperCAmelCase : List[Any] = model(_UpperCamelCase ) _UpperCAmelCase : Union[str, Any] = outputs.logits print(logits.shape ) print("First values of logits:", logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": _UpperCAmelCase : str = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ) elif model_name == "upernet-swin-small": _UpperCAmelCase : Union[str, Any] = torch.tensor( [[-7.19_21, -7.19_21, -6.95_32], [-7.19_21, -7.19_21, -6.95_32], [-7.09_08, -7.09_08, -6.85_34]] ) elif model_name == "upernet-swin-base": _UpperCAmelCase : str = torch.tensor( [[-6.58_51, -6.58_51, -6.43_30], [-6.58_51, -6.58_51, -6.43_30], [-6.47_63, -6.47_63, -6.32_54]] ) elif model_name == "upernet-swin-large": _UpperCAmelCase : Any = torch.tensor( [[-7.52_97, -7.52_97, -7.38_02], [-7.52_97, -7.52_97, -7.38_02], [-7.40_44, -7.40_44, -7.25_86]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], _UpperCamelCase, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(_UpperCamelCase ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[f'upernet-swin-{size}' for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __a = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
145
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowercase : List[str] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") lowercase : Optional[int] = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowercase : Any = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowercase : int = sorted(arg_to_scheduler.keys()) lowercase : Union[str, Any] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __UpperCAmelCase ( pl.LightningModule ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_="base" , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ): """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) _snake_case = 0 _snake_case = Path(self.hparams.output_dir ) _snake_case = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _snake_case = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: _snake_case = config _snake_case = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: _snake_case = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: _snake_case = tokenizer _snake_case = MODEL_MODES[mode] if model is None: _snake_case = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: _snake_case = model def lowerCamelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" _snake_case = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = arg_to_scheduler[self.hparams.lr_scheduler] _snake_case = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _snake_case = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model _snake_case = ['bias', 'LayerNorm.weight'] _snake_case = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: _snake_case = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: _snake_case = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _snake_case = optimizer _snake_case = self.get_lr_scheduler() return [optimizer], [scheduler] def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return self.validation_end(__UpperCAmelCase ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _snake_case = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if stage == "test": _snake_case = len(self.test_dataloader().dataset ) else: _snake_case = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) _snake_case = len(self.train_dataloader().dataset ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" raise NotImplementedError('You must implement this for your task' ) def lowerCamelCase ( self ): """simple docstring""" return self.train_loader def lowerCamelCase ( self ): """simple docstring""" return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def lowerCamelCase ( self ): """simple docstring""" return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.output_dir.joinpath('best_tfmr' ) _snake_case = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" parser.add_argument( '--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase ) parser.add_argument('--train_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--eval_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--adafactor' , action='store_true' ) class __UpperCAmelCase ( pl.Callback ): def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __UpperCAmelCase ( pl.Callback ): def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class __UpperCAmelCase ( pl.Callback ): def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = trainer.lr_schedulers[0]['scheduler'] _snake_case = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" rank_zero_info('***** Validation results *****' ) _snake_case = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" rank_zero_info('***** Test results *****' ) _snake_case = trainer.callback_metrics # Log and save results to file _snake_case = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__UpperCAmelCase , 'w' ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Any: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(_UpperCamelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=_UpperCamelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_UpperCamelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=_UpperCamelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=_UpperCamelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=_UpperCamelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=_UpperCamelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(_UpperCamelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=_UpperCamelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A=None , __A=True , __A=[] , __A=None , __A=None , **__A , ) -> List[Any]: pl.seed_everything(args.seed ) # init model _snake_case = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_UpperCamelCase ) # add custom checkpoints if checkpoint_callback is None: _snake_case = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_UpperCamelCase ) if logging_callback is None: _snake_case = LoggingCallback() _snake_case = {} if args.fpaa: _snake_case = 16 if args.gpus > 1: _snake_case = 'auto' _snake_case = 'ddp' _snake_case = args.accumulate_grad_batches _snake_case = None _snake_case = 'auto' _snake_case = pl.Trainer.from_argparse_args( _UpperCamelCase , weights_summary=_UpperCamelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_UpperCamelCase , val_check_interval=1 , num_sanity_val_steps=2 , **_UpperCamelCase , ) if args.do_train: trainer.fit(_UpperCamelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
42
from string import ascii_lowercase, ascii_uppercase def a__ ( _UpperCamelCase : str ): if not sentence: return "" __lowerCamelCase = dict(zip(_UpperCamelCase ,_UpperCamelCase ) ) return lower_to_upper.get(sentence[0] ,sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
330
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> List[Any]: __magic_name__ : str = tempfile.mkdtemp() __magic_name__ : List[str] = BlipImageProcessor() __magic_name__ : Any = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) __magic_name__ : Optional[Any] = BlipaProcessor(__UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def __magic_name__ ( self , **lowerCAmelCase__ ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def __magic_name__ ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> int: __magic_name__ : Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __magic_name__ : Dict = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : int = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __magic_name__ : Tuple = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : List[str] = self.get_image_processor() __magic_name__ : List[Any] = self.get_tokenizer() __magic_name__ : Optional[int] = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __magic_name__ : int = self.prepare_image_inputs() __magic_name__ : int = image_processor(__UpperCAmelCase , return_tensors="""np""" ) __magic_name__ : List[str] = processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self ) -> Any: __magic_name__ : Tuple = self.get_image_processor() __magic_name__ : Union[str, Any] = self.get_tokenizer() __magic_name__ : Optional[Any] = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __magic_name__ : Union[str, Any] = """lower newer""" __magic_name__ : Optional[Any] = processor(text=__UpperCAmelCase ) __magic_name__ : List[str] = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __magic_name__ ( self ) -> str: __magic_name__ : Any = self.get_image_processor() __magic_name__ : int = self.get_tokenizer() __magic_name__ : Tuple = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __magic_name__ : str = """lower newer""" __magic_name__ : List[str] = self.prepare_image_inputs() __magic_name__ : Optional[int] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __magic_name__ ( self ) -> str: __magic_name__ : Any = self.get_image_processor() __magic_name__ : str = self.get_tokenizer() __magic_name__ : Optional[int] = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __magic_name__ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ : Any = processor.batch_decode(__UpperCAmelCase ) __magic_name__ : List[Any] = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = self.get_image_processor() __magic_name__ : List[str] = self.get_tokenizer() __magic_name__ : Union[str, Any] = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __magic_name__ : Dict = """lower newer""" __magic_name__ : str = self.prepare_image_inputs() __magic_name__ : int = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
342
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCAmelCase ( lowerCAmelCase__ ): @slow @require_torch def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __lowerCamelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __lowerCamelCase = bertabert.config.encoder.vocab_size __lowerCamelCase = tokenizer.sep_token_id __lowerCamelCase = tokenizer.cls_token_id __lowerCamelCase = 128 __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __lowerCamelCase = train_dataset.select(range(32 ) ) __lowerCamelCase = val_dataset.select(range(16 ) ) __lowerCamelCase = 4 def _map_to_encoder_decoder_inputs(__UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __lowerCamelCase = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=512 ) __lowerCamelCase = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=128 ) __lowerCamelCase = inputs.input_ids __lowerCamelCase = inputs.attention_mask __lowerCamelCase = outputs.input_ids __lowerCamelCase = outputs.input_ids.copy() __lowerCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __lowerCamelCase = outputs.attention_mask assert all(len(__UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__UpperCAmelCase ): __lowerCamelCase = pred.label_ids __lowerCamelCase = pred.predictions # all unnecessary tokens are removed __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__UpperCAmelCase ) )] ) / len(__UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset __lowerCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __lowerCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __lowerCamelCase = self.get_auto_remove_tmp_dir() __lowerCamelCase = SeqaSeqTrainingArguments( output_dir=__UpperCAmelCase , per_device_train_batch_size=__UpperCAmelCase , per_device_eval_batch_size=__UpperCAmelCase , predict_with_generate=__UpperCAmelCase , evaluation_strategy='''steps''' , do_train=__UpperCAmelCase , do_eval=__UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __lowerCamelCase = SeqaSeqTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , tokenizer=__UpperCAmelCase , ) # start training trainer.train()
330
0
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A =logging.get_logger(__name__) A ={ 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } A ={ 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } A ={'facebook/blenderbot_small-90M': 5_12} def snake_case_ (_a : List[str] ): UpperCAmelCase = set() UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase = char UpperCAmelCase = set(_UpperCamelCase ) return pairs class _a ( lowerCAmelCase__ ): __a : List[str] = VOCAB_FILES_NAMES __a : Any = PRETRAINED_VOCAB_FILES_MAP __a : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : Any , lowercase : Optional[Any] , lowercase : str , lowercase : Optional[Any]="__start__" , lowercase : int="__end__" , lowercase : Dict="__unk__" , lowercase : int="__null__" , **lowercase : int , ): '''simple docstring''' super().__init__(unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , **__UpperCAmelCase ) with open(__UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase = json.load(__UpperCAmelCase ) UpperCAmelCase = {v: k for k, v in self.encoder.items()} with open(__UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: UpperCAmelCase = merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase = [tuple(merge.split() ) for merge in merges] UpperCAmelCase = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) UpperCAmelCase = {} @property def A ( self : List[Any] ): '''simple docstring''' return len(self.encoder ) def A ( self : Union[str, Any] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A ( self : Union[str, Any] , lowercase : int ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase = re.sub('''([.,!?()])''' , R''' \1''' , __UpperCAmelCase ) UpperCAmelCase = re.sub('''(\')''' , R''' \1 ''' , __UpperCAmelCase ) UpperCAmelCase = re.sub(R'''\s{2,}''' , ''' ''' , __UpperCAmelCase ) if "\n" in token: UpperCAmelCase = token.replace('''\n''' , ''' __newln__''' ) UpperCAmelCase = token.split(''' ''' ) UpperCAmelCase = [] for token in tokens: if not len(__UpperCAmelCase ): continue UpperCAmelCase = token.lower() UpperCAmelCase = tuple(__UpperCAmelCase ) UpperCAmelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) UpperCAmelCase = get_pairs(__UpperCAmelCase ) if not pairs: words.append(__UpperCAmelCase ) continue while True: UpperCAmelCase = min(__UpperCAmelCase , key=lambda lowercase : self.bpe_ranks.get(__UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase = bigram UpperCAmelCase = [] UpperCAmelCase = 0 while i < len(__UpperCAmelCase ): try: UpperCAmelCase = word.index(__UpperCAmelCase , __UpperCAmelCase ) new_word.extend(word[i:j] ) UpperCAmelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase = tuple(__UpperCAmelCase ) UpperCAmelCase = new_word if len(__UpperCAmelCase ) == 1: break else: UpperCAmelCase = get_pairs(__UpperCAmelCase ) UpperCAmelCase = '''@@ '''.join(__UpperCAmelCase ) UpperCAmelCase = word[:-4] UpperCAmelCase = word words.append(__UpperCAmelCase ) return " ".join(__UpperCAmelCase ) def A ( self : List[Any] , lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = re.findall(R'''\S+\n?''' , __UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(__UpperCAmelCase ).split(''' ''' ) ) ) return split_tokens def A ( self : List[str] , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = token.lower() return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A ( self : Any , lowercase : int ): '''simple docstring''' return self.decoder.get(__UpperCAmelCase , self.unk_token ) def A ( self : List[Any] , lowercase : Optional[int] ): '''simple docstring''' UpperCAmelCase = ''' '''.join(__UpperCAmelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def A ( self : Tuple , lowercase : Optional[Any] , lowercase : int = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + '''\n''' ) UpperCAmelCase = 0 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase = token_index writer.write(''' '''.join(__UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file
34
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class A ( unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase__ (self : int ) -> str: """simple docstring""" lowercase__ = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) lowercase__ = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(__UpperCAmelCase ) from datasets import load_dataset lowercase__ = load_dataset("""nielsr/rvlcdip-demo""" ) lowercase__ = dataset["""train"""][0]["""image"""].convert("""RGB""" ) lowercase__ = image_processor(__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**__UpperCAmelCase ) lowercase__ = outputs.logits lowercase__ = torch.Size((1, 16) ) self.assertEqual(logits.shape , __UpperCAmelCase ) lowercase__ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=__UpperCAmelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
305
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase=0.01 , __UpperCAmelCase=1000 ): '''simple docstring''' __lowerCamelCase = p_stop __lowerCamelCase = max_length def __iter__( self ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = False while not stop and count < self.max_length: yield count count += 1 __lowerCamelCase = random.random() < self.p_stop class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = [ BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 ) ] __lowerCamelCase = [list(__UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__UpperCAmelCase ) for shard in batch_sampler_shards] , [len(__UpperCAmelCase ) for e in expected] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) __lowerCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __lowerCamelCase = [BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=False ): '''simple docstring''' random.seed(__UpperCAmelCase ) __lowerCamelCase = list(__UpperCAmelCase ) __lowerCamelCase = [ IterableDatasetShard( __UpperCAmelCase , batch_size=__UpperCAmelCase , drop_last=__UpperCAmelCase , num_processes=__UpperCAmelCase , process_index=__UpperCAmelCase , split_batches=__UpperCAmelCase , ) for i in range(__UpperCAmelCase ) ] __lowerCamelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__UpperCAmelCase ) iterable_dataset_lists.append(list(__UpperCAmelCase ) ) __lowerCamelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __lowerCamelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) self.assertTrue(len(__UpperCAmelCase ) % shard_batch_size == 0 ) __lowerCamelCase = [] for idx in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__UpperCAmelCase ) < len(__UpperCAmelCase ): reference += reference self.assertListEqual(__UpperCAmelCase , reference[: len(__UpperCAmelCase )] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = 42 __lowerCamelCase = RandomIterableDataset() self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) # Edge case with a very small dataset __lowerCamelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=__UpperCAmelCase ) __lowerCamelCase = SkipBatchSampler(__UpperCAmelCase , 2 ) self.assertListEqual(list(__UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) __lowerCamelCase = skip_first_batches(__UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowerCamelCase ( self ): '''simple docstring''' Accelerator() __lowerCamelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
330
0
import math from collections.abc import Iterator from itertools import takewhile def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _a ( ): """simple docstring""" lowercase__ = 2 while True: if is_prime(_UpperCamelCase ): yield num num += 1 def _a ( SCREAMING_SNAKE_CASE = 2_00_00_00 ): """simple docstring""" return sum(takewhile(lambda SCREAMING_SNAKE_CASE : x < n , prime_generator() ) ) if __name__ == "__main__": print(f"""{solution() = }""")
110
def a__ ( _UpperCamelCase : int ): __lowerCamelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
330
0
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset SCREAMING_SNAKE_CASE__ = """bert-base-cased""" SCREAMING_SNAKE_CASE__ = """google/pegasus-xsum""" SCREAMING_SNAKE_CASE__ = [""" Sam ate lunch today.""", """Sams lunch ingredients."""] SCREAMING_SNAKE_CASE__ = ["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] SCREAMING_SNAKE_CASE__ = """patrickvonplaten/t5-tiny-random""" SCREAMING_SNAKE_CASE__ = """sshleifer/bart-tiny-random""" SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-mbart""" SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-marian-en-de""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : list ) -> Union[str, Any]: __lowercase = '\n'.join(_UpperCamelCase ) Path(_UpperCamelCase ).open('w' ).writelines(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> str: for split in ["train", "val", "test"]: _dump_articles(os.path.join(_UpperCamelCase , F"""{split}.source""" ) , _UpperCamelCase ) _dump_articles(os.path.join(_UpperCamelCase , F"""{split}.target""" ) , _UpperCamelCase ) return tmp_dir class A__ ( lowerCAmelCase__ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def a__ ( self : Any , _UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(__UpperCAmelCase ) __lowercase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowercase = max(len(tokenizer.encode(__UpperCAmelCase ) ) for a in ARTICLES ) __lowercase = max(len(tokenizer.encode(__UpperCAmelCase ) ) for a in SUMMARIES ) __lowercase = 4 __lowercase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __lowercase , __lowercase = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. __lowercase = SeqaSeqDataset( __UpperCAmelCase , data_dir=__UpperCAmelCase , type_path='train' , max_source_length=__UpperCAmelCase , max_target_length=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , ) __lowercase = DataLoader(__UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __lowercase = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def a__ ( self : Any , _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(__UpperCAmelCase ) __lowercase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowercase = max(len(tokenizer.encode(__UpperCAmelCase ) ) for a in ARTICLES ) __lowercase = max(len(tokenizer.encode(__UpperCAmelCase ) ) for a in SUMMARIES ) __lowercase = 4 __lowercase = LegacySeqaSeqDataset( __UpperCAmelCase , data_dir=__UpperCAmelCase , type_path='train' , max_source_length=20 , max_target_length=__UpperCAmelCase , ) __lowercase = DataLoader(__UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) __lowercase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __lowercase = tmp_dir.joinpath('train.source' ).open().readlines() __lowercase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__UpperCAmelCase , __UpperCAmelCase , 1_28 , __UpperCAmelCase ) __lowercase = {x.name for x in tmp_dir.iterdir()} __lowercase = {x.name for x in save_dir.iterdir()} __lowercase = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__UpperCAmelCase ) < len(__UpperCAmelCase ) assert len(__UpperCAmelCase ) == 1 assert len(packed_examples[0] ) == sum(len(__UpperCAmelCase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" if not FAIRSEQ_AVAILABLE: return __lowercase , __lowercase , __lowercase = self._get_dataset(max_len=64 ) __lowercase = 64 __lowercase = ds.make_dynamic_sampler(__UpperCAmelCase , required_batch_size_multiple=__UpperCAmelCase ) __lowercase = [len(__UpperCAmelCase ) for x in batch_sampler] assert len(set(__UpperCAmelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__UpperCAmelCase ) == len(__UpperCAmelCase ) # no dropped or added examples __lowercase = DataLoader(__UpperCAmelCase , batch_sampler=__UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2 ) __lowercase = [] __lowercase = [] for batch in data_loader: __lowercase = batch['input_ids'].shape __lowercase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __lowercase = np.product(batch['input_ids'].shape ) num_src_per_batch.append(__UpperCAmelCase ) if num_src_tokens > (max_tokens * 1.1): failures.append(__UpperCAmelCase ) assert num_src_per_batch[0] == max(__UpperCAmelCase ) if failures: raise AssertionError(f"""too many tokens in {len(__UpperCAmelCase )} batches""" ) def a__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = self._get_dataset(max_len=5_12 ) __lowercase = 2 __lowercase = ds.make_sortish_sampler(__UpperCAmelCase , shuffle=__UpperCAmelCase ) __lowercase = DataLoader(__UpperCAmelCase , batch_size=__UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2 ) __lowercase = DataLoader(__UpperCAmelCase , batch_size=__UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=__UpperCAmelCase ) __lowercase = tokenizer.pad_token_id def count_pad_tokens(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any]="input_ids" ): return [batch[k].eq(__UpperCAmelCase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__UpperCAmelCase , k='labels' ) ) < sum(count_pad_tokens(__UpperCAmelCase , k='labels' ) ) assert sum(count_pad_tokens(__UpperCAmelCase ) ) < sum(count_pad_tokens(__UpperCAmelCase ) ) assert len(__UpperCAmelCase ) == len(__UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : int=10_00 , _UpperCAmelCase : Optional[int]=1_28 ) -> List[str]: """simple docstring""" if os.getenv('USE_REAL_DATA' , __UpperCAmelCase ): __lowercase = 'examples/seq2seq/wmt_en_ro' __lowercase = max_len * 2 * 64 if not Path(__UpperCAmelCase ).joinpath('train.len' ).exists(): save_len_file(__UpperCAmelCase , __UpperCAmelCase ) else: __lowercase = 'examples/seq2seq/test_data/wmt_en_ro' __lowercase = max_len * 4 save_len_file(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = AutoTokenizer.from_pretrained(__UpperCAmelCase ) __lowercase = SeqaSeqDataset( __UpperCAmelCase , data_dir=__UpperCAmelCase , type_path='train' , max_source_length=__UpperCAmelCase , max_target_length=__UpperCAmelCase , n_obs=__UpperCAmelCase , ) return ds, max_tokens, tokenizer def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase , __lowercase , __lowercase = self._get_dataset() __lowercase = set(DistributedSortishSampler(__UpperCAmelCase , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=__UpperCAmelCase ) ) __lowercase = set(DistributedSortishSampler(__UpperCAmelCase , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=__UpperCAmelCase ) ) assert idsa.intersection(__UpperCAmelCase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def a__ ( self : List[Any] , _UpperCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(__UpperCAmelCase , use_fast=__UpperCAmelCase ) if tok_name == MBART_TINY: __lowercase = SeqaSeqDataset( __UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) __lowercase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __lowercase = SeqaSeqDataset( __UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) __lowercase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__UpperCAmelCase ) == 1 if tok_name == BART_TINY else len(__UpperCAmelCase ) == 0
325
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ = 16 a_ = 32 def a__ ( _UpperCamelCase : Accelerator ,_UpperCamelCase : int = 16 ): __lowerCamelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __lowerCamelCase = load_dataset('''glue''' ,'''mrpc''' ) def tokenize_function(_UpperCamelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=_UpperCamelCase ,max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCamelCase = datasets.map( _UpperCamelCase ,batched=_UpperCamelCase ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column('''label''' ,'''labels''' ) def collate_fn(_UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCamelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCamelCase = 16 elif accelerator.mixed_precision != "no": __lowerCamelCase = 8 else: __lowerCamelCase = None return tokenizer.pad( _UpperCamelCase ,padding='''longest''' ,max_length=_UpperCamelCase ,pad_to_multiple_of=_UpperCamelCase ,return_tensors='''pt''' ,) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets['''train'''] ,shuffle=_UpperCamelCase ,collate_fn=_UpperCamelCase ,batch_size=_UpperCamelCase ) __lowerCamelCase = DataLoader( tokenized_datasets['''validation'''] ,shuffle=_UpperCamelCase ,collate_fn=_UpperCamelCase ,batch_size=_UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ = mocked_dataloaders # noqa: F811 def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' ,_UpperCamelCase ) == "1": __lowerCamelCase = 2 # Initialize accelerator __lowerCamelCase = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config['''lr'''] __lowerCamelCase = int(config['''num_epochs'''] ) __lowerCamelCase = int(config['''seed'''] ) __lowerCamelCase = int(config['''batch_size'''] ) __lowerCamelCase = evaluate.load('''glue''' ,'''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_UpperCamelCase ) def inner_training_loop(_UpperCamelCase : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' ,return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCamelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCamelCase = AdamW(params=model.parameters() ,lr=_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = get_dataloaders(_UpperCamelCase ,_UpperCamelCase ) # Instantiate scheduler __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase ,num_warmup_steps=1_00 ,num_training_steps=(len(_UpperCamelCase ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = accelerator.prepare( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCamelCase = model(**_UpperCamelCase ) __lowerCamelCase = outputs.loss accelerator.backward(_UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**_UpperCamelCase ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) __lowerCamelCase ,__lowerCamelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_UpperCamelCase ,references=_UpperCamelCase ,) __lowerCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,_UpperCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def a__ ( ): __lowerCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' ,type=_UpperCamelCase ,default=_UpperCamelCase ,choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] ,help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' ,) parser.add_argument('''--cpu''' ,action='''store_true''' ,help='''If passed, will train on the CPU.''' ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCamelCase ,_UpperCamelCase ) if __name__ == "__main__": main()
330
0
'''simple docstring''' import os import sys import unittest __a: str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __a: Union[str, Any] = os.path.join(git_repo_path, """src""", """transformers""") __a: List[Any] = """ {0} = None """ __a: Optional[int] = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ __a: List[str] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> int: lowercase__ : int = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(__UpperCAmelCase ) lowercase__ : List[str] = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(__UpperCAmelCase , '''tokenizers''' ) lowercase__ : List[str] = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(__UpperCAmelCase , '''tensorflow_text''' ) lowercase__ : Optional[int] = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(__UpperCAmelCase , '''sentencepiece_and_tokenizers''' ) lowercase__ : Dict = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(__UpperCAmelCase , '''sentencepiece_and_tensorflow_text''' ) lowercase__ : int = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(__UpperCAmelCase , '''sentencepiece_and_tokenizers_and_vision''' ) def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Optional[int] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , __UpperCAmelCase ) self.assertIn('''tensorflow_text''' , __UpperCAmelCase ) self.assertIn('''sentencepiece_and_tokenizers''' , __UpperCAmelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : List[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(__UpperCAmelCase , '''\nCONSTANT = None\n''' ) lowercase__ : Optional[int] = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( __UpperCAmelCase , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) lowercase__ : List[Any] = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' lowercase__ : int = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def _lowerCAmelCase( self ) -> str: lowercase__ : Optional[Any] = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' lowercase__ : Dict = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , __UpperCAmelCase )
198
import logging import os import threading import time try: import warnings except ImportError: a_ = None try: import msvcrt except ImportError: a_ = None try: import fcntl except ImportError: a_ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: a_ = OSError # Data # ------------------------------------------------ a_ = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] a_ = """3.0.12""" a_ = None def a__ ( ): global _logger __lowerCamelCase = _logger or logging.getLogger(__name__ ) return _logger class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock_file return None def __str__( self ): '''simple docstring''' __lowerCamelCase = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = lock return None def __enter__( self ): '''simple docstring''' return self.lock def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.lock.release() return None class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowerCamelCase = self.hash_filename_if_too_long(__UpperCAmelCase , __UpperCAmelCase ) # The path to the lock file. __lowerCamelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowerCamelCase = None # The default timeout value. __lowerCamelCase = timeout # We use this lock primarily for the lock counter. __lowerCamelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowerCamelCase = 0 return None @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file @property def lowerCamelCase ( self ): '''simple docstring''' return self._timeout @timeout.setter def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = float(__UpperCAmelCase ) return None def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() def lowerCamelCase ( self ): '''simple docstring''' raise NotImplementedError() @property def lowerCamelCase ( self ): '''simple docstring''' return self._lock_file_fd is not None def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=0.05 ): '''simple docstring''' # Use the default timeout, if no timeout is provided. if timeout is None: __lowerCamelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file __lowerCamelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(__UpperCAmelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowerCamelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCamelCase ( self , __UpperCAmelCase=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowerCamelCase = id(self ) __lowerCamelCase = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __lowerCamelCase = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self ): '''simple docstring''' self.acquire() return self def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' self.release() return None def __del__( self ): '''simple docstring''' self.release(force=__UpperCAmelCase ) return None def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = os.path.basename(__UpperCAmelCase ) if len(__UpperCAmelCase ) > max_length and max_length > 0: __lowerCamelCase = os.path.dirname(__UpperCAmelCase ) __lowerCamelCase = str(hash(__UpperCAmelCase ) ) __lowerCamelCase = filename[: max_length - len(__UpperCAmelCase ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(__UpperCAmelCase , __UpperCAmelCase ) else: return path class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) __lowerCamelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: try: msvcrt.locking(__UpperCAmelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None msvcrt.locking(__UpperCAmelCase , msvcrt.LK_UNLCK , 1 ) os.close(__UpperCAmelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = os.statvfs(os.path.dirname(__UpperCAmelCase ) ).f_namemax super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) try: fcntl.flock(__UpperCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__UpperCAmelCase ) else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __lowerCamelCase = self._lock_file_fd __lowerCamelCase = None fcntl.flock(__UpperCAmelCase , fcntl.LOCK_UN ) os.close(__UpperCAmelCase ) return None class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowerCamelCase = os.open(self._lock_file , __UpperCAmelCase ) except OSError: pass else: __lowerCamelCase = fd return None def lowerCamelCase ( self ): '''simple docstring''' os.close(self._lock_file_fd ) __lowerCamelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None a_ = None if msvcrt: a_ = WindowsFileLock elif fcntl: a_ = UnixFileLock else: a_ = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
330
0
import numpy as np def a ( snake_case__: np.ndarray , snake_case__: np.ndarray , snake_case__: float = 1e-1_2 , snake_case__: int = 100 , ): '''simple docstring''' assert np.shape(_UpperCamelCase )[0] == np.shape(_UpperCamelCase )[1] # Ensure proper dimensionality. assert np.shape(_UpperCamelCase )[0] == np.shape(_UpperCamelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_UpperCamelCase ) == np.iscomplexobj(_UpperCamelCase ) lowercase_ = np.iscomplexobj(_UpperCamelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_UpperCamelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. lowercase_ = False lowercase_ = 0 lowercase_ = 0 lowercase_ = 1e1_2 while not convergence: # Multiple matrix by the vector. lowercase_ = np.dot(_UpperCamelCase , _UpperCamelCase ) # Normalize the resulting output vector. lowercase_ = w / np.linalg.norm(_UpperCamelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lowercase_ = vector.conj().T if is_complex else vector.T lowercase_ = np.dot(_UpperCamelCase , np.dot(_UpperCamelCase , _UpperCamelCase ) ) # Check convergence. lowercase_ = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: lowercase_ = True lowercase_ = lambda_ if is_complex: lowercase_ = np.real(lambda_ ) return lambda_, vector def a ( ): '''simple docstring''' lowercase_ = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) lowercase_ = np.array([41, 4, 20] ) lowercase_ = real_input_matrix.astype(np.complexaaa ) lowercase_ = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T lowercase_ = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": lowercase_ = real_input_matrix lowercase_ = real_vector elif problem_type == "complex": lowercase_ = complex_input_matrix lowercase_ = complex_vector # Our implementation. lowercase_ , lowercase_ = power_iteration(_UpperCamelCase , _UpperCamelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). lowercase_ , lowercase_ = np.linalg.eigh(_UpperCamelCase ) # Last eigenvalue is the maximum one. lowercase_ = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. lowercase_ = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_UpperCamelCase ) - np.abs(_UpperCamelCase ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
30
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=10 , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase="divided_space_time" , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = patch_size __lowerCamelCase = num_frames __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = attention_type __lowerCamelCase = initializer_range __lowerCamelCase = scope __lowerCamelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __lowerCamelCase = (image_size // patch_size) ** 2 __lowerCamelCase = (num_frames) * self.num_patches_per_frame + 1 def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __lowerCamelCase = self.num_labels return config def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TimesformerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model(__UpperCAmelCase ) # verify the logits shape __lowerCamelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = config_and_inputs __lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowerCAmelCase__ = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerModelTester(self ) __lowerCamelCase = ConfigTester( self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = copy.deepcopy(__UpperCAmelCase ) if return_labels: if model_class in get_values(__UpperCAmelCase ): __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__UpperCAmelCase ) @slow def lowerCamelCase ( self ): '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = TimesformerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' if not self.has_attentions: pass else: __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = True for model_class in self.all_model_classes: __lowerCamelCase = self.model_tester.seq_length __lowerCamelCase = self.model_tester.num_frames __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __lowerCamelCase = len(__UpperCAmelCase ) # Check attention is always last and order is fine __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(out_len + 1 , len(__UpperCAmelCase ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __lowerCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __lowerCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def a__ ( ): __lowerCamelCase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' ,filename='''eating_spaghetti.npy''' ,repo_type='''dataset''' ) __lowerCamelCase = np.load(_UpperCamelCase ) return list(_UpperCamelCase ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ): '''simple docstring''' # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( __UpperCAmelCase ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_video() __lowerCamelCase = image_processor(video[:8] , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**__UpperCAmelCase ) # verify the logits __lowerCamelCase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __lowerCamelCase = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
0
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCamelCase ( a_ : Optional[Any] ) -> List[str]: if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(_UpperCamelCase , '''_dynamo''' ): return False return isinstance(_UpperCamelCase , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCamelCase ( a_ : List[Any] , a_ : bool = True ) -> Optional[int]: __SCREAMING_SNAKE_CASE :List[Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __SCREAMING_SNAKE_CASE :Tuple = is_compiled_module(_UpperCamelCase ) if is_compiled: __SCREAMING_SNAKE_CASE :Optional[int] = model __SCREAMING_SNAKE_CASE :Optional[Any] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_UpperCamelCase , _UpperCamelCase ): __SCREAMING_SNAKE_CASE :List[Any] = model.module if not keep_fpaa_wrapper: __SCREAMING_SNAKE_CASE :Dict = getattr(_UpperCamelCase , '''forward''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = model.__dict__.pop('''_original_forward''' , _UpperCamelCase ) if original_forward is not None: while hasattr(_UpperCamelCase , '''__wrapped__''' ): __SCREAMING_SNAKE_CASE :int = forward.__wrapped__ if forward == original_forward: break __SCREAMING_SNAKE_CASE :List[str] = forward if getattr(_UpperCamelCase , '''_converted_to_transformer_engine''' , _UpperCamelCase ): convert_model(_UpperCamelCase , to_transformer_engine=_UpperCamelCase ) if is_compiled: __SCREAMING_SNAKE_CASE :int = model __SCREAMING_SNAKE_CASE :List[Any] = compiled_model return model def __lowerCamelCase ( ) -> int: PartialState().wait_for_everyone() def __lowerCamelCase ( a_ : Any , a_ : Any ) -> Optional[int]: if PartialState().distributed_type == DistributedType.TPU: xm.save(_UpperCamelCase , _UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(_UpperCamelCase , _UpperCamelCase ) @contextmanager def __lowerCamelCase ( **a_ : Optional[int] ) -> Tuple: for key, value in kwargs.items(): __SCREAMING_SNAKE_CASE :Optional[Any] = str(_UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCamelCase ( a_ : int ) -> Dict: if not hasattr(_UpperCamelCase , '''__qualname__''' ) and not hasattr(_UpperCamelCase , '''__name__''' ): __SCREAMING_SNAKE_CASE :List[str] = getattr(_UpperCamelCase , '''__class__''' , _UpperCamelCase ) if hasattr(_UpperCamelCase , '''__qualname__''' ): return obj.__qualname__ if hasattr(_UpperCamelCase , '''__name__''' ): return obj.__name__ return str(_UpperCamelCase ) def __lowerCamelCase ( a_ : str , a_ : Any ) -> Tuple: for key, value in source.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): __SCREAMING_SNAKE_CASE :Optional[Any] = destination.setdefault(_UpperCamelCase , {} ) merge_dicts(_UpperCamelCase , _UpperCamelCase ) else: __SCREAMING_SNAKE_CASE :Any = value return destination def __lowerCamelCase ( a_ : int = None ) -> List[str]: if port is None: __SCREAMING_SNAKE_CASE :Any = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
191
def a__ ( _UpperCamelCase : int ): if not isinstance(_UpperCamelCase ,_UpperCamelCase ): __lowerCamelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(_UpperCamelCase ) if number < 0: return False __lowerCamelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
330
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A__ = logging.getLogger(__name__) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: """simple docstring""" snake_case__ : str = np.argmax(_UpperCamelCase , axis=1 ) return np.sum(outputs == labels ) def _lowerCAmelCase ( __lowerCAmelCase ) -> Optional[int]: """simple docstring""" with open(_UpperCamelCase , encoding='''utf_8''' ) as f: snake_case__ : Tuple = csv.reader(_UpperCamelCase ) snake_case__ : str = [] next(_UpperCamelCase ) # skip the first line for line in tqdm(_UpperCamelCase ): output.append((''' '''.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Tuple = [] for dataset in encoded_datasets: snake_case__ : List[Any] = len(_UpperCamelCase ) snake_case__ : Optional[int] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) snake_case__ : str = np.zeros((n_batch, 2) , dtype=np.intaa ) snake_case__ : int = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) snake_case__ : str = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_UpperCamelCase ): snake_case__ : Optional[int] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] snake_case__ : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] snake_case__ : str = with_conta snake_case__ : List[Any] = with_conta snake_case__ : Union[str, Any] = len(_UpperCamelCase ) - 1 snake_case__ : Any = len(_UpperCamelCase ) - 1 snake_case__ : Optional[int] = with_conta snake_case__ : List[Any] = with_conta snake_case__ : Union[str, Any] = mc_label snake_case__ : Optional[Any] = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_UpperCamelCase ) for t in all_inputs ) ) return tensor_datasets def _lowerCAmelCase ( ) -> List[str]: """simple docstring""" snake_case__ : List[Any] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=_UpperCamelCase , default='''openai-gpt''' , help='''pretrained model name''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''' ) parser.add_argument( '''--output_dir''' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=_UpperCamelCase , default='''''' ) parser.add_argument('''--eval_dataset''' , type=_UpperCamelCase , default='''''' ) parser.add_argument('''--seed''' , type=_UpperCamelCase , default=42 ) parser.add_argument('''--num_train_epochs''' , type=_UpperCamelCase , default=3 ) parser.add_argument('''--train_batch_size''' , type=_UpperCamelCase , default=8 ) parser.add_argument('''--eval_batch_size''' , type=_UpperCamelCase , default=16 ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=_UpperCamelCase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , type=_UpperCamelCase , default=1 ) parser.add_argument( '''--max_steps''' , default=-1 , type=_UpperCamelCase , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=_UpperCamelCase , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=_UpperCamelCase , default=6.25E-5 ) parser.add_argument('''--warmup_steps''' , default=0 , type=_UpperCamelCase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--lr_schedule''' , type=_UpperCamelCase , default='''warmup_linear''' ) parser.add_argument('''--weight_decay''' , type=_UpperCamelCase , default=0.01 ) parser.add_argument('''--lm_coef''' , type=_UpperCamelCase , default=0.9 ) parser.add_argument('''--n_valid''' , type=_UpperCamelCase , default=374 ) parser.add_argument('''--server_ip''' , type=_UpperCamelCase , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=_UpperCamelCase , default='''''' , help='''Can be used for distant debugging.''' ) snake_case__ : Dict = parser.parse_args() print(_UpperCamelCase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_UpperCamelCase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) snake_case__ : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case__ : Tuple = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(_UpperCamelCase , _UpperCamelCase ) ) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset snake_case__ : Union[str, Any] = ['''_start_''', '''_delimiter_''', '''_classify_'''] snake_case__ : Any = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_UpperCamelCase ) snake_case__ : str = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) snake_case__ : Tuple = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_UpperCamelCase ) ) model.to(_UpperCamelCase ) # Load and encode the datasets def tokenize_and_encode(__lowerCAmelCase ): if isinstance(_UpperCamelCase , _UpperCamelCase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_UpperCamelCase ) ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): return obj return [tokenize_and_encode(_UpperCamelCase ) for o in obj] logger.info('''Encoding dataset...''' ) snake_case__ : Tuple = load_rocstories_dataset(args.train_dataset ) snake_case__ : Tuple = load_rocstories_dataset(args.eval_dataset ) snake_case__ : Any = (train_dataset, eval_dataset) snake_case__ : Union[str, Any] = tokenize_and_encode(_UpperCamelCase ) # Compute the max input length for the Transformer snake_case__ : List[str] = model.config.n_positions // 2 - 2 snake_case__ : Tuple = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) snake_case__ : Union[str, Any] = min(_UpperCamelCase , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders snake_case__ : int = pre_process_datasets(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , *_UpperCamelCase ) snake_case__ , snake_case__ : Optional[int] = tensor_datasets[0], tensor_datasets[1] snake_case__ : Tuple = TensorDataset(*_UpperCamelCase ) snake_case__ : Any = RandomSampler(_UpperCamelCase ) snake_case__ : Optional[Any] = DataLoader(_UpperCamelCase , sampler=_UpperCamelCase , batch_size=args.train_batch_size ) snake_case__ : Union[str, Any] = TensorDataset(*_UpperCamelCase ) snake_case__ : List[str] = SequentialSampler(_UpperCamelCase ) snake_case__ : Dict = DataLoader(_UpperCamelCase , sampler=_UpperCamelCase , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: snake_case__ : int = args.max_steps snake_case__ : Optional[Any] = args.max_steps // (len(_UpperCamelCase ) // args.gradient_accumulation_steps) + 1 else: snake_case__ : List[Any] = len(_UpperCamelCase ) // args.gradient_accumulation_steps * args.num_train_epochs snake_case__ : List[Any] = list(model.named_parameters() ) snake_case__ : Any = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] snake_case__ : List[Any] = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0}, ] snake_case__ : Tuple = AdamW(_UpperCamelCase , lr=args.learning_rate , eps=args.adam_epsilon ) snake_case__ : Dict = get_linear_schedule_with_warmup( _UpperCamelCase , num_warmup_steps=args.warmup_steps , num_training_steps=_UpperCamelCase ) if args.do_train: snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='''Epoch''' ): snake_case__ : Tuple = 0 snake_case__ : List[Any] = 0 snake_case__ : Dict = tqdm(_UpperCamelCase , desc='''Training''' ) for step, batch in enumerate(_UpperCamelCase ): snake_case__ : int = tuple(t.to(_UpperCamelCase ) for t in batch ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[Any] = batch snake_case__ : str = model(_UpperCamelCase , mc_token_ids=_UpperCamelCase , lm_labels=_UpperCamelCase , mc_labels=_UpperCamelCase ) snake_case__ : str = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() snake_case__ : int = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 snake_case__ : Tuple = '''Training loss: {:.2e} lr: {:.2e}'''.format(_UpperCamelCase , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer snake_case__ : List[str] = model.module if hasattr(_UpperCamelCase , '''module''' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` snake_case__ : int = os.path.join(args.output_dir , _UpperCamelCase ) snake_case__ : Union[str, Any] = os.path.join(args.output_dir , _UpperCamelCase ) torch.save(model_to_save.state_dict() , _UpperCamelCase ) model_to_save.config.to_json_file(_UpperCamelCase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned snake_case__ : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) snake_case__ : Optional[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_UpperCamelCase ) if args.do_eval: model.eval() snake_case__ , snake_case__ : int = 0, 0 snake_case__ , snake_case__ : str = 0, 0 for batch in tqdm(_UpperCamelCase , desc='''Evaluating''' ): snake_case__ : Union[str, Any] = tuple(t.to(_UpperCamelCase ) for t in batch ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = batch with torch.no_grad(): snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[Any] = model( _UpperCamelCase , mc_token_ids=_UpperCamelCase , lm_labels=_UpperCamelCase , mc_labels=_UpperCamelCase ) snake_case__ : Tuple = mc_logits.detach().cpu().numpy() snake_case__ : int = mc_labels.to('''cpu''' ).numpy() snake_case__ : Optional[int] = accuracy(_UpperCamelCase , _UpperCamelCase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 snake_case__ : List[Any] = eval_loss / nb_eval_steps snake_case__ : Optional[int] = eval_accuracy / nb_eval_examples snake_case__ : str = tr_loss / nb_tr_steps if args.do_train else None snake_case__ : Tuple = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} snake_case__ : Optional[int] = os.path.join(args.output_dir , '''eval_results.txt''' ) with open(_UpperCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , _UpperCamelCase , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) if __name__ == "__main__": main()
230
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={"_".join([str(__UpperCAmelCase ) for s in shape] )}.npy""" def lowerCamelCase ( self ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCamelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase=(4, 4, 64, 64) , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase ) ) , dtype=__UpperCAmelCase ) return image def lowerCamelCase ( self , __UpperCAmelCase=False , __UpperCAmelCase="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = '''bf16''' if fpaa else None __lowerCamelCase ,__lowerCamelCase = FlaxUNetaDConditionModel.from_pretrained( __UpperCAmelCase , subfolder='''unet''' , dtype=__UpperCAmelCase , revision=__UpperCAmelCase ) return model, params def lowerCamelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase=(4, 77, 768) , __UpperCAmelCase=False ): '''simple docstring''' __lowerCamelCase = jnp.bfloataa if fpaa else jnp.floataa __lowerCamelCase = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase ) ) , dtype=__UpperCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_latents(__UpperCAmelCase , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_encoder_hidden_states(__UpperCAmelCase , fpaa=__UpperCAmelCase ) __lowerCamelCase = model.apply( {'''params''': params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape __lowerCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCamelCase = jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_latents(__UpperCAmelCase , shape=(4, 4, 96, 96) , fpaa=__UpperCAmelCase ) __lowerCamelCase = self.get_encoder_hidden_states(__UpperCAmelCase , shape=(4, 77, 1024) , fpaa=__UpperCAmelCase ) __lowerCamelCase = model.apply( {'''params''': params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape __lowerCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) __lowerCamelCase = jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 )
330
0
'''simple docstring''' from __future__ import annotations import bisect def __UpperCAmelCase ( a_: list[int], a_: int, a_: int = 0, a_: int = -1 ): if hi < 0: _UpperCAmelCase : Any = len(_UpperCamelCase ) while lo < hi: _UpperCAmelCase : str = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _UpperCAmelCase : Optional[Any] = mid + 1 else: _UpperCAmelCase : List[str] = mid return lo def __UpperCAmelCase ( a_: list[int], a_: int, a_: int = 0, a_: int = -1 ): if hi < 0: _UpperCAmelCase : Optional[int] = len(_UpperCamelCase ) while lo < hi: _UpperCAmelCase : Tuple = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _UpperCAmelCase : Optional[int] = mid + 1 else: _UpperCAmelCase : int = mid return lo def __UpperCAmelCase ( a_: list[int], a_: int, a_: int = 0, a_: int = -1 ): sorted_collection.insert(bisect_left(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ), _UpperCamelCase ) def __UpperCAmelCase ( a_: list[int], a_: int, a_: int = 0, a_: int = -1 ): sorted_collection.insert(bisect_right(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ), _UpperCamelCase ) def __UpperCAmelCase ( a_: list[int], a_: int ): _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : Any = len(_UpperCamelCase ) - 1 while left <= right: _UpperCAmelCase : Optional[Any] = left + (right - left) // 2 _UpperCAmelCase : Dict = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _UpperCAmelCase : Optional[int] = midpoint - 1 else: _UpperCAmelCase : List[Any] = midpoint + 1 return None def __UpperCAmelCase ( a_: list[int], a_: int ): _UpperCAmelCase : int = bisect.bisect_left(_UpperCamelCase, _UpperCamelCase ) if index != len(_UpperCamelCase ) and sorted_collection[index] == item: return index return None def __UpperCAmelCase ( a_: list[int], a_: int, a_: int, a_: int ): if right < left: return None _UpperCAmelCase : Union[str, Any] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, midpoint - 1 ) else: return binary_search_by_recursion(_UpperCamelCase, _UpperCamelCase, midpoint + 1, _UpperCamelCase ) if __name__ == "__main__": __a = input('Enter numbers separated by comma:\n').strip() __a = sorted(int(item) for item in user_input.split(',')) __a = int(input('Enter a single number to be found in the list:\n')) __a = binary_search(collection, target) if result is None: print(f'{target} was not found in {collection}.') else: print(f'{target} was found at position {result} in {collection}.')
145
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
0
'''simple docstring''' from __future__ import annotations lowercase : Dict = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = graph # mapping node to its parent in resulting breadth first tree _snake_case = {} _snake_case = source_vertex def lowerCamelCase ( self ): """simple docstring""" _snake_case = {self.source_vertex} _snake_case = None _snake_case = [self.source_vertex] # first in first out queue while queue: _snake_case = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__UpperCAmelCase ) _snake_case = vertex queue.append(__UpperCAmelCase ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex _snake_case = self.parent.get(__UpperCAmelCase ) if target_vertex_parent is None: _snake_case = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(__UpperCAmelCase ) return self.shortest_path(__UpperCAmelCase ) + F'->{target_vertex}' if __name__ == "__main__": lowercase : List[str] = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
42
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def a__ ( _UpperCamelCase : Optional[int] ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __lowerCamelCase = module __lowerCamelCase = nn.Sequential( nn.Linear(module.in_features , __UpperCAmelCase , bias=__UpperCAmelCase ) , nn.Linear(__UpperCAmelCase , module.out_features , bias=__UpperCAmelCase ) , ) __lowerCamelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowerCamelCase ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.module(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) + self.adapter(__UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCAmelCase__ = """bigscience/bloom-1b7""" # Constant values lowerCAmelCase__ = 2.1_09_65_95_52_69_25_74 lowerCAmelCase__ = """Hello my name is""" lowerCAmelCase__ = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) lowerCAmelCase__ = 1_0 def lowerCamelCase ( self ): '''simple docstring''' # Models and tokenizer __lowerCamelCase = AutoTokenizer.from_pretrained(self.model_name ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() # Models and tokenizer __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) def lowerCamelCase ( self ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_abit.config self.assertTrue(hasattr(__UpperCAmelCase , '''quantization_config''' ) ) __lowerCamelCase = config.to_dict() __lowerCamelCase = config.to_diff_dict() __lowerCamelCase = config.to_json_string() def lowerCamelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit __lowerCamelCase = self.model_fpaa.get_memory_footprint() __lowerCamelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowerCamelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowerCamelCase ( self ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitsAndBytesConfig() __lowerCamelCase = True __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = BitsAndBytesConfig() with self.assertRaises(__UpperCAmelCase ): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCAmelCase , load_in_abit=__UpperCAmelCase , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def lowerCamelCase ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) __lowerCamelCase = self.model_fpaa.to(torch.floataa ) __lowerCamelCase = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowerCamelCase = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error __lowerCamelCase = self.model_fpaa.half() # Check this does not throw an error __lowerCamelCase = self.model_fpaa.float() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): @classmethod def lowerCamelCase ( cls ): '''simple docstring''' __lowerCamelCase = '''t5-small''' __lowerCamelCase = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense __lowerCamelCase = AutoTokenizer.from_pretrained(cls.model_name ) __lowerCamelCase = '''Translate in German: Hello, my dog is cute''' def lowerCamelCase ( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' from transformers import TaForConditionalGeneration __lowerCamelCase = TaForConditionalGeneration._keep_in_fpaa_modules __lowerCamelCase = None # test with `t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) __lowerCamelCase = modules def lowerCamelCase ( self ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) # test with `flan-t5-small` __lowerCamelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) __lowerCamelCase = model.generate(**__UpperCAmelCase ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() # model_name __lowerCamelCase = '''bigscience/bloom-560m''' __lowerCamelCase = '''t5-small''' # Different types of model __lowerCamelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # Sequence classification model __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # CausalLM model __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) # Seq2seq model __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__UpperCAmelCase , device_map='''auto''' ) def lowerCamelCase ( self ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowerCamelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__UpperCAmelCase , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowerCamelCase = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch __lowerCamelCase = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class __lowerCAmelCase ( lowerCAmelCase__ ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''facebook/opt-350m''' super().setUp() def lowerCamelCase ( self ): '''simple docstring''' if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters __lowerCamelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowerCamelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowerCamelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__UpperCAmelCase ) ): __lowerCamelCase = LoRALayer(module.q_proj , rank=16 ) __lowerCamelCase = LoRALayer(module.k_proj , rank=16 ) __lowerCamelCase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowerCamelCase = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowerCamelCase = model.forward(**__UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = """gpt2-xl""" lowerCAmelCase__ = 3.31_91_85_48_54_15_21_87
330
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
342
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = 42 class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = True @register_to_config def __init__( self , __UpperCAmelCase = 3 , __UpperCAmelCase = 3 , __UpperCAmelCase = ("DownEncoderBlock2D",) , __UpperCAmelCase = ("UpDecoderBlock2D",) , __UpperCAmelCase = (64,) , __UpperCAmelCase = 1 , __UpperCAmelCase = "silu" , __UpperCAmelCase = 4 , __UpperCAmelCase = 32 , __UpperCAmelCase = 32 , __UpperCAmelCase = 0.18_215 , ): '''simple docstring''' super().__init__() # pass init params to Encoder __lowerCamelCase = Encoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , down_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , act_fn=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , double_z=__UpperCAmelCase , ) # pass init params to Decoder __lowerCamelCase = Decoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , up_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , act_fn=__UpperCAmelCase , ) __lowerCamelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowerCamelCase = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) __lowerCamelCase = False __lowerCamelCase = False # only relevant if vae tiling is enabled __lowerCamelCase = self.config.sample_size __lowerCamelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowerCamelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowerCamelCase = 0.25 def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' if isinstance(__UpperCAmelCase , (Encoder, Decoder) ): __lowerCamelCase = value def lowerCamelCase ( self , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = use_tiling def lowerCamelCase ( self ): '''simple docstring''' self.enable_tiling(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = True def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''set_processor''' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return processors def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(__UpperCAmelCase )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''set_processor''' ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): module.set_processor(__UpperCAmelCase ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) if self.use_slicing and x.shape[0] > 1: __lowerCamelCase = [self.encoder(__UpperCAmelCase ) for x_slice in x.split(1 )] __lowerCamelCase = torch.cat(__UpperCAmelCase ) else: __lowerCamelCase = self.encoder(__UpperCAmelCase ) __lowerCamelCase = self.quant_conv(__UpperCAmelCase ) __lowerCamelCase = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) __lowerCamelCase = self.post_quant_conv(__UpperCAmelCase ) __lowerCamelCase = self.decoder(__UpperCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) @apply_forward_hook def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: __lowerCamelCase = [self._decode(__UpperCAmelCase ).sample for z_slice in z.split(1 )] __lowerCamelCase = torch.cat(__UpperCAmelCase ) else: __lowerCamelCase = self._decode(__UpperCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = min(a.shape[2] , b.shape[2] , __UpperCAmelCase ) for y in range(__UpperCAmelCase ): __lowerCamelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = min(a.shape[3] , b.shape[3] , __UpperCAmelCase ) for x in range(__UpperCAmelCase ): __lowerCamelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowerCamelCase = [] for i in range(0 , x.shape[2] , __UpperCAmelCase ): __lowerCamelCase = [] for j in range(0 , x.shape[3] , __UpperCAmelCase ): __lowerCamelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowerCamelCase = self.encoder(__UpperCAmelCase ) __lowerCamelCase = self.quant_conv(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) __lowerCamelCase = [] for i, row in enumerate(__UpperCAmelCase ): __lowerCamelCase = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=2 ) __lowerCamelCase = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowerCamelCase = [] for i in range(0 , z.shape[2] , __UpperCAmelCase ): __lowerCamelCase = [] for j in range(0 , z.shape[3] , __UpperCAmelCase ): __lowerCamelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowerCamelCase = self.post_quant_conv(__UpperCAmelCase ) __lowerCamelCase = self.decoder(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) __lowerCamelCase = [] for i, row in enumerate(__UpperCAmelCase ): __lowerCamelCase = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , ): '''simple docstring''' __lowerCamelCase = sample __lowerCamelCase = self.encode(__UpperCAmelCase ).latent_dist if sample_posterior: __lowerCamelCase = posterior.sample(generator=__UpperCAmelCase ) else: __lowerCamelCase = posterior.mode() __lowerCamelCase = self.decode(__UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase )
330
0
'''simple docstring''' import math def snake_case_ (_a : int ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase = F"Input value of [number={number}] must be an integer" raise TypeError(_UpperCamelCase ) if number < 1: UpperCAmelCase = F"Input value of [number={number}] must be > 0" raise ValueError(_UpperCamelCase ) elif number == 1: return 3 elif number == 2: return 5 else: UpperCAmelCase = int(math.log(number // 3 , 2 ) ) + 2 UpperCAmelCase = [3, 5] UpperCAmelCase = 2 UpperCAmelCase = 3 for block in range(1 , _UpperCamelCase ): for _ in range(_UpperCamelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): A =0 try: A =proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
34
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration a_ = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] a_ = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] a_ = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) a_ = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) a_ = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : Optional[Any] ): for tf_name, hf_name in patterns: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = BigBirdPegasusConfig(**_UpperCamelCase ) __lowerCamelCase = BigBirdPegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() __lowerCamelCase = {} # separating decoder weights __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = DECODER_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = REMAINING_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" __lowerCamelCase = mapping['''model.embed_positions.weight'''] __lowerCamelCase = mapping.pop('''model.embed_positions.weight''' ) __lowerCamelCase ,__lowerCamelCase = torch_model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : int ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ,_UpperCamelCase : dict ): __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = convert_bigbird_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() a_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
330
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ) -> str: """simple docstring""" return f'''gaussian_noise_s={seed}_shape={"_".join([str(__UpperCAmelCase ) for s in shape] )}.npy''' def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" super().tearDown() gc.collect() def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : Union[str, Any]=(4, 4, 64, 64) , _UpperCAmelCase : Optional[int]=False ) -> Optional[int]: """simple docstring""" lowercase__ = jnp.bfloataa if fpaa else jnp.floataa lowercase__ = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase ) ) , dtype=__UpperCAmelCase ) return image def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Optional[Any]="CompVis/stable-diffusion-v1-4" ) -> int: """simple docstring""" lowercase__ = jnp.bfloataa if fpaa else jnp.floataa lowercase__ = """bf16""" if fpaa else None lowercase__ , lowercase__ = FlaxUNetaDConditionModel.from_pretrained( __UpperCAmelCase , subfolder="""unet""" , dtype=__UpperCAmelCase , revision=__UpperCAmelCase ) return model, params def lowerCamelCase__ (self : int , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : List[str]=(4, 77, 768) , _UpperCAmelCase : Tuple=False ) -> List[str]: """simple docstring""" lowercase__ = jnp.bfloataa if fpaa else jnp.floataa lowercase__ = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase ) ) , dtype=__UpperCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=__UpperCAmelCase ) lowercase__ = self.get_latents(__UpperCAmelCase , fpaa=__UpperCAmelCase ) lowercase__ = self.get_encoder_hidden_states(__UpperCAmelCase , fpaa=__UpperCAmelCase ) lowercase__ = model.apply( {"""params""": params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape lowercase__ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowercase__ = jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=__UpperCAmelCase ) lowercase__ = self.get_latents(__UpperCAmelCase , shape=(4, 4, 96, 96) , fpaa=__UpperCAmelCase ) lowercase__ = self.get_encoder_hidden_states(__UpperCAmelCase , shape=(4, 77, 1024) , fpaa=__UpperCAmelCase ) lowercase__ = model.apply( {"""params""": params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape lowercase__ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowercase__ = jnp.array(__UpperCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2 )
305
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase=None ): '''simple docstring''' if not conversation_id: __lowerCamelCase = uuid.uuida() if past_user_inputs is None: __lowerCamelCase = [] if generated_responses is None: __lowerCamelCase = [] __lowerCamelCase = conversation_id __lowerCamelCase = past_user_inputs __lowerCamelCase = generated_responses __lowerCamelCase = text def __eq__( self , __UpperCAmelCase ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) __lowerCamelCase = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: __lowerCamelCase = text def lowerCamelCase ( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowerCamelCase = None def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' self.generated_responses.append(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' __lowerCamelCase = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): __lowerCamelCase = '''user''' if is_user else '''bot''' output += F"""{name} >> {text} \n""" return output @add_end_docstrings( lowerCAmelCase__ , r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) if self.tokenizer.pad_token_id is None: __lowerCamelCase = self.tokenizer.eos_token def lowerCamelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = {} __lowerCamelCase = {} if min_length_for_response is not None: __lowerCamelCase = min_length_for_response if minimum_tokens is not None: __lowerCamelCase = minimum_tokens if "max_length" in generate_kwargs: __lowerCamelCase = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowerCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , __UpperCAmelCase , __UpperCAmelCase=0 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = super().__call__(__UpperCAmelCase , num_workers=__UpperCAmelCase , **__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) == 1: return outputs[0] return outputs def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=32 ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): __lowerCamelCase = self.tokenizer._build_conversation_input_ids(__UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowerCamelCase = self._legacy_parse_and_tokenize(__UpperCAmelCase ) if self.framework == "pt": __lowerCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowerCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=10 , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) __lowerCamelCase = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) __lowerCamelCase = max_length - minimum_tokens __lowerCamelCase = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: __lowerCamelCase = model_inputs['''attention_mask'''][:, -trim:] __lowerCamelCase = model_inputs.pop('''conversation''' ) __lowerCamelCase = max_length __lowerCamelCase = self.model.generate(**__UpperCAmelCase , **__UpperCAmelCase ) if self.model.config.is_encoder_decoder: __lowerCamelCase = 1 else: __lowerCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=True ): '''simple docstring''' __lowerCamelCase = model_outputs['''output_ids'''] __lowerCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , ) __lowerCamelCase = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(__UpperCAmelCase ) return conversation def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.tokenizer.eos_token_id __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > self.tokenizer.model_max_length: __lowerCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
330
0
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class _a ( lowerCAmelCase__ ): _lowercase : Tuple = ['''pixel_values'''] def __init__( self: Optional[int] , UpperCamelCase_: Dict = True , UpperCamelCase_: str = 32 , UpperCamelCase_: Optional[Any]=PILImageResampling.BILINEAR , UpperCamelCase_: Any = True , **UpperCamelCase_: Dict , ) -> Tuple: """simple docstring""" lowercase__ = do_resize lowercase__ = do_rescale lowercase__ = size_divisor lowercase__ = resample super().__init__(**__UpperCAmelCase ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple = None , **UpperCamelCase_: str ) -> str: """simple docstring""" lowercase__ , lowercase__ = get_image_size(__UpperCAmelCase ) # Rounds the height and width down to the closest multiple of size_divisor lowercase__ = height // size_divisor * size_divisor lowercase__ = width // size_divisor * size_divisor lowercase__ = resize(__UpperCAmelCase , (new_h, new_w) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) return image def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Tuple , UpperCamelCase_: int , UpperCamelCase_: Any = None , **UpperCamelCase_: List[Any] ) -> str: """simple docstring""" return rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Any] = None , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: str = None , UpperCamelCase_: List[str] = None , UpperCamelCase_: Dict = ChannelDimension.FIRST , **UpperCamelCase_: Optional[Any] , ) -> Union[str, Any]: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = size_divisor if size_divisor is not None else self.size_divisor lowercase__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) lowercase__ = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(__UpperCAmelCase ) for img in images] if do_resize: lowercase__ = [self.resize(__UpperCAmelCase , size_divisor=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_rescale: lowercase__ = [self.rescale(__UpperCAmelCase , scale=1 / 255 ) for image in images] lowercase__ = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] lowercase__ = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
110
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params a_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def a__ ( _UpperCamelCase : int ): for pegasus_name, hf_name in PATTERNS: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = DEFAULTS.copy() cfg_kwargs.update(_UpperCamelCase ) __lowerCamelCase = PegasusConfig(**_UpperCamelCase ) __lowerCamelCase = PegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.model.state_dict() __lowerCamelCase = {} for k, v in tf_weights.items(): __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __lowerCamelCase = v.T __lowerCamelCase = torch.tensor(_UpperCamelCase ,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __lowerCamelCase = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = mapping['''shared.weight'''] __lowerCamelCase = {k: torch.zeros_like(_UpperCamelCase ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase = torch_model.model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : str="./ckpt/aeslc/model.ckpt-32000" ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ): # save tokenizer first __lowerCamelCase = Path(_UpperCamelCase ).parent.name __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] __lowerCamelCase = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' ,model_max_length=_UpperCamelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_UpperCamelCase ) # convert model __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": __lowerCamelCase = task_specific_params __lowerCamelCase = convert_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(_UpperCamelCase ,Path(_UpperCamelCase ) / '''pytorch_model.bin''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() if args.save_dir is None: a_ = Path(args.tf_ckpt_path).parent.name a_ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
330
0
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } SCREAMING_SNAKE_CASE__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } SCREAMING_SNAKE_CASE__ = { """jukebox""": 512, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = VOCAB_FILES_NAMES lowerCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : List[Any] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ : Dict = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any=["v3", "v2", "v2"] , _UpperCAmelCase : Union[str, Any]=5_12 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Dict="<|endoftext|>" , **_UpperCAmelCase : str , ) -> Any: """simple docstring""" __lowercase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token super().__init__( unk_token=__UpperCAmelCase , n_genres=__UpperCAmelCase , version=__UpperCAmelCase , max_n_lyric_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) __lowercase = version __lowercase = max_n_lyric_tokens __lowercase = n_genres with open(__UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(__UpperCAmelCase ) with open(__UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(__UpperCAmelCase ) with open(__UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(__UpperCAmelCase ) __lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase = oov.replace(R'\-\'' , R'\-+\'' ) __lowercase = regex.compile(__UpperCAmelCase ) __lowercase = {v: k for k, v in self.artists_encoder.items()} __lowercase = {v: k for k, v in self.genres_encoder.items()} __lowercase = {v: k for k, v in self.lyrics_encoder.items()} @property def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def a__ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Dict: """simple docstring""" __lowercase = [self.artists_encoder.get(__UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(__UpperCAmelCase ) ): __lowercase = [self.genres_encoder.get(__UpperCAmelCase , 0 ) for genre in list_genres[genres]] __lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase = [[self.lyrics_encoder.get(__UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def a__ ( self : Dict , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return list(__UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __lowercase = self._tokenize(__UpperCAmelCase ) return artist, genre, lyrics def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] = False ) -> int: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase = artists[idx].lower() __lowercase = [genres[idx].lower()] else: __lowercase = self._normalize(artists[idx] ) + '.v2' __lowercase = [ self._normalize(__UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __lowercase = {vocab[index]: index + 1 for index in range(len(__UpperCAmelCase ) )} __lowercase = 0 __lowercase = len(__UpperCAmelCase ) + 1 __lowercase = self.vocab __lowercase = {v: k for k, v in self.vocab.items()} __lowercase = '' else: __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __lowercase = self._run_strip_accents(__UpperCAmelCase ) __lowercase = lyrics.replace('\\' , '\n' ) __lowercase = self.out_of_vocab.sub('' , __UpperCAmelCase ), [], [] return artists, genres, lyrics def a__ ( self : Dict , _UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = unicodedata.normalize('NFD' , __UpperCAmelCase ) __lowercase = [] for char in text: __lowercase = unicodedata.category(__UpperCAmelCase ) if cat == "Mn": continue output.append(__UpperCAmelCase ) return "".join(__UpperCAmelCase ) def a__ ( self : Tuple , _UpperCAmelCase : int ) -> int: """simple docstring""" __lowercase = ( [chr(__UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(__UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(__UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __lowercase = frozenset(__UpperCAmelCase ) __lowercase = re.compile(R'_+' ) __lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __lowercase = pattern.sub('_' , __UpperCAmelCase ).strip('_' ) return text def a__ ( self : Optional[int] , _UpperCAmelCase : Any ) -> int: """simple docstring""" return " ".join(__UpperCAmelCase ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple = None , _UpperCAmelCase : Tuple = False ) -> Tuple: """simple docstring""" if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): __lowercase = TensorType(__UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __lowercase = tf.constant __lowercase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __lowercase = torch.tensor __lowercase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __lowercase = jnp.array __lowercase = _is_jax else: __lowercase = np.asarray __lowercase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase = [inputs] if not is_tensor(__UpperCAmelCase ): __lowercase = as_tensor(__UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict="" , _UpperCAmelCase : Union[str, Any]="pt" ) -> List[str]: """simple docstring""" __lowercase = [0, 0, 0] __lowercase = [artist] * len(self.version ) __lowercase = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase = self.tokenize(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __lowercase , __lowercase , __lowercase = self._convert_token_to_id(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __lowercase = [-INFINITY] * len(full_tokens[-1] ) __lowercase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def a__ ( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : str = None ) -> Union[str, Any]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=__UpperCAmelCase ) ) __lowercase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=__UpperCAmelCase ) ) __lowercase = os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def a__ ( self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.artists_decoder.get(__UpperCAmelCase ) __lowercase = [self.genres_decoder.get(__UpperCAmelCase ) for genre in genres_index] __lowercase = [self.lyrics_decoder.get(__UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
325
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } a_ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def a__ ( _UpperCamelCase : str ,_UpperCamelCase : Tuple ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Dict ): for attribute in key.split('''.''' ): __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ) if weight_type is not None: __lowerCamelCase = getattr(_UpperCamelCase ,_UpperCamelCase ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( _UpperCamelCase : Any ,_UpperCamelCase : Any ): __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,hf_model.config.feat_extract_norm == '''group''' ,) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCamelCase = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(_UpperCamelCase )[0].split('''.''' )[-2] __lowerCamelCase = mapped_key.replace('''*''' ,_UpperCamelCase ) if "weight_g" in name: __lowerCamelCase = '''weight_g''' elif "weight_v" in name: __lowerCamelCase = '''weight_v''' elif "bias" in name: __lowerCamelCase = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase = '''weight''' else: __lowerCamelCase = None set_recursively(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( _UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Dict ,_UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Union[str, Any] ): __lowerCamelCase = full_name.split('''conv_layers.''' )[-1] __lowerCamelCase = name.split('''.''' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : List[str] ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : Tuple=None ,_UpperCamelCase : List[Any]=True ): if config_path is not None: __lowerCamelCase = UniSpeechSatConfig.from_pretrained(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatConfig() __lowerCamelCase = '''''' if is_finetuned: __lowerCamelCase = UniSpeechSatForCTC(_UpperCamelCase ) else: __lowerCamelCase = UniSpeechSatForPreTraining(_UpperCamelCase ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __lowerCamelCase = model[0].eval() recursively_load_weights(_UpperCamelCase ,_UpperCamelCase ) hf_wavavec.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) a_ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
0
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Dict = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) lowercase__ : Optional[int] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase__ : List[str] = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids lowercase__ : Optional[int] = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids lowercase__ : str = shift_tokens_right(__UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) lowercase__ : Optional[int] = model(__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits lowercase__ : Optional[Any] = optax.softmax_cross_entropy(__UpperCAmelCase , onehot(__UpperCAmelCase , logits.shape[-1] ) ).mean() lowercase__ : str = -(labels.shape[-1] * loss.item()) lowercase__ : int = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
198
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING a_ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return {}, {}, {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = load_image(__UpperCAmelCase ) __lowerCamelCase = image.size __lowerCamelCase = self.image_processor(images=__UpperCAmelCase , return_tensors=self.framework ) return model_inputs def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.model(**__UpperCAmelCase ) return model_outputs def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = model_outputs.predicted_depth __lowerCamelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=__UpperCAmelCase ) __lowerCamelCase = prediction.squeeze().cpu().numpy() __lowerCamelCase = (output * 255 / np.max(__UpperCAmelCase )).astype('''uint8''' ) __lowerCamelCase = Image.fromarray(__UpperCAmelCase ) __lowerCamelCase = {} __lowerCamelCase = predicted_depth __lowerCamelCase = depth return output_dict
330
0
def a ( snake_case__: int ): '''simple docstring''' stooge(_UpperCamelCase , 0 , len(_UpperCamelCase ) - 1 ) return arr def a ( snake_case__: List[Any] , snake_case__: List[str] , snake_case__: Optional[int] ): '''simple docstring''' if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowercase_ , lowercase_ = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowercase_ = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_UpperCamelCase , _UpperCamelCase , (h - t) ) # Recursively sort last 2/3 elements stooge(_UpperCamelCase , i + t , (_UpperCamelCase) ) # Recursively sort first 2/3 elements stooge(_UpperCamelCase , _UpperCamelCase , (h - t) ) if __name__ == "__main__": __a = input('Enter numbers separated by a comma:\n').strip() __a = [int(item) for item in user_input.split(',')] print(stooge_sort(unsorted))
30
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a_ = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = ["""pixel_values"""] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __lowerCamelCase = size if size is not None else {'''shortest_edge''': 224} __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) __lowerCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowerCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD __lowerCamelCase = do_convert_rgb def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowerCamelCase = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowerCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowerCamelCase = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] __lowerCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
330
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=13 ,SCREAMING_SNAKE_CASE__=7 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=99 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=5 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=37 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=5_12 ,SCREAMING_SNAKE_CASE__=16 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=None ,) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = parent __SCREAMING_SNAKE_CASE :Tuple = batch_size __SCREAMING_SNAKE_CASE :List[str] = seq_length __SCREAMING_SNAKE_CASE :int = is_training __SCREAMING_SNAKE_CASE :Optional[Any] = use_input_mask __SCREAMING_SNAKE_CASE :Any = use_token_type_ids __SCREAMING_SNAKE_CASE :Any = use_labels __SCREAMING_SNAKE_CASE :int = vocab_size __SCREAMING_SNAKE_CASE :Optional[int] = hidden_size __SCREAMING_SNAKE_CASE :int = num_hidden_layers __SCREAMING_SNAKE_CASE :Optional[Any] = num_attention_heads __SCREAMING_SNAKE_CASE :Tuple = intermediate_size __SCREAMING_SNAKE_CASE :Optional[int] = hidden_act __SCREAMING_SNAKE_CASE :Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE :Any = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :Union[str, Any] = max_position_embeddings __SCREAMING_SNAKE_CASE :List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE :Dict = type_sequence_label_size __SCREAMING_SNAKE_CASE :List[str] = initializer_range __SCREAMING_SNAKE_CASE :Optional[Any] = num_labels __SCREAMING_SNAKE_CASE :Tuple = num_choices __SCREAMING_SNAKE_CASE :Any = scope def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __SCREAMING_SNAKE_CASE :int = None if self.use_input_mask: __SCREAMING_SNAKE_CASE :Dict = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE :Optional[Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE :Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __SCREAMING_SNAKE_CASE :List[Any] = None __SCREAMING_SNAKE_CASE :List[Any] = None __SCREAMING_SNAKE_CASE :Dict = None if self.use_labels: __SCREAMING_SNAKE_CASE :Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE :int = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __SCREAMING_SNAKE_CASE :Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) __SCREAMING_SNAKE_CASE :Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self ) -> str: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__UpperCAmelCase ,initializer_range=self.initializer_range ,use_stable_embedding=__UpperCAmelCase ,) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = OpenLlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE :Tuple = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Tuple = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :str = True __SCREAMING_SNAKE_CASE :Dict = OpenLlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE :Union[str, Any] = model( __UpperCAmelCase ,attention_mask=__UpperCAmelCase ,encoder_hidden_states=__UpperCAmelCase ,encoder_attention_mask=__UpperCAmelCase ,) __SCREAMING_SNAKE_CASE :int = model( __UpperCAmelCase ,attention_mask=__UpperCAmelCase ,encoder_hidden_states=__UpperCAmelCase ,) __SCREAMING_SNAKE_CASE :str = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = OpenLlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE :str = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = True __SCREAMING_SNAKE_CASE :int = True __SCREAMING_SNAKE_CASE :Dict = OpenLlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass __SCREAMING_SNAKE_CASE :List[Any] = model( __UpperCAmelCase ,attention_mask=__UpperCAmelCase ,encoder_hidden_states=__UpperCAmelCase ,encoder_attention_mask=__UpperCAmelCase ,use_cache=__UpperCAmelCase ,) __SCREAMING_SNAKE_CASE :str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __SCREAMING_SNAKE_CASE :int = ids_tensor((self.batch_size, 3) ,config.vocab_size ) __SCREAMING_SNAKE_CASE :Any = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and __SCREAMING_SNAKE_CASE :List[Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) __SCREAMING_SNAKE_CASE :Dict = torch.cat([input_mask, next_mask] ,dim=-1 ) __SCREAMING_SNAKE_CASE :Optional[int] = model( __UpperCAmelCase ,attention_mask=__UpperCAmelCase ,encoder_hidden_states=__UpperCAmelCase ,encoder_attention_mask=__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,)['''hidden_states'''][0] __SCREAMING_SNAKE_CASE :Union[str, Any] = model( __UpperCAmelCase ,attention_mask=__UpperCAmelCase ,encoder_hidden_states=__UpperCAmelCase ,encoder_attention_mask=__UpperCAmelCase ,past_key_values=__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,)['''hidden_states'''][0] # select random slice __SCREAMING_SNAKE_CASE :Union[str, Any] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE :Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __SCREAMING_SNAKE_CASE :int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1E-3 ) ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) , ) :Any = config_and_inputs __SCREAMING_SNAKE_CASE :Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Tuple = (OpenLlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : int = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : str = False def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :int = OpenLlamaModelTester(self ) __SCREAMING_SNAKE_CASE :Optional[Any] = ConfigTester(self ,config_class=__UpperCAmelCase ,hidden_size=37 ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE :Optional[Any] = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE :Dict = 3 __SCREAMING_SNAKE_CASE :str = input_dict['''input_ids'''] __SCREAMING_SNAKE_CASE :Tuple = input_ids.ne(1 ).to(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :List[str] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) __SCREAMING_SNAKE_CASE :List[str] = OpenLlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE :Optional[Any] = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :str = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE :Dict = 3 __SCREAMING_SNAKE_CASE :str = '''single_label_classification''' __SCREAMING_SNAKE_CASE :Tuple = input_dict['''input_ids'''] __SCREAMING_SNAKE_CASE :str = input_ids.ne(1 ).to(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Union[str, Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) __SCREAMING_SNAKE_CASE :Tuple = OpenLlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE :Optional[Any] = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Any = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE :Dict = 3 __SCREAMING_SNAKE_CASE :List[Any] = '''multi_label_classification''' __SCREAMING_SNAKE_CASE :int = input_dict['''input_ids'''] __SCREAMING_SNAKE_CASE :Optional[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) __SCREAMING_SNAKE_CASE :Any = OpenLlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE :Optional[int] = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE :Optional[Any] = ids_tensor([1, 10] ,config.vocab_size ) __SCREAMING_SNAKE_CASE :List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __SCREAMING_SNAKE_CASE :Any = OpenLlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() __SCREAMING_SNAKE_CASE :Union[str, Any] = original_model(__UpperCAmelCase ).last_hidden_state __SCREAMING_SNAKE_CASE :int = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __SCREAMING_SNAKE_CASE :Optional[Any] = {'''type''': scaling_type, '''factor''': 1_0.0} __SCREAMING_SNAKE_CASE :Dict = OpenLlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() __SCREAMING_SNAKE_CASE :Any = scaled_model(__UpperCAmelCase ).last_hidden_state __SCREAMING_SNAKE_CASE :Any = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase ,__UpperCAmelCase ,atol=1E-5 ) )
191
from __future__ import annotations from typing import Generic, TypeVar a_ = TypeVar("""T""") class __lowerCAmelCase ( Generic[T] ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = data __lowerCamelCase = self __lowerCamelCase = 0 class __lowerCAmelCase ( Generic[T] ): def __init__( self ): '''simple docstring''' # map from node name to the node object __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # create a new set with x as its member __lowerCamelCase = DisjointSetTreeNode(__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # find the set x belongs to (with path-compression) __lowerCamelCase = self.map[data] if elem_ref != elem_ref.parent: __lowerCamelCase = self.find_set(elem_ref.parent.data ) return elem_ref.parent def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # helper function for union operation if nodea.rank > nodea.rank: __lowerCamelCase = nodea else: __lowerCamelCase = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # merge 2 disjoint sets self.link(self.find_set(__UpperCAmelCase ) , self.find_set(__UpperCAmelCase ) ) class __lowerCAmelCase ( Generic[T] ): def __init__( self ): '''simple docstring''' # connections: map from the node to the neighbouring nodes (with weights) __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # add a node ONLY if its not present in the graph if node not in self.connections: __lowerCamelCase = {} def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' # add an edge with the given weight self.add_node(__UpperCAmelCase ) self.add_node(__UpperCAmelCase ) __lowerCamelCase = weight __lowerCamelCase = weight def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __UpperCAmelCase : x[2] ) # creating the disjoint set __lowerCamelCase = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__UpperCAmelCase ) # MST generation __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = edges[index] index += 1 __lowerCamelCase = disjoint_set.find_set(__UpperCAmelCase ) __lowerCamelCase = disjoint_set.find_set(__UpperCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) disjoint_set.union(__UpperCAmelCase , __UpperCAmelCase ) return graph
330
0